JP2003035152A - Turbocharger housing and manufacturing method for the same - Google Patents

Turbocharger housing and manufacturing method for the same

Info

Publication number
JP2003035152A
JP2003035152A JP2001224929A JP2001224929A JP2003035152A JP 2003035152 A JP2003035152 A JP 2003035152A JP 2001224929 A JP2001224929 A JP 2001224929A JP 2001224929 A JP2001224929 A JP 2001224929A JP 2003035152 A JP2003035152 A JP 2003035152A
Authority
JP
Japan
Prior art keywords
turbocharger housing
exhaust gas
housing
parts
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001224929A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishikawa
均 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001224929A priority Critical patent/JP2003035152A/en
Publication of JP2003035152A publication Critical patent/JP2003035152A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbocharger housing and a manufacturing method for the same, that enable an internal exhaust gas flow path to be machined to a smooth surface to close tolerances and enables making a thin-wall, lightweight housing, at a lower cost. SOLUTION: A turbocharger housing 1 is provided with a pair of housing halves (castings) 2, 3, which are welded together at an abutting surface 14 thereof. Each of the housing halves 2, 3 has a built-in, substantially circular flow path R for exhaust gases R and is abutted against each other on the abutting surface 14, that runs in a direction substantially orthogonal in relation to the center axis of the flow path R and substantially along the radial direction of the flow path R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などのター
ボチャージャー(過給機)においてタービンを回転可能に
内蔵するターボ過給機ハウジングおよびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbocharger housing for rotatably incorporating a turbine in a turbocharger (supercharger) of an automobile and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ターボ過給機ハウジングには、シェルモ
ールド法などによる一体構造の鋳造材または複数の板金
加工材を溶接する板金溶接組立材が用いられている。上
記鋳造材からなるターボ過給機ハウジングでは、ツイン
スクロール化に伴う内部構造の複雑化に連れて、引け巣
などの鋳造欠陥を生じる場合が増え易くなり且つ係るス
クロールを形成する内周面の粗度を向上させるのは困難
であると共に、当該過給機用ハウジングの薄肉化および
軽量化にも限界があった。
2. Description of the Related Art For a turbocharger housing, a casting material having an integral structure by a shell molding method or a sheet metal welding assembly material for welding a plurality of sheet metal working materials is used. In the turbocharger housing made of the above-mentioned cast material, as the internal structure becomes complicated due to the twin scroll, it is more likely that casting defects such as shrinkage cavities will occur and the inner peripheral surface forming the scroll will be rough. It is difficult to improve the degree of accuracy, and there is a limit to thinning and weight reduction of the supercharger housing.

【0003】また、上記板金溶接組立材からなるターボ
過給機ハウジングでは、ツインスクロール化に伴う内部
構造の複雑化に対し、金属薄板のプレス成形では成形精
度に限界があると共に、溶接部分に溶接歪みや熱影響部
が多数介在するため、溶接品質が安定しない、という問
題があった。しかも、前記鋳造材や上記板金溶接組立材
からなるターボ過給機ハウジングの問題点を解決するに
は、コスト高になり実用的ではない。例えば、ロストワ
ックス法により形成した鋳型を減圧チャンバに取り付
け、係る鋳型中のキャビティ内に溶湯を吸い上げる減圧
吸い上げ鋳造法も行われているが、上記ハウジングの肉
厚を2mm未満にすることは困難である。
Further, in the turbocharger housing made of the above-mentioned sheet metal welded assembly, the internal structure becomes complicated due to the twin scroll, but the press precision of the metal thin plate has a limit in the forming accuracy, and the welded portion is welded. Since there are many distortions and heat-affected zones, there is a problem that the welding quality is not stable. Moreover, it is not practical to solve the problems of the turbocharger housing made of the above-mentioned cast material and the above-mentioned sheet-metal welded assembly because the cost becomes high. For example, there is a vacuum suction casting method in which a mold formed by the lost wax method is attached to a vacuum chamber and the molten metal is sucked into the cavity in the mold, but it is difficult to make the thickness of the housing less than 2 mm. is there.

【0004】[0004]

【発明が解決すべき課題】本発明は、以上に説明した従
来の技術における問題点を解決し、内部の排気ガス流路
を精度良く且つ平滑な面にできると共に、薄肉化および
低コスト化が可能なターボ過給機ハウジングおよびその
製造方法を提供する、ことを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, makes it possible to form the internal exhaust gas passage with a precise and smooth surface, and to reduce the thickness and cost. An object is to provide a possible turbocharger housing and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、発明者による鋭意研究および調査の結果、
ターボ過給機ハウジングを複数の鋳造部品に分割し且つ
これらを溶接して一体のハウジングにする、ことに着想
して成されたものである。即ち、本発明のターボ過給機
ハウジング(請求項1)は、ほぼ円形を呈する排気ガスの
流路を内蔵し且つ係る流路の中心軸とほぼ直交し且つ上
記流路の半径方向にほぼ沿った(突き合わせ)面で突き合
わされた複数の鋳造部品からなり、係る複数の鋳造部品
が互いの突き合わせ面で溶接されている、ことを特徴と
する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has been conducted as a result of earnest research and investigation by the inventor,
It is based on the idea of dividing the turbocharger housing into a plurality of cast parts and welding them into an integral housing. That is, the turbocharger housing of the present invention (Claim 1) has a substantially circular exhaust gas passage therein, is substantially orthogonal to the central axis of the passage, and is substantially along the radial direction of the passage. It is characterized in that it is composed of a plurality of cast parts that are abutted with each other (butting) surfaces, and that the plurality of cast parts are welded with each other abutting surfaces.

