JP2003039297A - Polishing device and polishing method - Google Patents

Polishing device and polishing method

Info

Publication number
JP2003039297A
JP2003039297A JP2001235049A JP2001235049A JP2003039297A JP 2003039297 A JP2003039297 A JP 2003039297A JP 2001235049 A JP2001235049 A JP 2001235049A JP 2001235049 A JP2001235049 A JP 2001235049A JP 2003039297 A JP2003039297 A JP 2003039297A
Authority
JP
Japan
Prior art keywords
polishing
shape
processed
curvature
polishing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001235049A
Other languages
Japanese (ja)
Inventor
Shinichi Chiba
伸一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001235049A priority Critical patent/JP2003039297A/en
Publication of JP2003039297A publication Critical patent/JP2003039297A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing device capable of smoothing a surface to be polished provided with various kinds of curvatures such as an aspherical lens with a simple composition. SOLUTION: An abrasive part 2 can be deformed without changing the center position of the abrasive part 2, by supporting the approximate center section of the abrasive part 2 provided with an abrasive surface 2a with a pivot 7 and driving the both end sections in the Z axis direction with a driving means 9. A surface to be polished provided with various kinds of curvatures such as an aspherical lens can be smoothed by performing polishing with the abrasive surface 2a coinceding to the ideal profile and making close contact with the surface to be polished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レンズやミラー等
の光学素子あるいは金型等を研磨するときに使用される
研磨装置および研磨方法に関し、特に、非球面等の自由
曲面の超精密研磨加工に用いられる形状可変の研磨装置
および研磨方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing apparatus and a polishing method used for polishing optical elements such as lenses and mirrors, dies, and the like, and more particularly to ultraprecision polishing of free-form surfaces such as aspherical surfaces. The present invention relates to a polishing apparatus and a polishing method with a variable shape used for the.

【0002】[0002]

【従来の技術】高度な形状精度が要求されるレンズやミ
ラー等の光学素子あるいは金型等を仕上げ研磨する際に
は、一般に、弾性材料からなるポリッシャを用いる研磨
工具が従来から使用されており、このポリッシャの研磨
面を被加工面に対して押し付け、研磨面と被加工面の間
に研磨液を供給しながら、ポリッシャを被加工面に対し
て回転あるいは揺動運動させて加工を行なっている。こ
のとき、被加工面が球面ならば、求められる球面の曲率
半径の合致するようにポリッシャの表面を高精度に成形
しておくのが普通である。
2. Description of the Related Art Polishing tools using a polisher made of an elastic material have been generally used for finishing polishing optical elements such as lenses and mirrors, dies, etc., which require a high degree of shape accuracy. , The polishing surface of the polisher is pressed against the surface to be processed, and while the polishing liquid is supplied between the polishing surface and the surface to be processed, the polisher is rotated or rocked with respect to the surface to be processed. There is. At this time, if the surface to be processed is a spherical surface, it is usual to form the surface of the polisher with high accuracy so that the required radius of curvature of the spherical surface matches.

【0003】ところで、被加工物の形状は様々であり、
例えば、非球面のような曲率半径が変化するような場合
には、上記のように予め一定の曲率半径に成形された1
種類の研磨工具だけで加工を行なうと、被加工面上で変
化する曲率半径(以下、単にRともいう)に対応でき
ず、研磨工具の研磨面と被加工面に曲率半径の差がある
ために、研磨工具の接触する被加工面上で圧力分布の差
が生じ、一様に研磨加工することができない。極端な場
合には、研磨面と被加工面の間に隙間が生じ、研磨面の
一部しか加工に作用しないこともあり得る。
By the way, there are various shapes of workpieces,
For example, in the case where the radius of curvature changes like an aspherical surface, 1
If only one type of polishing tool is used for processing, the radius of curvature that changes on the surface to be processed (hereinafter also simply referred to as R) cannot be accommodated, and there is a difference in radius of curvature between the polishing surface of the polishing tool and the surface to be processed. In addition, a difference in pressure distribution occurs on the surface to be processed that the polishing tool contacts, and uniform polishing cannot be performed. In an extreme case, a gap may occur between the polishing surface and the surface to be processed, and only part of the polishing surface may act on the processing.

【0004】また、研磨加工の進行にしたがって、ポリ
ッシャの研磨面の形状が徐々に変形して劣化するため、
一定の曲率半径を維持するためには、摺りあわせ等の作
業により研磨面を再成形する必要がある。この摺りあわ
せ作業に費やされる労力と時間やその間に研磨加工を中
断することが、製造効率の低下と製造コストの増大につ
ながる。
Further, as the polishing process progresses, the shape of the polishing surface of the polisher gradually deforms and deteriorates.
In order to maintain a constant radius of curvature, it is necessary to reshape the polishing surface by an operation such as sliding. The labor and time spent for this lapping work and interruption of the polishing process during that time lead to a decrease in manufacturing efficiency and an increase in manufacturing cost.

【0005】以上のことから、多様な曲率半径を加工す
ることができるように工具部材の研磨面を任意に形成す
ることが可能な加工用の研磨装置も提案され、例えば特
公平5−58864号公報には、複数個の駆動手段を用
いて研磨面形状すなわち研磨面の曲率半径を変化させる
ようにした研磨装置が開示されている。
From the above, a polishing apparatus for machining which can arbitrarily form a polishing surface of a tool member so as to machine various curvature radii has been proposed, for example, Japanese Patent Publication No. 5-58664. The publication discloses a polishing apparatus in which the shape of the polishing surface, that is, the radius of curvature of the polishing surface is changed by using a plurality of driving means.

【0006】この従来の研磨装置は、図7に図示するよ
うに、基盤101上に不図示の制御手段により個別に作
動可能な複数個の変位アクチュエータ102を二次元的
に配置し、これらの変位アクチュエータ102の作動に
よって、変位する出力側の部材103に全体として、任
意の曲面形状の工具面を形成する弾性体からなる工具部
材104を取り付けた構成となっている。
In this conventional polishing apparatus, as shown in FIG. 7, a plurality of displacement actuators 102, which can be individually operated by control means (not shown), are two-dimensionally arranged on a base 101, and the displacements of these displacement actuators 102 are arranged. By the operation of the actuator 102, a tool member 104 made of an elastic body that forms a tool surface having an arbitrary curved shape is attached to the member 103 on the output side which is displaced as a whole.

【0007】また特開2001―071245公報に
も、研磨面曲率半径を変化させるようにした研磨装置が
開示されている。
Further, Japanese Patent Laid-Open No. 2001-071245 also discloses a polishing apparatus in which the radius of curvature of the polishing surface is changed.

【0008】この研磨装置は、図8に図示すように、研
磨パッド82を取り付けた板状部材83の周辺部を支柱
部材84に固定するとともに、板状部材83を研磨面の
押圧方向に変位させる1個のアクチュエータ85と、ア
クチュエータ85を駆動させる駆動制御手段87と、加
工位置に応じて加工面形状を算出し駆動制御手段87を
介して研磨パッド82を変形させる演算制御手段88を
備え、演算制御手段88により算出される任意の加工位
置における設計された理想的な加工面形状に応じて、ア
クチュエータ85を駆動して、研磨パッド82を取り付
けた板状部材83を変形させ、研磨パッド82の研磨面
82aを理想的な加工面形状に強制的に一致させて、研
磨面82aを被加工面に隙間なく密着させ、加工圧を均
一に加えて、微小なうねりを含めた被加工面の平滑化を
可能にしたものである。
In this polishing apparatus, as shown in FIG. 8, the peripheral portion of the plate-shaped member 83 to which the polishing pad 82 is attached is fixed to the column member 84, and the plate-shaped member 83 is displaced in the pressing direction of the polishing surface. One actuator 85 for driving, a drive control means 87 for driving the actuator 85, and an arithmetic control means 88 for calculating a machining surface shape according to a machining position and deforming the polishing pad 82 via the drive control means 87 are provided. The actuator 85 is driven to deform the plate-shaped member 83 to which the polishing pad 82 is attached according to the designed ideal processed surface shape calculated at any processing position by the arithmetic control unit 88, and the polishing pad 82. The polishing surface 82a of No. 1 is forcibly matched with the ideal processing surface shape, the polishing surface 82a is brought into close contact with the surface to be processed without a gap, and the processing pressure is evenly applied to make It is obtained by allowing the smoothing of the surface to be processed, including waviness.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た図7に図示した従来の研磨装置においては、次のよう
な問題点があった。
However, the conventional polishing apparatus shown in FIG. 7 has the following problems.

