JP2003035399A - Adsorbing and storing device and adsorbing and storing method for natural gas - Google Patents

Adsorbing and storing device and adsorbing and storing method for natural gas

Info

Publication number
JP2003035399A
JP2003035399A JP2001236580A JP2001236580A JP2003035399A JP 2003035399 A JP2003035399 A JP 2003035399A JP 2001236580 A JP2001236580 A JP 2001236580A JP 2001236580 A JP2001236580 A JP 2001236580A JP 2003035399 A JP2003035399 A JP 2003035399A
Authority
JP
Japan
Prior art keywords
adsorption
container
natural gas
adsorption container
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001236580A
Other languages
Japanese (ja)
Other versions
JP4812194B2 (en
Inventor
Kenji Seki
建司 関
Yasunori Suminoe
康紀 住江
Akiyoshi Sakota
章義 迫田
Osamu Wakamura
修 若村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001236580A priority Critical patent/JP4812194B2/en
Publication of JP2003035399A publication Critical patent/JP2003035399A/en
Application granted granted Critical
Publication of JP4812194B2 publication Critical patent/JP4812194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage device having an excellent storage capacity even when repeatedly adsorbing and storing multi-component natural gas. SOLUTION: In the adsorbing type storing device having a pressure vessel for adsorbing natural gas by absorber packed in the pressure vessel, there are provided a first adsorbing vessel for adsorbing and removing the component except for methane, and a second adsorbing vessel for adsorbing methane in the introducing direction of natural gas successively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス(付臭さ
れた天然ガスを含む)の貯蔵・供給技術に関する。
TECHNICAL FIELD The present invention relates to a technology for storing and supplying natural gas (including odorized natural gas).

【0002】[0002]

【従来技術】天然ガスは、産地などにより多少異なる
が、一般にメタン約88%、エタン約6%、プロパン約3
%、ブタン約3%などを含む燃料ガスである。
[Prior Art] Natural gas is generally 88% of methane, 6% of ethane, 3% of propane, although it varies slightly depending on the place of origin.
%, Butane is about 3%, and so on.

【0003】燃料ガス、特に天然ガスを高密度で貯蔵す
る方法として、一般に天然ガスを-162℃に冷却して液化
天然ガス(LNG)として貯蔵する方法、常温または高圧下
で圧縮天然ガス(CNG)として貯蔵する方法などが知られ
ている。
As a method for storing fuel gas, particularly natural gas at a high density, generally, natural gas is cooled to −162 ° C. and stored as liquefied natural gas (LNG), compressed natural gas (CNG) at room temperature or under high pressure. The method of storing as) is known.

【0004】しかしながら、LNGとして貯蔵する方法
は、大規模な冷却設備を必要とするので、設備費が高価
なものとなる。
However, the method of storing as LNG requires a large-scale cooling facility, so that the facility cost is high.

【0005】一方、CNGとして貯蔵する方法は、LNGとし
て貯蔵する方法に比して、効率が低い。これは、CNG自
体のエネルギー密度がLNGに比べると低く、例えば、20M
Pa程度の加圧下のCNGであっても、そのエネルギー密度
は、同体積のLNGの1/3に過ぎないからである。現在、都
市部に設置されているガス貯蔵設備における圧力は、1M
Pa以下であるため、貯蔵密度は一層低いものである。従
って、大量の天然ガスを貯蔵するためには、大規模な貯
蔵ホルダーが必要であり、敷地確保が困難である。さら
に、天然ガスの貯蔵圧力に耐えうる高圧容器を用いるの
で、大型で重量の大きな耐圧容器、調圧弁などが必要と
なり、設備コストが著しく高くなるなどの問題がある。
On the other hand, the method of storing as CNG is less efficient than the method of storing as LNG. This is because the energy density of CNG itself is lower than that of LNG.
This is because the energy density of CNG under pressure of about Pa is only 1/3 that of LNG of the same volume. Currently, the pressure in gas storage facilities installed in urban areas is 1M.
Since it is less than Pa, the storage density is lower. Therefore, in order to store a large amount of natural gas, a large-scale storage holder is required and it is difficult to secure the site. Furthermore, since a high-pressure container that can withstand the storage pressure of natural gas is used, a large-sized and heavy pressure-resistant container, a pressure regulating valve, etc. are required, and there is a problem that the facility cost is significantly increased.

【0006】上記のような問題を解決するためのシステ
ムとして、吸着材に天然ガスを吸着貯蔵する吸着式ガス
ホルダーおよびガス貯蔵・供給システムが知られてい
る。このシステムにおいては、天然ガス中のエタン、プ
ロパン、ブタンなどの重質分の吸着力が強いために、こ
れらの重質分を繰り返し吸脱着すると吸着材の細孔内に
蓄積し、貯蔵性能の低下を引き起こす。
As a system for solving the above problems, an adsorption type gas holder for adsorbing and storing natural gas in an adsorbent and a gas storage / supply system are known. In this system, the adsorption of heavy components such as ethane, propane and butane in natural gas is strong, so if these heavy components are repeatedly adsorbed and desorbed, they will accumulate in the pores of the adsorbent, and storage performance will increase. Cause a decline.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、多
成分系天然ガスの吸脱着を繰り返し行った場合にも優れ
た貯蔵性能を有する貯蔵装置を提供することを主な目的
とする。
SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a storage device having excellent storage performance even when adsorption and desorption of multi-component natural gas is repeated.

【0008】また、容積当たりのガス貯蔵量が大きく、
設備費が安価であり、設備がコンパクトで敷地面積の小
さいガスホルダー、ガス貯蔵容器などの吸着式貯蔵装置
を提供することも目的とする。
Further, the gas storage amount per volume is large,
It is also an object to provide an adsorption storage device such as a gas holder and a gas storage container, which has a low equipment cost, a compact equipment, and a small site area.

【0009】さらに、脱着ガスの組成の安定化および付
臭剤の脱着性能を改善した貯蔵装置を提供することも目
的とする。
It is another object of the present invention to provide a storage device having a stable desorbed gas composition and improved odorant desorption performance.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記のよう
な技術の現状を留意しつつ、研究を重ねた結果、天然ガ
スの貯蔵用圧力容器を主にメタン以外の成分用の吸着材
を充填する吸着容器(本文明細書中では、「第一の吸着
容器」ということがある)と主にメタン用の吸着材を充
填する容器(本文明細書中では、「第二の吸着容器」と
いうことがある)とに分割することにより、上記の目的
を達成することを見出した。
The present inventor has conducted research while paying attention to the current state of the art as described above. As a result, the pressure vessel for storing natural gas is mainly used as an adsorbent for components other than methane. Adsorption container (in this specification, sometimes referred to as "first adsorption container") and a container mainly filled with methane adsorbent (in this specification, "second adsorption container") It has been found that the above-mentioned object can be achieved by dividing it into

【0011】すなわち、本発明は、下記の天然ガス吸着
貯蔵装置および貯蔵方法を提供することにある。 1.圧力容器に充填した吸着材により天然ガスを吸着す
る圧力容器を有する吸着式貯蔵装置において、主にメタ
ン以外の成分を吸着するための第一の吸着容器と主にメ
タンからなる残りのガスを吸着するための第二の吸着容
器とを天然ガスの導入方向に順次設けたことを特徴とす
る天然ガス吸着式貯蔵装置。 2.第一および第二の吸着容器に充填する吸着材が、と
もに多孔体であって、第一の吸着容器に充填する多孔体
の平均細孔径が7Å〜25Åであり、第二の吸着容器に充
填する多孔体の平均細孔径が4Å〜15Åであることを特
徴とする上記1に記載の天然ガス吸着式貯蔵装置。 3.第一の吸着容器に吸着材の加熱手段を設けたことを
特徴とする上記1または2に記載の天然ガス吸着式貯蔵
装置。 4.第一の吸着容器と第二の吸着容器との間および/ま
たは第一の吸着容器よりも後流のガス払い出しライン上
に背圧弁を設けたことを特徴とする上記1〜3のいずれ
かに記載の天然ガス吸着式貯蔵装置。 5.第一の吸着容器内の吸着材が、予め付臭剤を吸着さ
せた吸着材であることを特徴とする上記4に記載の天然
ガス吸着式貯蔵装置。 6.第一および/または第二の吸着容器の吸着材が、活
性炭、ゼオライト、シリカゲルおよび有機金属錯体から
なる群から選択される少なくとも1種である上記1〜5
のいずれかに記載の天然ガス吸着式貯蔵装置。 7.第二の吸着容器が、並列に接続された複数個の容器
からなり、第一の吸着容器と第二の吸着容器とが直列に
接続されている上記1〜6のいずれかに記載の天然ガス
吸着式貯蔵装置。 8.第一の吸着容器内の吸着材の平均粒子径が、0.1〜
4.75mmであり、第二の吸着容器内の吸着材の平均粒子径
が、0.01〜4.75mmである上記1〜7のいずれかに記載の
天然ガス吸着式貯蔵装置。 9.第一の吸着容器に充填する吸着材の93重量%以上の
粒子の粒径が、平均粒子径を中心値として、±2.5mmの
範囲に含まれる上記1〜8のいずれかに記載の天然ガス
吸着式貯蔵装置。 10.圧力容器に充填した吸着材に天然ガスを吸着させ
て貯蔵する方法において、主にメタン以外の成分を第一
吸着容器において吸着させた後、主にメタンからなる残
りのガスを第二吸着容器において吸着させることを特徴
とする天然ガスの吸着貯蔵方法。
That is, the present invention provides the following natural gas adsorption storage device and storage method. 1. In an adsorption-type storage device having a pressure vessel that adsorbs natural gas with an adsorbent filled in the pressure vessel, the first adsorption vessel for mainly adsorbing components other than methane and the remaining gas mainly consisting of methane are adsorbed. A natural gas adsorption type storage device, characterized in that a second adsorption container for performing the operation is sequentially provided in the natural gas introduction direction. 2. The adsorbents to be filled in the first and second adsorption vessels are both porous bodies, and the average pore diameter of the porous bodies to be filled in the first adsorption vessel is 7Å to 25Å, and the second adsorption vessel is to be filled. The natural gas adsorption type storage device according to the above 1, wherein the porous body has an average pore diameter of 4Å to 15Å. 3. 3. The natural gas adsorption type storage device as described in 1 or 2 above, wherein a heating means for the adsorbent is provided in the first adsorption container. 4. In any one of the above 1 to 3, characterized in that a back pressure valve is provided between the first adsorption container and the second adsorption container and / or on the gas discharge line downstream of the first adsorption container. The natural gas adsorption storage device described. 5. 5. The natural gas adsorption type storage device according to the above 4, wherein the adsorbent in the first adsorption container is an adsorbent having an odorant adsorbed in advance. 6. 1 to 5 wherein the adsorbent of the first and / or second adsorption container is at least one selected from the group consisting of activated carbon, zeolite, silica gel and organometallic complexes.
The natural gas adsorption type storage device according to any one of 1. 7. 7. The natural gas according to any one of 1 to 6 above, wherein the second adsorption container comprises a plurality of containers connected in parallel, and the first adsorption container and the second adsorption container are connected in series. Adsorption type storage device. 8. The average particle size of the adsorbent in the first adsorption container is 0.1-
The natural gas adsorption storage device according to any one of 1 to 7 above, wherein the adsorbent in the second adsorption container has an average particle diameter of 4.75 mm and 0.01 to 4.75 mm. 9. The natural gas according to any one of 1 to 8 above, wherein the particle size of 93% by weight or more of the adsorbent filled in the first adsorption container is within a range of ± 2.5 mm with the average particle size as the central value. Adsorption type storage device. 10. In a method of storing natural gas by adsorbing it in an adsorbent filled in a pressure vessel, after the components other than methane are mainly adsorbed in the first adsorption vessel, the remaining gas mainly composed of methane is in the second adsorption vessel. A method for adsorbing and storing natural gas, which comprises adsorbing.

