JP2003033630A - Method for washing filtration membrane module - Google Patents

Method for washing filtration membrane module

Info

Publication number
JP2003033630A
JP2003033630A JP2002166370A JP2002166370A JP2003033630A JP 2003033630 A JP2003033630 A JP 2003033630A JP 2002166370 A JP2002166370 A JP 2002166370A JP 2002166370 A JP2002166370 A JP 2002166370A JP 2003033630 A JP2003033630 A JP 2003033630A
Authority
JP
Japan
Prior art keywords
membrane module
filtration membrane
water
cleaning
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166370A
Other languages
Japanese (ja)
Other versions
JP3986370B2 (en
Inventor
Kohei Urano
紘平 浦野
Tomonobu Ase
智暢 阿瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2002166370A priority Critical patent/JP3986370B2/en
Publication of JP2003033630A publication Critical patent/JP2003033630A/en
Application granted granted Critical
Publication of JP3986370B2 publication Critical patent/JP3986370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for washing filtration membrane module which reduces running cost, allows the recovery close to dead end filtration and, moreover, allows effective sterilizing treatment for microorganisms in raw water in a membrane cleaning treatment system of water utilizing ultra or micro filtration membrane module. SOLUTION: In this method for washing filtration membrane, a raw water supplying pump 11 is used in common for a circulation pump, the rate of circulation is more than 0 and less than 6 times for the rate of raw water inflow, cross flow is performed at a linear velocity on membrane surface of 0.005-0.5 m/sec and, thus, the dead end filtration is performed. Further, in this method, the back washing is intermittently performed under pressure control or at a prescribed pressure with a period determined beforehand by using permeate 20 from a filtration membrane module 12 or clean water supplied separately and, therein, the permeate 20 which is supplied to the filtration membrane module 12 or the clean water is incorporated with sterilizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、河川水や湖沼水等
の表流水に代表される水を膜浄化しながら濾過膜モジュ
ールを洗浄する方法に関し、特に限外または精密瀘過膜
モジュールを利用し水を膜浄化しながら濾過膜モジュー
ルを洗浄する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a filtration membrane module while purifying water represented by surface water such as river water and lake water, while using an ultra or precision filtration membrane module. The present invention relates to a method of cleaning a filtration membrane module while purifying sewage from the membrane.

【0002】[0002]

【従来の技術】従来、河川水や湖沼水等の表流水から水
道水を得るための浄水処理システムとしては、凝集−沈
澱−砂濾過−塩素滅菌工程を経るのが一般的である。こ
のような工程を実現するためには、凝集池、沈澱池、砂
濾過池、塩素滅菌設備が必要であり、大きな設置スペー
スを要するという問題点がある。加えて、近年河川等の
水源の汚濁が進んでいるため、これに対する新しい高度
浄水処理システムの開発が求められ、上記工程に活性炭
処理システムやオゾン処理システムを付加することが提
案されている。
2. Description of the Related Art Conventionally, as a water purification system for obtaining tap water from surface water such as river water and lake water, it is common to go through a coagulation-precipitation-sand filtration-chlorine sterilization process. In order to realize such a process, a coagulation basin, a sedimentation basin, a sand filtration basin, and a chlorine sterilization facility are required, and there is a problem that a large installation space is required. In addition, since water sources such as rivers have been polluted in recent years, development of a new advanced water purification treatment system has been required, and it has been proposed to add an activated carbon treatment system or an ozone treatment system to the above process.

【0003】しかしながら、従来の浄水処理システムに
上述した活性炭処理システムやオゾン処理システムを付
加することは、設置スペースの更なる増加を招き、複雑
な計測制御技術をも必要とする新たな問題点が生ずる。
However, adding the above-mentioned activated carbon treatment system and ozone treatment system to the conventional water purification system causes a further increase in the installation space, and there is a new problem that a complicated measurement and control technique is also required. Occurs.

【0004】これに対し、限外又は精密濾過膜と呼ばれ
る新しい材料の利用技術が多方面にわたって提案されて
おり、その一例として中空糸型限外又は精密濾過膜モジ
ュールを使用した浄水処理システムの実用化が検討され
ている。
On the other hand, a technique for utilizing a new material called an ultrafiltration membrane or a microfiltration membrane has been proposed in various fields, and as an example, a water purification system using a hollow fiber type ultrafiltration membrane module is put to practical use. Is being considered.

【0005】その一例を図7を参照して説明する。図7
において、逆止弁30を経て導入された河川水等の原水
は、ポンプ31により昇圧されて中空糸型限外瀘過膜モ
ジュール(以下、UFモジュールと呼ぶことがある)3
2に供給される。UFモジュール32は、簡単に言え
ば、中空糸状の限外瀘過膜を多数集合させたものであ
り、この中空糸膜の内側に濁質成分を含む原水を供給す
ると、濁質成分を除去された透過水が中空糸膜外に得ら
れる。このようにして、UFモジュール32では、限外
瀘過膜の瀘過作用により濁質成分を除去した透過水を、
透過水自動弁33を通して次段の処理施設に供給する。
An example thereof will be described with reference to FIG. Figure 7
In the above, raw water such as river water introduced through the check valve 30 is pressurized by the pump 31 and is hollow fiber ultrafiltration membrane module (hereinafter, also referred to as UF module) 3
2 is supplied. Briefly, the UF module 32 is composed of a large number of hollow fiber-shaped ultrafiltration membranes, and when raw water containing turbidity components is supplied to the inside of the hollow fiber membranes, the turbidity components are removed. Permeated water is obtained outside the hollow fiber membrane. In this way, in the UF module 32, the permeated water from which the suspended components have been removed by the filtering action of the ultrafiltration membrane,
It is supplied to the treatment facility of the next stage through the permeated water automatic valve 33.

