JP2003037464A - Frequency-adjusting processor - Google Patents

Frequency-adjusting processor

Info

Publication number
JP2003037464A
JP2003037464A JP2002205858A JP2002205858A JP2003037464A JP 2003037464 A JP2003037464 A JP 2003037464A JP 2002205858 A JP2002205858 A JP 2002205858A JP 2002205858 A JP2002205858 A JP 2002205858A JP 2003037464 A JP2003037464 A JP 2003037464A
Authority
JP
Japan
Prior art keywords
frequency
piezoelectric element
frequency adjustment
adjustment processing
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002205858A
Other languages
Japanese (ja)
Other versions
JP3573142B2 (en
Inventor
Takeshi Gomi
武 五味
Yukihiro Endo
幸弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002205858A priority Critical patent/JP3573142B2/en
Publication of JP2003037464A publication Critical patent/JP2003037464A/en
Application granted granted Critical
Publication of JP3573142B2 publication Critical patent/JP3573142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize enhancement in frequency adjustment accuracy and mechanical capability by varying the distance of a frequency adjustment source and a piezoelectric element. SOLUTION: A frequency of a piezoelectric element 3 is measured by a network analyzer 1, and an optimum distance of the piezoelectric element 3 and a frequency adjustment source 9 is calculated by a calculation processor 15, and the frequency adjustment source 9 is mode to move by a driver 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水晶振動子等の圧電素子
をスパツタエッチングまたはイオンビームを照射して周
波数の合わせ込みを行なう周波数調整加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency adjusting apparatus for performing frequency adjustment by sputtering a piezoelectric element such as a crystal oscillator or irradiating it with an ion beam.

【0002】[0002]

【従来の技術】従来の水晶振動子に代表される圧電素子
の周波数調整方法は質量を付加して所望の周波数を得る
蒸着周波数調整方法が一般的であったが、近年、新たな
方法として質量を軽減して所望の周波数を得るスパッタ
エッチングあるいはイオンビーム周波数調整方法が開発
されてきている。以下、後者の周波数調整技術について
説明する。所定の切り出し角度と形状に切断研磨され仕
上げられた圧電素子はベース電極を形成するため、圧電
素子の表裏に電極形状を模したマスクを密着させ、通
常、真空中で銀等の金属膜を蒸着させる。この時、周波
数は膜厚モニタで管理され共振周波数は所望値に対して
500〜2000ppm低く設定される。次に、この圧
電素子を保持器に機械的な結合と電気的な導通をさせる
ために、半田や導電性接着剤等を用いてマウントする。
2. Description of the Related Art A conventional frequency adjusting method for a piezoelectric element typified by a crystal oscillator is a vapor-deposition frequency adjusting method for adding a mass to obtain a desired frequency. There has been developed a method for adjusting the frequency of sputter etching or an ion beam to reduce the frequency and obtain a desired frequency. The latter frequency adjustment technique will be described below. Since a piezoelectric element that has been cut and polished to a predetermined cutting angle and shape is finished to form a base electrode, a mask simulating the shape of the electrode is adhered to the front and back of the piezoelectric element, and a metal film such as silver is usually evaporated in vacuum. Let At this time, the frequency is controlled by the film thickness monitor, and the resonance frequency is set to be 500 to 2000 ppm lower than the desired value. Next, this piezoelectric element is mounted on the holder using a solder, a conductive adhesive, or the like in order to make mechanical connection and electrical conduction.

【0003】そして、周波数調整加工装置では、周波数
調整加工を行う前に圧電素子の共振周波数を測定して合
わせ込み周波数との周波数差を求め、周波数調整加工の
加工レートからスパッタエッチングまたはイオンビーム
を照射する時間を割り出し、周波数調整加工を行うとき
は測定系を電気的に切り離してから周波数調整加工を行
ない、これらの作業を数回繰り返えすことで上記周波数
差が零になるよう合わせ込みを行なう。
In the frequency adjustment processing device, the resonance frequency of the piezoelectric element is measured before performing the frequency adjustment processing to obtain the frequency difference from the matching frequency, and the sputter etching or ion beam is calculated from the processing rate of the frequency adjustment processing. When the irradiation time is calculated and frequency adjustment processing is performed, the measurement system is electrically disconnected, frequency adjustment processing is performed, and these operations are repeated several times to adjust the frequency difference to zero. To do.