【0012】[0012]

【発明の実施の形態】本発明は、圧力容器に充填した吸
着材により天然ガスを吸着する圧力容器を有する吸着式
貯蔵装置において、主にメタン以外の成分を吸着するた
めの第一の吸着容器と主にメタンからなる残りのガスを
吸着するための第二の吸着容器とを天然ガスの導入方向
に順次設けたことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to an adsorption type storage device having a pressure vessel for adsorbing natural gas by an adsorbent filled in a pressure vessel, and a first adsorption vessel for mainly adsorbing components other than methane. And a second adsorption container for adsorbing the remaining gas mainly consisting of methane are sequentially provided in the natural gas introduction direction.

【0013】以下図面を参照しつつ、本発明をさらに詳
細に説明する。図1および図2に、本発明による吸着式
貯蔵装置の一例を概略図として示す。本発明の装置は、
ガスの導入方向に順次第一の吸着容器および第二の吸着
容器を設ける。
The present invention will be described in more detail with reference to the drawings. 1 and 2 are schematic views showing an example of an adsorption type storage device according to the present invention. The device of the present invention is
A first adsorption container and a second adsorption container are sequentially provided in the gas introduction direction.

【0014】図1では、ガス導入ラインとガス払い出し
ラインの一部が共通のラインとなっているが、図2に示
すように、ガス導入ラインとガス払い出しラインは、別
々に設けてもよい。
In FIG. 1, a part of the gas introduction line and the gas delivery line are common lines, but as shown in FIG. 2, the gas introduction line and the gas delivery line may be provided separately.

【0015】本発明の貯蔵対象ガスには、付臭前の天然
ガスだけでなく、都市ガスとして使用するために既に付
臭された天然ガスも含まれる。貯蔵対象である天然ガス
が付臭前後のいずれであるに係わらず、必要に応じて、
第一の容器内の吸着材として、付臭剤を吸着させた吸着
材を用いることができる。
The gas to be stored according to the present invention includes not only natural gas that has not been odorized, but also natural gas that has already been odorized for use as city gas. Regardless of whether the natural gas to be stored is before or after odorization, if necessary,
As the adsorbent in the first container, an adsorbent having an odorant adsorbed thereon can be used.

【0016】用いる付臭剤は、当該分野において都市ガ
スに臭気を与える付臭剤として通常用いられているもの
であれば特に制限されない。付臭剤として、例えば、ジ
メチルサルファイド(DMS)、t-ブチルメルカプタン(TB
M)、テトラハイドロチオフェン(THT)などのサルファー
系化合物などを例示することができる。
The odorant used is not particularly limited as long as it is commonly used as an odorant which gives an odor to city gas in the art. As the odorant, for example, dimethyl sulfide (DMS), t-butyl mercaptan (TB
Examples thereof include sulfur compounds such as M) and tetrahydrothiophene (THT).

【0017】第一の吸着容器内の吸着材に吸着させる付
臭剤の量は、特に制限されないが、吸着材の重量に対し
て、通常0.001〜5%程度、好ましくは0.01〜1%程度で
ある。
The amount of the odorant to be adsorbed by the adsorbent in the first adsorption container is not particularly limited, but is usually about 0.001 to 5%, preferably about 0.01 to 1% with respect to the weight of the adsorbent. is there.

【0018】第一の吸着容器には、必要に応じて、メタ
ン以外の成分の脱着を促進するために、吸着材の加熱手
段としてヒーターなどを設けることができる。
If necessary, the first adsorption container may be provided with a heater or the like as a means for heating the adsorbent in order to accelerate desorption of components other than methane.

【0019】本発明の装置は、必要に応じて、第一の吸
着容器と第二の吸着容器との間に第一の吸着容器の圧力
を調整できる背圧弁を設けても良い。例えば、図1に示
すように、ガス導入ラインの第一の吸着容器と第二の吸
着容器との間に背圧弁を設けることができる。
In the apparatus of the present invention, if necessary, a back pressure valve capable of adjusting the pressure of the first adsorption container may be provided between the first adsorption container and the second adsorption container. For example, as shown in FIG. 1, a back pressure valve can be provided between the first adsorption container and the second adsorption container in the gas introduction line.

【0020】本発明の装置は、図2に示すように、必要
に応じて、第一の吸着容器よりも後流のガス払い出しラ
イン上に、第一の吸着容器の圧力を調整できる背圧弁を
有していても良い。
In the apparatus of the present invention, as shown in FIG. 2, a back pressure valve capable of adjusting the pressure of the first adsorption container is provided on the gas discharge line downstream of the first adsorption container, if necessary. You may have.

【0021】背圧弁を全く有しない態様の場合には、第
一の吸着容器と第二の吸着容器との間に、バルブ2を設
けておくことが好ましい。
In the case where the back pressure valve is not provided at all, it is preferable to provide the valve 2 between the first adsorption container and the second adsorption container.

【0022】第一の吸着容器には、メタン以外の成分を
吸着できる吸着材が充填されている。第一の吸着容器に
おける吸着材として、活性炭、ゼオライト、シリカゲ
ル、有機金属錯体などの多孔体などが例示される。有機
金属錯体として、フマル酸銅;1,4-トランス-シクロヘ
キサンジカルボン酸銅;スチルベンジカルボン酸銅;テ
レフタル酸銅;ターフェニルジカルボン酸銅;ビフェニ
ルジカルボン酸銅;トランジカルボン酸銅;シンナミッ
クジカルボン酸銅;フマル酸銅またはテレフタル酸銅ま
たはシンナミックジカルボン酸銅とトリエチルアミンと
の3次元錯体などを例示できる。これらの吸着材は、単
独で使用してもよく、或いは2種以上を併用してもよ
い。多孔体の比表面積は、できるだけ大きいことが好ま
しい。実用的には、多孔体の比表面積は、通常約800m2/
g以上であり、1000〜3000m2/g程度であることが好まし
い。多孔体の平均細孔径は、通常7〜25Å程度であり、
より好ましくは10〜20Å程度である。多孔体の細孔容積
は、通常0.5〜2ml/g程度であり、好ましくは0.6〜1.2ml
/g程度である。第一の吸着容器に充填する吸着材の平均
粒子径は、特に制限されないが、通常0.1〜4.75mm程度
であり、好ましくは0.2〜2.8mm程度、より好ましくは0.
4〜2mm程度である。第一の吸着容器に充填する吸着材の
粒度分布は、特に制限されないが、93重量%以上の粒子
の粒径が、平均粒子径を中心値として、通常±2.5mm程
度、好ましくは±2mm程度、より好ましくは±1.5mm程度
の範囲に含まれる。
The first adsorption container is filled with an adsorbent capable of adsorbing components other than methane. Examples of the adsorbent in the first adsorption container include activated carbon, zeolite, silica gel, and porous materials such as organometallic complexes. As an organometallic complex, copper fumarate; copper 1,4-trans-cyclohexanedicarboxylate; copper stilbenedicarboxylate; copper terephthalate; copper terphenyldicarboxylate; copper biphenyldicarboxylate; copper transdicarboxylate; copper dynamic dicarboxylate A three-dimensional complex of copper fumarate or copper terephthalate or copper cinnamic dicarboxylic acid with triethylamine, and the like. These adsorbents may be used alone or in combination of two or more. The specific surface area of the porous body is preferably as large as possible. Practically, the specific surface area of the porous body is usually about 800 m 2 /
It is preferably g or more and about 1000 to 3000 m 2 / g. The average pore diameter of the porous body is usually about 7 to 25Å,
More preferably, it is about 10 to 20Å. The pore volume of the porous body is usually about 0.5 to 2 ml / g, preferably 0.6 to 1.2 ml.
It is about / g. The average particle size of the adsorbent filled in the first adsorption container is not particularly limited, but is usually about 0.1 to 4.75 mm, preferably about 0.2 to 2.8 mm, more preferably 0.
It is about 4 to 2 mm. The particle size distribution of the adsorbent to be filled in the first adsorption container is not particularly limited, but the particle size of particles of 93% by weight or more, with the average particle size as the center value, is usually about ± 2.5 mm, preferably about ± 2 mm. , And more preferably within a range of about ± 1.5 mm.

【0023】なお、本発明における多孔体の比表面積
は、BET法による測定値であり、平均細孔径は、mp法に
よる測定値であり、細孔容積は、窒素吸着データの相対
圧が0.99の値から算出した値である。
The specific surface area of the porous material in the present invention is a value measured by the BET method, the average pore diameter is a value measured by the mp method, and the pore volume is a relative pressure of nitrogen adsorption data of 0.99. It is a value calculated from the value.

【0024】第二の吸着容器には、メタンを吸着できる
吸着材が充填されている。第二の吸着容器における吸着
材としては、活性炭、ゼオライト、シリカゲル、有機金
属錯体などの多孔体などが例示される。有機金属錯体と
して、フマル酸銅;1,4-トランス-シクロヘキサンジカ
ルボン酸銅;スチルベンジカルボン酸銅;テレフタル酸
銅;ターフェニルジカルボン酸銅;ビフェニルジカルボ
ン酸銅;トランジカルボン酸銅;シンナミックジカルボ
ン酸銅;フマル酸銅またはテレフタル酸銅またはシンナ
ミックジカルボン酸銅とトリエチルアミンとの3次元錯
体などを例示できる。これらの吸着材は、単独で使用し
てもよく、或いは2種以上を併用してもよい。多孔体の
比表面積としては、できるだけ大きいことが好ましい。
実用的には、通常約400m2/g以上であり、1000〜2500m2/
g程度であることが好ましい。メタン吸着材である多孔
体の平均細孔径は、通常4〜15Å程度であり、より好ま
しくは6〜12Å程度である。多孔体の細孔容積は、通常
0.2〜2ml/g程度であり、好ましくは0.4〜1.2ml/g程度で
ある。第二の吸着容器に充填する吸着材の平均粒子径
は、特に制限されないが、通常0.01〜4.75mm程度であ
り、好ましくは0.02〜2.8mm程度である。第一の吸着容
器と第二の吸着容器に、同種または異種の吸着材を充填
するに限らず、第一の容器に充填する吸着材の平均粒子
径は、第二の容器に充填する吸着材の平均粒子径よりも
大きい方が好ましい。
The second adsorption container is filled with an adsorbent capable of adsorbing methane. Examples of the adsorbent in the second adsorption container include activated carbon, zeolite, silica gel, and porous materials such as organometallic complexes. As an organometallic complex, copper fumarate; copper 1,4-trans-cyclohexanedicarboxylate; copper stilbenedicarboxylate; copper terephthalate; copper terphenyldicarboxylate; copper biphenyldicarboxylate; copper transdicarboxylate; copper dynamic dicarboxylate A three-dimensional complex of copper fumarate or copper terephthalate or copper cinnamic dicarboxylic acid with triethylamine, and the like. These adsorbents may be used alone or in combination of two or more. The specific surface area of the porous body is preferably as large as possible.
In practice, it is usually about 400 meters 2 / g or more, 1000~2500m 2 /
It is preferably about g. The average pore size of the porous body that is a methane adsorbent is usually about 4 to 15Å, more preferably about 6 to 12Å. The pore volume of a porous body is usually
It is about 0.2 to 2 ml / g, preferably about 0.4 to 1.2 ml / g. The average particle diameter of the adsorbent filled in the second adsorption container is not particularly limited, but is usually about 0.01 to 4.75 mm, preferably about 0.02 to 2.8 mm. The first adsorbent container and the second adsorbent container are not limited to being filled with the same or different adsorbent materials, but the average particle size of the adsorbent material filled in the first container is the adsorbent material filled in the second container It is preferable that the average particle size is larger than the average particle size.