【0006】ところで、UFモジュール32内では中空
糸膜の内側表面に透過されない濁質成分が蓄積し、詰ま
って処理能力の低下、ひいては運転停止の原因となるの
で、これを排出する処理が必要である。これは、UFモ
ジュール32の中空糸膜に供給する水流を高速とするこ
とで実現されている。すなわち、中空糸膜の内表面に糸
の長さ方向と平行に高速の水流(クロスフロー)を与え
ることで中空糸膜の内表面に付着している濁質成分を、
いわばはぎとるものである。
By the way, in the UF module 32, a turbidity component that cannot be permeated is accumulated on the inner surface of the hollow fiber membrane, which causes a decrease in treatment capacity and eventually an operation stop. is there. This is realized by increasing the speed of the water flow supplied to the hollow fiber membranes of the UF module 32. That is, by applying a high-speed water flow (cross flow) to the inner surface of the hollow fiber membrane in parallel with the length direction of the yarn, the turbid component adhered to the inner surface of the hollow fiber membrane is
So to speak

【0007】このため、UFモジュール32内における
中空糸膜の内側に連通する出口には、濁質成分を大量に
含んだ濃縮水を濃縮水排出自動弁34を通してその一部
を常時排出する経路35と、高速の水流を得るためにU
Fモジュール32に供給された原水をポンプ31のサク
ション側に戻すための循環経路36が接続される。ポン
プ31のサクション側に戻される循環流量は、逆止弁3
0を経て供給される原水の流量に比べて通常10倍程度
以上とはるかに多い。このようにしてUFモジュール3
2からポンプ31のサクション側に原水を戻す処理方式
はクロスフロー方式と呼ばれている。
Therefore, at the outlet communicating with the inside of the hollow fiber membrane in the UF module 32, a path 35 for constantly discharging a part of concentrated water containing a large amount of suspended matter through a concentrated water discharge automatic valve 34. And U to get high speed water flow
A circulation path 36 for returning the raw water supplied to the F module 32 to the suction side of the pump 31 is connected. The circulation flow rate returned to the suction side of the pump 31 is determined by the check valve 3
Compared with the flow rate of raw water supplied through 0, it is usually about 10 times or more, which is far higher. In this way, the UF module 3
The processing method of returning raw water from 2 to the suction side of the pump 31 is called a cross flow method.

【0008】[0008]

【発明が解決しようとする課題】このようなクロスフロ
ーのため、ポンプ31の容量は、同程度の処理能力を持
つ従来の凝集ー沈澱ー砂濾過による浄水処理システムに
おけるポンプの容量に比べてはるかに大きく、従って電
力消費量も従来方式のポンプの電力消費量に比べてはる
かに多く、ランニングコストが高くなるという問題点が
ある。加えて、濃縮水の排出は連続して行われており、
例えば原水の流入量を1としたとき、透過水を0.3得
る場合は、濃縮水の割合は0.7となり、水の大部分を
捨てていることになるので、回収率は30%と悪いとい
う問題点もある。なお、ここでは透過水の流量をP、濃
縮水の排出流量をCとすると、回収率は100×P/
(P+C)(%)で表される。
Due to such cross-flow, the capacity of the pump 31 is much larger than the capacity of the pump in the conventional water treatment system by coagulation-sedimentation-sand filtration having the same treatment capacity. Therefore, there is a problem in that the power consumption is much higher than that of the conventional pump and the running cost is high. In addition, the concentrated water is continuously discharged,
For example, assuming that the inflow rate of raw water is 1, if the permeated water is 0.3, the ratio of concentrated water is 0.7, and most of the water is discarded, so the recovery rate is 30%. There is also the problem of being bad. In this case, if the flow rate of permeate is P and the discharge rate of concentrated water is C, the recovery rate is 100 × P /
It is represented by (P + C) (%).

【0009】更に、UFモジュールの材料は原水中の微
生物により侵され、瀘過膜が破れることがあるので、微
生物の殺菌処理が必要となる。
Further, since the material of the UF module may be attacked by microorganisms in the raw water and the filtration membrane may be broken, it is necessary to sterilize the microorganisms.

【0010】それゆえ、本発明の課題は限外または精密
瀘過膜モジュールを利用した水の膜浄化処理システムに
おいてランニングコストの低減化を図ると共に、全量濾
過に近い回収率が得られ、しかも原水中の微生物の殺菌
処理を効果的に行うことのできる濾過膜モジュールの洗
浄方法を提供することにある。
Therefore, an object of the present invention is to reduce the running cost in a water membrane purification treatment system using an ultrafiltration membrane module or a precision filtration membrane module, to obtain a recovery rate close to that of full-scale filtration, and yet It is an object of the present invention to provide a method for cleaning a filtration membrane module, which is capable of effectively sterilizing microorganisms in water.

【0011】なお、特開平4−260422号公報には
モジュールの中の内側スキン層の管形フィルター膜(管
形フィルター膜は中空糸膜のことと思われる。)の束を
逆流洗浄する方法において、特定の濾過装置において、
特定モードの濾過と特定の二つの逆流洗浄段階とで行う
方法が開示されている。そして、逆流洗浄の効果を改善
するため、逆洗浄水に塩素処理剤を加えてもよい旨が記
載されている。しかし、後記する本発明の特定の濾過方
法および逆洗において殺菌剤を使用することについて
は、示唆はない。
Incidentally, Japanese Patent Laid-Open No. 4-260422 discloses a method of backwashing a bundle of tubular filter membranes of the inner skin layer in a module (the tubular filter membranes are considered to be hollow fiber membranes). , In a particular filtration device,
A method of performing a specific mode of filtration and two specific backwash steps is disclosed. Then, in order to improve the effect of backwashing, it is described that a chlorine treatment agent may be added to the backwashing water. However, there is no suggestion of the use of germicides in the particular filtration methods and backwashes of the invention described below.

【0012】[0012]