【0006】これによれば、中空部がないか少ない複数
の鋳造部品同士を突き合わせ面で溶接しているため、薄
肉化および軽量化されたターボ過給機ハウジングとな
る。しかも、個別の鋳造部品における排気ガスの流路
(スクロール)の表面を精度良く平滑化されているため、
ガス流の乱れも低減し且つ吸気ガスの圧縮効率を高める
ことにも寄与することが可能となる。尚、複数の鋳造部
品は、例えばロストワックス鋳型を用いた減圧吸い上げ
鋳造法などの精密鋳造法により成形されるが、その他の
鋳造法による鋳造部品であっても良い。また、上記溶接
は、突き合わせ面に開先を設ける必要がなく且つ内側の
排気ガスの流路に溶接ビードが達しにくくして溶接でき
るレーザ溶接または電子ビーム溶接などが望ましい。但
し、これらに限るものではない。
According to this, a plurality of cast parts having no or few hollows are welded at the abutting surfaces, so that the turbocharger housing can be made thin and lightweight. Moreover, exhaust gas flow paths in individual cast parts
Since the surface of (scroll) is smoothed accurately,
It is possible to reduce turbulence of the gas flow and also contribute to increasing the compression efficiency of the intake gas. The plurality of cast parts are formed by a precision casting method such as a vacuum suction casting method using a lost wax mold, but may be cast parts by other casting methods. Further, the welding is preferably laser welding, electron beam welding or the like, which does not require a groove to be formed on the abutting surface and can be welded while the welding bead does not easily reach the inner exhaust gas passage. However, it is not limited to these.

【0007】また、本発明には、前記排気ガスの流路が
互いにほぼ平行な2つの流路からなり、係る2つの流路
の中心軸とほぼ直交し且つ上記2つの流路の半径方向に
ほぼ沿ったする2つの(突き合わせ)面で突き合わされた
3つの鋳造部品からなる、ターボ過給機ハウジング(請
求項2)も含まれる。これによれば、3つの鋳造部品か
ら形成されているため、所謂ツインスクロールのような
複雑な形状や構造であっても薄肉且つ軽量で、排気ガス
の流路の表面を平滑にでき、形状および寸法精度に優れ
たターボ過給機ハウジングとなる。更に、本発明には、
前記3つの鋳造部品のうち、中間に位置する鋳造部品
は、その内側面の円周方向に沿って前記2つの流路を仕
切る仕切壁を突設している、ターボ過給機ハウジング
(請求項3)も含まれる。これによれば、2つの排気ガス
流路が平行で且つ渦巻き形状にして内蔵される所謂ツイ
ンスクロールのターボ過給機ハウジングにおいて、薄肉
且つ軽量にできると共に、スクロールの表面を平滑にし
て高性能なものとすることができる。
Further, according to the present invention, the exhaust gas flow passage is composed of two flow passages which are substantially parallel to each other, and which are substantially orthogonal to the central axes of the two flow passages and in the radial direction of the two flow passages. Also included is a turbocharger housing (claim 2), which consists of three cast parts abutting at two (butting) faces that are substantially along. According to this, since it is formed of three cast parts, even if it has a complicated shape or structure such as a so-called twin scroll, it is thin and lightweight, and the surface of the flow path of the exhaust gas can be made smooth. The turbocharger housing has excellent dimensional accuracy. Further, the present invention includes
A turbocharger housing in which a casting part located in the middle among the three casting parts has a partition wall projecting along the circumferential direction of the inner surface thereof to partition the two flow paths.
(Claim 3) is also included. According to this, in a so-called twin scroll turbocharger housing in which two exhaust gas flow paths are arranged in parallel and in a spiral shape, it can be made thin and lightweight, and the surface of the scroll is made smooth to achieve high performance. Can be one.

【0008】一方、本発明のターボ過給機ハウジングの
製造方法(請求項4)は、追ってほぼ円形を呈する排気ガ
スの流路を内蔵し係る流路の中心軸とほぼ直交し且つ上
記流路の半径方向にほぼ沿った(突き合わせ)面で分割さ
れた複数の鋳造部品を個別に鋳造する工程と、得られた
複数の鋳造部品を互いの突き合わせ面で溶接する工程
と、を含む、ことを特徴とする。これによれば、中空部
がないか少ない複数の鋳造部品同士を突き合わせ面で溶
接するため、薄肉で軽量化され且つ排気ガスの流路(ス
クロール)の表面を平滑にしたターボ過給機ハウジング
を、低コストで確実に提供することが可能となる。
On the other hand, in the method for manufacturing a turbocharger housing of the present invention (claim 4), the exhaust gas passage having a substantially circular shape is built in, and is substantially orthogonal to the central axis of the passage and the above passage is provided. The step of individually casting a plurality of cast parts divided by (butting) surfaces that are substantially along the radial direction of, and the step of welding the obtained plurality of cast parts at the butt surfaces of each other. Characterize. According to this, since a plurality of cast parts with few or no hollows are welded at the abutting surfaces, a turbocharger housing that is thin and lightweight and has a smooth exhaust gas passage (scroll) surface is provided. Therefore, it is possible to reliably provide at low cost.

【0009】また、本発明には、前記排気ガスの流路が
互いにほぼ平行な2つの流路からなり、係る2つの流路
の中心軸とほぼ直交し且つ上記2つの流路の半径方向に
ほぼ沿ったする2つの(突き合わせ)面で突き合わせた3
つの鋳造部品を鋳造する工程と、得られた3つの鋳造部
品を上記2つの突き合わせ面に沿って溶接する工程とを
含む、ターボ過給機ハウジングの製造方法(請求項5)も
含まれる。これによれば、薄肉で軽量化し且つ排気ガス
の流路を平滑化した所謂ツインスクロールを内蔵する高
性能のターボ過給機ハウジングを、確実に提供すること
ができる。
Further, according to the present invention, the exhaust gas flow passages are composed of two flow passages which are substantially parallel to each other, and are substantially orthogonal to the central axes of the two flow passages, and in the radial direction of the two flow passages. 3 abutting with two (butting) faces that are almost along
Also included is a method of manufacturing a turbocharger housing (Claim 5) including the steps of casting one cast part and welding the resulting three cast parts along the two abutting surfaces. According to this, it is possible to reliably provide a high-performance turbocharger housing having a so-called twin scroll that is thin and lightweight and has a smooth exhaust gas flow path.