【0004】なお、加工レートは一般的にベース電極の
面積が大きい程遅くなり、また、圧電素子に印加される
加工エネルギーが大きい程速くなるため、周波数と加工
条件毎に適正値を予め求めておく。
Incidentally, the processing rate generally becomes slower as the area of the base electrode becomes larger, and becomes faster as the processing energy applied to the piezoelectric element becomes larger. Therefore, an appropriate value should be obtained in advance for each frequency and processing condition. deep.

【0005】[0005]

【発明が解決しようとする課題】周波数調整加工の加工
レートが同じ周波数帯であっても各々の圧電素子で違っ
てしまうこと、またはスパッタガンやイオンビームガン
の周波数調整源に起因し加工レートが不安定でばらつき
をもつことから、予め求めた加工レートと実際の加工レ
ートが異なり、周波数調整後の共振周波数が合わせ込み
周波数からずれてしまっていた。
Even if the processing rate of frequency adjustment processing is the same frequency band, the piezoelectric elements are different from each other, or the processing rate is unsatisfactory due to the frequency adjustment source of the sputter gun or ion beam gun. Since it is stable and has variations, the machining rate obtained in advance differs from the actual machining rate, and the resonance frequency after frequency adjustment has deviated from the matching frequency.

【0006】また、周波数調整加工の加工レートは、周
波数調整源の印加電流を可変することにより制御してい
たが、周波数調整源を定常状態で維持させるためにはあ
る一定以上の電力を供給する必要があり、微小な加工レ
ートを確保するのは困難であった。
Further, the processing rate of the frequency adjustment processing is controlled by varying the applied current of the frequency adjustment source, but in order to maintain the frequency adjustment source in a steady state, electric power above a certain level is supplied. It was necessary, and it was difficult to secure a minute processing rate.

【0007】更に、前述の如く各々の圧電素子で周波数
調整前の周波数が大きくばらついているため、加工レー
トが固定であると、合わせ込み周波数との差が大きい圧
電素子は加工時間が長くなり、機械能力を低下させる原
因となっていた。
Further, as described above, the frequency before frequency adjustment varies widely among the respective piezoelectric elements. Therefore, if the processing rate is fixed, the piezoelectric element having a large difference from the fitting frequency will have a longer processing time. It was a cause of lowering the mechanical capacity.

【0008】一方、従来の方法では、スパッタエッチン
グまたはイオンビームを照射するとプラスに帯電したア
ルゴンイオンが圧電素子の電極膜にぶつかるため、電極
膜にはプラス電荷が帯電する。帯電したプラス電荷はア
ースに流れようとするが、周波数を測定する測定系が接
続されていると、測定系を通じて発振回路や伝送波測定
器(この測定器を以下ネットワークアナライザと称す)
に流れてしまう。発振回路やネットワークアナライザは
交流信号で動作するものであるため、直流電流が流れる
と機能を破壊する危険性があり周波数調整加工時には電
気的に測定系を切り離す必要があった。
On the other hand, in the conventional method, when sputter etching or ion beam irradiation is performed, positively charged argon ions collide with the electrode film of the piezoelectric element, so that the electrode film is positively charged. The charged positive charge tends to flow to the ground, but if a measurement system for measuring the frequency is connected, an oscillation circuit and a transmission wave measuring instrument (this measuring instrument is hereinafter referred to as a network analyzer) will be passed through the measurement system.
Flows to. Since the oscillating circuit and the network analyzer operate with an AC signal, there is a risk of destroying the function when a DC current flows, and it was necessary to electrically disconnect the measurement system during frequency adjustment processing.

【0009】また、微小な加工レートが得られなかった
り、機械能力を低下させないように加工レートを大きく
してしまうと、周波数調整源をシャッターもしくは電源
で遮断したときに時間差が生じて、合わせ込み周波数に
対し調整量が多くなり過ぎ所望の周波数に合わせること
ができない。
Further, if a minute processing rate cannot be obtained or the processing rate is increased so as not to reduce the mechanical capability, a time difference will occur when the frequency adjustment source is shut off by a shutter or a power source, and the adjustment will be performed. The amount of adjustment is too large for the frequency, and the desired frequency cannot be adjusted.

【0010】そこで、本発明の目的は、圧電素子の共振
周波数を測定しながら周波数調整加工を行い、周波数調
整源と圧電素子の距離を可変にすることにより最適な加
工レート(最短時間で目標とする周波数に精度良く調整
加工すること)を得るとともに精度のよい周波数調整加
工を効率よく行うことにある。
Therefore, an object of the present invention is to perform the frequency adjustment processing while measuring the resonance frequency of the piezoelectric element, and to make the distance between the frequency adjustment source and the piezoelectric element variable so as to obtain the optimum processing rate (target in the shortest time). Frequency adjustment processing with high precision) and accurate frequency adjustment processing efficiently.