【課題を解決するための手段】本発明の第1によれば、
水を限外または精密瀘過膜モジュールを用いてクロスフ
ロー瀘過により浄化しながら濾過膜モジュールを洗浄す
る方法において、原水供給ポンプを循環ポンプと兼用
し、通常運転においては原水流入量に対し循環量がゼロ
を越え6倍以下で、かつ膜面線速が0.005〜0.5
m/secでクロスフローを行いながら全量瀘過し、前
記瀘過膜モジュールの逆洗に際しては、前記濾過膜モジ
ュールからの透過水または別途供給される清浄水によ
り、圧力制御またはあらかじめ定められた周期で所定圧
で間欠的に行い、かつ該逆洗時に前記瀘過膜モジュール
に供給する前記透過水または清浄水には殺菌剤を含有さ
せることを特徴とする濾過膜モジュールの洗浄方法が提
供される。また本発明の第2によれば、本発明の第1の
濾過膜モジュールの洗浄方法において、前記水が表流水
であることを特徴とする濾過膜モジュールの洗浄方法が
提供される。また本発明の第3によれば、本発明の第1
の濾過膜モジュールの洗浄方法において、前記濾過膜モ
ジュールは、その膜材質が酢酸セルロースであることを
特徴とする濾過膜モジュールの洗浄方法が提供される。
また本発明の第4によれば、本発明の第1の濾過膜モジ
ュールの洗浄方法において、前記瀘過膜モジュールは中
空糸型であり、かつクロスフロー瀘過は内圧方式である
ことを特徴とする濾過膜モジュールの洗浄方法が提供さ
れる。また本発明の第5によれば、本発明の第1の濾過
膜モジュールの洗浄方法において、透過水の流量をP、
逆洗水の排出量をCとしたときの回収率、100×(P
−C)/P(%)を実質的に90%以上99%以下とす
ることを特徴とする濾過膜モジュールの洗浄方法が提供
される。また本発明の第6によれば、本発明の第1の濾
過膜モジュールの洗浄方法において、前記逆洗時の前記
所定圧は,前記通常運転時の運転圧の実質上1.0倍以
上3倍以下であることを特徴とする濾過膜モジュールの
洗浄方法が提供される。また本発明の第7によれば、本
発明の第1の濾過膜モジュールの洗浄方法において、前
記殺菌剤は、次亜塩素酸ソーダ、塩素、過酸化水素およ
びオゾンから選ばれる酸化性殺菌剤であることを特徴と
する濾過膜モジュールの洗浄方法が提供される。更に本
発明によれば、水を限外または精密瀘過膜モジュールを
用いてクロスフロー瀘過により浄化しながら濾過膜モジ
ュールを洗浄する方法において、通常運転においては原
水流入量に対し循環量がゼロを越え6倍以下で、かつ膜
面線速が0.005〜0.5m/secでクロスフロー
を行いながら全量瀘過し、前記瀘過膜モジュールの逆洗
に際しては、前記濾過膜モジュールからの透過水または
別途供給される清浄水により、圧力制御またはあらかじ
め定められた周期で所定圧で間欠的に行い、かつ該逆洗
時に前記瀘過膜モジュールに供給する前記透過水または
清浄水には殺菌剤を含有させることを特徴とする濾過膜
モジュールの洗浄方法が提供される。
According to the first aspect of the present invention,
In the method of cleaning the filtration membrane module while purifying water by ultra-flow or ultrafiltration membrane module by cross-flow filtration, the raw water supply pump is also used as a circulation pump and circulates against the inflow rate of raw water in normal operation. The amount exceeds 0 and is 6 times or less, and the linear velocity of the film surface is 0.005 to 0.5.
The entire amount is filtered while performing cross-flow at m / sec, and when backwashing the filtration membrane module, pressure control or a predetermined cycle is performed by permeated water from the filtration membrane module or clean water supplied separately. There is provided a method for cleaning a filtration membrane module, characterized in that the permeated water or the clean water supplied to the filtration membrane module at the time of backwashing is intermittently treated with a predetermined pressure to contain a bactericide. . According to a second aspect of the present invention, there is provided the method for cleaning a filtration membrane module according to the first method for cleaning a filtration membrane module, wherein the water is surface water. According to the third aspect of the present invention, the first aspect of the present invention
In the method for cleaning a filtration membrane module, the filtration membrane module is provided with a membrane material of cellulose acetate, which provides a method for cleaning a filtration membrane module.
According to a fourth aspect of the present invention, in the first method for cleaning a filtration membrane module according to the present invention, the filtration membrane module is a hollow fiber type, and the crossflow filtration is an internal pressure method. A method for cleaning a filtration membrane module is provided. According to a fifth aspect of the present invention, in the method for cleaning a filtration membrane module according to the first aspect of the present invention, the flow rate of permeated water is P,
Recovery rate, where C is the discharge amount of backwash water, 100 x (P
There is provided a method for cleaning a filtration membrane module, wherein -C) / P (%) is substantially 90% or more and 99% or less. According to a sixth aspect of the present invention, in the first filtration membrane module cleaning method of the present invention, the predetermined pressure during the backwash is substantially 1.0 times or more the operating pressure during the normal operation. A method for cleaning a filtration membrane module is provided, which is less than or equal to twice. According to a seventh aspect of the present invention, in the first method for cleaning a filtration membrane module of the present invention, the sterilizing agent is an oxidizing sterilizing agent selected from sodium hypochlorite, chlorine, hydrogen peroxide and ozone. A method for cleaning a filtration membrane module is provided, which is characterized by the following. Furthermore, according to the present invention, in a method of cleaning a filtration membrane module while purifying water by ultra-flow or ultrafiltration membrane module by cross-flow filtration, in a normal operation, the circulation rate is zero with respect to the raw water inflow rate. Over 6 times and the membrane surface linear velocity is 0.005-0.5 m / sec, and while performing cross-flow, the entire amount is filtered, and when backwashing the filtration membrane module, Permeate or separately supplied clean water performs pressure control or intermittently at a predetermined pressure at a predetermined cycle, and sterilizes the permeate or clean water supplied to the filtration membrane module during the backwash. There is provided a method for cleaning a filtration membrane module, which comprises containing an agent.

【0013】なお、前記濾過膜モジュールはその膜材質
が酢酸セルロースであるのが最適であり、その形状とし
てはプレート・アンド・フレーム型、プリーツ型、スパ
イラル型、チューブラー(管状)型、中空糸型等が挙げ
られるが、中空糸型が好ましい。また、中空糸型瀘過膜
モジュールを用いる場合は、中空糸膜の内側に原水を流
入させる内圧方式が好ましい。
The membrane material of the filtration membrane module is optimally made of cellulose acetate, and the shape thereof is plate and frame type, pleated type, spiral type, tubular type, hollow fiber. Examples of the mold include a hollow fiber mold. Further, when using the hollow fiber type filtration membrane module, an internal pressure system in which raw water is flown into the hollow fiber membrane is preferable.

【0014】また、前記逆洗時の前記所定圧は,前記通
常運転時の運転圧の実質上1.0倍以上3倍以下とする
ことが望ましい。更に好ましくは1.3倍以上である。
It is desirable that the predetermined pressure during the backwash is substantially 1.0 times or more and 3 times or less the operating pressure during the normal operation. More preferably, it is 1.3 times or more.

【0015】更に、前記殺菌剤は、次亜塩素酸ソーダ、
塩素、過酸化水素、オゾン等の酸化性殺菌剤であれば殺
菌とともに膜面付着物の分解・洗浄効果もあることか
ら、これらを用いることが好ましい。
Further, the bactericide is sodium hypochlorite,
It is preferable to use oxidative germicides such as chlorine, hydrogen peroxide, and ozone because they have the effect of decomposing / cleaning the substance adhering to the film surface as well as sterilizing.