【0010】[0010]

【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1は、本発明の一形
態のターボ過給機ハウジング1を示す断面図である。タ
ーボ過給機ハウジング1は、図1に示すように、左右一
対のハウジング半体(鋳造部品)2,3からなり、これら
の突き合わせ面14に沿ってレーザ溶接Wしたものであ
る。左側のハウジング半体2は、ほぼ円形を呈する排気
ガスGの流路Rの半分を形成する断面ほぼ半円形で且つ
リング状の円環部4と、タービン15を収容する中空部
8を内設する円筒部6と、ベース12を含むスタンド1
0とを一体に有する。また、右側のハウジング半体3
は、ほぼ円形を呈する排気ガスGの流路Rの半分を形成
する断面ほぼ半円形で且つリング状の円環部5と、ター
ビン15に衝突して且つこれを回転させた排気ガスGを
排出する排出路9を内設する円筒部7と、ベース13を
含むスタンド11とを一体に有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a turbocharger housing 1 according to one embodiment of the present invention. As shown in FIG. 1, the turbocharger housing 1 is composed of a pair of left and right housing halves (cast parts) 2 and 3, and is laser-welded W along these abutting surfaces 14. The housing half 2 on the left side is internally provided with a ring-shaped annular portion 4 having a substantially semicircular section and forming a half of the flow path R of the exhaust gas G having a substantially circular shape, and a hollow portion 8 for housing the turbine 15. Stand 1 including a cylindrical portion 6 and a base 12
It has 0 and 1 integrally. Also, the right housing half 3
Is an annular portion 5 having a substantially semicircular cross section and forming a half of the flow path R of the exhaust gas G having a substantially circular shape, and the exhaust gas G that collides with and rotates the turbine 15. A cylindrical portion 7 having a discharge passage 9 therein and a stand 11 including a base 13 are integrally provided.

【0011】ハウジング半体2,3は、例えばフェライ
ト系またはオーステナイト系のステンレス鋼鋳鋼(JI
S:SCS1,SCS16)、あるいは耐熱鋼鋳鋼(JI
S:SCH13,SCH22)からなる溶湯を、図示し
ないロストワックス鋳型のキャビティ中へ減圧吸い上げ
鋳造した精密鋳造部品であり、厚みが1.2〜1.8m
mの範囲で且つ平均厚さは1.5mmである。また、図
1に示すように、ハウジング半体2,3の円環部4,5
は、ほぼ円形を呈する排気ガスGの流路Rの半分を形成
し、係る流路Rは、円筒部6,7間においてリング状に
開口している。円筒部6の中空部8には、図示しない軸
受けに軸支されたシャフト16の一端に固定したタービ
ンホイール17が位置し、その先端側には排出路9側に
螺旋状に延びる複数のブレード18が突設されている。
The housing halves 2 and 3 are made of, for example, ferritic or austenitic stainless steel cast steel (JI
S: SCS1, SCS16), or heat-resistant cast steel (JI
S: SCH13, SCH22) is a precision casting part in which a molten metal composed of S: SCH13, SCH22) is suction-decompressed and cast into a cavity of a lost wax mold (not shown) and has a thickness of 1.2 to 1.8 m.
In the range of m and the average thickness is 1.5 mm. Further, as shown in FIG. 1, the annular portions 4,5 of the housing halves 2,3 are
Forms a half of the flow path R of the exhaust gas G having a substantially circular shape, and the flow path R is opened in a ring shape between the cylindrical portions 6 and 7. A turbine wheel 17 fixed to one end of a shaft 16 supported by a bearing (not shown) is located in the hollow portion 8 of the cylindrical portion 6, and a plurality of blades 18 spirally extending toward the discharge passage 9 are provided at the tip end side thereof. Is projected.

【0012】更に、図1に示すように、ハウジング半体
2,3の円環部4,5により形成される排気ガスの流路
Rの中心軸と直交し且つ係る流路Rの半径方向に沿った
突き合わせ面14に沿って、レーザ溶接Wにより円環部
4,5およびスタンド10,11を溶着することによっ
て、ターボ過給機ハウジング1を形成している。その排
気ガスの流路Rの平滑度(表面粗さ)は、Rmaxで0.
1mm以下である。尚、円環部4,5および排気ガスの
流路Rは、図1に示すように、断面を図示しない入口側
から終端部に向けて順次小さく縮径するように形成され
ている。また、右側のハウジング半体3には、入口寄り
の流路Rと排出路9との間に、図示しない公知のウェス
トゲート(バルブにて開閉するバイパス路)が形成され、
過剰な排気ガスGなどを逃がすようにしている。
Further, as shown in FIG. 1, in the radial direction of the flow passage R, which is orthogonal to the central axis of the flow passage R of the exhaust gas formed by the annular portions 4 and 5 of the housing halves 2 and 3. The turbocharger housing 1 is formed by welding the annular portions 4 and 5 and the stands 10 and 11 by laser welding W along the abutting surface 14 that follows. The smoothness (surface roughness) of the exhaust gas passage R is 0 at Rmax.
It is 1 mm or less. The annular portions 4 and 5 and the exhaust gas flow passage R are formed so that their cross-sections are gradually reduced in diameter from the inlet side (not shown) toward the terminal end, as shown in FIG. Further, in the right housing half body 3, a well-known waste gate (a bypass passage opened and closed by a valve) not shown is formed between the passage R near the inlet and the discharge passage 9.
Excessive exhaust gas G and the like are released.

【0013】以上のようなターボ過給機ハウジング1で
は、図示しないエンジンから排出された排気ガスGは、
図示しない入口から流路R中に送られ、係る流路Rをほ
ぼ1周する間に、図1中の矢印で示すように、中空部8
と排出路9との間の開口部からタービン15のブレード
18に吹き付けられる。この結果、タービン15は高速
回転するため、シャフト16の他端に位置する図示しな
い圧縮機により、エンジンへの吸気ガスを圧縮して高出
力を引き出すことができる。
In the turbocharger housing 1 as described above, the exhaust gas G discharged from the engine (not shown) is
While being fed from the inlet (not shown) into the flow path R and making one round of the flow path R, as shown by the arrow in FIG.
It is sprayed onto the blade 18 of the turbine 15 through an opening between the exhaust passage 9 and the exhaust passage 9. As a result, since the turbine 15 rotates at a high speed, the compressor (not shown) located at the other end of the shaft 16 can compress the intake gas to the engine and extract a high output.