【0010】複数個の変位アクチュエータ102を個々
に制御して、所望の曲面形状を得るようにしているた
め、装置構成を複雑でかつ高価なものにし、特に連続的
に微小に曲率半径が変化するような緩やかな曲面(例え
ば、球面からのずれである非球面量が0.1mm程度)
のような場合には、工具部材104の面内で一部分の曲
率半径を急激に変化させることを必要としないため、か
かる労力および費用に対し効果が少ないという問題点が
あった。
Since a plurality of displacement actuators 102 are individually controlled to obtain a desired curved surface shape, the apparatus structure becomes complicated and expensive, and especially the radius of curvature changes continuously minutely. Such a gentle curved surface (for example, the amount of aspherical surface that is the deviation from the spherical surface is about 0.1 mm)
In such a case, it is not necessary to drastically change the radius of curvature of a part of the surface of the tool member 104, so that there is a problem in that the labor and cost are less effective.

【0011】また、曲率半径変化が急激で大きな被加工
面(例えば、球面からのずれである非球面量の最大値が
0.5mm以上)に対しては、ポリッシャとなる部材の
降伏応力、成形可能な大きさ等の制約により、十分小さ
い面積の研磨工具(例えば、φ20mm)を構成しなけ
ればならないので、工具面に複数個の変位アクチュエー
タを二次元的に配置することが、現状のアクチュエータ
のサイズ(小さいものでも、φ10mm)では物理的に
困難である。
For a surface to be machined with a large change in radius of curvature (for example, the maximum value of the amount of aspherical surface, which is the deviation from the spherical surface, is 0.5 mm or more), the yield stress of the member to be a polisher and the molding Since a polishing tool having a sufficiently small area (for example, φ20 mm) must be configured due to restrictions such as possible size, it is not possible to arrange a plurality of displacement actuators on the tool surface two-dimensionally. It is physically difficult with a size (even a small one, φ10 mm).

【0012】また図8に図示した従来の研磨装置におい
ては、板状部材3をその中心位置において研磨面の押圧
方向に変位させるため曲率半径を変化させると同時に研
磨装置全体を研磨面の押圧方向に移動させなければなら
ず、制御が複雑になるという問題点があった。
Further, in the conventional polishing apparatus shown in FIG. 8, the radius of curvature is changed in order to displace the plate-shaped member 3 at the center position in the pressing direction of the polishing surface, and at the same time the entire polishing apparatus is pressed in the pressing direction of the polishing surface. There is a problem in that the control becomes complicated because it has to be moved to.

【0013】そこで、本発明は、上記のような従来技術
の有する未解決の課題に鑑みてなされたものであって、
非球面レンズ等のような多種多様な曲率半径をもつ被加
工面に単一の工具で対応でき、かつ簡便な構成で被加工
面をスムーズに平滑化することができる研磨装置および
研磨方法を提供することを目的とするものである。
Therefore, the present invention has been made in view of the above-mentioned unsolved problems of the prior art,
Provided are a polishing apparatus and a polishing method capable of handling a work surface having various radii of curvature such as an aspherical lens with a single tool and smoothly smoothing the work surface with a simple structure. The purpose is to do.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の研磨装置は、研磨面を有する研磨部材と、
前記研磨部材の略中心部を支持する支持部と、前記研磨
部材の両端を保持する保持部と、前記保持部に作用する
制御手段とを有し、前記制御手段により前記研磨部材の
前記被加工面との接触面形状を調整することを特徴とす
る。
In order to achieve the above object, a polishing apparatus of the present invention comprises a polishing member having a polishing surface,
The polishing member includes a supporting portion that supports a substantially central portion of the polishing member, a holding portion that holds both ends of the polishing member, and control means that acts on the holding portion, and the processing means processes the polishing member by the control means. It is characterized in that the shape of the contact surface with the surface is adjusted.

【0015】本発明の研磨装置において、前記駆動手段
は一つであるほうが好ましい。
In the polishing apparatus of the present invention, it is preferable that the number of driving means is one.

【0016】本発明の研磨装置において、前記研磨部材
は、その厚さを調整し加工するほうが好ましい。
In the polishing apparatus of the present invention, it is preferable that the polishing member is processed by adjusting its thickness.

【0017】本発明の研磨装置において、前記研磨部材
は、その幅を調整し加工するほうが好ましい。
In the polishing apparatus of the present invention, it is preferable that the polishing member is processed by adjusting its width.

【0018】本発明の研磨方法は、研磨面を有する研磨
部材と、前記研磨部材の略中心部を支持する支持部と、
前記研磨部材の両端を保持する保持部とを有し、前記保
持部に制御手段を作用させ、被加工物の被加工面の情報
に基づいて前記制御手段によって前記研磨部材の接触面
の形状を変化させて研磨加工することを特徴とする。
The polishing method of the present invention comprises a polishing member having a polishing surface, and a supporting portion for supporting the substantially central portion of the polishing member.
And a holding unit that holds both ends of the polishing member, and causes the control unit to act on the holding unit, and controls the shape of the contact surface of the polishing member by the control unit based on the information of the surface to be processed of the workpiece. It is characterized by changing and polishing.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0020】図1の(a)は本発明の研磨装置の第1の
実施形態の概略構成図であり、同(b)は研磨部材の下
面図であり図2は本発明の研磨工具の第1の実施形態を
用いて、軸対称の凸の非球面形状(光学レンズ)を加工
する態様を示す模式図である。
FIG. 1 (a) is a schematic configuration diagram of a first embodiment of a polishing apparatus of the present invention, FIG. 1 (b) is a bottom view of a polishing member, and FIG. 2 shows a polishing tool of the present invention. It is a schematic diagram which shows the aspect which processes an axisymmetric convex aspherical shape (optical lens) using 1st Embodiment.

【0021】図1の(a)において、研磨装置1は、研
磨部材2(本実施例では、研磨パッド(ポリッシャ)3
1と、研磨パッド31を取り付ける板状部材32から構
成される)と、研磨装置1の押圧方向(Z方向)の位置
基準となるベース部材4と、ベース部材4に対して板状
部材32の中央部分を位置決め支持するための支持部
(5〜7)と、板状部材32の支持部を中心として長手
方向に相対向する部位(例えば、両端部)を移動し得る
ように保持する保持部(10〜14)と、この保持部
(10〜14)を押圧方向に変位させる1個の駆動手段
9とを備え、さらに曲率半径等の加工面形状から研磨装
置1の移動量や、駆動手段9の駆動量等の加工プログラ
ムを記憶した演算制御手段16と、演算制御手段16か
ら加工位置に応じた駆動量を出力され、その値に応じた
駆動電流を駆動手段9へ出力する駆動制御手段15を備
えている。
In FIG. 1A, the polishing apparatus 1 includes a polishing member 2 (in this embodiment, a polishing pad (polisher) 3).
1 and a plate-shaped member 32 to which the polishing pad 31 is attached), a base member 4 serving as a position reference in the pressing direction (Z direction) of the polishing apparatus 1, and a plate-shaped member 32 with respect to the base member 4. A supporting portion (5 to 7) for positioning and supporting the central portion, and a holding portion for movably holding portions (for example, both end portions) facing each other in the longitudinal direction with the supporting portion of the plate-shaped member 32 as the center. (10 to 14) and one drive means 9 for displacing the holding part (10 to 14) in the pressing direction, and further, the amount of movement of the polishing apparatus 1 from the processed surface shape such as the radius of curvature and the drive means. The arithmetic control unit 16 that stores a machining program such as the drive amount of the drive unit 9 and the drive control unit that outputs the drive amount corresponding to the machining position from the arithmetic control unit 16 and outputs the drive current corresponding to the value to the drive unit 9. It is equipped with 15.