【0016】逆洗に用いられる水は、膜透過水であって
もよく、あるいはまた最終的に得られる水道水等の清浄
水を別途供給してもよい。逆洗はあらかじめ定められた
周期による時間制御でも圧力制御であってもよく、圧力
制御の場合は運転圧の実質上1.3倍以上で動作する様
にすればよい。本発明において透過水の流量をP、洗浄
水の排出流量をCとすると、回収率は100×(P−
C)/P(%)で表され、本発明によれば、回収率90
%以上99%以下で運転することが可能である。
The water used for the backwash may be membrane-permeated water, or clean water such as tap water finally obtained may be separately supplied. The backwashing may be time control or pressure control according to a predetermined cycle, and in the case of pressure control, it may be operated at substantially 1.3 times the operating pressure or more. In the present invention, if the flow rate of permeate is P and the discharge rate of wash water is C, the recovery rate is 100 × (P−
C) / P (%), and according to the present invention, a recovery rate of 90
It is possible to operate at a rate of between 99% and 99%.

【0017】本発明において、前述の課題は通常運転中
は膜モジュールへ戻すクロスフローの水量(循環量)は
極限まで減らし、瀘過膜表面に付着した濁質成分の除去
は主に圧力制御または定時間間隔で行われる逆洗によっ
て実現される。すなわち、逆洗により、瀘過膜表面に付
着した濁質成分は中空糸膜の外面側からの逆水流により
洗浄されることになる。そして、この逆洗時に逆洗のた
めの透過水または清浄水に含有させた殺菌剤により瀘過
膜表面に対する殺菌処理が行われる。また、通常運転中
は濃縮水を排出せず、見かけ上の全量瀘過とし、逆洗時
のみ一定量の洗浄水をシステム外に排出する。従って、
本発明を用いた水を膜浄化しながら濾過膜モジュールの
洗浄方法は、水の濾過の点では低循環量のクロスフロー
瀘過方式を併用した見かけ上の全量瀘過方式といえるも
のである。
In the present invention, the above-mentioned problem is that the amount of water (circulation amount) of the crossflow returned to the membrane module during normal operation is reduced to the utmost limit, and the removal of the turbid component adhering to the surface of the filtration membrane is mainly performed by pressure control or This is achieved by backwashing at regular time intervals. That is, by backwashing, the suspended components adhering to the surface of the filtration membrane are washed away by the backwater flow from the outer surface side of the hollow fiber membrane. Then, at the time of this backwash, a sterilizing treatment is performed on the surface of the filtration membrane with a bactericide contained in permeated water or clean water for the backwash. Also, the concentrated water is not discharged during normal operation, and the apparent total amount is filtered, and a fixed amount of wash water is discharged out of the system only during backwashing. Therefore,
The method of cleaning the filtration membrane module while purifying the water using the present invention can be said to be an apparent total amount filtration method in combination with a low circulation amount cross-flow filtration method in terms of water filtration.

【0018】[0018]

【実施例】以下に、UFモジュールを用いた場合の本発
明の一実施例について、図面を参照して説明するが、精
密瀘過膜モジュールを用いても同様に行うことができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention using a UF module will be described below with reference to the drawings, but the same can be done using a precision filtration membrane module.

【0019】図1は本発明による濾過膜モジュールの洗
浄方法を実施するためのシステムの構成を示す模式図で
あり、従来と同様の逆止弁10、ポンプ11、UFモジ
ュール12、透過水自動弁13、洗浄水排出自動弁14
の構成に加えて、透過水を蓄積するための透過水タンク
17と、蓄積された透過水をUFモジュール12の出口
側に戻して逆洗を行うためのポンプ18、逆洗自動弁1
9を含む逆洗経路20と、この逆洗経路20に殺菌剤を
注入する手段として薬剤タンク21、薬注ポンプ22、
逆止弁23を含む殺菌剤注入経路24とを設けている。
FIG. 1 is a schematic diagram showing the structure of a system for carrying out the method for cleaning a filtration membrane module according to the present invention. The check valve 10, the pump 11, the UF module 12, and the permeated water automatic valve, which are the same as the conventional ones, are shown. 13, automatic flush water discharge valve 14
In addition to the above configuration, a permeate tank 17 for accumulating permeate, a pump 18 for returning the accumulated permeate to the outlet side of the UF module 12 for backwashing, a backwash automatic valve 1
9, a backwash path 20 including 9 and a chemical tank 21, a chemical pump 22, as means for injecting a bactericide into the backwash path 20,
A disinfectant injection path 24 including a check valve 23 is provided.

【0020】殺菌剤は、原水中に含まれる微生物により
UFモジュール12の透過膜が侵されて破れるのを防ぐ
ために微生物を殺菌するものであり、次亜塩素酸ソー
ダ、塩素、過酸化水素、オゾン等の酸化性殺菌剤であれ
ば、これに加えて膜面付着物への分解効果も期待でき
る。
The bactericide is a sterilizer for sterilizing the microorganisms contained in the raw water to prevent the permeable membrane of the UF module 12 from being damaged by the microorganisms. Sodium hypochlorite, chlorine, hydrogen peroxide, ozone In addition to this, if it is an oxidative bactericidal agent such as the above, a decomposing effect to the film surface deposit can be expected.

【0021】この処理システムの運転は次のようにして
行われる。通常運転に際しては、透過水自動弁13を開
とし、濃縮水排出自動弁14および逆洗自動弁19は共
に閉とし、ポンプ18を停止状態におく。このようにし
て、逆止弁10を経て導入された河川水等の原水は、ポ
ンプ11により昇圧されてUFモジュール12に供給さ
れる。UFモジュール12では、限外瀘過膜の瀘過作用
により濁質成分を除去した透過水を、透過水自動弁13
を通して透過水タンク17に蓄積する。なお、この通常
運転の間、循環経路16を通して原水の流入量に対して
ゼロを越え6倍以下程度の量のクロスフローが行われる
が、透過水量は原水量に等しい。
The operation of this processing system is performed as follows. In normal operation, the permeated water automatic valve 13 is opened, the concentrated water discharge automatic valve 14 and the backwash automatic valve 19 are both closed, and the pump 18 is stopped. In this way, raw water such as river water introduced through the check valve 10 is pressurized by the pump 11 and supplied to the UF module 12. In the UF module 12, the permeated water from which turbidity components have been removed by the filtration action of the ultrafiltration membrane is passed through the permeated water automatic valve 13
And is stored in the permeate tank 17 through. Note that during this normal operation, a cross flow amount of more than zero and about 6 times or less the inflow amount of the raw water is performed through the circulation path 16, but the permeated water amount is equal to the raw water amount.