【0025】第一の吸着容器と第二の吸着容器において
用いる吸着材は、同一であってもよく、または異なって
いてもよい。第一の吸着容器に加熱手段を設けず、第一
吸着容器と第二吸着容器との間に背圧弁を設けない態様
においては、第一の吸着容器と第二の吸着容器とで、異
なる種類の吸着材を用いるか、または同種であっても平
均細孔径の異なる多孔体を吸着材として用いるのが好ま
しい。同種または異種の吸着材を充填するに限らず、と
もに多孔体を使用する場合には、第一の吸着容器には、
第二の吸着容器に充填する吸着材よりも平均細孔径の大
きい吸着材を充填するのが好ましい。
The adsorbents used in the first adsorption container and the second adsorption container may be the same or different. In a mode in which the heating means is not provided in the first adsorption container and the back pressure valve is not provided between the first adsorption container and the second adsorption container, different types are used for the first adsorption container and the second adsorption container. It is preferable to use the above adsorbent, or to use as the adsorbent, porous bodies having the same type but different average pore diameters. Not only filling the same type or different types of adsorbents, but when using a porous body together, the first adsorption container,
It is preferable to fill an adsorbent having an average pore size larger than that of the adsorbent filled in the second adsorption container.

【0026】本発明においては、必要に応じて、第一の
吸着容器および/または第二の吸着容器を複数個設置し
てもよい。第一の吸着容器および/または第二の吸着容
器を複数個設置する場合には、それぞれを並列に設置す
ることができる。例えば、図3に示すように、第二の吸
着容器が並列に複数個接続され、第一の吸着容器と第二
の吸着容器が直列に接続された実施態様を例示すること
ができる。
In the present invention, a plurality of first adsorption vessels and / or second adsorption vessels may be installed if necessary. When a plurality of first adsorption containers and / or second adsorption containers are installed, they can be installed in parallel. For example, as shown in FIG. 3, an embodiment in which a plurality of second adsorption containers are connected in parallel and the first adsorption container and the second adsorption container are connected in series can be exemplified.

【0027】2種の吸着材のそれぞれの使用量(第一の
吸着容器および第二の吸着容器それぞれの充填体積)
は、使用する吸着材の種類(吸着能力)などを考慮して、
適宜決定することができる。第一吸着容器と第二吸着容
器との吸着材の充填体積の比は、特に制限されないが、
通常1:10〜1:1程度、好ましくは1:5〜1:1程度、よ
り好ましくは1:3〜1:1程度である。なお、第一または
第二の吸着容器を複数個付設する場合は、全ての第一ま
たは第二吸着容器における吸着材の充填体積の和とす
る。
Usage amount of each of the two kinds of adsorbents (filling volume of each of the first adsorption container and the second adsorption container)
Takes into consideration the type of adsorbent used (adsorption capacity), etc.
It can be determined as appropriate. The ratio of the filling volume of the adsorbent between the first adsorption container and the second adsorption container is not particularly limited,
It is usually about 1:10 to 1: 1 and preferably about 1: 5 to 1: 1 and more preferably about 1: 3 to 1: 1. When a plurality of first or second adsorption vessels are provided, the sum of the adsorbent filling volumes in all the first or second adsorption vessels is used.

【0028】第一の吸着容器および第二の吸着容器の形
状は、特に制限されず、同一であってもよく、相異なっ
ていてもよい。これらの容器の形状として、例えば、円
筒形、パイプ形、球形、角筒形などを例示することがで
きる。
The shapes of the first adsorption container and the second adsorption container are not particularly limited and may be the same or different. Examples of the shape of these containers include a cylindrical shape, a pipe shape, a spherical shape, and a rectangular tube shape.

【0029】第一の吸着容器および/または第二の吸着
容器は、必要に応じて、地中に埋設することができる。
The first adsorption container and / or the second adsorption container can be buried in the ground if necessary.

【0030】本発明の装置などを用いることにより、メ
タン以外の成分を第一の吸着容器において吸着させた
後、主にメタンからなる残りのガスを第二の吸着容器に
おいて吸着させることにより天然ガスを吸着貯蔵するこ
とができる。以下、本発明の装置を用いた天然ガスの吸
着貯蔵方法の一例を詳述する。第一の吸着容器と第二の
吸着容器との間に背圧弁を設けた態様における吸着貯蔵
方法について、図1を参照しながら述べる。
By using the device of the present invention and the like, components other than methane are adsorbed in the first adsorption container, and then the remaining gas consisting mainly of methane is adsorbed in the second adsorption container. Can be adsorbed and stored. Hereinafter, an example of a method for adsorbing and storing natural gas using the apparatus of the present invention will be described in detail. An adsorption storage method in a mode in which a back pressure valve is provided between the first adsorption container and the second adsorption container will be described with reference to FIG.

【0031】まず、導入された天然ガスは、ガス導入ラ
インおよびバルブ1を経て、第一の吸着容器内に導入さ
れる。この時点では、第一の吸着容器と第二の吸着容器
との間に必要に応じて設けられた背圧弁に付属するバル
ブ2は、閉じられている。背圧弁は、所定圧に設定され
ており、第一の吸着容器内の圧力が所定圧に達すると背
圧弁に付属するバルブ2が開き、第一吸着容器内を所定
圧に保持しながら、メタン以外の成分がある程度吸着さ
れた天然ガスが、第二の吸着容器に導入される。天然ガ
スを導入する場合の第一の吸着容器と第二の吸着容器と
の間に設けられた背圧弁の設定圧力は、第一の吸着容器
の貯蔵圧に応じて適宜設定することができ、通常貯蔵圧
力の1/2〜貯蔵圧力程度、好ましくは貯蔵圧力程度であ
る。貯蔵圧力は、貯蔵容器の能力に応じて適宜設定する
ことができるが、通常0.1〜7MPa程度、好ましくは0.1〜
4MPa程度、より好ましくは0.1〜3.5MPa程度である。
First, the introduced natural gas is introduced into the first adsorption container through the gas introduction line and the valve 1. At this point, the valve 2 attached to the back pressure valve, which is provided between the first adsorption container and the second adsorption container as needed, is closed. The back pressure valve is set to a predetermined pressure, and when the pressure in the first adsorption container reaches a predetermined pressure, the valve 2 attached to the back pressure valve opens, while maintaining the inside of the first adsorption container at the predetermined pressure, Natural gas having components other than that adsorbed to some extent is introduced into the second adsorption container. The setting pressure of the back pressure valve provided between the first adsorption container and the second adsorption container when introducing natural gas can be appropriately set according to the storage pressure of the first adsorption container, The storage pressure is usually 1/2 to about the storage pressure, preferably about the storage pressure. The storage pressure can be appropriately set depending on the capacity of the storage container, but is usually about 0.1 to 7 MPa, preferably 0.1 to 7 MPa.
It is about 4 MPa, more preferably about 0.1 to 3.5 MPa.

【0032】第一の吸着容器内の吸着材への吸着時の温
度および圧力は、特に制限されない。温度は、吸着熱に
より上昇するので、通常-20℃〜100℃程度であり、好ま
しくは常温〜100℃程度、より好ましくは常温〜60℃程
度であり、常温において吸着可能である。圧力は、通常
約0.1MPa以上、好ましくは0.1〜4MPa程度、より好まし
くは0.1〜3.4MPa程度である。
The temperature and pressure at the time of adsorption to the adsorbent in the first adsorption container are not particularly limited. Since the temperature rises due to the heat of adsorption, it is usually about -20 ° C to 100 ° C, preferably room temperature to 100 ° C, more preferably room temperature to 60 ° C, and adsorption is possible at room temperature. The pressure is usually about 0.1 MPa or higher, preferably about 0.1 to 4 MPa, more preferably about 0.1 to 3.4 MPa.

【0033】第二の吸着容器内の吸着材への吸着時の温
度および圧力は、特に制限されない。温度は、吸着熱に
より上昇するので、通常-20℃〜100℃程度であり、好ま
しくは常温〜100℃程度、より好ましくは常温〜60℃程
度であり、常温において吸着可能である。圧力は、通常
約0.1MPa以上、好ましくは0.1〜4MPa程度、より好まし
くは0.1〜3.4MPa程度である。
The temperature and pressure at the time of adsorption to the adsorbent in the second adsorption container are not particularly limited. Since the temperature rises due to the heat of adsorption, it is usually about -20 ° C to 100 ° C, preferably room temperature to 100 ° C, more preferably room temperature to 60 ° C, and adsorption is possible at room temperature. The pressure is usually about 0.1 MPa or higher, preferably about 0.1 to 4 MPa, more preferably about 0.1 to 3.4 MPa.

【0034】第二の吸着容器への天然ガス吸着が終了し
た時点で、バルブ1およびバルブ2を閉じ、天然ガスを
そのまま貯蔵する。
When the adsorption of the natural gas into the second adsorption container is completed, the valves 1 and 2 are closed and the natural gas is stored as it is.

【0035】天然ガスの脱着操作時は、バルブ2を閉じ
たままバルブ3を開き、必要に応じて第一の吸着容器内
に充填した吸着材をヒーターにより加熱して、第一の吸
着容器に吸着されているガスの脱着を行い、ガス払い出
しラインから天然ガスよりメタン濃度が低いガスを系外
に放出する。
During the desorption operation of natural gas, the valve 3 is opened while the valve 2 is closed, and the adsorbent filled in the first adsorption container is heated by a heater as needed to make the first adsorption container. The adsorbed gas is desorbed, and the gas with a lower methane concentration than natural gas is released from the gas discharge line to the outside of the system.