【0011】[0011]

【課題を解決するための手段】本発明の周波数調整加工
装置は、下記の構成を特徴とする。 (1)スパッタエッチングまたはイオンビームを照射す
ることによって前記圧電素子の電極膜の一部を取り除く
周波数調整手段と、前記周波数調整手段の外部に配置さ
れた前記圧電素子の周波数を測定する周波数測定手段
と、を備えた周波数調整加工装置であって、前記周波数
調整手段によって前記電極膜の一部を取り除くととも
に、前記周波数調整手段の印加電流を変化させることな
く、前記周波数調整手段と前記圧電素子との距離を駆動
手段により変化させることにより周波数調整加工の加工
レートを制御することを特徴とする。 (2)さらに、前記圧電素子とアースとの間に接続した
コイルにより、前記圧電素子に帯電するプラス電荷を除
去する電荷除去手段を有することを特徴とする。 (3)さらに、前記圧電素子の周波数と合せ込み周波数
との差を外部演算処理装置により管理しながら最適とな
る加工レートが得られるように、前記周波数調整手段と
前記圧電素子との距離を前記駆動手段により制御するこ
とを特徴とする。 (4)さらに、前記周波数調整手段と前記圧電素子との
距離が異なる前記周波数調整手段を少なくとも2個備え
たことを特徴とする。
The frequency adjustment processing device of the present invention is characterized by the following configuration. (1) Frequency adjusting means for removing a part of the electrode film of the piezoelectric element by sputter etching or ion beam irradiation, and frequency measuring means for measuring the frequency of the piezoelectric element arranged outside the frequency adjusting means. And a frequency adjustment processing device comprising: a part of the electrode film removed by the frequency adjustment means, and the frequency adjustment means and the piezoelectric element without changing the current applied to the frequency adjustment means. It is characterized in that the processing rate of the frequency adjustment processing is controlled by changing the distance of 2 by the driving means. (2) Further, the present invention is characterized by further comprising charge removing means for removing a positive charge charged in the piezoelectric element by a coil connected between the piezoelectric element and a ground. (3) Further, the distance between the frequency adjusting means and the piezoelectric element is set so that the optimum processing rate can be obtained while managing the difference between the frequency of the piezoelectric element and the fitting frequency by an external arithmetic processing unit. It is characterized by being controlled by a driving means. (4) Further, at least two frequency adjusting means having different distances between the frequency adjusting means and the piezoelectric element are provided.

【0012】[0012]

【作用】測定系のインピーダンス整合回路(これを以下
フィクスチャと称す)は通常は抵抗のみからなるが、電
荷除去手段として圧電素子とアースとの間にコイルを接
続したインピーダンス整合回路を用いることにより、測
定系に流れ込む直流分を遮断でき交流分だけをバイパス
できる。その結果、測定系を破壊することがなく、圧電
素子の周波数を測定できる。
[Function] The impedance matching circuit of the measuring system (hereinafter referred to as a fixture) usually consists of only a resistor, but by using an impedance matching circuit in which a coil is connected between the piezoelectric element and the ground as the charge removing means. , The DC component that flows into the measurement system can be blocked and only the AC component can be bypassed. As a result, the frequency of the piezoelectric element can be measured without destroying the measurement system.

【0013】また、周波数調整加工の加工レートは、周
波数調整源と圧電素子の距離が長くなるにつれて減少
し、ある距離を越えると零になるため、合わせ込み周波
数と圧電素子の周波数差が数百〜数千ppmあるような
場合は距離を短くして加工レートを速くし、周波数差が
数十ppm以内のような場合は距離を長くすることで加
工レートを遅くし、周波数調整源の印加電流を可変する
ことなく自由に加工レートを制御できる。
Further, the processing rate of the frequency adjustment processing decreases as the distance between the frequency adjustment source and the piezoelectric element increases, and becomes zero when the distance exceeds a certain distance. Therefore, the difference between the fitting frequency and the frequency of the piezoelectric element is several hundreds. In case of several thousand ppm, shorten the distance to increase the machining rate, and in case of frequency difference is within several tens of ppm, lengthen the distance to reduce the machining rate and reduce the current applied to the frequency adjustment source. The machining rate can be controlled freely without changing the.

【0014】[0014]

【実施例】以下、本発明の実施例を図1、図2、図3及
び図4により説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1, 2, 3 and 4.