【0022】研磨パッド31は、ピッチや発泡ウレタン
等で作製され、その形状は、図1の(b)に示すように
長手方向と短手方向のある矩形状としている。この研磨
パッド31は、りん青銅や薄板ばね鋼等で作製された板
状部材32の下面に接着等の手段により固着されて取り
付けられ、その下面が研磨面2aとなる。また、研磨パ
ッド31は、図1の(a)および(b)においては、全
体が繋がっている1枚のものとして示しているが、数箇
所で分割された複数部片で形成することもでき、また、
分割された部片ではなく、研磨面2a上に溝を形成する
ものであってもよい。さらに本実施例では研磨部材2を
研磨パッド31と板状部材32により構成しているが、
研磨パッドと板状部材が一体となっているものを用いて
もよい。
The polishing pad 31 is made of pitch, urethane foam or the like, and has a rectangular shape having a longitudinal direction and a lateral direction as shown in FIG. 1 (b). The polishing pad 31 is fixedly attached to the lower surface of a plate-shaped member 32 made of phosphor bronze, thin leaf spring steel, or the like by means such as adhesion, and the lower surface serves as the polishing surface 2a. Further, although the polishing pad 31 is shown as one piece which is wholly connected in FIGS. 1A and 1B, it can be formed by a plurality of pieces divided at several places. ,Also,
Instead of the divided pieces, grooves may be formed on the polishing surface 2a. Further, in this embodiment, the polishing member 2 is composed of the polishing pad 31 and the plate member 32.
You may use what the polishing pad and the plate-shaped member were integrated.

【0023】板状部材32の中央部分を押圧方向(Z方
向)に位置決めするための支持部は、研磨装置1のZ方
向の位置基準となるベース部材4から下方に延びる支柱
5の下端に取り付けられたV字状アーム6と、このV字
状アーム6の下端部に取り付けられて板状部材32の中
央部分に係合するピボット7とから構成され、板状部材
32の中央部分をZ方向の位置基準となるベース部材4
に対してZ方向の所定の位置に位置決めする。ピボット
7は、その先端部が球面等の曲面形状に形成され、この
曲面形状の先端部を介して板状部材32の中央部分に係
合接続され、板状部材32が横ずれあるいはたわみ変形
した時の歪みを排除できるように構成されている。
A support portion for positioning the central portion of the plate member 32 in the pressing direction (Z direction) is attached to the lower end of a column 5 extending downward from the base member 4 which serves as a position reference in the Z direction of the polishing apparatus 1. And a pivot 7 attached to the lower end of the V-shaped arm 6 and engaged with the central portion of the plate-shaped member 32. The central portion of the plate-shaped member 32 is moved in the Z direction. Base member 4 that serves as the position reference
To a predetermined position in the Z direction with respect to. The pivot 7 has a tip end portion formed into a curved surface shape such as a spherical surface, and is engaged and connected to the central portion of the plate-like member 32 through the tip end portion of this curved surface shape, and when the plate-like member 32 is laterally displaced or flexibly deformed. It is configured to eliminate the distortion of.

【0024】板状部材32の両端部を移動しうるように
保持する保持部は、ベース部材4に固定された駆動手段
9の下端部に中央部分が取り付けられたX方向に延びる
ガイドベース10と、ガイドベース10の両側面からそ
れぞれX方向外方に延出され、外端部に抜け止めを有す
るガイドバー11と、両ガイドバー11に沿ってそれぞ
れX方向に摺動可能に両ガイドバー11に装着された一
対のブロック体12と、ガイドベース10と各ブロック
体12との間でガイドバー11に巻装され各ブロック体
12に予圧を与えるための(圧縮)コイルばね13と、
各ブロック体12の下方部に板状部材32の両端部をY
軸回りに回転自在に取り付けるための回転ピン14とか
ら構成され、板状部材32の両端部の両側部にそれぞれ
設けられた折曲げ片3aをブロック体12の下方部を挟
むように位置付け、両者に設けられている貫通孔に回転
ピン14を挿通することにより、板状部材32は、ブロ
ック体12に対して、回転ピン14を介してY軸回りに
回転自在となる。回転ピン14の外方端部には抜け止め
が設けられており、板状部材32を確実に保持する。な
お、ブロック体12には、ガイドバー11を挿入するX
方向の貫通孔が設けられ、ガイドバー11を軸としてX
方向に摺動自在なはめ合いになっている。これらのガイ
ドベース10、ガイドバー11、ブロック体12および
コイルばね13は、組み合わされて、水平(X方向)並
進方向のガイドとして機能する。また、ガイドバー11
はガイドベース10に固着されてブロック体12の貫通
孔と摺動するように構成する例を説明したが、逆に、ガ
イドバー11をブロック体12側に固着してガイドベー
ス10に設けた孔に挿入して摺動するように構成するこ
とも可能である。コイルばね13は、各ブロック体12
に予圧を与えるためのものであるが、その剛性は、ガイ
ドベース10が押圧方向(Z方向)に変位したときに板
状部材32のたわみ変形を妨げない程度に充分小さいも
のとし、また、コイルばね13の自然長は、ブロック体
12に両端部がそれぞれ取り付けられている板状部材3
2に予め適度な張力をもたせるように、調整されてい
る。
A holding portion for holding both ends of the plate member 32 so as to be movable is a guide base 10 extending in the X direction, having a central portion attached to a lower end portion of a driving means 9 fixed to the base member 4. , A guide bar 11 extending outward in the X direction from both side surfaces of the guide base 10 and having stoppers at the outer ends thereof, and both guide bars 11 slidable in the X direction along the guide bars 11. A pair of block bodies 12 mounted on the guide bar 10, and a (compression) coil spring 13 wound around the guide bar 11 between the guide base 10 and each block body 12 to apply a preload to each block body 12,
Both ends of the plate member 32 are attached to the lower part of each block body 12 by Y.
Bending pieces 3a each of which is composed of a rotating pin 14 for rotatably mounting around an axis and which is provided on both sides of both ends of the plate-like member 32 are positioned so as to sandwich the lower portion of the block body 12. By inserting the rotary pin 14 into the through hole provided in the plate member 32, the plate-shaped member 32 becomes rotatable about the Y axis with respect to the block body 12 via the rotary pin 14. A stopper is provided at the outer end of the rotating pin 14 to securely hold the plate member 32. It should be noted that the block body 12 has an X for inserting the guide bar 11.
Direction through-hole is provided, and X is centered on the guide bar 11.
Fitting is slidable in any direction. The guide base 10, the guide bar 11, the block body 12, and the coil spring 13 are combined to function as a guide in the horizontal (X direction) translation direction. In addition, the guide bar 11
Has described an example in which the guide bar 10 is fixed to the guide base 10 and slides in the through hole of the block body 12. However, conversely, the hole provided in the guide base 10 by fixing the guide bar 11 to the block body 12 side. It is also possible to insert it into a slide and slide it. The coil spring 13 is used for each block body 12.
The pre-load is applied to the plate base 32. However, its rigidity is sufficiently small so as not to hinder the flexural deformation of the plate-shaped member 32 when the guide base 10 is displaced in the pressing direction (Z direction). The natural length of the spring 13 is the plate-shaped member 3 whose both ends are attached to the block body 12, respectively.
2 is adjusted in advance so as to have an appropriate tension.

【0025】駆動手段9は、その一端が押圧方向(Z方
向)の位置基準となるベース部材4に固定され、Z方向
に変位可能な他端部には保持部を構成するガイドベース
10の中央部分が固着されており、駆動手段9の駆動に
より、ガイドベース10およびブロック体12等の保持
部をZ方向に移動させる。この駆動手段9としては、高
速な応答が求められる場合にはピエゾ素子等の電圧変位
変換素子等を用い、また、応答性はあまり必要としない
が大ストロークが求められる場合には、エアシリンダや
油圧シリンダ等を選択して用いる。また、その他に直動
パルスモータ、あるいは回転型モータに直動型に変換す
る機構(例えば、ラックとピニオン機構、ボールねじ)
を取り付けて用いることもできる。
The driving means 9 has one end fixed to the base member 4 serving as a position reference in the pressing direction (Z direction), and the other end displaceable in the Z direction has the center of the guide base 10 constituting a holding portion. The parts are fixed, and the driving means 9 drives the holding parts such as the guide base 10 and the block body 12 to move in the Z direction. As the driving means 9, a voltage displacement conversion element such as a piezo element is used when a high speed response is required, and an air cylinder or an air cylinder is used when a large stroke is required although responsiveness is not required so much. Select a hydraulic cylinder to use. In addition, a mechanism that converts a direct drive pulse motor or a rotary type motor into a direct drive type (for example, a rack and pinion mechanism, a ball screw)
It is also possible to attach and use.