【0014】以上のようなターボ過給機ハウジング1
は、次のようにして製造される。図示しない公知のロス
トワックス鋳型のキャビティ中に、前記ステンレス鋼鋳
鋼の溶湯を減圧吸い上げ鋳造する。この際、前述したウ
ェストゲートの部分にのみ中子を用いる。この結果、図
2に示すように、円環部4、円筒部6、およびスタンド
10を一体に有するハウジング半体2と、円環部5、円
筒部7、およびスタンド11を一体に有するハウジング
半体3とが個別に成形される。次に、ハウジング半体
2,3の円環部4,5における内周面r1,r2を、例
えばバフ研磨などにより、その表面粗さをRmax(最
大高さ)で0.1mm以下の平滑度になるよう研磨す
る。
The turbocharger housing 1 as described above
Is manufactured as follows. The molten metal of the stainless cast steel described above is sucked under reduced pressure into a cavity of a known lost wax mold (not shown). At this time, the core is used only in the above-mentioned waste gate portion. As a result, as shown in FIG. 2, the housing half 2 integrally including the annular portion 4, the cylindrical portion 6, and the stand 10, and the housing half integrally including the annular portion 5, the cylindrical portion 7, and the stand 11. The body 3 and the body 3 are molded separately. Next, the inner peripheral surfaces r1 and r2 of the annular portions 4 and 5 of the housing halves 2 and 3 are smoothed to have a surface roughness Rmax (maximum height) of 0.1 mm or less by, for example, buffing. To be polished.

【0015】更に、上記内周面r1,r2の研磨の前ま
たは後で、円環部4,5や円筒部6,7のバリや余肉を
除去し平均厚さが約1.5mmになるよう研磨が施され
る。これらの研磨は、図2に示すように、ハウジング半
体2,3が全体としてオープンな形状であるため、容易
に且つ精度良く行うことができる。次いで、図2に示す
ように、ハウジング半体2,3の端面14a,14bを
突き合わせて、図1に示すような円環部4,5およびス
タンド10,11に跨る突き合わせ面14を形成する。
係る突き合わせ面14に沿って、外側から炭酸ガスレー
ザまたはルビーレーザを用いるレーザ溶接Wを全周にわ
たって施す。この結果、ハウジング半体2,3が一体に
接合され、図1に示したターボ過給機ハウジング1が得
られる。
Further, before or after polishing the inner peripheral surfaces r1 and r2, burrs and surpluses of the annular portions 4 and 5 and the cylindrical portions 6 and 7 are removed, and the average thickness becomes about 1.5 mm. Is polished. As shown in FIG. 2, since the housing halves 2 and 3 have an open shape as a whole, the polishing can be performed easily and accurately. Next, as shown in FIG. 2, the end surfaces 14a and 14b of the housing halves 2 and 3 are butted to form the butted surface 14 that straddles the annular portions 4 and 5 and the stands 10 and 11 as shown in FIG.
Laser welding W using a carbon dioxide laser or a ruby laser is applied from the outside along the abutting surface 14 over the entire circumference. As a result, the housing halves 2 and 3 are integrally joined, and the turbocharger housing 1 shown in FIG. 1 is obtained.

【0016】上記レーザ溶接Wは、熱エネルギの集中性
が高いので、熱影響部の狭い溶接部(溶接ビード)Wを容
易に形成できる。このため、上記突き合わせ面14付近
に開先を設ける必要がなく、且つ突き合わせ面14付近
に溶接部Wを限定し易く、排気ガスの流路R中に溶接ビ
ードWが突出しないよう制御することも容易である。従
って、以上のような製造方法によれば、形状および寸法
精度に優れ軽量で薄肉のターボ過給機ハウジング1を低
コストで提供することができる。しかも、得られる上記
ハウジング1は、排気ガスGの流路Rが平滑であるた
め、係るガスGのガス流の乱れも低減し且つ吸気ガスの
圧縮効率を高めることも可能となり、軽量で且つ高性能
化に容易に対応することができる。尚、上記ハウジング
1では、ハウジング半体2,3にスタンド10,11を
設けたが、ハウジング半体2,3の何れか一方にのみス
タンドを設け、他方は円環部4/5および円筒部6/7
のみからなる形態としても良い。この場合、突き合わせ
面14は円環部4,5の間にのみ位置することになる。
Since the laser welding W has a high concentration of heat energy, a welded portion (weld bead) W having a narrow heat-affected zone can be easily formed. Therefore, it is not necessary to provide a groove in the vicinity of the abutting surface 14, and it is easy to limit the welded portion W in the vicinity of the abutting surface 14, and it is possible to control so that the welding bead W does not project into the exhaust gas passage R. It's easy. Therefore, according to the manufacturing method as described above, it is possible to provide the lightweight turbocharger housing 1 which is excellent in shape and dimensional accuracy and is thin, at low cost. Moreover, in the obtained housing 1, since the flow path R of the exhaust gas G is smooth, it is possible to reduce the turbulence of the gas flow of the gas G and increase the compression efficiency of the intake gas, which is lightweight and high. It is possible to easily cope with performance improvement. In the housing 1, the stands 10 and 11 are provided on the housing halves 2 and 3, but the stand is provided on only one of the housing halves 2 and 3, and the other is provided with the annular portion 4/5 and the cylindrical portion. 6/7
It may be in the form of only one. In this case, the abutting surface 14 is located only between the annular portions 4 and 5.

【0017】図3は、本発明の異なる形態のターボ過給
機ハウジング20の断面を示す。ターボ過給機ハウジン
グ20は、図3に示すように、タービン側部品21、中
間部品26、および排出側部品30の3つの鋳造部品か
らなり、これらが隣接する突き合わせ面38,39で、
溶接Wにより一体化したものである。タービン側部品2
1は、図3に示すように、タービン15のホイール17
を内蔵する中空部22を有し且つ排気ガスGの流路R1
のほぼ半分を形成する円環部23と、ベース25を含む
スタンド24とからなる。また、中間部品26は、全体
がリング形状で図3で左右に隣接する排気ガスGの流路
R1,R2のほぼ半分を形成する左右一対のアール部2
7,29と、これらの間から斜め内側に円環状に突出す
る仕切壁28とを有する。更に、排出側部品30は、排
出路33を内設する円筒部31と、排気ガスGの流路R
2のほぼ半分を形成する円環部32と、ベース36を含
むスタンド34を一体に有する。尚、以上の部品21,
26,30も、前記同様のステンレス鋼鋳鋼からなる精
密鋳造部品であり、平均約1.5mmの厚みを有する。
FIG. 3 shows a cross section of a turbocharger housing 20 of a different form of the invention. As shown in FIG. 3, the turbocharger housing 20 is made up of three casting parts, that is, a turbine side part 21, an intermediate part 26, and a discharge side part 30, which are adjacent to each other at abutting surfaces 38, 39.
It is integrated by welding W. Turbine side parts 2
1 is a wheel 17 of the turbine 15 as shown in FIG.
Has a hollow portion 22 containing therein and a passage R1 for the exhaust gas G
And a stand 24 including a base 25. In addition, the intermediate part 26 has a ring shape as a whole, and a pair of left and right rounded portions 2 that form almost half of the flow paths R1 and R2 of the exhaust gas G that are adjacent to each other in the left and right direction in FIG.
It has 7 and 29, and the partition wall 28 which protrudes in an annular shape obliquely inward from between these. Further, the discharge side component 30 includes a cylindrical portion 31 having a discharge passage 33 therein, and a flow path R of the exhaust gas G.
An annular portion 32 forming approximately half of 2 and a stand 34 including a base 36 are integrally provided. The above parts 21,
26 and 30 are precision casting parts made of the same stainless steel cast steel as described above, and have an average thickness of about 1.5 mm.