【0015】(実施例1)図1は、本発明の周波数調整
加工装置の模式図である。
(Embodiment 1) FIG. 1 is a schematic view of a frequency adjustment processing apparatus of the present invention.

【0016】周波数調整手段すなわち周波数調整源9の
内部には、ステンレス製のφ10mmの電極棒6があ
り、直流電源13が接続されている。周波数調整源9の
外周部7は、円筒状をしたφ100mmのステンレスで
覆われている。電極棒6と外周部7は絶縁されており、
外周部7はアースシールドされている。周波数調整源9
及び圧電素子3は、真空容器10の内部に納められてお
り、真空容器10は、メカニカルブースタポンプ11を
介して、ロータリーポンプ12で真空排気される。
Inside the frequency adjusting means, that is, the frequency adjusting source 9, there is an electrode rod 6 made of stainless steel and having a diameter of 10 mm, to which a DC power source 13 is connected. The outer peripheral portion 7 of the frequency adjustment source 9 is covered with cylindrical stainless steel having a diameter of 100 mm. The electrode rod 6 and the outer peripheral portion 7 are insulated,
The outer peripheral portion 7 is grounded. Frequency adjustment source 9
The piezoelectric element 3 is housed inside a vacuum container 10, and the vacuum container 10 is evacuated by a rotary pump 12 via a mechanical booster pump 11.

【0017】真空容器10を10−3Torrレベルに
真空排気したのち、周波数調整源9の内部にガスボンベ
8よりアルゴンガスを10−1〜10−2Torr程度
の真空度になるよう流入させ、電極棒6に直流電圧を印
加することにより、電極棒6とアースシールドされた外
周部7の間でアルゴンプラズマが発生する。発生したプ
ラズマによりアルゴンガスはラジカル及びイオンとな
り、イオン化されたアルゴンガスは、電極棒6の先端方
向に設けられたφ3mmの噴き出し口5から飛び出し
て、対向に位置した水晶振動子等の圧電素子3の表面に
衝突する。アルゴンイオンが圧電素子3に衝突すること
で電極膜4の銀を弾き飛ばすため、電極の質量は減少
し、その結果圧電素子3の周波数は低い周波数から高い
周波数へ変化する。
After evacuating the vacuum vessel 10 to a level of 10 -3 Torr, argon gas is introduced into the frequency adjusting source 9 from the gas cylinder 8 so that the vacuum degree is about 10 -1 to 10 -2 Torr, and the electrode is By applying a DC voltage to the rod 6, an argon plasma is generated between the electrode rod 6 and the outer peripheral portion 7 which is grounded. The generated plasma turns the argon gas into radicals and ions, and the ionized argon gas jumps out from the ejection port 5 of 3 mm in diameter provided in the tip direction of the electrode rod 6, and the piezoelectric element 3 such as a quartz oscillator located in the opposite direction. Hit the surface of. Since the argon ions collide with the piezoelectric element 3 to repel silver on the electrode film 4, the mass of the electrode is reduced, and as a result, the frequency of the piezoelectric element 3 changes from a low frequency to a high frequency.

【0018】アルゴンイオンが衝突することにより変化
する圧電素子3の周波数は、フィクスチャ2を介して、
周波数測定手段すなわちネットワークアナライザ1によ
って共振させることで測定できる。ネットワークアナラ
イザ1とフィクスチャ2の接続は、50Ω系の同軸ケー
ブルを用いる。
The frequency of the piezoelectric element 3 which is changed by the collision of argon ions is transmitted through the fixture 2 to
It can be measured by resonating with the frequency measuring means, that is, the network analyzer 1. For connection between the network analyzer 1 and the fixture 2, a 50Ω system coaxial cable is used.

【0019】図3は、本発明のフィクスチャの回路図で
ある。
FIG. 3 is a circuit diagram of the fixture of the present invention.

【0020】抵抗19、20、21はπ型に配置され、
コイル22は抵抗21と並列になるように接続されてい
る。コイル22は圧電素子3とアースを短絡するように
接続されているため、圧電素子3にプラス電荷が帯電し
て信号線に直流分が流れてもコイル22によりアースに
落ちる。よって、ネットワークアナライザ1には交流分
だけが流れ込み、圧電素子3の周波数を測定することが
できる。
The resistors 19, 20, 21 are arranged in a π type,
The coil 22 is connected in parallel with the resistor 21. Since the coil 22 is connected so as to short-circuit the piezoelectric element 3 and the ground, even if the piezoelectric element 3 is charged with a positive charge and a direct current component flows through the signal line, the coil 22 drops to the ground. Therefore, only the AC component flows into the network analyzer 1, and the frequency of the piezoelectric element 3 can be measured.