【0026】また、駆動制御手段15は、駆動手段9に
接続され、駆動手段9を駆動制御するためのものであ
り、演算制御手段16は、曲率半径等の加工面形状から
研磨装置1の移動量や、駆動手段9の駆動量等の加工プ
ログラムを記憶し、駆動制御手段15に接続されて、加
工位置に応じた駆動手段9の駆動量を駆動制御手段15
に出力する。
Further, the drive control means 15 is connected to the drive means 9 and is for controlling the drive of the drive means 9. The arithmetic control means 16 moves the polishing apparatus 1 from the machining surface shape such as the radius of curvature. A machining program such as the amount and the driving amount of the driving unit 9 is stored and connected to the driving control unit 15 so that the driving amount of the driving unit 9 according to the machining position is controlled by the driving control unit 15.
Output to.

【0027】次に、駆動手段9の変位により研磨装置1
の研磨面2aの形状を変更させる態様について説明す
る。
Next, the polishing apparatus 1 is moved by the displacement of the driving means 9.
A mode for changing the shape of the polishing surface 2a will be described.

【0028】ベース部材4を基準にして駆動手段9が矢
印A方向に変位すると、中央部分が駆動手段9に取り付
けられているガイドベース10および両ガイドバー11
にそれぞれ装着されている両ブロック体12も一体とな
って、矢印A方向に移動することになる。このとき、ブ
ロック体12に回転可能に接続されている回転ピン14
もZ方向に変位するが、コイルばね13の剛性と自然長
を適度に調節したX並進方向ガイドを有しているため、
無理な負荷がかかって板状部材32の長さが変化するの
ではなく、ブロック体12はガイドベース10に対して
X方向に摺動して変位し、ガイドベース10との距離が
縮められる。さらに、回転ピン14に沿って板状部材3
2の両端部がスムーズに回転しうるため、板状部材32
には余計な負荷がかからない。また、板状部材32の中
央部分は、ピボット7によりZ方向に位置決めされてい
るために、Z方向に変位しない。このため、板状部材3
2は、その両端部がたわんで、凸あるいは凹の曲率半径
の面を形成し、板状部材32に固着されている研磨パッ
ド31の研磨面2aも板状部材32の曲率半径面になら
う形で凸あるいは凹の曲率半径面となる。さらに、駆動
手段9の変位と板状部材32の撓みは、1対1で対応す
るので、予めそれらの関係を把握しておけば、駆動手段
9を変位させて研磨パッド31の研磨面2aを所望の曲
率半径の面に形成することが可能である。なお、いうま
でもなく、この面には、曲率半径が無限大のもの、すな
わち平面も含まれる。
When the drive means 9 is displaced in the direction of arrow A with reference to the base member 4, the guide base 10 and both guide bars 11 attached to the drive means 9 in the central portion thereof.
Both of the block bodies 12 attached to the respective units move together in the direction of arrow A. At this time, the rotation pin 14 rotatably connected to the block body 12
Also moves in the Z direction, but since it has an X translational direction guide in which the rigidity and natural length of the coil spring 13 are adjusted appropriately,
The length of the plate member 32 does not change due to an unreasonable load, but the block body 12 slides and displaces in the X direction with respect to the guide base 10, and the distance from the guide base 10 is shortened. Furthermore, the plate-shaped member 3 is provided along the rotation pin 14.
Since both ends of 2 can rotate smoothly, the plate-shaped member 32
Is not overloaded. Further, since the central portion of the plate member 32 is positioned in the Z direction by the pivot 7, it does not move in the Z direction. Therefore, the plate-shaped member 3
Reference numeral 2 denotes a curved surface having a convex or concave radius of curvature, and the polishing surface 2a of the polishing pad 31 fixed to the plate-shaped member 32 also follows the radius-of-curvature surface of the plate-shaped member 32. The surface has a convex or concave radius of curvature. Further, since the displacement of the driving means 9 and the bending of the plate-shaped member 32 correspond to each other on a one-to-one basis, if the relationship between them is grasped in advance, the driving means 9 is displaced and the polishing surface 2a of the polishing pad 31 is moved. It is possible to form a surface having a desired radius of curvature. Needless to say, this surface includes an infinite radius of curvature, that is, a flat surface.

【0029】次に、以上のように構成される本実施形態
の研磨装置1を用いて、被加工物Lを研磨加工する態様
について図2を参照して説明する。
Next, a mode in which the workpiece L is polished by using the polishing apparatus 1 of the present embodiment configured as described above will be described with reference to FIG.

【0030】図2において、Lは、例えば中心軸対称の
凸の非球面を有する光学レンズ等の被加工物であり、真
空吸着あるいは不図示の治具を介したねじ止め、接着等
の手段により保持体Hに固定され、保持体Hにはその中
心軸Nの周りに一定速度で回転するモータ等の駆動手段
(不図示)が取り付けられている。被加工物Lの被加工
面Laは、図示しない研磨剤を介して研磨パッド31の
研磨面2aが押圧接触され、研磨が行なわれるが、ここ
で、被加工面Laの研磨に使用される研磨パッド31お
よび板状部材32は、被加工面Laに対して十分小さい
寸法に設定される。例えば、直径φ200mmの被加工
面Laに対して、20mm×6mmの矩形状の研磨パッ
ド31を用いる。
In FIG. 2, L is a workpiece such as an optical lens having a convex aspherical surface symmetric with respect to the central axis, and is attached by means such as vacuum suction or screwing or bonding through a jig (not shown). It is fixed to the holding body H, and a driving means (not shown) such as a motor that rotates at a constant speed around the central axis N is attached to the holding body H. The surface La to be processed of the workpiece L is pressed and brought into contact with the polishing surface 2a of the polishing pad 31 via an abrasive (not shown), and polishing is performed. Here, the polishing used for polishing the surface La to be processed. The pad 31 and the plate member 32 are set to have dimensions sufficiently smaller than the surface La to be processed. For example, a rectangular polishing pad 31 having a size of 20 mm × 6 mm is used for the surface La having a diameter of 200 mm.

【0031】被加工物Lは、保持体Hに取り付けられ
て、不図示の駆動手段により、中心軸Nを右周りに任意
の回転数Wr(例えば、10rpm)で回転され、研磨
装置1は、不図示の駆動手段により被加工物Lの被加工
面Laの頂点である中心軸N上の位置から半径方向を外
側に向かって(図中、矢印C)、被加工物Lの被加工面
La上を一定の速度v(例えば、5mm/min)で移
動する。そのため、見かけ上は、被加工物Lに対し研磨
装置1が、被加工面Laの中心から外周に向かって螺旋
状に走査されることになる。
The workpiece L is attached to the holder H and rotated by the drive means (not shown) in the clockwise direction about the central axis N at an arbitrary rotational speed Wr (for example, 10 rpm). From the position on the central axis N, which is the apex of the work surface La of the work piece L, in the radial direction outward (arrow C in the figure), the work surface La of the work piece L is driven by a driving unit (not shown). The upper part is moved at a constant speed v (for example, 5 mm / min). Therefore, apparently, the polishing apparatus 1 scans the workpiece L spirally from the center of the surface La to be processed toward the outer periphery.

【0032】またこのとき、研磨装置1は、研磨加工の
能率を高くするために、振幅hおよび周波数f(例え
ば、振幅(h)2mmで周波数(f)5Hz)、すなわ
ち、平均速度vr(vr>v、例えば20mm/se
c)で半径方向に揺動運動(図中、矢印D)しながら、
被加工面Laを加工する。さらに、研磨装置1におい
て、研磨パッド31の研磨面2aから被加工面Laに対
して加工に必要な荷重が付与されることはいうまでもな
い。
Further, at this time, the polishing apparatus 1 uses the amplitude h and the frequency f (for example, the amplitude (h) is 2 mm and the frequency (f) is 5 Hz), that is, the average speed vr (vr, in order to increase the efficiency of the polishing process. > V, for example 20 mm / se
While swinging in the radial direction (arrow D in the figure) in c),
The surface La to be processed is processed. Further, in the polishing apparatus 1, it goes without saying that a load necessary for processing is applied from the polishing surface 2a of the polishing pad 31 to the surface La to be processed.