【0022】逆洗は、例えば30分ないし1時間程度の
定時間間隔で30〜60秒の間行われる。この場合、原
水の供給を停止すると共に透過水自動弁13を閉とし、
洗浄水排出自動弁14および逆洗自動弁19は共に開と
し、ポンプ11を停止状態とし、ポンプ18と薬注ポン
プ22とを運転する。このようにして、透過水タンク1
7に蓄積された透過水の一部を利用してUFモジュール
12に対する逆洗と殺菌が行われ、逆洗により中空糸膜
の内表面からはぎとられた濁質成分は、洗浄水として洗
浄水排出自動弁14を通してシステム外に排出される。
逆洗水量は洗浄水排出水量に等しい。
The backwash is carried out for 30 to 60 seconds at regular time intervals of, for example, 30 minutes to 1 hour. In this case, the raw water supply is stopped and the permeated water automatic valve 13 is closed,
Both the automatic flush water discharge valve 14 and the automatic backwash valve 19 are opened, the pump 11 is stopped, and the pump 18 and the chemical injection pump 22 are operated. In this way, the permeate tank 1
The UF module 12 is backwashed and sterilized by using a part of the permeated water accumulated in 7, and the turbid component stripped off from the inner surface of the hollow fiber membrane by the backwash is discharged as wash water. It is discharged to the outside of the system through the automatic valve 14.
The amount of backwash water is equal to the amount of wash water discharged.

【0023】以上の結果、この例で示すように、UFモ
ジュール12に供給される逆洗用の透過水に殺菌剤注入
経路24から殺菌剤が注入され、逆洗と共にUFモジュ
ール12の透過膜に付着した微生物に対する殺菌処理が
行われる。
As a result of the above, as shown in this example, the bactericide is injected into the permeated water for backwashing supplied to the UF module 12 from the bactericide injection path 24, and the permeable membrane of the UF module 12 is subjected to the backwashing. Sterilization treatment is performed on the attached microorganisms.

【0024】なお濁質成分を含む洗浄水は前記洗浄水排
水自動弁14を通して排出してもよいが、UFモジュー
ルの原水供給経路に分岐して設置した排出経路より排出
してもよい。またUFモジュールの透過水出口(逆洗の
ための透過水入口)経路をUFモジュールの原水側入口
の近傍および非透過水出口の近傍の二個所に設け、その
いずれか一方を使用し、片方を封止しておいてもよい。
その場合、通常運転および逆洗の際一方のみを使用する
場合は、前記非透過水出口に近接した位置に設けられた
ものを使用することが好ましい。
The wash water containing the turbid component may be discharged through the automatic wash water drain valve 14, or may be discharged through a discharge path branched to the raw water supply path of the UF module. In addition, the permeate outlet (permeate inlet for backwashing) path of the UF module is provided at two locations near the raw water side inlet of the UF module and near the non-permeate outlet, and one of them is used, and one of them is used. It may be sealed.
In that case, when only one is used during normal operation and backwashing, it is preferable to use the one provided at a position close to the non-permeate outlet.

【0025】以下、図1の膜浄化装置を用いて行った各
種の測定結果を参照しながら説明する。図2〜5は逆洗
の効果を調べる参考例であり、薬注は行わなかった。図
2は横軸の運転日数、縦軸のフラックスとも称される単
位面積・時間当たりの流量(以下、単に「流束」と略
す、単位はリットル/m2・h、但し25℃、1kg/
cm2換算)変化との関係を示した図で、運転条件とし
ては、UFモジュール12の材質に分画分子量3000
0のポリエーテルスルホンを使用し、膜面積は2.2m
2、平均運転圧は1kg/cm2とした。
Hereinafter, description will be given with reference to various measurement results obtained by using the membrane cleaning apparatus shown in FIG. 2 to 5 are reference examples for examining the effect of backwashing, and no chemical injection was performed. FIG. 2 is a flow rate per unit area / time (also called “flux” on the horizontal axis and flux on the vertical axis (hereinafter, simply referred to as “flux”; the unit is liter / m 2 · h; 25 ° C., 1 kg /
a diagram showing the relationship between cm 2 equivalent) changes, as the operating conditions, fractionation molecular weight material of the UF module 12 3000
Uses 0 polyethersulfone and has a membrane area of 2.2 m
2 and the average operating pressure was 1 kg / cm 2 .

【0026】図2から明らかなように、比較参考例とし
て示すクロスフローなしの通常の全量濾過方式で運転し
た場合(図中、白丸印の曲線イ)には、逆洗を行っても
濁質成分の除去が不十分で目詰りを生じ時間経過と共に
流束の低下が著しい。また1m/secの膜面線速(原
水流入量に対する循環量の倍率約8倍)でクロスフロー
を行う従来法(回収率20%で運転)で、逆洗はなしの
場合(図中、黒三角印の曲線ハ)は、曲線イより流束低
下は改善される。これに対し0.01m/secの遅い
膜面線速(前記循環倍率約0.4倍)でもクロスフロー
を行いながら定周期で逆洗も行う場合(図中、白三角の
曲線ロ)、曲線イよりは流束の低下は抑制される。更
に、逆洗を行いながら0.1m/secの線速(前記循
環倍率約4倍)でクロスフローを行うと(図中、黒丸印
の曲線ニ)、曲線ハよりも流束低下が改善される。この
ような結果から本発明においても、逆洗の効果がより発
揮されることが理解できる。
As is clear from FIG. 2, when the system was operated by the normal total filtration method without cross flow shown as a comparative reference example (curve B marked with a white circle in the figure), the turbidity was backwashed. Incomplete removal of the components causes clogging, resulting in a marked decrease in flux over time. In the conventional method (recovery rate of 20%) in which cross-flow is performed at a membrane surface linear velocity of 1 m / sec (a ratio of the circulation rate to the raw water inflow rate is about 8 times), there is no backwash (black triangle in the figure). In curve c), the flux reduction is improved over curve a. On the other hand, when backwashing is performed at a constant cycle while performing crossflow even at a slow membrane surface linear velocity of 0.01 m / sec (circulation magnification of about 0.4 times) (in the figure, a white triangle curve B), a curve The decrease in flux is suppressed more than in b. Furthermore, when backflow was performed and crossflow was performed at a linear velocity of 0.1 m / sec (circulation ratio of about 4 times) (curve D in the figure with black circles), the decrease in flux was improved over curve C. It From these results, it can be understood that the effect of backwashing is exerted even in the present invention.