【0018】更に、図3に示すように、前記部品21,
26,30の円環部23,32や仕切壁28により形成
される排気ガスの流路R1,R2の中心軸と直交し且つ
係る流路R1,R2のほぼ半径方向に沿った一対の突き
合わせ面38,39に沿って、レーザ溶接Wすることに
より、ターボ過給機ハウジング30が形成される。図3
に示すように、円環部23,32と仕切壁28とにより
形成される一対の排気ガスGの流路R1,R2は、互い
に平行で且つ断面が図示しない入口側から終端部に向け
て順次小さく縮径するように形成されると共に、右側の
中空部22と左側の排出路33との間にリング状に開口
している。係る開口部に沿って、中間部品26から内側
に延び断面が薄板状の仕切壁28の先端が臨んでいる。
また、係る開口部に対向して、図示しない軸受けに軸支
されたシャフト16の一端に固定したホイール17の先
端側に突設する複数のブレード18が位置している。
Further, as shown in FIG. 3, the parts 21,
A pair of abutting surfaces that are orthogonal to the central axes of the exhaust gas passages R1 and R2 formed by the annular portions 23 and 32 of 26 and 30 and the partition wall 28 and that extend substantially in the radial direction of the passages R1 and R2. The turbocharger housing 30 is formed by laser welding W along 38 and 39. Figure 3
As shown in FIG. 2, the pair of exhaust gas G flow passages R1 and R2 formed by the annular portions 23 and 32 and the partition wall 28 are parallel to each other, and their cross sections are sequentially arranged from the inlet side (not shown) toward the end portion. It is formed so as to have a small diameter, and has a ring-shaped opening between the hollow portion 22 on the right side and the discharge passage 33 on the left side. Along the opening, the tip of the partition wall 28, which extends inward from the intermediate component 26 and has a thin plate-like cross section, faces.
Also, a plurality of blades 18 projecting from the tip side of a wheel 17 fixed to one end of a shaft 16 pivotally supported by a bearing (not shown) are located opposite to the opening.

【0019】即ち、排気ガスGの流路R1,R2は、仕
切壁28により互いに平行に配置され且つ係る仕切壁2
8を挟んで、タービン15のブレード18に排気ガスG
を個別に噴射する所謂ツインスクロールを形成してい
る。尚、流路R1,R2の断面が小さくなる終端側の位
置では、仕切壁28も順次低くなり且つアール部27,
29の間でほぼ平坦になる。また、排出側部品30や、
これと前記部品26,21には、入口寄りの流路R1,
R2と排出路33との間に、図示しない一対のウェスト
ゲート(バルブにて開閉するバイパス路)が並列に形成さ
れ、過剰な排気ガスGなどを個別に逃がすようにしてい
る。
That is, the flow paths R1 and R2 of the exhaust gas G are arranged in parallel with each other by the partition wall 28, and the partition wall 2 concerned.
Exhaust gas G to the blades 18 of the turbine 15 with 8 in between.
A so-called twin scroll for individually injecting is formed. At the position on the terminal side where the cross section of the flow paths R1 and R2 becomes smaller, the partition wall 28 also becomes lower and the rounded portions 27,
It becomes almost flat between 29. In addition, the discharge side component 30,
This and the parts 26 and 21 include a flow path R1 near the inlet.
A pair of waste gates (a bypass passage opened and closed by a valve) (not shown) are formed in parallel between the R2 and the exhaust passage 33 so that excess exhaust gas G and the like are individually released.

【0020】以上のようなターボ過給機ハウジング30
において、図示しないエンジンから排出された排気ガス
Gは、図示しない入口から流路R1,R2中に送られ、
流路R1,R2をほぼ1周する間に、図3中の矢印で示
すように、中空部22と排出路33との間の開口部から
タービン15のブレード18に吹き付けられる。この
際、排気ガスGは、流路R1,R2からほぼ平行してブ
レード18に吹き付けられるため、タービン15に対し
高い回転トルクを与える。従って、係るタービン15は
高速回転するため、そのシャフト16の他端に位置する
図示しない圧縮機により、エンジンへの吸気ガスを高圧
縮して高い出力を引き出すことができる。
The turbocharger housing 30 as described above
In, the exhaust gas G discharged from the engine (not shown) is sent into the flow paths R1 and R2 from the inlet (not shown),
The blades 18 of the turbine 15 are sprayed from the opening between the hollow portion 22 and the discharge passage 33 as shown by the arrow in FIG. At this time, the exhaust gas G is blown onto the blades 18 substantially in parallel from the flow paths R1 and R2, and therefore gives a high rotational torque to the turbine 15. Therefore, since the turbine 15 rotates at a high speed, the compressor (not shown) located at the other end of the shaft 16 can highly compress the intake gas to the engine and extract a high output.