【0036】次いで、バルブ2を開いて、第二の吸着容
器内に充填した吸着材に吸着されたメタンを主成分とす
るガスを脱着させ、バルブ2、第一の吸着容器およびバ
ルブ3を経て、ガス払い出しラインから天然ガスを所定
の用途に供する。脱着操作に際しては、必要に応じて第
一の吸着容器よりも後流のガス払い出しライン上に設け
られた背圧弁による圧力設定により、第一の吸着容器内
の圧力を一定に保ちながら、第二の吸着容器内のガスの
脱着を行うことが好ましい。第一の吸着容器よりも後流
のガス払い出しライン上に設けた背圧弁の圧力は、ガス
払い出し時には、好ましくは0.1MPa〜払い出し後の貯蔵
圧力程度、より好ましくは0.1〜0.2MPa程度に設定す
る。
Next, the valve 2 is opened to desorb the gas containing methane as a main component adsorbed in the adsorbent filled in the second adsorption container, and then through the valve 2, the first adsorption container and the valve 3. , Use natural gas for a specified purpose from a gas delivery line. During the desorption operation, if necessary, the pressure in the first adsorption container is kept constant by setting the pressure by the back pressure valve provided on the gas discharge line downstream of the first adsorption container, while keeping the pressure in the second adsorption container constant. It is preferable to desorb the gas in the adsorption container. The pressure of the back pressure valve provided on the gas discharge line downstream of the first adsorption container is preferably set to 0.1 MPa to the storage pressure after discharge, more preferably 0.1 to 0.2 MPa during gas discharge. .

【0037】第一の吸着容器にヒーターを付設していな
い場合は、バルブ2を閉じたままバルブ3を開き、第一
の吸着容器に吸着されているガスを脱着させる。この
時、第一の吸着容器の開口部に近い空間部に充填された
吸着材により高濃度に吸着されたメタン以外の成分ガス
の一部が脱着される。
When the heater is not attached to the first adsorption container, the valve 3 is opened with the valve 2 kept closed to desorb the gas adsorbed in the first adsorption container. At this time, a part of the component gas other than methane adsorbed at a high concentration is desorbed by the adsorbent filled in the space near the opening of the first adsorption container.

【0038】次いで、バルブ2を開き、必要に応じて設
けられた背圧弁による圧力設定により、第一の吸着容器
内の圧力を一定に保ちながら、第二の吸着容器内に吸着
されているガスがバルブ2、第一の吸着容器およびバル
ブ3を経て、ガス払い出しラインから天然ガスが払い出
され、所定の用途に供する。
Next, the valve 2 is opened, and the gas adsorbed in the second adsorption container is maintained while the pressure in the first adsorption container is kept constant by setting the pressure by the back pressure valve provided as necessary. After passing through the valve 2, the first adsorption container and the valve 3, the natural gas is discharged from the gas discharging line and is used for a predetermined purpose.

【0039】[0039]

【発明の効果】本発明によれば、主にメタン以外のガス
と主にメタンとをそれぞれ個別の容器内に収容された吸
着材に吸着させることにより、天然ガス中のエタン、プ
ロパン、ブタン等の重質分の分離吸着および脱着を容易
に行うことができる。このため、天然ガスの吸脱着操作
を繰り返しても、高い貯蔵性能を長期間維持することが
でき、定常状態での天然ガス貯蔵性能が大幅に向上す
る。
According to the present invention, gas other than methane and mainly methane are adsorbed by the adsorbents contained in separate containers, whereby ethane, propane, butane, etc. in natural gas are adsorbed. It is possible to easily separate and adsorb and desorb the heavy components of Therefore, even if the adsorption / desorption operation of natural gas is repeated, the high storage performance can be maintained for a long time, and the natural gas storage performance in the steady state is significantly improved.

【0040】さらに、本発明によれば、吸着材を充填し
た貯蔵装置の天然ガス貯蔵性能を改善することができる
ので、貯蔵装置全体を小型化し得るとともに、天然ガス
の貯蔵効率を高めることができる。その結果、敷地面積
が狭くとも多量の天然ガスを貯蔵することができるの
で、天然ガス貯蔵設備全体のコストを低減することが可
能である。
Furthermore, according to the present invention, since the natural gas storage performance of the storage device filled with the adsorbent can be improved, the storage device as a whole can be downsized and the natural gas storage efficiency can be increased. . As a result, since a large amount of natural gas can be stored even if the site area is small, it is possible to reduce the cost of the entire natural gas storage facility.

【0041】第一の吸着容器と第二の吸着容器との間に
背圧弁を設けた場合には、天然ガス導入時において、第
一の吸着容器内の圧力が設定圧力に達するまで背圧弁の
バルブ2を閉じることにより、第一の吸着容器の圧力を
制御することができる。このように制御することによ
り、第一の吸着容器におけるメタン以外の成分の吸着性
能が向上し、第二の吸着容器へのメタン以外の成分の流
出を防止することができる。
When a back pressure valve is provided between the first adsorption container and the second adsorption container, when the natural gas is introduced, the back pressure valve is operated until the pressure in the first adsorption container reaches the set pressure. By closing the valve 2, the pressure in the first adsorption container can be controlled. By controlling in this way, the adsorption performance of the components other than methane in the first adsorption container is improved, and the components other than methane can be prevented from flowing out to the second adsorption container.

【0042】第一の吸着容器よりも後流のガス払い出し
ライン上に背圧弁を設けた場合には、ガス脱着時におい
て、第一の吸着容器の圧力を低圧に保つことができる。
これにより、第一の吸着容器に吸着されているメタン以
外の成分の脱着を促進することができる。
When the back pressure valve is provided on the gas discharge line downstream of the first adsorption container, the pressure of the first adsorption container can be kept low during gas desorption.
Thereby, desorption of components other than methane adsorbed in the first adsorption container can be promoted.

【0043】従って、背圧弁を設けることにより、より
一層、高い貯蔵性能を長期間維持することができ、定常
状態での天然ガス貯蔵性能を大幅に向上することができ
る。
Therefore, by providing the back pressure valve, high storage performance can be maintained for a long period of time, and the natural gas storage performance in a steady state can be greatly improved.

【0044】第一の吸着容器を設置することにより、天
然ガス以外の不純物の除去を行うことができる。不純物
の固定吸着のために、吸着性能が低下した場合には、第
一の吸着容器内の吸着材のみを入れ替えることにより、
吸着貯蔵装置の吸着性能の回復を容易に行うことができ
る。
By installing the first adsorption container, impurities other than natural gas can be removed. If the adsorption performance deteriorates due to the fixed adsorption of impurities, by replacing only the adsorbent in the first adsorption container,
The adsorption performance of the adsorption storage device can be easily recovered.

【0045】[0045]

【実施例】以下に実施例を示し、本発明の特徴とするこ
とをより一層明らかにする。本発明は、以下の実施例に
制限されるものではない。 ・吸脱着性能の評価方法 天然ガスの吸着貯蔵性能を以下の方法により評価した。
いずれの場合も、導入した天然ガスの成分は、メタン8
7.99%、エタン6.46%、プロパン3.07%、n-ブタン1.50
%およびi-ブタン0.98%であった。
EXAMPLES Examples will be shown below to further clarify the features of the present invention. The present invention is not limited to the examples below. Evaluation method of adsorption / desorption performance The adsorption storage performance of natural gas was evaluated by the following method.
In both cases, the natural gas component introduced was methane 8
7.99%, ethane 6.46%, propane 3.07%, n-butane 1.50
% And i-butane 0.98%.

【0046】実施例1:二塔式容器で第一の吸着容器と
第二の吸着容器とに異なる吸着材を充填した場合 天然ガス吸着式貯蔵装置として、図2に記載の装置であ
って、第一の吸着容器が60mlの円筒形充填容器であり、
第二の吸着容器が60mlの円筒形充填容器である装置を用
いた。第一の吸着容器に後述する吸着材Aを充填し、第
二の吸着容器に後述する吸着材Bを充填した。
Example 1 In the case where the first adsorption container and the second adsorption container were filled with different adsorbents in the two-column type container, the device shown in FIG. 2 was used as the natural gas adsorption type storage device, The first adsorption container is a 60 ml cylindrical filling container,
An apparatus was used in which the second adsorption vessel was a 60 ml cylindrical packing vessel. The first adsorption container was filled with an adsorbent A described later, and the second adsorption container was filled with an adsorbent B described later.

【0047】真空ポンプを用いて、第一および第二吸着
容器内を減圧脱気した。次いで、それぞれの容器温度を
298Kとし、第一の吸着容器と第二の吸着容器との間に設
けた背圧弁の圧力設定を3.5MPaGにした後、天然ガスを
容器に導入した。まず、第一の吸着容器内の圧力が、3.
5MPaGとなるまで天然ガスを吸着貯蔵し、次いで、第一
の吸着容器内の圧力を3.5MPaGに維持しながら、第二の
吸着容器内の圧力が3.5MPaGになるまでガスを導入し
た。なお、「MPaG」は、大気圧に対するゲージ圧を意味す
る。
The insides of the first and second adsorption vessels were deaerated under reduced pressure using a vacuum pump. Then change the temperature of each container
After setting the pressure to 298 K and setting the pressure of the back pressure valve provided between the first adsorption container and the second adsorption container to 3.5 MPaG, natural gas was introduced into the container. First, the pressure in the first adsorption container is 3.
Natural gas was adsorbed and stored until it reached 5 MPaG, and then gas was introduced until the pressure in the second adsorption container reached 3.5 MPaG while maintaining the pressure in the first adsorption container at 3.5 MPaG. In addition, "MPaG" means the gauge pressure with respect to atmospheric pressure.

【0048】吸着貯蔵後は、バルブ2を閉めたまま排気
側のバルブ3を開放し、第一の吸着容器内の圧力が0MPa
Gになるまで脱着を行なった。次に、第一の吸着容器内
の圧力を0MPaGに維持しながら第二の吸着容器内のガス
を圧力が0MPaGになるまで脱着させた。この際、第一の
吸着容器および第二の吸着容器のそれぞれに対して体積
式の積算流量計を用いて脱着量を測定した。これらの吸
脱着操作を繰返し行ない、繰り返し性能評価を行った。
結果を図4に示す。また、ガスクロマトグラフィを用い
て様々な圧力段階における脱着ガスのガス成分の測定を
行い、その測定結果から脱着ガスの熱量変化を算出し
た。様々な圧力範囲における脱着ガスの熱量変化を図5
に示す。
After the adsorption and storage, the valve 3 on the exhaust side is opened while the valve 2 is closed, and the pressure in the first adsorption container is 0 MPa.
Desorption was performed until it reached G. Next, while maintaining the pressure in the first adsorption container at 0 MPaG, the gas in the second adsorption container was desorbed until the pressure became 0 MPaG. At this time, the desorption amount was measured for each of the first adsorption container and the second adsorption container by using a volume type integrated flow meter. These adsorption / desorption operations were repeated to evaluate the performance repeatedly.
The results are shown in Fig. 4. In addition, the gas component of the desorbed gas was measured at various pressure stages using gas chromatography, and the calorific value change of the desorbed gas was calculated from the measurement result. Fig. 5 shows changes in the heat quantity of desorption gas in various pressure ranges.
Shown in.