【0021】また、抵抗19、20を省略した簡易的な
回路でも同様の効果が得られる。
The same effect can be obtained with a simple circuit in which the resistors 19 and 20 are omitted.

【0022】測定した圧電素子3の周波数は、外部の演
算処理装置15に送られ、合わせ込み周波数との測定差
から最適な加工レートを算出する。算出された加工レー
トを得るための圧電素子3と噴き出し口5の距離を割り
出して、周波数調整源9の駆動装置14へ信号を送り、
周波数調整源9を前後に移動させる。
The measured frequency of the piezoelectric element 3 is sent to the external arithmetic processing unit 15 and the optimum processing rate is calculated from the measurement difference from the fitting frequency. The distance between the piezoelectric element 3 and the ejection port 5 for obtaining the calculated processing rate is calculated, and a signal is sent to the driving device 14 of the frequency adjustment source 9,
The frequency adjustment source 9 is moved back and forth.

【0023】圧電素子3と噴き出し口5の距離は5〜2
0mmまで可変できる機構になっており、周波数調整加
工を開始する前は5mmの距離に保たれている。加工が
始まると周波数調整源9は前記周波数差からプログラム
された周波数差と加工レートの設定値により周波数調整
加工しながら徐々に後方へ移動し加工レートを速い状態
から遅くさせて行き、圧電素子3の共振周波数が合わせ
込み周波数と一致したとき、プラズマの発生を遮断す
る。圧電素子3へのアルゴンイオンの照射及び遮断には
直流電源13を直接開閉してもよいし、プラズマを連続
発生させた状態でシャッタ16をシャッタ駆動機構17
で制御して開閉してもよい。図4は、本発明の一つの周
波数調整源を設けた周波数調整加工装置で周波数調整し
た圧電素子の周波数変化の過程を示す図である。
The distance between the piezoelectric element 3 and the ejection port 5 is 5 to 2
It has a mechanism that can be changed up to 0 mm, and is kept at a distance of 5 mm before starting frequency adjustment processing. When the machining is started, the frequency adjusting source 9 gradually moves backward while slowing the machining rate while adjusting the frequency according to the programmed frequency difference from the frequency difference and the set value of the machining rate, and slowing the machining rate. When the resonance frequency of 1 matches the matching frequency, the generation of plasma is shut off. The direct current power supply 13 may be directly opened and closed to irradiate and cut off the argon ions to the piezoelectric element 3, or the shutter 16 may be moved to the shutter drive mechanism 17 while plasma is continuously generated.
You may open and close by controlling with. FIG. 4 is a diagram showing a process of changing the frequency of the piezoelectric element whose frequency is adjusted by the frequency adjustment processing device provided with one frequency adjustment source of the present invention.

【0024】直流電源を投入すると、圧電素子の周波数
は合わせ込み周波数へ徐々に近づき、合わせ込み周波数
近傍になったところで周波数調整源9を圧電素子3から
遠ざけることで、最適な加工レートを得ることが可能と
なる。
When the DC power source is turned on, the frequency of the piezoelectric element gradually approaches the tuning frequency, and when the frequency is near the tuning frequency, the frequency adjusting source 9 is moved away from the piezoelectric element 3 to obtain an optimum processing rate. Is possible.