【0033】被加工物Lの加工位置は、被加工物Lの回
転数Wrと研磨装置の半径方向の移動速度vより、あら
かじめ予測することができ、演算制御手段16は、そこ
に記憶された加工プログラムから、研磨装置1自体を被
加工物Lの被加工面La上に図示しない移動手段により
移動させるとともに、その加工位置に対する設計曲率半
径Rから求められた駆動手段9の駆動量を出力し、駆動
制御手段15を介して、研磨装置1の駆動手段9を駆動
し、板状部材3および研磨パッド31の形状を所望の曲
率半径Rに一致させることができる。このことは、研磨
装置1が、被加工物Lの中心付近にあるとき(曲率半径
1 、例えばR1=300mm程度)でも、外周付近に
あるとき(曲率半径R2(R2 <R1)、例えばR2 =2
00mm程度)でも全く同様である。
The processing position of the work piece L can be predicted in advance from the rotational speed Wr of the work piece L and the moving speed v of the polishing apparatus in the radial direction, and the arithmetic control means 16 is stored therein. From the machining program, the polishing apparatus 1 itself is moved onto the surface La to be machined of the workpiece L by a moving means (not shown), and the driving amount of the driving means 9 obtained from the design curvature radius R for the machining position is output. The drive means 9 of the polishing apparatus 1 can be driven via the drive control means 15 to match the shapes of the plate member 3 and the polishing pad 31 with a desired radius of curvature R. This means that even when the polishing apparatus 1 is near the center of the workpiece L (radius of curvature R 1 , for example, R 1 = about 300 mm), it is near the outer circumference (radius of curvature R 2 (R 2 <R 1 <R 1 ), For example R 2 = 2
(About 00 mm) is completely the same.

【0034】このように、外部に設置された演算制御手
段16により、任意の加工位置における理想的な加工面
形状(例えば、曲率半径)から求めた駆動手段9の駆動
量を出力し、一端がベース部材4に固定された駆動手段
9を駆動させてガイドベース10をZ方向に移動させる
ことにより、研磨パッド31をこの加工面形状に一致さ
せるように、帯状の研磨パッド31を取り付けた板状部
材32を局所的な応力集中や塑性変形も生じさせること
なく、たわみ変形させることができる。これにより、研
磨パッド31の研磨面2aは被加工面Laに隙間なく密
着し、研磨装置1に付加された荷重が、加工圧として被
加工面La内に均一に加わる。また、板状部材32の中
央部分はピポット7により研磨装置の位置基準であるベ
ース部材4からの距離が一定になるよう位置決めされて
いるため、駆動手段9を駆動し板状部材32および研磨
パッド31の形状を変化させても中央部分の位置は変化
しないため、板状部材32および研磨パッド31の形状
変化時に研磨装置全体をZ方向に動かす必要がなくな
り、位置決め精度も向上し、制御も簡略化できる。
As described above, the arithmetic control means 16 installed outside outputs the driving amount of the driving means 9 obtained from the ideal machining surface shape (for example, radius of curvature) at any machining position, and one end By driving the driving means 9 fixed to the base member 4 to move the guide base 10 in the Z direction, a plate-like plate having the band-shaped polishing pad 31 attached thereto so that the polishing pad 31 conforms to the processed surface shape. The member 32 can be flexibly deformed without causing local stress concentration or plastic deformation. As a result, the polishing surface 2a of the polishing pad 31 comes into close contact with the surface La to be processed without a gap, and the load applied to the polishing apparatus 1 is uniformly applied to the surface La to be processed as a processing pressure. Further, since the central portion of the plate member 32 is positioned by the pivot 7 so that the distance from the base member 4, which is the position reference of the polishing apparatus, is constant, the driving means 9 is driven to drive the plate member 32 and the polishing pad. Since the position of the central portion does not change even if the shape of 31 is changed, it is not necessary to move the entire polishing apparatus in the Z direction when the shapes of the plate member 32 and the polishing pad 31 are changed, the positioning accuracy is improved, and the control is simplified. Can be converted.

【0035】これにより、研磨装置1を被加工物Lの被
加工面Laに沿って移動させるだけで、スムーズにかつ
全面で加工が行なわれ、比較的短波長の形状誤差成分で
ある微小なうねり(リップル)を含めた被加工面の平滑
化が可能となる。
As a result, only by moving the polishing apparatus 1 along the work surface La of the work piece L, the work can be carried out smoothly and on the entire surface, and minute waviness which is a shape error component of a relatively short wavelength. The surface to be processed including (ripple) can be smoothed.

【0036】また、被加工面Laの形状は、一般に、設
計された理想形状からずれているため、強制的に研磨パ
ッド31の形状を形成して加工することにより、研磨面
2a内に形成される圧力の差異を利用して、被加工面L
aの形状を補正し、理想形状に近づけることも可能にな
る。
Further, since the shape of the work surface La is generally deviated from the designed ideal shape, it is formed in the polishing surface 2a by forcibly forming and processing the shape of the polishing pad 31. Surface to be processed L by utilizing the difference in pressure
It is also possible to correct the shape of a and bring it closer to the ideal shape.

【0037】以上のように、本実施例の研磨装置を用い
ることにより、例えば非球面レンズのような多種多様な
曲率半径を有する被加工面においても、均一な圧力分布
で研磨することができ、しかも、多種多様な曲率半径を
有する被加工面に、単一の駆動手段で種々の曲率半径の
面を形成できることから、単一の工具で対応でき、さら
に、簡便な構成で制御可能な研磨装置を得ることができ
る。なお、凹の非球面形状を加工する場合は、被加工物
の凹形状に対応して研磨装置の板状部材32のなす曲面
形状を凸形状にすることにより、前述したと同様に研磨
を行うことができ、その詳細な説明は省略する。
As described above, by using the polishing apparatus of this embodiment, it is possible to perform polishing with a uniform pressure distribution even on a work surface having various radii of curvature such as an aspherical lens, Moreover, since a surface having various radii of curvature can be formed on a work surface having a wide variety of radii of curvature by a single driving means, a single tool can be used and the polishing apparatus can be controlled with a simple structure. Can be obtained. In the case of processing a concave aspherical surface, the curved surface formed by the plate-shaped member 32 of the polishing apparatus is made to have a convex shape corresponding to the concave shape of the workpiece, and the polishing is performed in the same manner as described above. However, detailed description thereof will be omitted.

【0038】次に、第2の実施形態について、図3を用
いてその態様を説明する。
Next, the mode of the second embodiment will be described with reference to FIG.

【0039】図3(a)は第2の実施形態における研磨
部材の形状の詳細を示す側面図であり、(b)はその下
面図である。
FIG. 3A is a side view showing details of the shape of the polishing member in the second embodiment, and FIG. 3B is a bottom view thereof.

【0040】図3(b)に示すように、研磨部材2の
(ピボット7に押圧される)中央部分と、Z方向に移動
させる両端の移動部分の幅b1は同一(以後、基準幅b
1と称す)であるのに対して、その両者の中間部分にお
ける研磨部材2の幅b2(以後、中間幅b2)が最も狭
くなるように、研磨部材2は加工されている。(例え
ば、b1=10mmに対して、b2=9.5mm)その
他の部材および構成は、前述した第1の実施形態と同様
である。
As shown in FIG. 3 (b), the width b1 of the central portion (pressed by the pivot 7) of the polishing member 2 and the moving portions at both ends to be moved in the Z direction are the same (hereinafter referred to as the reference width b).
However, the polishing member 2 is processed so that the width b2 of the polishing member 2 (hereinafter, the intermediate width b2) in the intermediate portion between the two is the narrowest. (For example, b1 = 10 mm, b2 = 9.5 mm) Other members and configurations are the same as those in the first embodiment described above.

【0041】研磨部材2を上記形状にすることにより、
最も狭い幅b2の部分は基準幅b1に比べて最も剛性が
弱く、変形しやすくなっている。本実施形態の研磨装置
においても、駆動手段9の変位により研磨パッド31の
研磨面2aの曲面形状を変化させる作用は前述した第1
の実施形態と同様であり、さらに、被加工物を加工する
際の研磨装置の作用も同様であるが、本実施例の研磨装
置においては次のような特有の作用効果を奏するもので
ある。
By forming the polishing member 2 into the above shape,
The portion having the narrowest width b2 has the lowest rigidity as compared with the reference width b1 and is easily deformed. Also in the polishing apparatus of this embodiment, the action of changing the curved surface shape of the polishing surface 2a of the polishing pad 31 by the displacement of the driving means 9 is the above-mentioned first.
The polishing apparatus is similar to that of the first embodiment, and the operation of the polishing apparatus when processing the workpiece is also the same. However, the polishing apparatus of the present embodiment has the following unique operation and effect.