【0049】なお、第一の吸着容器には、吸着材とし
て、比表面積2400m2/g、細孔容積1.19ml/g、平均細孔径
11Åのやし殻活性炭(吸着材A)を充填し、第二の吸着容
器には、比表面積1380m2/g、細孔容積0.71ml/g、平均細
孔径9Åのやし殻活性炭(吸着材B)を使用した。吸着材A
とBは、粒径5〜500μm(平均粒子径:195μm)の活性炭70
重量%と粒径0.71〜2.8mm(平均粒子径:1.7mm)の活性炭
30重量%との混合物(平均粒子径:0.65mm)である。
In the first adsorption container, as an adsorbent, a specific surface area of 2400 m 2 / g, a pore volume of 1.19 ml / g, an average pore diameter
It is filled with 11Å palm shell activated carbon (adsorbent A), and the second adsorption container has a specific surface area of 1380 m 2 / g, a pore volume of 0.71 ml / g, and an average pore diameter of 9Å palm shell activated carbon (adsorbent A). B) was used. Adsorbent A
And B are activated carbon 70 with a particle size of 5 to 500 μm (average particle size: 195 μm).
Weight% and activated carbon with a particle size of 0.71 to 2.8 mm (average particle size: 1.7 mm)
It is a mixture with 30% by weight (average particle diameter: 0.65 mm).

【0050】実施例2 吸着材として、第一の吸着容器に比表面積1555m2/g、細
孔容積0.99ml/g、平均細孔径13Åのやし殻活性炭を充填
し、第二の吸着容器に比表面積1380m2/g、細孔容積0.71
ml/g、平均細孔径9Åのやし殻活性炭を充填した以外
は、実施例1と同様にして吸脱着操作を繰り返し行い、
繰り返し性能評価を行った。使用した吸着材は、粒径5
〜500μm(平均粒子径:195μm)の活性炭70重量%と粒径
0.71〜2.8mm(平均粒子径:1.7mm)の活性炭30重量%との
混合物(平均粒子径:0.65mm)である。
Example 2 As an adsorbent, the first adsorption container was filled with palm shell activated carbon having a specific surface area of 1555 m 2 / g, a pore volume of 0.99 ml / g and an average pore diameter of 13Å, and the second adsorption container was filled with the same. Specific surface area 1380 m 2 / g, pore volume 0.71
Adsorption and desorption operations were repeated in the same manner as in Example 1 except that palm shell activated carbon with ml / g and an average pore diameter of 9Å was filled.
Repeated performance evaluation was performed. The adsorbent used has a particle size of 5
~ 500 μm (average particle size: 195 μm) 70% by weight of activated carbon and particle size
It is a mixture (average particle size: 0.65 mm) of 0.71 to 2.8 mm (average particle size: 1.7 mm) with 30% by weight of activated carbon.

【0051】ガス成分の測定結果から求めた様々な圧力
範囲における脱着ガスの熱量変化を図6に示す。
FIG. 6 shows changes in the calorific value of the desorption gas in various pressure ranges obtained from the measurement results of the gas components.

【0052】実施例3 吸着材として、第一の吸着容器に比表面積1669m2/g、細
孔容積0.95ml/g、平均細孔径14Åの石炭系活性炭を充填
し、第二の吸着容器に比表面積1380m2/g、細孔容積0.71
ml/g、平均細孔径9Åのやし殻活性炭を充填した以外
は、実施例1と同様にして、吸脱着操作を繰り返し行
い、繰り返し性能評価を行った。使用した吸着材は、粒
径5〜500μm(平均粒子径:195μm)の活性炭70重量%と
粒径0.71〜2.8mm(平均粒子径:1.7mm)の活性炭30重量%
との混合物(平均粒子径:0.65mm)である。貯蔵性能を図
7に示す。
Example 3 As an adsorbent, a first adsorption vessel was filled with coal-based activated carbon having a specific surface area of 1669 m 2 / g, a pore volume of 0.95 ml / g, and an average pore diameter of 14 Å, and the second adsorption vessel had a ratio of Surface area 1380 m 2 / g, pore volume 0.71
Adsorption and desorption operations were repeated in the same manner as in Example 1 except that palm shell activated carbon with ml / g and an average pore diameter of 9Å was filled, and repeated performance evaluation was performed. The adsorbent used was 70% by weight of activated carbon with a particle size of 5 to 500 μm (average particle size: 195 μm) and 30% by weight of activated carbon with a particle size of 0.71 to 2.8 mm (average particle size: 1.7 mm).
And a mixture thereof (average particle diameter: 0.65 mm). The storage performance is shown in FIG. 7.

【0053】実施例4 天然ガス吸着式貯蔵装置として、実施例1と同様の装置
を使用し、第一の吸着容器(60mlの円筒型充填容器)と第
二の吸着容器(60mlの円筒型充填容器)との間に設けた背
圧弁の圧力設定を0.6MPaGとした。吸着材として、第一
の吸着容器に比表面積1555m2/g、細孔容積0.99ml/g、平
均細孔径13Åのやし殻活性炭を充填し、第二の吸着容器
に比表面積1380m2/g、細孔容積0.71ml/g、平均細孔径9
Åの椰子殻活性炭を充填した。使用した吸着材は、粒径
5〜500μm(平均粒子径:195μm)の活性炭70重量%と粒
径0.71〜2.8mm(平均粒子径:1.7mm)の活性炭30重量%と
の混合物(平均粒子径:0.65mm)である。
Example 4 As the natural gas adsorption type storage device, the same device as in Example 1 was used, and the first adsorption container (60 ml cylindrical filling container) and the second adsorption container (60 ml cylindrical filling). The pressure setting of the back pressure valve provided between the container and the container was set to 0.6 MPaG. As an adsorbent, the first adsorption container was filled with a specific surface area of 1555 m 2 / g, a pore volume of 0.99 ml / g, and an average pore diameter of 13Å palm shell activated carbon, and the second adsorption container was filled with a specific surface area of 1380 m 2 / g. , Pore volume 0.71 ml / g, average pore diameter 9
Filled with Å palm shell activated carbon. The adsorbent used has a particle size
It is a mixture (average particle size: 0.65 mm) of 70% by weight of activated carbon of 5 to 500 μm (average particle size: 195 μm) and 30% by weight of activated carbon of particle size 0.71 to 2.8 mm (average particle size: 1.7 mm).

【0054】真空ポンプを用いて、第一および第二吸着
容器内を減圧脱気した。次いで、それぞれの容器温度を
298Kとし、第一の吸着容器と第二の吸着容器との間に設
けた背圧弁の設定圧力を0.6MPaGにした後、天然ガスを
容器に導入した。まず、第一の吸着容器内の圧力が0.6M
PaGとなるまで天然ガスを容器に吸着貯蔵し、次いで第
一の吸着容器内の圧力を0.6MPaGに維持しながら、第二
の吸着容器内の圧力が0.6MPaGになるまでガスを導入し
た。吸着貯蔵後は、バルブ2を閉めたまま排気側のバル
ブ3を開放し、第一の吸着容器の後流に設けた背圧弁の
設定圧力を0.1MPaGとした後、第一の吸着容器内の圧力
が0.1MPaGになるまで脱着を行った。次に、第一の吸着
容器内の圧力を0.1MPaGに維持しながら、第二の吸着容
器内のガスを圧力が0.1MPaGになるまで脱着させた。こ
の際、第一の吸着容器および第二の吸着容器のそれぞれ
に対して体積式の積算流量計を用いて脱着量を測定し
た。これらの吸脱着操作を繰り返し行い、繰り返し性能
評価を行った。結果を図8に示す。また、ガスクロマト
グラフィを用いて様々な圧力段階における脱着ガスのガ
ス成分の測定を行い、その測定結果から脱着ガスの熱量
変化を算出した。様々な圧力段階における脱着ガスの熱
量変化を算出した。様々な圧力段階における脱着ガスの
熱量変化を図9に示す。
Using a vacuum pump, the insides of the first and second adsorption containers were deaerated under reduced pressure. Then change the temperature of each container
After setting the pressure to 298 K and setting the pressure of the back pressure valve provided between the first adsorption container and the second adsorption container to 0.6 MPaG, natural gas was introduced into the container. First, the pressure inside the first adsorption vessel is 0.6M
Natural gas was adsorbed and stored in the container until it reached PaG, and then the gas was introduced until the pressure in the second adsorption container reached 0.6 MPaG while maintaining the pressure in the first adsorption container at 0.6 MPaG. After adsorption storage, the valve 3 on the exhaust side is opened while the valve 2 is closed, and the set pressure of the back pressure valve provided downstream of the first adsorption container is set to 0.1 MPaG, and then the first adsorption container Desorption was performed until the pressure reached 0.1 MPaG. Next, while maintaining the pressure in the first adsorption container at 0.1 MPaG, the gas in the second adsorption container was desorbed until the pressure became 0.1 MPaG. At this time, the desorption amount was measured for each of the first adsorption container and the second adsorption container by using a volume type integrated flow meter. These adsorption / desorption operations were repeated to repeatedly evaluate the performance. The results are shown in Figure 8. In addition, the gas component of the desorbed gas was measured at various pressure stages using gas chromatography, and the calorific value change of the desorbed gas was calculated from the measurement result. The calorimetric change of the desorption gas at various pressure stages was calculated. Figure 9 shows the change in heat of the desorption gas at various pressure stages.

【0055】比較例1a 天然ガス貯蔵装置として、実施例1において用いた二塔
型吸着式貯蔵装置と同じ幾何容積の圧力容器に天然ガス
用の吸着材を充填した一塔型吸着式貯蔵装置を用いた。
Comparative Example 1a As a natural gas storage device, a single-column type adsorption storage device in which a pressure vessel having the same geometric volume as the two-column type adsorption storage device used in Example 1 was filled with an adsorbent for natural gas was used. Using.

【0056】120mlの円筒形充填容器に吸着材(活性炭
塔)を充填した後、真空ポンプを用いて容器内を減圧脱
気した。次いで、容器温度を298Kにし、天然ガスを容器
に導入し、3.5MPaGの圧力になるまで天然ガスを吸着貯
蔵した。吸着貯蔵後は、図2のバルブ1、2および3に対
応するバルブを閉め、図2のバルブ2と3に対応する排気
側のバルブを開放し、容器内の圧力が0MPaGになるまで
脱着を行なった。この際、体積式の積算流量計を用いて
脱着量およびガスクロマトグラフィによりガス成分の測
定を行った。これらの吸脱着操作を繰返し行ない、繰り
返し性能評価を行った。結果を図4に示す。
A 120 ml cylindrical filling container was filled with an adsorbent (activated carbon tower), and then the inside of the container was deaerated under reduced pressure using a vacuum pump. Then, the container temperature was set to 298 K, natural gas was introduced into the container, and the natural gas was adsorbed and stored until the pressure reached 3.5 MPaG. After adsorption and storage, close the valves corresponding to valves 1, 2 and 3 in Fig. 2, open the exhaust side valves corresponding to valves 2 and 3 in Fig. 2, and desorb until the pressure inside the container reaches 0 MPaG. I did. At this time, the amount of desorption and the gas component were measured by gas chromatography using a volume type integrated flow meter. These adsorption / desorption operations were repeated to evaluate the performance repeatedly. The results are shown in Fig. 4.