【0021】以上のようなターボ過給機ハウジング30
は、次のようにして製造される。前記同様のロストワッ
クス鋳型のキャビティ中に、前記ステンレス鋼鋳鋼の溶
湯を減圧吸い上げ鋳造する。この際、前述したウェスト
ゲートになる部分にのみ中子を用いる。この結果、図4
に示すように、円環部23、中空部22、およびスタン
ド24を一体に有するタービン側部品21と、仕切壁2
8およびアール部27,29を一体に有する中間部品2
6と、円環部32、円筒部31、およびスタンド34を
一体に有する排出側部品30と、が個別に成形される。
次に、円環部23,32や円筒部31などのバリや余肉
を除去し平均厚さが約1.5mmになるよう研磨が施さ
れる。これらの研磨は、図4に示すように、タービン側
部品21、中間部品26、および排出側部品30が、全
体的にほぼオープンな形状であるため、容易に且つ精度
良く行うことができる。
The turbocharger housing 30 as described above
Is manufactured as follows. The molten metal of the cast stainless steel is vacuum suctioned and cast into the cavity of the same lost wax mold as described above. At this time, the core is used only in the portion which becomes the above-mentioned waste gate. As a result,
As shown in FIG. 2, the turbine-side component 21 integrally including the annular portion 23, the hollow portion 22, and the stand 24, and the partition wall 2
8 and the rounded parts 27 and 29 are integrally formed as an intermediate part 2
6 and the discharge side component 30 that integrally includes the annular portion 32, the cylindrical portion 31, and the stand 34 are individually molded.
Next, burrs and surpluses of the annular portions 23, 32 and the cylindrical portion 31 are removed and polishing is performed so that the average thickness becomes about 1.5 mm. As shown in FIG. 4, since the turbine-side component 21, the intermediate component 26, and the discharge-side component 30 have a substantially open shape as a whole, these polishing operations can be performed easily and accurately.

【0022】次いで、上記部品21,26,30の円環
部23,32およびアール部27,29の内周面r1〜
r4は、例えばバフ研磨などにより研磨される。その結
果、これらの表面粗さは、Rmax(最大高さ)で0.1
mm以下の平滑度になる。そして、上記部品の端面38
a,38b,39a,39bを突き合わせて、図3に示
すように、円環部23、アール面27,29、円環部3
2およびスタンド24,34に跨る突き合わせ面38,
39を形成する。係る突き合わせ面38,39に沿っ
て、外側から炭酸ガスレーザまたはルビーレーザを用い
るレーザ溶接Wを全周にわたって施す。この結果、上記
部品21,26,30が一体に接合され、図3に示した
ターボ過給機ハウジング20が得られる。
Then, the inner peripheral surfaces r1 to r1 of the circular ring portions 23 and 32 and the rounded portions 27 and 29 of the parts 21, 26 and 30 are described.
The r4 is polished by, for example, buff polishing. As a result, the surface roughness of these is 0.1 at Rmax (maximum height).
The smoothness is less than or equal to mm. Then, the end face 38 of the component
a, 38b, 39a, 39b are butted against each other, and as shown in FIG. 3, the annular portion 23, the rounded surfaces 27, 29, the annular portion 3
2 and the butting surfaces 38 that straddle the stands 24, 34,
39 is formed. Laser welding W using a carbon dioxide laser or a ruby laser is applied from the outside along the abutting surfaces 38, 39 over the entire circumference. As a result, the parts 21, 26 and 30 are integrally joined, and the turbocharger housing 20 shown in FIG. 3 is obtained.

【0023】以上のような製造方法によれば、形状およ
び寸法精度に優れ且つ軽量で薄肉のターボ過給機ハウジ
ング20を低コストで提供することができる。しかも、
得られる上記ハウジング20は、排気ガスGの流路R
1,R2が平滑であるため、係るガスGのガス流の乱れ
も低減し且つ吸気ガスの圧縮効率を一層高めることも可
能となり、軽量化および高性能化に低コストで対応する
ことができる。尚、上記ハウジング20では、前記部品
21,30にスタンド24,34を設けたが、排出側部
品30にのみスタンドを設けて、タービン側部品21は
円環部23および中空部22のみからなり、中間部品2
6は仕切壁28とアール面27,29のみからなる形態
としても良い。この場合、突き合わせ面38,39は円
環部23,32の間に位置することになる。
According to the manufacturing method as described above, it is possible to provide the turbocharger housing 20 which is excellent in shape and dimensional accuracy, is lightweight, and has a thin wall at low cost. Moreover,
The obtained housing 20 has a flow path R for the exhaust gas G.
Since 1 and R2 are smooth, it is possible to reduce the turbulence of the gas flow of the gas G and further improve the compression efficiency of the intake gas, and it is possible to cope with weight reduction and high performance at low cost. In the housing 20, although the stands 24 and 34 are provided on the parts 21 and 30, the stand is provided only on the discharge side part 30, and the turbine side part 21 includes only the annular portion 23 and the hollow portion 22, Intermediate part 2
6 may have a configuration including only the partition wall 28 and the rounded surfaces 27 and 29. In this case, the abutting surfaces 38 and 39 are located between the annular portions 23 and 32.

【0024】本発明は、以上において説明した各形態に
限定されるものではない。例えば、前記ハウジング半体
2,3や前記部品21,26,30は、前記ステンレス
鋼鋳鋼以外のステンレス鋼、またはその他の耐熱鋼など
としても良い。また、前記ターボ過給機ハウジング20
において、タービン側部品21や排出側部品30の材質
に対し、仕切壁28を含む中間部品26の材質を一層優
れた耐熱性の異なる鋼種としても良い。更に、前記ハウ
ジング半体2,3などの鋳造部品を鋳造する方法は、前
記ロストワックス鋳型を用いる鋳造方法に限らず、砂型
鋳造方法、シェルモールド法、硬化鋳型法、Vプロセス
などを用いることも可能である。また、前記溶接Wは、
レーザ溶接や電子ビーム溶接に限らず、MIG溶接、T
IG溶接、高周波溶接、あるいは超音波溶接などにして
も良い。尚、本発明の対象となるターボ過給機ハウジン
グは、自動車エンジン用はもちろん、各種の航空機エン
ジン用などの形態も含まれる。
The present invention is not limited to each of the forms described above. For example, the housing halves 2 and 3 and the components 21, 26 and 30 may be made of stainless steel other than the cast stainless steel, or other heat resistant steel. In addition, the turbocharger housing 20
In regard to the material of the turbine side component 21 and the discharge side component 30, the material of the intermediate component 26 including the partition wall 28 may be a steel type having further superior heat resistance. Furthermore, the method of casting the cast parts such as the housing halves 2 and 3 is not limited to the casting method using the lost wax mold, but may be a sand casting method, a shell molding method, a hardening molding method, a V process, or the like. It is possible. Further, the welding W is
Not limited to laser welding and electron beam welding, MIG welding, T
IG welding, high frequency welding, or ultrasonic welding may be used. The turbocharger housing to which the present invention is applied includes not only automobile engine engines but also various aircraft engine configurations.