【0027】図3は運転日数(横軸)と流束(縦軸、1
5℃で測定)との関係に及ぼす回収率の影響を示した図
で、運転条件としては、UFモジュール12の材質に酢
酸セルロースを使用し、膜面積は1.3m2、平均運転
圧は1kg/cm2、原水の流入量は100リットル/
h、膜循環水量は300リットル/h、逆洗圧は1.5
kg/cm2とした。回収率を98%とすると、これは
逆洗時に排出される洗浄水中の濁質成分は50倍程度に
濃縮されることを意味し、回収率を95%とすると、こ
れは逆洗時に排出される洗浄水の濁質成分は20倍程度
に濃縮されることを意味する。回収率を高め、逆洗時に
排出される洗浄水中の濁質成分の濃度を高めて排水量を
少なくすることがより好ましいが、回収率を上げると流
束低下が早まるので、バランス上回収率はある限界値を
定めてこの値に維持することが必要であり、図3より、
回収率は95%程度が好ましいことがわかる。この値は
図7で説明した方式に比べて、濃縮水として無駄に排出
される水量が大幅に少なくて済むことを表わしている。
FIG. 3 shows operating days (horizontal axis) and flux (vertical axis, 1
(Measured at 5 ° C.) showing the influence of the recovery rate on the relationship. As the operating conditions, cellulose acetate was used as the material of the UF module 12, the membrane area was 1.3 m 2 , and the average operating pressure was 1 kg. / Cm 2 , inflow rate of raw water is 100 liters /
h, membrane circulating water amount is 300 liters / h, backwash pressure is 1.5
It was set to kg / cm 2 . When the recovery rate is 98%, this means that the turbidity components in the wash water discharged during backwashing are concentrated about 50 times, and when the recovery rate is 95%, this is discharged during backwashing. It means that the suspended components of the washing water are concentrated about 20 times. It is more preferable to increase the recovery rate and increase the concentration of turbid components in the wash water discharged during backwashing to reduce the amount of wastewater, but increasing the recovery rate accelerates the decline in flux, so there is a recovery rate on balance. It is necessary to set a limit value and maintain this value.
It can be seen that the recovery rate is preferably about 95%. This value represents that the amount of waste water discharged as concentrated water can be significantly reduced as compared with the method described in FIG.

【0028】図4は運転日数(横軸)と流束(縦軸、1
5℃で測定)との関係に及ぼす逆洗圧の影響を示した図
で、運転条件としては、UFモジュール12の材質に酢
酸セルロースを使用し、膜面積は1.3m2、平均運転
圧は1kg/cm2、原水の流入量は100リットル/
h、膜循環水量は300リットル/h、回収率は94〜
95%とした。本結果により、逆洗圧は高いほうが流束
の経時的低下が低く、しかも平均運転圧より高い方が良
いことが理解できる。逆洗圧は1.5kg/cm 2程度
が最適で、1.3kg/cm2程度でも十分な効果が期
待でき、従って平均運転圧の1.3倍以上とするのが好
ましい。
FIG. 4 shows operating days (horizontal axis) and flux (vertical axis, 1
Figure showing the effect of backwash pressure on the relationship with (measured at 5 ° C)
The operating condition is that the material of the UF module 12 is vinegar.
Using acid cellulose, membrane area is 1.3m2, Average driving
Pressure is 1kg / cm2, The inflow of raw water is 100 liters /
h, membrane circulating water amount is 300 liters / h, recovery rate is 94-
It was set to 95%. According to this result, the higher the backwash pressure, the higher the flux.
It is better that the decrease over time is lower and that it is higher than the average operating pressure.
I can understand that Backwash pressure is 1.5 kg / cm 2degree
Is best, 1.3kg / cm2Sufficient effect is expected
It is possible to wait, so it is preferable to make it 1.3 times or more the average operating pressure.
Good

【0029】図5は、運転日数(横軸)とUFモジュー
ル12の膜素材による流束(縦軸、15℃で測定)の変
化との関係を示した図である。運転条件としては、UF
モジュール12の平均運転圧は1kg/cm2、原水の
流入量は100リットル/h、膜循環水量は300リッ
トル/h、逆洗圧は1.0kg/cm2とした。図から
明らかなように、分画分子量150000の酢酸セルロ
ース(CA)が最も流束が大きく、経時的低下も低いこ
とが理解できる。
FIG. 5 is a diagram showing the relationship between the number of operating days (horizontal axis) and the change in the flux (vertical axis, measured at 15 ° C.) depending on the membrane material of the UF module 12. The operating conditions are UF
The average operating pressure of the module 12 was 1 kg / cm 2 , the inflow rate of raw water was 100 liter / h, the membrane circulating water rate was 300 liter / h, and the backwash pressure was 1.0 kg / cm 2 . As is clear from the figure, it can be understood that cellulose acetate (CA) having a cut-off molecular weight of 150,000 has the highest flux and the decrease with time is also low.

【0030】図6は運転日数(横軸)と殺菌剤の注入に
よる流束(縦軸、単位はリットル/m2・h、但し25
℃、1kg/cm2換算)の変化の関係を示した図であ
る。ここでは、殺菌剤として塩素を5ppm(有効塩
素)注入した場合であり(図中の黒丸印)、塩素を注入
せずに逆洗のみを行った場合(白丸印)に比べて透過水
流束の低下が小さくなることが理解できる。ここで、殺
菌剤を透過水タンク17において注入することも考えら
れるが、逆洗は一回あたり30秒程度であるので、殺菌
剤を常時注入するのは無駄があり、しかも殺菌剤の濃度
も調整しにくい。従って、図1に示すように、逆洗経路
とは別に殺菌剤の注入経路を設けるのが好ましい。ま
た、殺菌剤として次亜塩素酸ソーダを使用すると、ある
程度の膜の洗浄効果も期待できる。
FIG. 6 shows the number of operating days (horizontal axis) and the flux by injection of the bactericide (vertical axis, unit: liter / m 2 · h, where 25
It is the figure which showed the relationship of the change of (degreeC, 1kg / cm < 2 > conversion). Here, chlorine is injected at 5 ppm (effective chlorine) as a bactericide (black circle in the figure), and the permeated water flux is higher than that in the case where only backwashing is performed without chlorine injection (white circle). It can be understood that the decrease is small. Here, it is possible to inject the disinfectant in the permeated water tank 17, but since backwashing is about 30 seconds each time, it is useless to inject the disinfectant all the time, and the concentration of the disinfectant is also high. It is difficult to adjust. Therefore, as shown in FIG. 1, it is preferable to provide a path for injecting a bactericide separately from the backwash path. Further, when sodium hypochlorite is used as a bactericide, a certain degree of membrane cleaning effect can be expected.