【0042】研磨部材2の幅がb1で均一であると、研
磨部材2の中央部分と両端部分には強制的な負荷が加わ
るため所望の変形が与えられるのに対し、その中間部分
は負荷の加わらない自由な状態であるため、(中央部分
や両端部分に比べて)変形量が少なくなることが実測で
確かめられている。一方、前述したように、中間部分の
幅がb2と狭くなっている本実施形態の研磨部材2を用
いた場合には、より変形量が大きくなり、厳密な円弧形
状に近づく。
If the width of the polishing member 2 is uniform at b1, the center portion and both end portions of the polishing member 2 are forcibly loaded, and a desired deformation is given, while the intermediate portion thereof is loaded with load. It has been confirmed by actual measurement that the amount of deformation is small (compared to the central portion and both end portions) because it is in a free state where it is not added. On the other hand, as described above, when the polishing member 2 of this embodiment in which the width of the middle portion is narrowed to b2 is used, the deformation amount becomes larger and the shape approaches a strict arc shape.

【0043】すなわち、研磨部材2の幅がb1で均一で
あると所望の曲率半径からなる面との誤差が大きくなる
可能性が高いのに対し、上記のように中間部分において
幅がb2と狭くなっている方が誤差を小さくできる。
That is, if the width of the polishing member 2 is uniform at b1, there is a high possibility that the error with respect to the surface having the desired radius of curvature will be large, while the width at the intermediate portion is as narrow as b2 as described above. The smaller the error, the smaller the error.

【0044】また、本実施形態では、凸の非球面形状の
被加工物の研磨の際使用する研磨部材について述べた
が、凹の非球面形状の被加工物を研磨する時は逆に中間
部分において幅を広くすればよい。
Further, in the present embodiment, the polishing member used for polishing the convex aspherical surface-shaped workpiece is described. However, when polishing the concave aspherical surface-shaped workpiece, conversely, the intermediate portion is polished. The width may be widened in.

【0045】次に、本発明の研磨装置の第3の実施形態
について図4を参照して説明する。図4の(a)は本発
明の研磨装置の第3の実施形態における研磨部材の形状
の詳細を示す側面図であり、(b)はその下面図であ
る。
Next, a third embodiment of the polishing apparatus of the present invention will be described with reference to FIG. 4A is a side view showing details of the shape of the polishing member in the third embodiment of the polishing apparatus of the present invention, and FIG. 4B is a bottom view thereof.

【0046】本実施例においては、研磨部材2の幅の一
部を狭くするのではなく、幅は均一で部分的に厚さtを
薄くする点で前述した第2の実施形態と異なるものであ
る。すなわち、図4の(a)に示すように、研磨部材2
の中央部分と両端部分の厚さt1(以後、基準厚さt1
と称す)に比べて、その中間部分の厚さをt2(以後、
中間厚さt2と称す)を薄くしたものである。(例え
ば、t1=0.3mmに対して、b2=0.29mm)
その他の部材および構成は、前述した第1の実施形態と
同様である。
This embodiment differs from the second embodiment described above in that the width of the polishing member 2 is not narrowed, but the width is uniform and the thickness t is partially thinned. is there. That is, as shown in FIG. 4A, the polishing member 2
The thickness t1 of the central portion and both end portions (hereinafter, reference thickness t1
The thickness of the intermediate portion is t2 (hereinafter, referred to as
The thickness is referred to as the intermediate thickness t2). (For example, for t1 = 0.3 mm, b2 = 0.29 mm)
Other members and configurations are the same as those in the first embodiment described above.

【0047】研磨部材2を上記形状にすることにより、
中間厚さt2の部分は基準厚さt1に比べて最も剛性が
弱く、変形しやすくなっている。また、研磨部材の剛性
に関わる断面係数の計算式より、幅bと剛性が比例する
のに対し厚さtの3乗と剛性が比例するため、幅bに比
べて厚さtの効き率は非常に大きくなる。
By forming the polishing member 2 into the above shape,
The portion having the intermediate thickness t2 has the lowest rigidity as compared with the reference thickness t1 and is easily deformed. In addition, according to the calculation formula of the section coefficient related to the rigidity of the polishing member, the rigidity is proportional to the width b while the rigidity is proportional to the cube of the thickness t, so that the effectiveness ratio of the thickness t is larger than that of the width b. Grows very large.

【0048】本実施形態の研磨装置においても、駆動手
段9の変位により研磨パッド31の研磨面2aの曲面形
状を変化させる作用は前述した第1の実施形態と同様で
あり、さらに、被加工物を加工する際の研磨装置の作用
も同様であるが、本実施例の研磨装置においては次のよ
うな特有の作用効果を奏するものである。
Also in the polishing apparatus of this embodiment, the action of changing the curved surface shape of the polishing surface 2a of the polishing pad 31 by the displacement of the driving means 9 is the same as that of the first embodiment described above, and further the workpiece is processed. Although the operation of the polishing apparatus when processing is the same, the polishing apparatus of the present embodiment has the following unique effect.

【0049】研磨装置の研磨面が所望の曲率半径の面を
なすために研磨部材2の形状を変更する際、研磨部材の
幅bよりも厚さtの変更は剛性値により敏感に反映され
るので、元の形状が所望の曲率半径と比べて大きな誤差
を有する場合に、実際の曲率半径と一致させるのに大き
な効果をもたらす。
When the shape of the polishing member 2 is changed so that the polishing surface of the polishing apparatus has a desired radius of curvature, a change in the thickness t rather than the width b of the polishing member is more sensitively reflected in the rigidity value. Therefore, when the original shape has a large error compared with the desired radius of curvature, it has a great effect on matching the actual radius of curvature.

【0050】また、本実施形態では、凸の非球面形状の
被加工物の研磨の際使用する研磨部材について述べた
が、凹の非球面形状の被加工物を研磨する時は逆に中間
部分において厚さを厚くすればよい。
Further, in the present embodiment, the polishing member used for polishing the convex aspherical surface-shaped workpiece is described, but when polishing the concave aspherical surface-shaped workpiece, conversely, the intermediate portion is used. The thickness may be increased in.

【0051】次に第2の実施形態、第3の実施形態で述
べた研磨部材2の加工方法について説明する。
Next, a method of processing the polishing member 2 described in the second and third embodiments will be described.

【0052】第2の実施形態の場合は、図3における幅
bを一様な状態で、研磨部材2を一旦製作し、実際に所
望の曲率半径に変形させて、形状の誤差を測定する。そ
の上で、その誤差量を小さくするように、研磨部材2の
幅、さらにいえば、板状部材32の幅を打ち抜きなどの
方法で追加工する。
In the case of the second embodiment, the polishing member 2 is once manufactured with the width b in FIG. 3 being uniform, and is actually deformed to a desired radius of curvature to measure the shape error. Then, the width of the polishing member 2, more specifically, the width of the plate member 32 is additionally processed by punching or the like so as to reduce the error amount.

【0053】例えば、変形時の研磨部材2の実際の形状
が所望の曲率半径と比べて差分形状を考えて、その誤差
量が負である場合は、実際の形状の変形度合いが不足し
ているので、幅方向の剛性を下げるため、幅b1に比べ
て幅b2を狭くする。このとき、幅b1から幅b2に狭
くする部分を円弧形状にするのが、加工の容易さと必要
な精度を考えた上で最も合理的な形状となる。
For example, when the difference between the actual shape of the polishing member 2 at the time of deformation and the desired radius of curvature is considered and the error amount is negative, the degree of deformation of the actual shape is insufficient. Therefore, in order to reduce the rigidity in the width direction, the width b2 is made narrower than the width b1. At this time, it is the most rational shape to make the portion narrowed from the width b1 to the width b2 into an arc shape in consideration of the ease of processing and the required accuracy.

【0054】以上のような加工して変形形状を計測する
という作業を、試行錯誤的に繰り返し行うことによっ
て、必要な精度を確保する。
The necessary accuracy is ensured by repeating the above-described work of measuring the deformed shape by trial and error.