【0025】(実施例2)また、さらに効率的な周波数
調整制御装置とするための説明を図2の模式図を用いて
行なう。本装置は、3箇所の周波数調整源9a〜9cを
有し、左から大まかな周波数調整を行なう粗調(H)、
中間的な調整を行なう粗微調(M)、最終の合わせ込み
を行なう微調(L)から構成され、調整用の圧電素子3
は搬送機構18により粗調、粗微調、微調のステップで
搬送され周波数調整される。粗調は、ベース電極上がり
の2000ppm程度からのばらつきを所望の共振周波
数の合わせ込み値に対し200ppmまでの合わせ込み
を受け持ち圧電素子3と周波数調整源9aとの距離は5
mm程度と他の周波数調整源に比べ近い距離を設定し、
これにより加工レートは約800ppm/秒と速い加工
レートが得られる。粗微調は、粗調上がりの圧電素子3
を50ppmまでの合わせ込みを受け持ち圧電素子3と
周波数調整源9bとの距離は10mm程度に設定し、加
工レートは約100ppm/秒が得られる。
(Embodiment 2) Further, a description will be given with reference to the schematic diagram of FIG. 2 so as to provide a more efficient frequency adjustment control device. This device has three frequency adjustment sources 9a to 9c, and performs rough frequency adjustment (H) for performing rough frequency adjustment from the left,
A piezoelectric element 3 for adjustment, which includes coarse and fine adjustments (M) for intermediate adjustment and fine adjustments (L) for final adjustment.
Is transported by the transport mechanism 18 in steps of coarse adjustment, coarse fine adjustment, and fine adjustment, and the frequency is adjusted. In the rough adjustment, the variation of the rise of the base electrode from about 2000 ppm is adjusted up to 200 ppm with respect to the adjusted value of the desired resonance frequency, and the distance between the piezoelectric element 3 and the frequency adjustment source 9a is 5.
Set a distance of about mm, which is closer than other frequency adjustment sources,
As a result, a high processing rate of about 800 ppm / sec can be obtained. Coarse / fine adjustment is performed by the piezoelectric element 3
Is set to a distance of about 10 mm between the piezoelectric element 3 and the frequency adjusting source 9b, and a processing rate of about 100 ppm / sec can be obtained.

【0026】微調は、粗微調上がりの圧電素子3を0p
pmまでの合わせ込みを受け持ち、圧電素子3と周波数
調整源9cとの距離は20mm程度に設定し、加工レー
トは約20ppm/秒の遅い加工レートが得られる。
For fine adjustment, the piezoelectric element 3 for coarse and fine adjustment is set to 0p.
Taking the adjustment up to pm, the distance between the piezoelectric element 3 and the frequency adjusting source 9c is set to about 20 mm, and a slow processing rate of about 20 ppm / sec can be obtained.

【0027】周波数調整源9a〜9cは、個々に圧電素
子3の共振周波数をフィクスチャ2を介してネットワー
クアナライザ1で測定し、外部演算装置15で合わせ込
み周波数との周波数差を管理し、最適加工レートとなる
よう駆動装置14へ制御信号を送り圧電素子3と周波数
調整源9a〜9cまでの距離を可変させる。
The frequency adjusting sources 9a to 9c individually measure the resonance frequency of the piezoelectric element 3 with the network analyzer 1 via the fixture 2 and manage the frequency difference with the matching frequency with the external arithmetic unit 15 to optimize the resonance frequency. A control signal is sent to the driving device 14 so that the processing rate is obtained, and the distance between the piezoelectric element 3 and the frequency adjusting sources 9a to 9c is changed.

【0028】個々の周波数調整手段の動作については、
図1における説明と同じであるので省略する。
Regarding the operation of each frequency adjusting means,
Since it is the same as the description in FIG. 1, it is omitted.

【0029】なお、本発明は上記実施例に限定されるこ
となく、幾多の変更を加え得ることは勿論である。
The present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made.

【0030】[0030]

【発明の効果】本発明によれば、スパッタエッチングま
たはイオンビームにより周波数調整加工を行う加工装置
において、圧電素子の周波数を測定しながら周波数調整
加工を行い、さらに、加工レートを自由にコントロール
できるため、所望の共振周波数に対する合わせ込み精度
は数ppmまでのずれにおさめることができる。
According to the present invention, in a processing apparatus for performing frequency adjustment processing by sputter etching or ion beam, the frequency adjustment processing can be performed while measuring the frequency of the piezoelectric element, and the processing rate can be freely controlled. The alignment accuracy with respect to the desired resonance frequency can be kept within a few ppm.

【0031】また、加工レートを常に最適にコントロー
ルすることに加え、複数の周波数調整手段を用いること
により、従来の装置に比べ加工時間を大幅に短縮でき
る。
Further, in addition to always controlling the processing rate optimally, by using a plurality of frequency adjusting means, the processing time can be greatly shortened as compared with the conventional apparatus.

【0032】さらに、圧電素子とアースとの間にコイル
を接続するという簡易な構成により、加工時間の短縮、
加工精度の向上という大きな効果が得られる。
Further, the simple construction of connecting the coil between the piezoelectric element and the ground shortens the processing time,
The great effect of improving the processing accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の周波数調整加工装置の模式図。FIG. 1 is a schematic diagram of a frequency adjustment processing device of the present invention.

【図2】本発明の他の周波数調整加工装置の模式図。FIG. 2 is a schematic view of another frequency adjustment processing device of the present invention.