【0031】以上、本発明の実施例を説明してきたが、
本発明は表流水のみならず各種の水に適用できることは
いうまでも無い。また、本発明の濾過膜モジュールの洗
浄方法によれば、濾過膜を殺菌しつつ濁質成分の除去に
特に効果を発揮するが、イオンなどの溶解性物質や低分
子有機物を除去するためには、前述した活性炭処理シス
テムやオゾン処理システムを付加することが好ましい。
勿論、従来の浄水処理システムに追加するかたちで利用
することも出来、この場合大きな増設スペースを必要と
しない利点がある。
The embodiment of the present invention has been described above.
It goes without saying that the present invention can be applied not only to surface water but also to various kinds of water. Further, according to the method for cleaning the filtration membrane module of the present invention, it is particularly effective in removing suspended components while sterilizing the filtration membrane, but in order to remove soluble substances such as ions and low molecular weight organic substances. It is preferable to add the above-mentioned activated carbon treatment system or ozone treatment system.
Of course, it can be used by adding it to the conventional water purification system, and in this case, there is an advantage that a large additional space is not required.

【0032】[0032]

【発明の効果】以上UFモジュールを例に説明してきた
ように、本発明によれば瀘過膜に対する殺菌処理も行う
ことにより、微生物による瀘過膜の破損も防止しつつ全
量瀘過に近い方式で水の膜浄化を行うので、濾過膜を長
期間使用でき、かつ無駄に排出される水量が非常に少な
い。しかも、本発明を適用した装置は従来のような凝集
槽や沈澱槽を必要としない省スペースタイプで設置も容
易であり、使用するUFモジュール又は精密瀘過膜モジ
ュールに対するクロスフロー量(循環量)も従来方式に
比べてはるかに少なくて済むので、原水を供給しかつク
ロスフローを行うためのポンプも大容量のものを必要と
せず小型のものでもよく、ポンプの電力消費量を大幅に
減らすことができる。
As described above by taking the UF module as an example, according to the present invention, by performing sterilization treatment on the filtration membrane as well, it is possible to prevent damage to the filtration membrane by microorganisms and to close the total amount of filtration. Since the water membrane is purified by, the filtration membrane can be used for a long period of time, and the amount of wastefully discharged water is extremely small. Moreover, the apparatus to which the present invention is applied is a space-saving type that does not require a coagulation tank or a sedimentation tank as in the past, and can be easily installed, and the crossflow amount (circulation amount) with respect to the UF module or precision filtration membrane module used Since it requires much less than the conventional method, the pump for supplying the raw water and performing the cross flow does not need to have a large capacity and can be a small one, which can significantly reduce the power consumption of the pump. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による濾過膜モジュールの洗浄方法を
実施するための浄化装置の構成を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a purification device for carrying out a method for cleaning a filtration membrane module according to the present invention.

【図2】 図1に示された構成において、各種条件を設
定して運転した場合の運転日数と流束変化との関係を示
した図である。
FIG. 2 is a diagram showing the relationship between the number of operating days and the change in flux when the system is operated under various conditions in the configuration shown in FIG.

【図3】 図1に示された構成において、各種条件を設
定して運転した場合の運転日数と回収率との関係を示し
た図である。
FIG. 3 is a diagram showing the relationship between the number of operating days and the recovery rate when various conditions are set for operation in the configuration shown in FIG. 1.

【図4】 図1に示された構成において、各種条件を設
定して運転した場合の運転日数と逆洗圧との関係を示し
た図である。
FIG. 4 is a diagram showing the relationship between the number of operating days and the backwash pressure in the configuration shown in FIG. 1 when operating under various conditions.

【図5】 図1に示された構成において、各種条件を設
定して運転した場合の運転日数とUFモジュール12の
膜素材による流束の変化との関係を示した図である。
5 is a diagram showing the relationship between the number of operating days and changes in the flux due to the membrane material of the UF module 12 when various conditions are set for operation in the configuration shown in FIG.

【図6】 図1に示された構成において、運転日数と殺
菌剤の注入による流束の変化の関係を示した図である。
FIG. 6 is a diagram showing the relationship between the number of operating days and the change in flux due to injection of a bactericide in the configuration shown in FIG.

【図7】 UFモジュール利用による従来の濾過膜モジ
ュールの洗浄方法を実施するための構成を示す模式図で
ある。
FIG. 7 is a schematic diagram showing a configuration for carrying out a conventional method for cleaning a filtration membrane module using a UF module.

【符号の説明】[Explanation of symbols]

10、23、30 逆止弁 11、18、31 ポンプ 12、32 UFモジュール 13、33 透過水自動弁 14、34 濃縮水排出自動弁 17 透過水タンク 19 逆洗自動弁 21 薬剤タンク 22 薬注ポンプ 24 殺菌剤注入経路24 10,23,30 Check valve 11, 18, 31 pumps 12, 32 UF module 13, 33 Permeate water automatic valve 14, 34 Concentrated water discharge automatic valve 17 Permeate water tank 19 Backwash automatic valve 21 drug tank 22 Dosing pump 24 Bactericide injection route 24

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 H ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/44 C02F 1/44 H