【0055】また、第3の実施形態の場合は、図4にお
ける研磨部材2の厚さtを調整する場合も一旦形状を測
定して、それを補正するのは同様である。このとき、厚
さtは元々薄く、機械的な加工で調整部分である厚さt
2をさらに薄く加工するのは困難で、打ち抜くための型
を作り直す必要がある。
Further, in the case of the third embodiment, also when adjusting the thickness t of the polishing member 2 in FIG. 4, it is the same as once measuring the shape and correcting it. At this time, the thickness t is originally thin, and the thickness t that is an adjustment portion by mechanical processing is
It is difficult to process 2 thinner, and it is necessary to remake the die for punching.

【0056】上記加工方法では研磨部材2の幅bあるい
は厚さtのサイズを変更することを、実際に形状を作っ
て確認したが、有限要素法等の手法を用いてシミュレー
ションによって変形形状を検討し、所望の曲率半径との
誤差量を最小にするよう、形状の最適化を行なってもよ
い。シミュレーションにより形状の最適化を検討するこ
とで、費用、時間、資源、手間を飛躍的に節約できる。
また、検討結果からさらに形状変更を行う場合にも、曲
面形状との誤差値に与える影響がわかるのでより適切な
形状変更を行うことができる。
In the above processing method, it was confirmed that the size of the width b or the thickness t of the polishing member 2 was changed by actually making a shape, but the deformed shape was examined by simulation using a method such as the finite element method. However, the shape may be optimized so as to minimize the amount of error from the desired radius of curvature. By considering optimization of the shape by simulation, cost, time, resources, and labor can be saved dramatically.
Further, even when the shape is further changed from the examination result, the influence on the error value with the curved surface shape can be known, so that the shape can be changed more appropriately.

【0057】(実施例1)図5は、幅b及び厚さtが一
定の研磨部材2の形状(以下、元形状と記す)の研磨部
材と図3に示した形状の研磨部材をシミュレーション解
析し、所望の曲率半径による理想面形状と比較した。そ
して、研磨部材2の中心線からの距離を横軸に、理想面
形状との誤差量を縦軸にとってプロットしたものであ
る。
(Embodiment 1) FIG. 5 shows a simulation analysis of a polishing member having the shape (hereinafter, referred to as the original shape) of the polishing member 2 having a constant width b and thickness t and the polishing member having the shape shown in FIG. Then, it was compared with an ideal surface shape with a desired radius of curvature. The distance from the center line of the polishing member 2 is plotted on the horizontal axis, and the error amount from the ideal surface shape is plotted on the vertical axis.

【0058】同図において、元形状の誤差量曲線60と
比べて、図3の誤差形状61は小さくなっており、より
理想的な曲率半径に近づいたことがわかった。
In the figure, it was found that the error shape 61 of FIG. 3 was smaller than the error amount curve 60 of the original shape, and that the radius of curvature was closer to the ideal radius of curvature.

【0059】(実施例2)第1の実施形態におけるコイ
ルばね13の剛性が0.1kgf/mmと0.05kg
f/mmの場合で研磨部材の変形形状のシミュレーショ
ン解析を行い、結果を比較した。
(Example 2) The rigidity of the coil spring 13 in the first embodiment is 0.1 kgf / mm and 0.05 kgf.
A simulation analysis of the deformed shape of the polishing member was performed at f / mm, and the results were compared.

【0060】コイルばね13の剛性を変更すると誤差量
も変化し、本実施例では、0.05kgf/mmと剛性
を低くした方がより、誤差量が少なくなった。このよう
にコイルばねの剛性を最適化することで、形状の最適化
と合わせて、より高精度に所望の曲率半径に近づけるこ
とが可能となった。
When the rigidity of the coil spring 13 is changed, the error amount also changes, and in this embodiment, the error amount was smaller when the rigidity was reduced to 0.05 kgf / mm. By optimizing the rigidity of the coil spring in this way, it has become possible to more accurately approach the desired radius of curvature together with the optimization of the shape.

【0061】以上のように、シミュレーションによりコ
イルばねの剛性を検討することで、形状変更を伴わず、
コイルばねを交換するだけの簡便な作業によっても、誤
差量を微小に調節することが可能であり、コスト、時間
の面で有利であることがわかった。
As described above, by examining the rigidity of the coil spring by simulation, the shape of the coil spring is not changed and
It has been found that the error amount can be finely adjusted even by a simple work of replacing the coil spring, which is advantageous in terms of cost and time.

【0062】[0062]

【発明の効果】以上説明したように、本発明によれば、
制御手段により任意の加工位置における設計された理想
的な加工面形状(例えば、曲率半径)に基づいて駆動手
段を駆動し、保持部材を押圧面に垂直な方向に移動さ
せ、研磨部材をその中心部分は押圧面に垂直な方向に移
動させることなく任意の曲面に変形させることができる
ため制御も簡略にかつ安価に研磨装置を構成することが
できる。
As described above, according to the present invention,
The control means drives the drive means based on the ideal machined surface shape (for example, radius of curvature) designed at an arbitrary machining position, moves the holding member in the direction perpendicular to the pressing surface, and moves the polishing member to its center. Since the portion can be deformed into an arbitrary curved surface without moving in the direction perpendicular to the pressing surface, the polishing apparatus can be configured easily and inexpensively.

【0063】特に連続的に曲率半径が変化する非球面形
状を研磨する場合、必要最小限の労力と費用で任意の理
想的な加工面形状を作ることができ、最大限の効果を得
ることができる。
In particular, when polishing an aspherical surface whose radius of curvature changes continuously, it is possible to create an arbitrary ideal machined surface shape with the minimum required labor and cost, and obtain the maximum effect. it can.

【0064】また、曲率半径の変化の大きな被加工面に
対しては、研磨パッドとなる部材の降伏応力、成形可能
な大きさ等の制約により、十分小さい面積の研磨装置を
構成しなければならない場合もあるが、かかるときに、
本発明の研磨装置は、単一の駆動手段であっても構成可
能であるため、小さな曲率半径の面に対応する研磨面の
寸法が小さな工具を構成するのに好適である。
Further, for a surface to be processed having a large change in radius of curvature, a polishing apparatus having a sufficiently small area must be constructed due to constraints such as a yield stress of a member to be a polishing pad and a size which can be formed. Sometimes, but when it takes
Since the polishing apparatus of the present invention can be configured with a single driving means, it is suitable for configuring a tool having a small polishing surface size corresponding to a surface having a small radius of curvature.

【0065】さらに、研磨装置の研磨面形状を理想的な
加工面形状に強制的に一致させることができ、研磨パッ
ドの研磨面と被加工面は隙間なく密着し、研磨装置に与
えられた荷重が加工圧として被加工面内に均一に加える
ことができ、研磨装置の移動する範囲内で、スムーズに
かつ全面で加工が行なわれ、微小なうねり(リップル)
を含めた被加工面の平滑化が可能となる。
Further, the polishing surface shape of the polishing apparatus can be forcibly matched with the ideal processing surface shape, the polishing surface of the polishing pad and the processing surface are in close contact with each other without a gap, and the load applied to the polishing apparatus is applied. Can be uniformly applied to the surface to be processed as a processing pressure, and the processing is performed smoothly and over the entire surface within the range of movement of the polishing equipment, resulting in minute waviness (ripple).
It becomes possible to smooth the surface to be processed, including.

【0066】以上のように、非球面レンズ等のような多
種多様な曲率半径をもつ被加工面に単一の工具で対応で
き、かつ多種多様な曲率半径をもつ被加工面を均一な圧
力分布で研磨することができ、簡便な構成で、制御可能
な研磨装置を提供することができる。
As described above, a single tool can be used for a work surface having a wide variety of radii of curvature such as an aspherical lens, and a work surface having a wide variety of radii of curvature can be subjected to a uniform pressure distribution. Therefore, it is possible to provide a controllable polishing apparatus with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の研磨装置の第1の実施形態の
概略構成図であり、(b)は研磨部材の下面図である。
1A is a schematic configuration diagram of a first embodiment of a polishing apparatus of the present invention, and FIG. 1B is a bottom view of a polishing member.