【0025】[0025]

【発明の効果】以上に説明した本発明のターボ過給機ハ
ウジング(請求項1)によれば、中空部がないか少ない複
数の鋳造部品同士を突き合わせ面で溶接されているた
め、薄肉化および軽量化されたターボ過給機ハウジング
となる。しかも、個別の鋳造部品における排気ガスの流
路(スクロール)の表面が精度良く平滑化されているた
め、ガス流の乱れも低減し且つ吸気ガスの圧縮効率を高
めることも可能となる。また、請求項2,3のターボ過
給機ハウジングによれば、3つの鋳造部品から形成され
ているため、所謂ツインスクロールのような複雑な形状
や構造であっても、薄肉且つ軽量であると共に、排気ガ
スの流路の表面を平滑にされており、形状および寸法精
度に優れた高性能のターボ過給機ハウジングとなる。
According to the turbocharger housing (Claim 1) of the present invention described above, a plurality of cast parts having no or few hollows are welded at the abutting surfaces, so that the thinning and It becomes a turbocharger housing that has been made lighter. Moreover, since the surface of the exhaust gas passage (scroll) in each individual cast part is smoothed with high precision, it is possible to reduce turbulence of the gas flow and increase the compression efficiency of the intake gas. Further, according to the turbocharger housing of claims 2 and 3, since the turbocharger housing is formed of three cast parts, it is thin and lightweight even if it has a complicated shape or structure such as a so-called twin scroll. The surface of the flow path of the exhaust gas is made smooth, resulting in a high-performance turbocharger housing with excellent shape and dimensional accuracy.

【0026】一方、本発明のターボ過給機ハウジングの
製造方法(請求項4)によれば、複数の中空部のない鋳造
部品同士を突き合わせ面で溶接するため、薄肉で軽量化
され且つ排気ガスの流路(スクロール)の表面を平滑にで
き、優れたターボ過給機ハウジングを、低コストで確実
に提供することが可能となる。また、請求項5のターボ
過給機ハウジングの製造方法によれば、薄肉で軽量化し
且つ排気ガスの流路を平滑化した所謂ツインスクロール
を内蔵する高性能のターボ過給機ハウジングを、確実に
提供することができる。
On the other hand, according to the method for manufacturing a turbocharger housing of the present invention (claim 4), a plurality of cast parts having no hollow portion are welded at the abutting surfaces, so that they are thin and lightweight and exhaust gas is exhausted. The surface of the passage (scroll) can be made smooth, and an excellent turbocharger housing can be reliably provided at low cost. According to the method of manufacturing a turbocharger housing of claim 5, a high-performance turbocharger housing having a so-called twin scroll that is thin and lightweight and has a smooth exhaust gas flow path can be reliably provided. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のターボ過給機ハウジングの概略を示す
断面図。
FIG. 1 is a sectional view schematically showing a turbocharger housing of the present invention.

【図2】図1のターボ過給機ハウジングを形成する2つ
の鋳造部品を示す断面図。
2 is a cross-sectional view showing two cast parts forming the turbocharger housing of FIG.

【図3】異なる形態のターボ過給機ハウジングの概略を
示す断面図。
FIG. 3 is a cross-sectional view schematically showing a turbocharger housing having a different configuration.

【図4】図3のターボ過給機ハウジングを形成する3つ
の鋳造部品を示す断面図。
4 is a cross-sectional view showing three cast parts forming the turbocharger housing of FIG.

【符号の説明】[Explanation of symbols]

1,20…………ターボ過給機ハウジング 2,3……………ハウジング半体(鋳造部品) 14,38,39…突き合わせ面 21………………タービン側部品(鋳造部品) 26………………中間部品(鋳造部品) 28………………仕切壁 30………………排出側部品(鋳造部品) G…………………排気ガス R,R1,R2……流路 W…………………レーザ溶接(溶接) 1,20 ………… Turbocharger housing 2,3 ……………… Housing half (cast parts) 14,38,39 ... Butt faces 21 ……………… Turbine side parts (cast parts) 26 ……………… Intermediate parts (casting parts) 28 ……………… Partition wall 30 ……………… Discharge side parts (cast parts) G …………………… Exhaust gas R, R1, R2 ... Channel W …………………… Laser welding (welding)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ほぼ円形を呈する排気ガスの流路を内蔵し
且つ係る流路の中心軸とほぼ直交し且つ上記流路の半径
方向にほぼ沿った面で突き合わされた複数の鋳造部品か
らなり、上記複数の鋳造部品が互いの突き合わせ面で溶
接されている、 ことを特徴とするターボ過給機ハウジング。
1. A plurality of cast parts which have a built-in exhaust gas flow path having a substantially circular shape, and are butted against each other at a surface which is substantially orthogonal to the central axis of the flow path and which is substantially along the radial direction of the flow path. The turbocharger housing is characterized in that the plurality of cast parts are welded to each other at their butt surfaces.
【請求項2】前記排気ガスの流路が互いにほぼ平行な2
つの流路からなり、係る2つの流路の中心軸とほぼ直交
し且つ上記2つの流路の半径方向にほぼ沿ったする2つ
の面で突き合わされた3つの鋳造部品からなる、 ことを特徴とする請求項1に記載のターボ過給機ハウジ
ング。
2. The exhaust gas flow paths are substantially parallel to each other.
Three cast parts that are abutted with two surfaces that are made up of two flow paths and that are substantially orthogonal to the central axes of the two flow paths and that are substantially along the radial direction of the two flow paths. The turbocharger housing according to claim 1.
【請求項3】前記3つの鋳造部品のうち、中間に位置す
る鋳造部品は、その内側面の円周方向に沿って前記2つ
の流路を仕切る仕切壁を突設している、 ことを特徴とする請求項2に記載のターボ過給機ハウジ
ング。
3. A casting part located in the middle among the three casting parts has a partition wall projecting along the circumferential direction of the inner side surface thereof for partitioning the two flow paths. The turbocharger housing according to claim 2.
【請求項4】追ってほぼ円形を呈する排気ガスの流路を
内蔵し係る流路の中心軸とほぼ直交し且つ上記流路の半
径方向にほぼ沿った面で分割された複数の鋳造部品を個
別に鋳造する工程と、 得られた複数の鋳造部品を互いの突き合わせ面で溶接す
る工程と、を含む、ことを特徴とするターボ過給機ハウ
ジングの製造方法。
4. A plurality of casting parts each of which has a substantially circular exhaust gas passage and is divided into planes which are substantially orthogonal to the central axis of the passage and are substantially along the radial direction of the passage. A method of manufacturing a turbocharger housing, comprising: a step of casting into a plurality of parts; and a step of welding the obtained plurality of cast parts at their abutting surfaces.
【請求項5】前記排気ガスの流路が互いにほぼ平行な2
つの流路からなり、係る2つの流路の中心軸とほぼ直交
し且つ上記2つの流路の半径方向にほぼ沿ったする2つ
の面で突き合わせた3つの鋳造部品を鋳造する工程と、 得られた3つの鋳造部品を上記2つの突き合わせ面に沿
って溶接する工程とを含む、ことを特徴とする請求項4
に記載のターボ過給機ハウジングの製造方法。
5. The exhaust gas flow paths are substantially parallel to each other.
A step of casting three casting parts that are abutted by two surfaces that are made up of two flow paths and that are substantially orthogonal to the central axes of the two flow paths and that are substantially along the radial direction of the two flow paths; Welding three cast parts along the two abutting surfaces.
A method of manufacturing a turbocharger housing according to claim 1.
JP2001224929A 2001-07-25 2001-07-25 Turbocharger housing and manufacturing method for the same Withdrawn JP2003035152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224929A JP2003035152A (en) 2001-07-25 2001-07-25 Turbocharger housing and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224929A JP2003035152A (en) 2001-07-25 2001-07-25 Turbocharger housing and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2003035152A true JP2003035152A (en) 2003-02-07