【0057】なお、吸着材として、比表面積2400m2/g、
細孔容積1.19ml/g、平均細孔径11Å、粒径5〜500μm(平
均粒子径:195μm)の活性炭70重量%と粒径0.71〜2.8mm
(平均粒子径:1.7mm)の活性炭30重量%との混合物(平均
粒子径:0.65mm)であるやし殻活性炭を使用した。
As the adsorbent, a specific surface area of 2400 m 2 / g,
70% by weight of activated carbon with a pore volume of 1.19 ml / g, an average pore diameter of 11Å, a particle size of 5 to 500 μm (average particle size: 195 μm) and a particle size of 0.71 to 2.8 mm
Palm shell activated carbon that was a mixture (average particle size: 0.65 mm) with 30% by weight of activated carbon (average particle size: 1.7 mm) was used.

【0058】比較例1b 吸着材として、比表面積2432m2/g、細孔容積1.23ml/g、
平均細孔径11.5Å、粒径5〜500μm(平均粒子径:195μ
m)の活性炭70重量%と粒径0.71〜2.8mm(平均粒子径:1.
7mm)の活性炭30重量%との混合物(平均粒子径:0.65mm)
であるやし殻活性炭を使用した以外は、比較例1aと同
様にして吸脱着操作を繰返し行ない、繰り返し性能評価
を行った。結果を図7および図10に示す。
Comparative Example 1b As an adsorbent, a specific surface area of 2432 m 2 / g, a pore volume of 1.23 ml / g,
Average pore size 11.5Å, particle size 5 to 500 μm (average particle size: 195 μ
70% by weight of activated carbon with a particle size of 0.71 to 2.8 mm (average particle size: 1.
7 mm) with 30% by weight of activated carbon (average particle size: 0.65 mm)
The adsorption / desorption operation was repeated in the same manner as in Comparative Example 1a except that the palm shell activated carbon was used to evaluate the performance repeatedly. The results are shown in FIGS. 7 and 10.

【0059】比較例2 天然ガス貯蔵装置として、実施例1において用いた二塔
式貯蔵装置と同じ幾何容積の圧力容器を有する従来の圧
縮一塔式貯蔵装置を用いて、天然ガスを圧縮充填した。
Comparative Example 2 As a natural gas storage device, a conventional compression single-column storage device having a pressure vessel of the same geometric volume as the two-column storage device used in Example 1 was used and compression-filled with natural gas. .

【0060】真空ポンプを用いて、120mlの円筒形充填
容器を減圧脱気した。次いで、容器温度を298Kにし、天
然ガスを容器に導入し、3.5MPaGの圧力になるまで天然
ガスを貯蔵した。貯蔵後は図2のバルブ3に対応する排
気側のバルブを開放し、容器内の圧力が0MPaGになるま
でガスを放出した。この際、体積式の積算流量計を用い
て脱着量の測定を行った。圧縮式貯蔵装置を用いたの
で、払い出しガスの成分は、導入ガスと同一であった。
これらの吸脱着操作を繰返し行ない、繰り返し性能評価
を行った。結果を図4に示す。
Using a vacuum pump, a 120 ml cylindrical filling container was deaerated under reduced pressure. Next, the container temperature was set to 298 K, natural gas was introduced into the container, and the natural gas was stored until the pressure reached 3.5 MPaG. After the storage, the valve on the exhaust side corresponding to the valve 3 in FIG. 2 was opened, and the gas was released until the pressure inside the container became 0 MPaG. At this time, the amount of desorption was measured using a volumetric integrated flow meter. Since the compression storage device was used, the components of the discharged gas were the same as the introduced gas.
These adsorption / desorption operations were repeated to evaluate the performance repeatedly. The results are shown in Fig. 4.

【0061】比較例3 天然ガスを導入する時の容器内の圧力を0.6MPaGとし、
脱着する時の容器内の圧力を0.1MPaGとした以外は、比
較例1aと同様にして、吸脱着操作を繰返し行ない、繰
り返し性能評価行った。結果を図8に示す。
Comparative Example 3 The pressure in the container when introducing natural gas was 0.6 MPaG,
The adsorption / desorption operation was repeated in the same manner as in Comparative Example 1a except that the pressure inside the container during desorption was set to 0.1 MPaG, and repeated performance evaluation was performed. The results are shown in Fig. 8.

【0062】以上のように、吸着材を用いたガス貯蔵方
式の場合、いずれの吸着材を用いても、同じ圧力下で
は、二塔式である実施例1〜3の方が一塔式である比較
例1bに比べて貯蔵量が向上した(図7)。同様に、二塔
式である実施例4の方が、一塔式である比較例3に比べ
て貯蔵量が向上した(図8)。
As described above, in the case of the gas storage system using the adsorbent, regardless of which adsorbent is used, under the same pressure, the two-column type of Examples 1 to 3 is more one-column type. The storage amount was improved as compared with Comparative Example 1b (FIG. 7). Similarly, the storage capacity of the double-column type Example 4 was improved as compared with the single-column type Comparative Example 3 (FIG. 8).

【0063】また、二塔式ガス貯蔵方式(実施例1およ
び2)は、従来の圧縮貯蔵方式(比較例2)に比べて有利
であった。
Further, the double column gas storage system (Examples 1 and 2) was more advantageous than the conventional compression storage system (Comparative Example 2).

【0064】また、図5〜6および図9から明らかなよ
うに、脱着ガスの熱量は、各圧力においてほぼ一定であ
り、安定してガスを供給することができた。
Further, as is clear from FIGS. 5 to 6 and 9, the amount of heat of the desorption gas was almost constant at each pressure, and the gas could be stably supplied.

【0065】実施例5:付臭された天然ガスを用いた実
施例 第一の吸着容器内に充填する吸着材として、予め付臭剤
であるDMSおよびTBMをそれぞれ0.012%および0.010%吸着
させた活性炭を用いた以外は、実施例1と同様にして吸
脱着操作を繰返し行ない、脱着ガス中の付臭剤であるDM
SおよびTBMの濃度を分析した。結果を以下の表1に示
す。
Example 5: Example using odorized natural gas As the adsorbent to be filled in the first adsorption container, 0.012% and 0.010% of odorants DMS and TBM were adsorbed in advance. The adsorption / desorption operation was repeated in the same manner as in Example 1 except that activated carbon was used, and DM, which is the odorant in the desorption gas, was used.
The concentrations of S and TBM were analyzed. The results are shown in Table 1 below.

【0066】[0066]

【表1】 [Table 1]

【0067】導入した天然ガス(吸着ガス)中の付臭剤
の濃度は、DMSおよびTBMについて、それぞれ5.4mg/m3
よび5.5mg/m3であった。尚、上記の脱着量は、導入ガス
中の付臭剤に対する脱着ガス中の付臭剤の割合を示す。
[0067] The concentration of the odorant in the introduced natural gas (adsorbed gas), for DMS and TBM, were respectively 5.4 mg / m 3 and 5.5 mg / m 3. The above desorption amount indicates the ratio of the odorant in the desorption gas to the odorant in the introduced gas.

【0068】表1から明らかなように、脱着ガスには充
分量の付臭剤が含まれているので、脱着ガスに対して改
めて付臭操作を行う必要はない。また、この効果は、複
数回繰り返しても保持されている。
As is clear from Table 1, since the desorbed gas contains a sufficient amount of the odorant, it is not necessary to perform the odorizing operation again on the desorbed gas. Moreover, this effect is maintained even if it is repeated a plurality of times.

【0069】実施例6:二塔式容器で第一の吸着容器と
第二の吸着容器とに異なる吸着材を充填した場合 第一の吸着容器に充填する吸着材として、比表面積1555
m2/g、細孔容積0.99ml/g、平均細孔径13Å、平均粒子径
1.53mm(粒径:0.21〜2.36mm)の破砕やし殻活性炭を使用
した以外は、実施例1と同様に吸脱着の繰り返し性能評
価を行った。その貯蔵性能を図10に示す。
Example 6 In the case where the first adsorption container and the second adsorption container are filled with different adsorbents in the two-column type container, the specific surface area is 1555 as the adsorbent filled in the first adsorption container.
m 2 / g, pore volume 0.99 ml / g, average pore diameter 13Å, average particle diameter
Repeated adsorption / desorption performance evaluation was performed in the same manner as in Example 1 except that crushed coconut shell activated carbon of 1.53 mm (particle size: 0.21 to 2.36 mm) was used. The storage performance is shown in FIG.

【0070】実施例6において、第二容器へ3.5MPaGの
圧力でガスを充填した時に、第一の吸着容器から第二の
吸着容器へ流れ込んだガスの組成を分析した。結果を図
11に示す。
In Example 6, the composition of the gas flowing from the first adsorption container to the second adsorption container when the gas was filled in the second container at a pressure of 3.5 MPaG was analyzed. Figure the result
Shown in 11.

【0071】実施例2においても、第二容器へ3.5MPaG
の圧力でガスを充填した時に、第一の吸着容器から第二
の吸着容器へ流れ込んだガスの組成を分析した。結果を
図12に示す。
Also in Example 2, 3.5 MPaG was added to the second container.
The composition of the gas flowing from the first adsorption container to the second adsorption container when the gas was filled at the pressure of was analyzed. The results are shown in Figure 12.

【0072】実施例2と実施例6とでは、第一の吸着容
器に充填した吸着材の平均粒子径および粒度分布が異な
る。実施例2と実施例6とを比較すると、第一の吸着容
器において、粒径がより均一な活性炭を用いた実施例6
の方が、粒度分布の広い活性炭を用いた実施例2より
も、貯蔵性能が向上している。第一の容器において粒径
がより均一な活性炭を用いた方が、容器内をガスが均一
に流れるので、第一の容器におけるC2以上の成分に対す
る分離性能が向上するためであると考えられる。なお、
実施例2の結果も、許容可能な範囲である。
The average particle size and particle size distribution of the adsorbent filled in the first adsorption container are different between Example 2 and Example 6. Comparing Example 2 and Example 6, Example 6 using activated carbon with a more uniform particle size in the first adsorption vessel
In this case, the storage performance is improved in comparison with Example 2 in which activated carbon having a wide particle size distribution is used. It is considered that when activated carbon having a more uniform particle size is used in the first container, the gas flows more uniformly in the container, so that the separation performance for C2 or higher components in the first container is improved. In addition,
The results of Example 2 are also in the acceptable range.

【0073】実施例7:スケールアップした二塔式容器
で第一の吸着容器と第二の吸着容器とに異なる吸着材を
充填した場合 天然ガス吸着式貯蔵装置として、図2に記載の装置であ
って、第一の吸着容器が1m3の円筒形充填容器であり、
第二の吸着容器が1m3の円筒形充填容器である装置を用
いた。
Example 7: When the first adsorption container and the second adsorption container were filled with different adsorbents in a scaled-up two-column container, the device shown in FIG. 2 was used as the natural gas adsorption storage device. So, the first adsorption container is a 1 m 3 cylindrical filling container,
An apparatus was used in which the second adsorption vessel was a 1 m 3 cylindrical filling vessel.