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水を限外または精密瀘過膜モジュールを
用いてクロスフロー瀘過により浄化しながら濾過膜モジ
ュールを洗浄する方法において、原水供給ポンプを循環
ポンプと兼用し、通常運転においては原水流入量に対し
循環量がゼロを越え6倍以下で、かつ膜面線速が0.0
05〜0.5m/secでクロスフローを行いながら全
量瀘過し、前記瀘過膜モジュールの逆洗に際しては、前
記濾過膜モジュールからの透過水または別途供給される
清浄水により、圧力制御またはあらかじめ定められた周
期で所定圧で間欠的に行い、かつ該逆洗時に前記瀘過膜
モジュールに供給する前記透過水または清浄水には殺菌
剤を含有させることを特徴とする濾過膜モジュールの洗
浄方法。
1. In a method for cleaning a filtration membrane module while purifying water by ultraflow or ultrafiltration membrane module by cross-flow filtration, the raw water supply pump is also used as a circulation pump, and the raw water is used in normal operation. The circulation rate is more than zero and less than 6 times the inflow rate, and the membrane surface linear velocity is 0.0
The entire amount is filtered while performing a cross flow at 05 to 0.5 m / sec, and when backwashing the filtration membrane module, pressure control or pre-treatment is performed with permeated water from the filtration membrane module or clean water separately supplied. A method for cleaning a filtration membrane module, characterized in that the permeated water or clean water supplied to the filtration membrane module at the time of the backwash is intermittently carried out at a predetermined cycle at a predetermined pressure and contains a bactericide. .
【請求項2】 請求項1記載の濾過膜モジュールの洗浄
方法において、前記水が表流水であることを特徴とする
濾過膜モジュールの洗浄方法。
2. The method for cleaning a filtration membrane module according to claim 1, wherein the water is surface water.
【請求項3】 請求項1に記載の濾過膜モジュールの洗
浄方法において、前記濾過膜モジュールは、その膜材質
が酢酸セルロースであることを特徴とする濾過膜モジュ
ールの洗浄方法。
3. The method for cleaning a filtration membrane module according to claim 1, wherein the membrane material of the filtration membrane module is cellulose acetate.
【請求項4】 請求項1に記載の濾過膜モジュールの洗
浄方法において、前記瀘過膜モジュールは中空糸型であ
り、かつクロスフロー瀘過は内圧方式であることを特徴
とする濾過膜モジュールの洗浄方法。
4. The method for cleaning a filtration membrane module according to claim 1, wherein the filtration membrane module is a hollow fiber type, and the cross flow filtration is an internal pressure system. Cleaning method.
【請求項5】 請求項1に記載の濾過膜モジュールの洗
浄方法において、透過水の流量をP、逆洗水の排出量を
Cとしたときの回収率、100×(P−C)/P(%)
を実質的に90%以上99%以下とすることを特徴とす
る濾過膜モジュールの洗浄方法。
5. The method for cleaning a filtration membrane module according to claim 1, wherein the flow rate of permeate is P and the discharge amount of backwash water is C, the recovery rate is 100 × (P−C) / P. (%)
Is substantially 90% or more and 99% or less, a method for cleaning a filtration membrane module.
【請求項6】 請求項1に記載の濾過膜モジュールの洗
浄方法において、前記逆洗時の前記所定圧は,前記通常
運転時の運転圧の実質上1.0倍以上3倍以下であるこ
とを特徴とする濾過膜モジュールの洗浄方法。
6. The method for cleaning a filtration membrane module according to claim 1, wherein the predetermined pressure during the backwash is substantially 1.0 times or more and 3 times or less the operating pressure during the normal operation. A method for cleaning a filtration membrane module, comprising:
【請求項7】 請求項1に記載の濾過膜モジュールの洗
浄方法において、前記殺菌剤は、次亜塩素酸ソーダ、塩
素、過酸化水素およびオゾンから選ばれる酸化性殺菌剤
であることを特徴とする濾過膜モジュールの洗浄方法。
7. The method for cleaning a filtration membrane module according to claim 1, wherein the germicide is an oxidizing germicide selected from sodium hypochlorite, chlorine, hydrogen peroxide and ozone. A method for cleaning a filtration membrane module.
JP2002166370A 2002-06-06 2002-06-06 Cleaning method for membrane filter module Expired - Lifetime JP3986370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166370A JP3986370B2 (en) 2002-06-06 2002-06-06 Cleaning method for membrane filter module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166370A JP3986370B2 (en) 2002-06-06 2002-06-06 Cleaning method for membrane filter module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05148293A Division JP3359687B2 (en) 1993-02-17 1993-02-17 Cleaning method for filtration membrane module

Publications (2)

Publication Number Publication Date
JP2003033630A true JP2003033630A (en) 2003-02-04
JP3986370B2 JP3986370B2 (en) 2007-10-03

Family

ID=19195048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166370A Expired - Lifetime JP3986370B2 (en) 2002-06-06 2002-06-06 Cleaning method for membrane filter module

Country Status (1)

Country Link
JP (1) JP3986370B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029951A (en) * 2013-08-02 2015-02-16 アクア化学株式会社 Cleaning system and purifier of cleaning liquid
CN105417680A (en) * 2015-11-14 2016-03-23 常州大学 MBR capable of performing automatic back flush on membrane modules
CN107261852A (en) * 2017-08-18 2017-10-20 北京博大水务有限公司 A kind of cleaning equipment and cleaning method of iron pollution micro-filtration/milipore filter
CN109603554A (en) * 2019-01-28 2019-04-12 深圳市亿霖环保科技有限公司 A kind of electroplate liquid intelligent filtering device
CN110314555A (en) * 2019-07-26 2019-10-11 东莞东元环境科技股份有限公司 A kind of cleaning agent and cleaning method of the liquid filter that develops

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029951A (en) * 2013-08-02 2015-02-16 アクア化学株式会社 Cleaning system and purifier of cleaning liquid
CN105417680A (en) * 2015-11-14 2016-03-23 常州大学 MBR capable of performing automatic back flush on membrane modules
CN107261852A (en) * 2017-08-18 2017-10-20 北京博大水务有限公司 A kind of cleaning equipment and cleaning method of iron pollution micro-filtration/milipore filter
CN109603554A (en) * 2019-01-28 2019-04-12 深圳市亿霖环保科技有限公司 A kind of electroplate liquid intelligent filtering device
CN110314555A (en) * 2019-07-26 2019-10-11 东莞东元环境科技股份有限公司 A kind of cleaning agent and cleaning method of the liquid filter that develops
CN110314555B (en) * 2019-07-26 2022-01-04 东莞东元环境科技股份有限公司 Cleaning agent and cleaning method for developing solution filter

Also Published As

Publication number Publication date
JP3986370B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP2724673B2 (en) Surface water purification method and device therefor
JP3194684B2 (en) Natural water membrane purification method
JP2005087887A (en) Membrane washing method
JPH1015365A (en) Method for cleaning membrane
JP3338505B2 (en) Method for membrane purification of surface water with improved recovery rate and method of operating the same
JPH06238136A (en) Method for washing filter membrane module
JP2002361054A (en) Method for washing membrane filtration apparatus
JP4318518B2 (en) Water purification treatment method and water purification treatment system
JP2003033630A (en) Method for washing filtration membrane module
JP3395846B2 (en) Water membrane purification method and method of operating the same
JP3194679B2 (en) Cleaning method for filtration membrane module
JPH09220449A (en) Membrane separation device
JP3454900B2 (en) Water purification system and its operation method
JP2007301469A (en) Water treatment method
JP3609470B2 (en) Water purification method and purification device
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP4304803B2 (en) Water treatment apparatus cleaning method and water treatment apparatus
JP3856376B2 (en) Water treatment device and its operation method
JPH06238135A (en) Permeated flux recovery method for hollow fiber filter membrane module
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
JP3880251B2 (en) Backwash method for submerged membrane separator
JP3514821B2 (en) Operating method of water purification system
JP3268876B2 (en) How to purify river or lake water
JP3514828B2 (en) Operation method of water purification system and water purification device
JPH11277062A (en) Method and apparatus for producing purified water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050315

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050506

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350