Family

ID=19058010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224929A Withdrawn JP2003035152A (en) 2001-07-25 2001-07-25 Turbocharger housing and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2003035152A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511901A (en) * 2008-02-13 2011-04-14 ダイムラー・アクチェンゲゼルシャフト Turbine housing and method for manufacturing turbine housing
JP2012211572A (en) * 2011-03-31 2012-11-01 Denso Corp Turbocharger
JP2013530335A (en) * 2010-05-28 2013-07-25 ダイムラー・アクチェンゲゼルシャフト Turbine for exhaust gas turbocharger
JP2016148315A (en) * 2015-02-13 2016-08-18 株式会社三五 Method for manufacturing turbine housing
JPWO2016071959A1 (en) * 2014-11-04 2017-05-25 三菱重工業株式会社 Turbine housing and method for manufacturing turbine housing
KR101823991B1 (en) * 2010-09-27 2018-01-31 보르그워너 인코퍼레이티드 Method for manufacturing turbocharger
US10443414B2 (en) 2014-07-03 2019-10-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine casing, turbine, core for casting turbine casing, and method for producing turbine casing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511901A (en) * 2008-02-13 2011-04-14 ダイムラー・アクチェンゲゼルシャフト Turbine housing and method for manufacturing turbine housing
JP2013530335A (en) * 2010-05-28 2013-07-25 ダイムラー・アクチェンゲゼルシャフト Turbine for exhaust gas turbocharger
KR101823991B1 (en) * 2010-09-27 2018-01-31 보르그워너 인코퍼레이티드 Method for manufacturing turbocharger
JP2012211572A (en) * 2011-03-31 2012-11-01 Denso Corp Turbocharger
US10443414B2 (en) 2014-07-03 2019-10-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine casing, turbine, core for casting turbine casing, and method for producing turbine casing
JPWO2016071959A1 (en) * 2014-11-04 2017-05-25 三菱重工業株式会社 Turbine housing and method for manufacturing turbine housing
JP2016148315A (en) * 2015-02-13 2016-08-18 株式会社三五 Method for manufacturing turbine housing

Similar Documents

Publication Publication Date Title
JP2002235547A (en) Join method for turbine shaft for turbocharger
US12090569B2 (en) Method of manufacturing a component of a rotary machine and component manufactured using said method
JP6535584B2 (en) Method of manufacturing compressor housing
US7278461B2 (en) Manufacturing method of titanium compressor wheel
US9714577B2 (en) Gas turbine engine rotors including intra-hub stress relief features and methods for the manufacture thereof
JP2003035152A (en) Turbocharger housing and manufacturing method for the same
JP2019074087A (en) Multi-piece compressor housing for turbocharger
US10570761B2 (en) Stator vane arrangement and a method of casting a stator vane arrangement
EP0663249B1 (en) Method for the production of ceramic shell moulds for casting with a lost mould
US8020296B2 (en) Method for the production of secondary fluid ducts
KR102656457B1 (en) Turbocharger assembly
JP3833002B2 (en) Manufacturing method of exhaust vane blade for supercharger for automobile and vane blade
WO2010134569A1 (en) Impeller wheel, turbocharger, and method for producing impeller wheel
JP2003184563A (en) Variable displacement turbocharger
US20170184121A1 (en) Method of manufacturing a compressor housing
JP4100635B2 (en) Swirler for gas turbine combustor and method for manufacturing the same
US9000324B2 (en) Fabrication of load compressor scroll housing
JP2010275880A (en) Rotor assembly, supercharger, and method for manufacturing the rotor assembly
JP6242533B1 (en) Hollow part and manufacturing method thereof
JPS59180007A (en) Turbosupercharger and manufacture thereof
WO2021038737A1 (en) Compressor housing, supercharger, and compressor housing manufacturing method
KR101107596B1 (en) Machining method of variable geometry turbocharger's guide vane manufactured by metal injection molding
JP4065114B2 (en) Rolling method of shaft part of variable blade applied to exhaust guide assembly in VGS type turbocharger
JP2567611B2 (en) Method of manufacturing turbocharger housing
JPH09209751A (en) Collective pipe for engine and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007