【0074】吸着材として、第一の吸着容器に比表面積
1555m2/g、細孔容積0.91ml/g、平均細孔径14Å、平均粒
子径1.53mm(粒径:0.21〜2.36mm)の破砕椰子殻活性炭を
充填し、第二の吸着容器に比表面積1380m2/g、細孔容積
0.71ml/g、平均細孔径9Åの椰子殻活性炭を充填した。
第二の吸着容器に充填した活性炭は、粒径5〜500μm(平
均粒子径:195μm)の活性炭70重量%と粒径0.71〜2.8mm
(平均粒子径:1.7mm)の活性炭30重量%との混合物(平均
粒子径:0.65mm)である。
As the adsorbent, the specific surface area was set in the first adsorption container.
1555m 2 / g, pore volume 0.91ml / g, average pore diameter 14Å, average particle diameter 1.53mm (particle size: 0.21 to 2.36mm) packed with crushed palm shell activated carbon, the second adsorption vessel has a specific surface area of 1380m 2 / g, pore volume
0.71 ml / g and coconut shell activated carbon with an average pore size of 9Å were filled.
The activated carbon filled in the second adsorption container was 70% by weight of activated carbon with a particle size of 5 to 500 μm (average particle size: 195 μm) and a particle size of 0.71 to 2.8 mm.
It is a mixture (average particle diameter: 1.7 mm) with 30% by weight of activated carbon (average particle diameter: 0.65 mm).

【0075】第一の吸着容器と第二の吸着容器との間に
設けた背圧弁の圧力設定を0.6MPaGとした。それぞれの
容器を真空乾燥、減圧脱気し、背圧弁の設定圧力を0.6M
PaGにした後、天然ガスを容器に導入した。
The pressure setting of the back pressure valve provided between the first adsorption container and the second adsorption container was set to 0.6 MPaG. Vacuum dry each container, degas under reduced pressure, and set the back pressure valve to 0.6M.
After converting to PaG, natural gas was introduced into the container.

【0076】まず、第一の吸着容器内の圧力が0.6MPaG
となるまで天然ガスを容器に吸着貯蔵し、次いで第一の
吸着容器内の圧力を0.6MPaGに維持しながら、第二の吸
着容器内の圧力が0.6MPaになるまでガスを導入した。
First, the pressure inside the first adsorption container is 0.6 MPaG.
The natural gas was adsorbed and stored in the vessel until the pressure became, and then the gas was introduced until the pressure in the second adsorption vessel became 0.6 MPa while maintaining the pressure in the first adsorption vessel at 0.6 MPaG.

【0077】吸着貯蔵後は、バルブ2を閉めたまま排気
側のバルブ3を開放し、第一の吸着容器内の圧力が0.1M
PaGになるまで脱着を行った。次に、第一の吸着容器内
の圧力を0.1MPaGに維持しながら第二の吸着容器内のガ
スを圧力が0.1MPaGになるまで脱着させた。この時、第
一の吸着容器および第二の吸着容器のそれぞれに対して
流量計を用いて脱着量を測定した。これらの吸脱着操作
を繰り返し行い、繰り返し性能評価を行った。
After the adsorption and storage, the valve 3 on the exhaust side is opened while the valve 2 is closed, and the pressure in the first adsorption container is 0.1M.
Desorption was performed until it became PaG. Next, while maintaining the pressure in the first adsorption container at 0.1 MPaG, the gas in the second adsorption container was desorbed until the pressure became 0.1 MPaG. At this time, the amount of desorption was measured using a flow meter for each of the first adsorption container and the second adsorption container. These adsorption / desorption operations were repeated to repeatedly evaluate the performance.

【0078】結果を図13に示す。縦軸のANG/CNGは、実
施例7と同じ条件下で圧縮一塔式貯蔵装置を用いて吸脱
着操作を繰り返し行った場合に対する貯蔵倍率を示す。
The results are shown in FIG. ANG / CNG on the vertical axis represents the storage ratio when the adsorption / desorption operation was repeated using the compression single-column storage device under the same conditions as in Example 7.

【0079】なお、圧縮一塔式貯蔵装置を用いて吸脱着
操作を繰り返し行った場合とは、天然ガス貯蔵装置とし
て、実施例7において用いた二塔式貯蔵装置と同じ幾何
容積(2m3)の圧力容器を有する従来の圧縮一塔式貯蔵装
置を使用し、圧力設定を実施例7と同様に行った以外
は、比較例2と同様にして、吸脱着操作を繰り返し行
い、繰り返し性能評価を行った場合を示す。
When the adsorption / desorption operation was repeated using the compression one-column type storage device, the same geometric volume (2 m 3 ) as the two-column type storage device used in Example 7 was used as the natural gas storage device. The conventional compression single-column type storage device having the pressure vessel of No. 1 was used, and the adsorption / desorption operation was repeated in the same manner as in Comparative Example 2 except that the pressure was set in the same manner as in Example 7, and the repeated performance evaluation was performed. The case where it went is shown.

【0080】また、ガスクロマトグラフィを用いて様々
な圧力段階における脱着ガスのガス成分の測定を行い、
その測定結果から脱着ガスの熱量変化を算出した。様々
な圧力段階における脱着ガスの熱量変化を図14に示す。
また、図15に、その分離性能を示す。
Further, the gas component of the desorption gas at various pressure stages is measured by using gas chromatography,
The calorific value change of the desorption gas was calculated from the measurement result. Figure 14 shows the change in heat of the desorption gas at various pressure stages.
Further, FIG. 15 shows the separation performance.

【0081】実施例7の結果から、吸着容器の容量をス
ケールアップした場合にも、本発明の装置が、優れた貯
蔵特性を示すことが明らかである。
From the results of Example 7, it is clear that the apparatus of the present invention exhibits excellent storage characteristics even when the capacity of the adsorption container is scaled up.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による天然ガス吸着式貯蔵装置とその操
作方法の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a natural gas adsorption type storage device according to the present invention and an operating method thereof.

【図2】本発明による天然ガス吸着式貯蔵装置とその操
作方法の別の一例を示す模式図である。
FIG. 2 is a schematic view showing another example of a natural gas adsorption type storage device and an operating method thereof according to the present invention.

【図3】本発明による天然ガス吸着式貯蔵装置とその操
作方法の一例として、第二吸着容器が並列に5基接続さ
れ、第一吸着容器と第二吸着容器が直列に接続された実
施態様の概要を示す模式図である。
FIG. 3 is an embodiment of a natural gas adsorption type storage device and an operation method thereof according to the present invention, in which five second adsorption containers are connected in parallel and the first adsorption container and the second adsorption container are connected in series. It is a schematic diagram which shows the outline | summary.

【図4】実施例1〜2、比較例1aおよび比較例2にお
ける繰り返し天然ガス貯蔵性能の測定結果を示す図であ
る。
FIG. 4 is a diagram showing measurement results of repeated natural gas storage performance in Examples 1 and 2, Comparative Example 1a and Comparative Example 2.

【図5】実施例1における脱着ガスの各圧力範囲での熱
量変化を示す図である。
5 is a diagram showing changes in the amount of heat of desorption gas in each pressure range in Example 1. FIG.

【図6】実施例2における脱着ガスの各圧力範囲での熱
量変化を示す図である。
FIG. 6 is a diagram showing changes in the amount of heat of desorption gas in each pressure range in Example 2.

【図7】実施例1〜3および比較例1bにおける繰り返
し天然ガス貯蔵性能の測定結果を示す図である。
FIG. 7 is a diagram showing measurement results of repeated natural gas storage performance in Examples 1 to 3 and Comparative Example 1b.

【図8】実施例4および比較例3における繰り返し天然
ガス貯蔵性能の測定結果を示す図である。
FIG. 8 is a diagram showing measurement results of repeated natural gas storage performance in Example 4 and Comparative Example 3.

【図9】実施例4における脱着ガスの各圧力における熱
量変化を示す図である。
FIG. 9 is a diagram showing changes in the amount of heat at various pressures of the desorption gas in Example 4.

【図10】実施例1〜3、実施例6および比較例1bに
おける繰り返し天然ガス貯蔵性能の測定結果を示す図で
ある。
FIG. 10 is a diagram showing measurement results of repeated natural gas storage performance in Examples 1 to 3, Example 6 and Comparative Example 1b.

【図11】実施例6において、第二容器へ3.5MPaGの圧
力でガスを充填した時に、第一の吸着容器から第二の吸
着容器へ流れ込んだガスの組成を示す図である。
FIG. 11 is a diagram showing the composition of the gas flowing from the first adsorption container to the second adsorption container when the second container was filled with the gas at a pressure of 3.5 MPaG in Example 6.

【図12】実施例2において、第二容器へ3.5MPaGの圧
力でガスを充填した時に第一の吸着容器から第二の吸着
容器へ流れ込んだガスの組成を示す図である。
FIG. 12 is a diagram showing the composition of the gas flowing from the first adsorption container to the second adsorption container when the second container was filled with the gas at a pressure of 3.5 MPaG in Example 2.

【図13】実施例7における繰り返し天然ガス貯蔵性能
の測定結果を示す図である。
FIG. 13 is a diagram showing the measurement results of repeated natural gas storage performance in Example 7.

【図14】実施例7における脱着ガスの各圧力における
熱量変化を示す図である。
FIG. 14 is a diagram showing changes in the amount of heat at various pressures of desorption gas in Example 7.

【図15】実施例7において、第二容器へ3.5MPaGの圧
力でガスを充填した時に第一の吸着容器から第二の吸着
容器へ流れ込んだガスの組成を示す図である。
FIG. 15 is a diagram showing the composition of the gas flowing from the first adsorption container to the second adsorption container when the second container was filled with the gas at a pressure of 3.5 MPaG in Example 7.