【図3】本発明のフィクスチャの回路図。FIG. 3 is a circuit diagram of a fixture of the present invention.

【図4】圧電素子の周波数調整過程をグラフにした図。FIG. 4 is a graph showing a frequency adjustment process of the piezoelectric element.

【符号の説明】[Explanation of symbols]

1 ネットワークアナライザ 2 フィクスチャ 3 圧電素子 4 電極膜 5 噴き出し口 6 電極棒 7 外周部 8 ガスボンベ 9 周波数調整源 10 真空容器 11 メカニカルブースタポンプ 12 ロータリポンプ 13 直流電源 14 駆動装置 15 外部演算装置 16 シャッタ 17 シャッタ駆動機構 20 圧電素子搬送機構 19 抵抗 20 抵抗 21 抵抗 22 コイル 1 Network analyzer 2 fixture 3 Piezoelectric element 4 electrode film 5 spout 6 electrode rod 7 Outer periphery 8 gas cylinders 9 Frequency adjustment source 10 vacuum container 11 Mechanical booster pump 12 Rotary pump 13 DC power supply 14 Drive 15 External computing device 16 shutters 17 Shutter drive mechanism 20 Piezoelectric element transport mechanism 19 resistance 20 resistance 21 Resistance 22 coils

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スパッタエッチングまたはイオンビーム
を照射することによって前記圧電素子の電極膜の一部を
取り除く周波数調整手段と、 前記周波数調整手段の外部に配置された前記圧電素子の
周波数を測定する周波数測定手段と、を備えた周波数調
整加工装置であって、 前記周波数調整手段によって前記電極膜の一部を取り除
くとともに、前記周波数調整手段の印加電流を変化させ
ることなく、前記周波数調整手段と前記圧電素子との距
離を駆動手段により変化させることにより周波数調整加
工の加工レートを制御することを特徴とする周波数調整
加工装置。
1. A frequency adjusting means for removing a part of an electrode film of the piezoelectric element by sputter etching or irradiating an ion beam, and a frequency for measuring the frequency of the piezoelectric element arranged outside the frequency adjusting means. A frequency adjustment processing device comprising: a measuring unit, wherein the frequency adjusting unit removes a part of the electrode film, and the applied voltage of the frequency adjusting unit is not changed. A frequency adjustment processing apparatus characterized in that a processing rate of frequency adjustment processing is controlled by changing a distance to an element by a driving means.
【請求項2】 前記圧電素子とアースとの間に接続した
コイルにより、前記圧電素子に帯電するプラス電荷を除
去する電荷除去手段を有することを特徴とする請求項1
記載の周波数調整加工装置。
2. A charge removing unit for removing a positive charge charged in the piezoelectric element by a coil connected between the piezoelectric element and a ground.
The described frequency adjustment processing device.
【請求項3】 前記圧電素子の周波数と合せ込み周波数
との差を外部演算処理装置により管理しながら最適とな
る加工レートが得られるように、前記周波数調整手段と
前記圧電素子との距離を前記駆動手段により制御するこ
とを特徴とする請求項1に記載の周波数調整加工装置。
3. The distance between the frequency adjusting means and the piezoelectric element is adjusted so that an optimum processing rate can be obtained while managing the difference between the frequency of the piezoelectric element and the fitting frequency by an external arithmetic processing unit. The frequency adjustment processing device according to claim 1, wherein the frequency adjustment processing device is controlled by a driving unit.
【請求項4】 前記周波数調整手段と前記圧電素子との
距離が異なる前記周波数調整手段を少なくとも2個備え
たことを特徴とする請求項1又は2に記載の周波数調整
加工装置。
4. The frequency adjustment processing device according to claim 1, further comprising at least two frequency adjustment means having different distances between the frequency adjustment means and the piezoelectric element.
JP2002205858A 1993-05-27 2002-07-15 Frequency adjustment processing device Expired - Lifetime JP3573142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205858A JP3573142B2 (en) 1993-05-27 2002-07-15 Frequency adjustment processing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-126311 1993-05-27
JP12631193 1993-05-27
JP2002205858A JP3573142B2 (en) 1993-05-27 2002-07-15 Frequency adjustment processing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001134446A Division JP3525119B2 (en) 1993-05-27 2001-05-01 Frequency adjustment processing device

Publications (2)

Publication Number Publication Date
JP2003037464A true JP2003037464A (en) 2003-02-07
JP3573142B2 JP3573142B2 (en) 2004-10-06