【図2】本発明の研磨装置の第1の実施形態を用いて、
軸対称の凸の非球面形状を加工する態様を示す模式図で
ある。
FIG. 2 is a diagram showing a polishing apparatus according to a first embodiment of the present invention,
It is a schematic diagram which shows the aspect which processes the axisymmetric convex aspherical shape.

【図3】(a)は本発明の研磨装置の第2の実施形態に
おける研磨部材の形状の詳細を示す側面図であり、
(b)はその下面図である。
FIG. 3A is a side view showing details of the shape of the polishing member in the second embodiment of the polishing apparatus of the present invention,
(B) is the bottom view.

【図4】(a)は本発明の研磨装置の第3の実施形態に
おける研磨部材の形状の詳細を示す側面図であり、
(b)はその下面図である。
FIG. 4A is a side view showing details of the shape of the polishing member in the third embodiment of the polishing apparatus of the present invention,
(B) is the bottom view.

【図5】本発明の研磨装置の実施例1における、第2の
実施形態における研磨部材の変形形状と、幅b及び厚さ
tが一定の板状部材の変形形状をシミュレーション解析
した結果より求めた誤差量の比較図である。
FIG. 5 is a graph showing the deformed shape of the polishing member according to the second embodiment and the deformed shape of a plate-shaped member having a constant width b and thickness t in Example 1 of the polishing apparatus of the present invention, which are obtained from simulation analysis results. It is a comparison diagram of the error amount.

【図6】本発明の研磨装置の実施例2における、コイル
ばねの剛性を変えて研磨部材の変形形状をシミュレーシ
ョン解析した結果より求めた誤差量の比較図である。
FIG. 6 is a comparison diagram of the amount of error obtained from the result of simulation analysis of the deformed shape of the polishing member by changing the rigidity of the coil spring in the second embodiment of the polishing apparatus of the present invention.

【図7】従来の研磨装置の一例を示す斜視図である。FIG. 7 is a perspective view showing an example of a conventional polishing apparatus.

【図8】従来の研磨装置の一例を示す斜視図である。FIG. 8 is a perspective view showing an example of a conventional polishing apparatus.

【符号の説明】[Explanation of symbols]

1 研磨装置 2 研磨部材 2a 研磨面 31 研磨パッド 32 板状部材 4 ベース部材 5 支柱 6 V字状アーム 7 ピボット 9 駆動手段 10 ガイドベース 11 ガイドバー 11A、11B ガイドバー 12 ブロック体 13 コイルばね 14 回転ピン L 被加工物(光学レンズ) La 被加工面 1 Polishing device 2 Polishing member 2a Polished surface 31 polishing pad 32 plate-shaped member 4 Base member 5 props 6 V-shaped arm 7 pivot 9 Drive means 10 Guide base 11 Guide bar 11A, 11B guide bar 12 blocks 13 coil spring 14 rotating pins L Workpiece (optical lens) La Work surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 研磨面を有する研磨部材と、前記研磨部
材の略中心部を支持する支持部と、前記研磨部材の支持
部を中心として長手方向に相対向する部位を保持する保
持部と、前記保持部に作用する駆動手段を制御する制御
手段とを有し、前記制御手段により前記研磨部材の前記
被加工面との接触面形状を調整することを特徴とする研
磨装置。
1. A polishing member having a polishing surface, a support portion for supporting a substantially central portion of the polishing member, and a holding portion for holding portions facing each other in the longitudinal direction with the support portion of the polishing member as a center. A polishing apparatus comprising: a control unit that controls a driving unit that acts on the holding unit, and the control unit adjusts a shape of a contact surface of the polishing member with the surface to be processed.
【請求項2】 前記駆動手段は一つであることを特徴と
する請求項1記載の研磨装置。
2. The polishing apparatus according to claim 1, wherein the number of driving means is one.
【請求項3】 前記研磨部材は、その幅を調整し加工す
ることを特徴とする請求項1または2いずれか1項記載
の研磨装置。
3. The polishing apparatus according to claim 1, wherein the polishing member is processed by adjusting its width.
【請求項4】 前記研磨部材は、その厚さを調整し加工
することを特徴とする請求項1または2いずれか1項記
載の研磨装置。
4. The polishing apparatus according to claim 1, wherein the polishing member is processed by adjusting its thickness.
【請求項5】 研磨面を有する研磨部材と、前記研磨部
材の略中心部を支持する支持部と、前記研磨部材の両端
を保持する保持部とを有し、前記保持部に制御手段を作
用させ、被加工物の被加工面の情報に基づいて前記制御
手段によって前記研磨部材の接触面の形状を変化させて
研磨加工することを特徴とする研磨方法。
5. A polishing member having a polishing surface, a support portion for supporting a substantially central portion of the polishing member, and holding portions for holding both ends of the polishing member, the control portion acting on the holding portion. Then, the polishing method is characterized in that the control means changes the shape of the contact surface of the polishing member based on the information of the surface to be processed of the object to be processed.
JP2001235049A 2001-08-02 2001-08-02 Polishing device and polishing method Withdrawn JP2003039297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235049A JP2003039297A (en) 2001-08-02 2001-08-02 Polishing device and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235049A JP2003039297A (en) 2001-08-02 2001-08-02 Polishing device and polishing method

Publications (1)

Publication Number Publication Date
JP2003039297A true JP2003039297A (en) 2003-02-12

Family

ID=19066553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235049A Withdrawn JP2003039297A (en) 2001-08-02 2001-08-02 Polishing device and polishing method

Country Status (1)

Country Link
JP (1) JP2003039297A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152502A (en) * 2005-12-06 2007-06-21 Hokkaido Automatic machining system
CN100384587C (en) * 2005-12-13 2008-04-30 中国科学院国家天文台南京天文光学技术研究所 Optical mirror surface passive support mechanism based on four-bar mechanism principle
JP2016515947A (en) * 2013-02-25 2016-06-02 ザ・ボーイング・カンパニーThe Boeing Company Method and apparatus for matching assembly system to curved contour
CN115194604A (en) * 2022-06-23 2022-10-18 金华博蓝特新材料有限公司 Processing device and processing method for surface-shaped curved round element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152502A (en) * 2005-12-06 2007-06-21 Hokkaido Automatic machining system
CN100384587C (en) * 2005-12-13 2008-04-30 中国科学院国家天文台南京天文光学技术研究所 Optical mirror surface passive support mechanism based on four-bar mechanism principle
JP2016515947A (en) * 2013-02-25 2016-06-02 ザ・ボーイング・カンパニーThe Boeing Company Method and apparatus for matching assembly system to curved contour
CN115194604A (en) * 2022-06-23 2022-10-18 金华博蓝特新材料有限公司 Processing device and processing method for surface-shaped curved round element

Similar Documents

Publication Publication Date Title
Wei et al. Design of a new passive end-effector based on constant-force mechanism for robotic polishing
US7950981B2 (en) Precision machining apparatus and precision machining method
KR101197826B1 (en) Polishing pad surface shape measuring instrument, method of using polishing pad surface shape measuring instrument, method of measuring apex angle of cone of polishing pad, method of measuring depth of groove of polishing pad, cmp polisher, and method of manufacturing semiconductor device
US20050186887A1 (en) Processing method and apparatus
JP3613889B2 (en) Curved surface polishing method and curved surface polishing apparatus
CN113059464A (en) Constant-force polishing mechanism and polishing equipment
JPH1116124A (en) Device and method of magnetic head grinding
JP2003039297A (en) Polishing device and polishing method
JP3673703B2 (en) Polishing tool
JP2009107055A (en) Polishing tool and polishing device
JP3673682B2 (en) Polishing tool
CN115673934A (en) Grinding and polishing measurement integrated automatic processing device and method
JP2003048153A (en) Polishing method and polishing device
JP4697435B2 (en) Magnetic head polishing apparatus and magnetic head polishing method
JP6274769B2 (en) Part manufacturing method and polishing apparatus
JP2002370147A (en) Polishing tool
JP2001260020A (en) Pressurizing force variable polishing device
JP7248339B1 (en) Polishing equipment
JP6513236B2 (en) Method of manufacturing parts and polishing apparatus
JP2003025201A (en) Polishing device and polishing method
JP2000084815A (en) Manufacture of aspherical optical element
JPH10286771A (en) Grinding device and grinding method
JP2000167756A (en) Curved surface machining device
JPH0283152A (en) Polishing method for rotation symmetrical curved face
JP2003071707A (en) Surface machining apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007