───────────────────────────────────────────────────── フロントページの続き (出願人による申告)国等の委託研究の成果に係る特許 出願(平成13年度新エネルギー・産業技術総合開発機構 「即効的・革新的エネルギー環境技術開発」「吸着剤を 用いた新規な天然ガス貯蔵技術」に係る委託研究、産業 活力再生特別措置法第30条の適用を受けるもの) (72)発明者 迫田 章義 神奈川県川崎市高津区上作延398−5 (72)発明者 若村 修 東京都三鷹市下連省9丁4番2−102 Fターム(参考) 3E072 AA10 EA01 EA02 4G066 AA05B AA22B AA61B AB24B BA09 BA20 BA23 BA25 BA26 BA36 CA51 DA04 GA14    ─────────────────────────────────────────────────── ─── Continued front page    (Declaration by the applicant) Patents related to the results of consigned research in countries etc. Application (FY 2001 New Energy and Industrial Technology Development Organization) "Rapid and innovative energy and environmental technology development" "Adsorbent Commissioned research and industry related to "new natural gas storage technology used" (Subject to Article 30 of the Act on Special Measures for Revitalizing Vitality) (72) Inventor Akiyoshi Sakoda             398-5 Kamisakunobu, Takatsu-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Osamu Wakamura             94-2, Shimoren, Mitaka City, Tokyo 2-102 F term (reference) 3E072 AA10 EA01 EA02                 4G066 AA05B AA22B AA61B AB24B                       BA09 BA20 BA23 BA25 BA26                       BA36 CA51 DA04 GA14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】圧力容器に充填した吸着材により天然ガス
を吸着する圧力容器を有する吸着式貯蔵装置において、
主にメタン以外の成分を吸着するための第一の吸着容器
と主にメタンからなる残りのガスを吸着するための第二
の吸着容器とを天然ガスの導入方向に順次設けたことを
特徴とする天然ガス吸着式貯蔵装置。
1. An adsorption type storage device having a pressure vessel for adsorbing natural gas by an adsorbent filled in the pressure vessel,
It is characterized in that a first adsorption container for mainly adsorbing components other than methane and a second adsorption container for adsorbing the remaining gas mainly composed of methane are sequentially provided in the natural gas introduction direction. Natural gas adsorption type storage device.
【請求項2】第一および第二の吸着容器に充填する吸着
材が、ともに多孔体であって、第一の吸着容器に充填す
る多孔体の平均細孔径が7Å〜25Åであり、第二の吸着
容器に充填する多孔体の平均細孔径が4Å〜15Åである
ことを特徴とする請求項1に記載の天然ガス吸着式貯蔵
装置。
2. The adsorbents filled in the first and second adsorption vessels are both porous bodies, and the average pore diameter of the porous bodies filled in the first adsorption vessel is 7Å to 25Å. The natural gas adsorption type storage device according to claim 1, wherein the average pore diameter of the porous body to be filled in the adsorption container is 4Å to 15Å.
【請求項3】第一の吸着容器に吸着材の加熱手段を設け
たことを特徴とする請求項1または2に記載の天然ガス
吸着式貯蔵装置。
3. The natural gas adsorption type storage device according to claim 1, wherein a heating means for the adsorbent is provided in the first adsorption container.
【請求項4】第一の吸着容器と第二の吸着容器との間お
よび/または第一の吸着容器よりも後流のガス払い出し
ライン上に背圧弁を設けたことを特徴とする請求項1〜
3のいずれかに記載の天然ガス吸着式貯蔵装置。
4. A back pressure valve is provided between the first adsorption container and the second adsorption container and / or on a gas discharge line downstream of the first adsorption container. ~
4. The natural gas adsorption type storage device according to any one of 3 above.
【請求項5】第一の吸着容器内の吸着材が、予め付臭剤
を吸着させた吸着材であることを特徴とする請求項4に
記載の天然ガス吸着式貯蔵装置。
5. The natural gas adsorption type storage device according to claim 4, wherein the adsorbent in the first adsorption container is an adsorbent having an odorant adsorbed in advance.
【請求項6】第一および/または第二の吸着容器の吸着
材が、活性炭、ゼオライト、シリカゲルおよび有機金属
錯体からなる群から選択される少なくとも1種である請
求項1〜5のいずれかに記載の天然ガス吸着式貯蔵装
置。
6. The adsorbent of the first and / or second adsorption container is at least one selected from the group consisting of activated carbon, zeolite, silica gel and organometallic complexes. The natural gas adsorption storage device described.
【請求項7】第二の吸着容器が、並列に接続された複数
個の容器からなり、第一の吸着容器と第二の吸着容器と
が直列に接続されている請求項1〜6のいずれかに記載
の天然ガス吸着式貯蔵装置。
7. The second adsorption container comprises a plurality of containers connected in parallel, and the first adsorption container and the second adsorption container are connected in series. The natural gas adsorption type storage device according to claim 1.
【請求項8】第一の吸着容器内の吸着材の平均粒子径
が、0.1〜4.75mmであり、第二の吸着容器内の吸着材の
平均粒子径が、0.01〜4.75mmである請求項1〜7のいず
れかに記載の天然ガス吸着式貯蔵装置。
8. The average particle size of the adsorbent in the first adsorption container is 0.1 to 4.75 mm, and the average particle size of the adsorbent in the second adsorption container is 0.01 to 4.75 mm. The natural gas adsorption storage device according to any one of 1 to 7.
【請求項9】第一の吸着容器に充填する吸着材の93重量
%以上の粒子の粒径が、平均粒子径を中心値として、±
2.5mmの範囲に含まれる請求項1〜8のいずれかに記載
の天然ガス吸着式貯蔵装置。
9. The particle size of 93% by weight or more of the particles of the adsorbent filled in the first adsorption container is ±, with the average particle size as the center value.
The natural gas adsorption storage device according to any one of claims 1 to 8, which is included in a range of 2.5 mm.
【請求項10】圧力容器に充填した吸着材に天然ガスを
吸着させて貯蔵する方法において、主にメタン以外の成
分を第一吸着容器において吸着させた後、主にメタンか
らなる残りのガスを第二吸着容器において吸着させるこ
とを特徴とする天然ガスの吸着貯蔵方法。
10. A method of storing natural gas by adsorbing natural gas to an adsorbent filled in a pressure vessel, and after adsorbing components other than methane mainly in the first adsorption vessel, the remaining gas mainly consisting of methane A method for adsorbing and storing natural gas, which comprises adsorbing in a second adsorption container.
JP2001236580A 2000-08-11 2001-08-03 Natural gas adsorption storage device and adsorption storage method Expired - Lifetime JP4812194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236580A JP4812194B2 (en) 2000-08-11 2001-08-03 Natural gas adsorption storage device and adsorption storage method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000-244915 2000-08-11
JP2000244915 2000-08-11
JP2000244915 2000-08-11
JP2001149006 2001-05-18
JP2001-149006 2001-05-18
JP2001149006 2001-05-18
JP2001236580A JP4812194B2 (en) 2000-08-11 2001-08-03 Natural gas adsorption storage device and adsorption storage method

Publications (2)

Publication Number Publication Date
JP2003035399A true JP2003035399A (en) 2003-02-07
JP4812194B2 JP4812194B2 (en) 2011-11-09

Family

ID=27344334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236580A Expired - Lifetime JP4812194B2 (en) 2000-08-11 2001-08-03 Natural gas adsorption storage device and adsorption storage method

Country Status (1)

Country Link
JP (1) JP4812194B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512083A (en) * 2009-11-27 2013-04-11 ヴァレオ システム テルミク Composition having activated carbon, zeolite and iron ions for air filter in vehicle cabin
JP6335346B1 (en) * 2017-02-07 2018-05-30 東京瓦斯株式会社 Gas recovery container
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562649B2 (en) 2012-04-25 2017-02-07 Saudi Arabian Oil Company Adsorbed natural gas storage facility

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104213A (en) * 1973-01-23 1974-10-02
JPH03245840A (en) * 1990-02-23 1991-11-01 Oowada Carbon Kogyo Kk Globular carbon particle for adsorbing gas
JPH0949600A (en) * 1995-05-31 1997-02-18 Osaka Gas Co Ltd Storing and sending out method for natural gas and device therefor
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JPH11344200A (en) * 1998-06-01 1999-12-14 Osaka Gas Co Ltd Reserving method for digestion gas
JP2000024495A (en) * 1998-07-08 2000-01-25 Toyota Motor Corp Gas occlusion material and its production
JP2000130695A (en) * 1998-10-27 2000-05-12 Toyota Motor Corp Method of reserving natural gas in absorption type natural gas storage tank
JP2000130694A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Filling device for natural gas automobile
JP2000202400A (en) * 1999-01-14 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for treating dioxin-containing matter
JP2000213696A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Adsorption type gas holder and gas storage/supply system
JP2001056098A (en) * 1999-08-18 2001-02-27 Toyota Motor Corp Adsorbing, storing method of natural gas and adsorbent used thereto
JP2001187998A (en) * 1999-12-28 2001-07-10 Osaka Gas Co Ltd Digestive gas adsorptive storage device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104213A (en) * 1973-01-23 1974-10-02
JPH03245840A (en) * 1990-02-23 1991-11-01 Oowada Carbon Kogyo Kk Globular carbon particle for adsorbing gas
JPH0949600A (en) * 1995-05-31 1997-02-18 Osaka Gas Co Ltd Storing and sending out method for natural gas and device therefor
JPH09132580A (en) * 1995-11-13 1997-05-20 Osaka Gas Co Ltd New dicarboxylic acid copper complex, gas-storage apparatus and gas-fueled automobile
JPH11344200A (en) * 1998-06-01 1999-12-14 Osaka Gas Co Ltd Reserving method for digestion gas
JP2000024495A (en) * 1998-07-08 2000-01-25 Toyota Motor Corp Gas occlusion material and its production
JP2000130694A (en) * 1998-10-26 2000-05-12 Toyota Motor Corp Filling device for natural gas automobile
JP2000130695A (en) * 1998-10-27 2000-05-12 Toyota Motor Corp Method of reserving natural gas in absorption type natural gas storage tank
JP2000202400A (en) * 1999-01-14 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd Apparatus and method for treating dioxin-containing matter
JP2000213696A (en) * 1999-01-26 2000-08-02 Osaka Gas Co Ltd Adsorption type gas holder and gas storage/supply system
JP2001056098A (en) * 1999-08-18 2001-02-27 Toyota Motor Corp Adsorbing, storing method of natural gas and adsorbent used thereto
JP2001187998A (en) * 1999-12-28 2001-07-10 Osaka Gas Co Ltd Digestive gas adsorptive storage device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512083A (en) * 2009-11-27 2013-04-11 ヴァレオ システム テルミク Composition having activated carbon, zeolite and iron ions for air filter in vehicle cabin
JP6335346B1 (en) * 2017-02-07 2018-05-30 東京瓦斯株式会社 Gas recovery container
JP2018128046A (en) * 2017-02-07 2018-08-16 東京瓦斯株式会社 Gas recovery container
JP6471256B1 (en) * 2018-05-18 2019-02-13 ユニチカ株式会社 Deodorizing material and deodorizing sheet
JP2019198542A (en) * 2018-05-18 2019-11-21 ユニチカ株式会社 Deodorant and deodorizing sheet

Also Published As

Publication number Publication date
JP4812194B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
Thu et al. Adsorption characteristics of methane on Maxsorb III by gravimetric method
Rios et al. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption
Beckner et al. Adsorbed methane storage for vehicular applications
US5787605A (en) Method of storing and transporting gases
KR20150004387A (en) Adsorbed Natural Gas Storage Facility
Bastos-Neto et al. A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas
Anastasopoulou et al. Technoeconomic analysis of metal–organic frameworks for bulk hydrogen transportation
Shen et al. Effects of textural and surface characteristics of metal-organic frameworks on the methane adsorption for natural gas vehicular application
CN107366824A (en) Absorbing storage tank for natural gas
Zakaria et al. The performance of commercial activated carbon absorbent for adsorbed natural gas storage
JP2006242350A (en) Boil-off gas treating method and treating device
SG186255A1 (en) Method and system for storing natural gas
JP2003035399A (en) Adsorbing and storing device and adsorbing and storing method for natural gas
WO2021067661A1 (en) Mobile natural gas storage and transportation unit based on adsorption
US20150001101A1 (en) Adsorbed natural gas storage
JP4300381B2 (en) Adsorbed storage device for odorized fuel gas
JP4812183B2 (en) Natural gas adsorption storage device and adsorption storage method
JP3809894B2 (en) Gas storage method
JP4605926B2 (en) Adsorption-type natural gas vehicle fuel storage system
JPH10299994A (en) Mass transport method for gas
JP4675648B2 (en) Gas compressor and gas pressure increasing method
JP2000018495A (en) Methane fuel gas storing/feeding method
JP2001182896A (en) Adsorption type natural gas reservoir
JP2003222298A (en) Natural gas adsorbing and storing device and method
JP2000213696A (en) Adsorption type gas holder and gas storage/supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4812194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

EXPY Cancellation because of completion of term