Family

ID=26462531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205858A Expired - Lifetime JP3573142B2 (en) 1993-05-27 2002-07-15 Frequency adjustment processing device

Country Status (1)

Country Link
JP (1) JP3573142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221243A (en) * 2006-02-14 2007-08-30 Showa Shinku:Kk Frequency adjustment apparatus and method for piezoelectric element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512733A (en) * 1978-07-14 1980-01-29 Anelva Corp Dry process etching device
JPS5723227A (en) * 1980-07-17 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Plasma etching device
JPS61295381A (en) * 1985-06-24 1986-12-26 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPS6334643B2 (en) * 1979-03-16 1988-07-12 Motorola Inc
JPH01268886A (en) * 1988-04-18 1989-10-26 Fujitsu Ltd Plasma dry etching method
JPH02130915A (en) * 1988-11-11 1990-05-18 Anelva Corp Plasma processing equipment
JPH02248042A (en) * 1989-03-22 1990-10-03 Nec Corp Dry etching device
JPH03209906A (en) * 1990-01-11 1991-09-12 Yamanashi Denpa Kk Vapor deposition controller for adjusting frequency of crystal resonator
JPH04196610A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp Frequency adjustment method for piezoelectric vibrator
JPH0548363A (en) * 1991-02-19 1993-02-26 Showa Shinku:Kk Continuous film forming device for crystal resonator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512733A (en) * 1978-07-14 1980-01-29 Anelva Corp Dry process etching device
JPS6334643B2 (en) * 1979-03-16 1988-07-12 Motorola Inc
JPS5723227A (en) * 1980-07-17 1982-02-06 Nippon Telegr & Teleph Corp <Ntt> Plasma etching device
JPS61295381A (en) * 1985-06-24 1986-12-26 ラム・リサーチ・コーポレイション Plasma etching apparatus
JPH01268886A (en) * 1988-04-18 1989-10-26 Fujitsu Ltd Plasma dry etching method
JPH02130915A (en) * 1988-11-11 1990-05-18 Anelva Corp Plasma processing equipment
JPH02248042A (en) * 1989-03-22 1990-10-03 Nec Corp Dry etching device
JPH03209906A (en) * 1990-01-11 1991-09-12 Yamanashi Denpa Kk Vapor deposition controller for adjusting frequency of crystal resonator
JPH04196610A (en) * 1990-11-26 1992-07-16 Seiko Epson Corp Frequency adjustment method for piezoelectric vibrator
JPH0548363A (en) * 1991-02-19 1993-02-26 Showa Shinku:Kk Continuous film forming device for crystal resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221243A (en) * 2006-02-14 2007-08-30 Showa Shinku:Kk Frequency adjustment apparatus and method for piezoelectric element

Also Published As

Publication number Publication date
JP3573142B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3140934B2 (en) Plasma equipment
JP2976965B2 (en) Film forming method and film forming apparatus
JPH0214808B2 (en)
US5662782A (en) Method and apparatus for adjusting a resonance frequency of piezoelectric elements
JP2002294460A (en) Plasma processing apparatus with microwave and plasma process controlling method
JPWO2004010746A1 (en) Plasma processing apparatus and control method thereof
JPS63151103A (en) Method and device for adjusting frequency of piezoelectric vibrator
JP3525119B2 (en) Frequency adjustment processing device
JP2003037464A (en) Frequency-adjusting processor
JP3701994B2 (en) Piezoelectric element, piezoelectric vibrator, manufacturing method thereof, and processing apparatus
JP3500286B2 (en) Frequency adjustment method of piezoelectric element
JP3500185B2 (en) Frequency adjustment processing device
JP3525120B2 (en) Frequency adjustment method of piezoelectric element
JP2003505869A (en) Apparatus and method for etching a substrate using inductively coupled plasma
JP2737377B2 (en) Plasma processing equipment
US20050040145A1 (en) Plasma processing method and apparatus
JP2001217677A (en) Tuning-fork type piezoelectric vibrating piece and its manufacturing method, its frequency adjusting process device, and tuning-fork type piezoelectric vibrator
JPH04196708A (en) Frequency adjustment device and method for piezoelectric element
JP3823647B2 (en) Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
JPH05198390A (en) High frequency plasma device
JP3422724B2 (en) Frequency adjustment device for piezoelectric element
JP3945103B2 (en) Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
JP2641450B2 (en) Plasma processing equipment
JPH05234697A (en) Microwave plasma treating device
JP3031043B2 (en) Ion irradiation apparatus and control method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

EXPY Cancellation because of completion of term