JP2003033618A - Adsorption cylinder for pressure swing adsorption and separation, and pressure swing adsorption separator - Google Patents

Adsorption cylinder for pressure swing adsorption and separation, and pressure swing adsorption separator

Info

Publication number
JP2003033618A
JP2003033618A JP2002161385A JP2002161385A JP2003033618A JP 2003033618 A JP2003033618 A JP 2003033618A JP 2002161385 A JP2002161385 A JP 2002161385A JP 2002161385 A JP2002161385 A JP 2002161385A JP 2003033618 A JP2003033618 A JP 2003033618A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
cylinder
pressure
pressure fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161385A
Other languages
Japanese (ja)
Other versions
JP3884328B2 (en
Inventor
Yasuo Tatsumi
泰郎 巽
Masahito Kawai
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2002161385A priority Critical patent/JP3884328B2/en
Publication of JP2003033618A publication Critical patent/JP2003033618A/en
Application granted granted Critical
Publication of JP3884328B2 publication Critical patent/JP3884328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorption cylinder having an optimum shape to an adsorbent with a specific dimension and shape capable of reducing the unit requirement of power when adsorbing and separating oxygen in air by an oxygen PSA, and a pressure swing adsorption separator excellent in pressure swing adsorption separation performance. SOLUTION: In the adsorption cylinder with an adsorbent for separately collecting oxygen in air by the pressure swing adsorption separating method, the size of the adsorbent is set so that the superficial velocity u [m/s] is in a range of ±25% of u=0.07a+0.095 where a [mm] is the diameter when the adsorbent is spherical or the equivalent diameter when the adsorbent is columnar, elliptic spherical or elliptic columnar. In particular, the adsorbent used in an adsorbent tower preferably contains at least 70% of adsorbent particles with the particle size distribution in a range between 12 mesh to 20 mesh, or the diameter or the equivalent diameter (a) of the adsorbent is preferably in a range of 1.0±0.2 mm when the particle size distribution of the adsorbent is measured by Tyler standard sieve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧力変動吸着分離
用吸着筒及び圧力変動吸着分離装置に関するものであっ
て、詳しくは、圧力変動吸着分離法により空気中の酸素
を分離採取するために使用する吸着剤のサイズに対応し
た最適条件で圧力変動吸着分離法を実施することができ
る吸着筒の形状、及び、この吸着筒を使用した圧力変動
吸着分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption column for pressure fluctuation adsorption separation and a pressure fluctuation adsorption separation device, and more particularly, it is used for separating and collecting oxygen in air by a pressure fluctuation adsorption separation method. The present invention relates to the shape of an adsorption cylinder capable of performing a pressure fluctuation adsorption separation method under optimum conditions corresponding to the size of an adsorbent, and a pressure fluctuation adsorption separation device using this adsorption cylinder.

【0002】[0002]

【従来の技術】圧力変動吸着分離法(PSA)により、
多成分混合ガスを原料ガスとし、目的成分ガスを分離採
取するための主たる操作は、原料ガスを加圧した後、吸
着剤を充填した吸着筒に導入し、吸着剤に原料ガスを接
触させて原料ガス中の易吸着成分を選択的に吸着させる
とともに、難吸着成分を分離回収する吸着操作と、吸着
筒の圧力を減圧し、易吸着成分を吸着している吸着剤か
ら易吸着成分を脱着させ、吸着剤を再生する再生操作と
により行われている。
2. Description of the Related Art By pressure fluctuation adsorption separation method (PSA),
The main operation for separating and collecting the target component gas using the multi-component mixed gas as the source gas is to pressurize the source gas, then introduce it into the adsorption column filled with the adsorbent, and contact the source gas with the adsorbent. An adsorption operation that selectively adsorbs easily adsorbed components in the raw material gas, separates and collects difficultly adsorbed components, and reduces the pressure in the adsorption column to desorb the easily adsorbed components from the adsorbent that adsorbs the easily adsorbed components. And a regeneration operation for regenerating the adsorbent.

【0003】上記再生操作の方法は、大きく二つに分け
られ、一つは吸着筒を大気圧以下まで減圧して行う方法
(真空再生法)と、大気圧程度まで減圧して行う方法
(常圧再生法)とがある。真空再生法での吸着操作は、
原料ガスの圧縮動力を小さくするため、比較的大気圧に
近い圧力条件で行われることが多く、大容量の製品ガス
発生に適している。一方、常圧再生法では、再生操作が
大気圧で行われるので、吸着圧力と大気圧との圧力差を
十分とるために吸着圧力を高く設定する必要があり、原
料ガスの圧縮動力は多くなるが、真空ポンプや製品ガス
圧縮機を必要としないので、少容量の製品ガスを発生す
る際に多く使用されている。特に、原料ガスを空気と
し、製品ガスを酸素としたとき、医療用等で少量の製品
酸素が若干の圧力を持っていることが供給上都合がよい
場合等に用いられることが多い。
The method of the above-mentioned regeneration operation is roughly divided into two, one is a method of reducing the pressure of the adsorption column to atmospheric pressure or less (vacuum regeneration method) and the other is a method of reducing the pressure to atmospheric pressure (normally). There is a pressure regeneration method). The adsorption operation by the vacuum regeneration method is
In order to reduce the compression power of the raw material gas, it is often performed under a pressure condition relatively close to the atmospheric pressure, which is suitable for generating a large volume of product gas. On the other hand, in the normal pressure regeneration method, since the regeneration operation is performed at atmospheric pressure, it is necessary to set the adsorption pressure high in order to obtain a sufficient pressure difference between the adsorption pressure and the atmospheric pressure, and the compression power of the raw material gas increases. However, since it does not require a vacuum pump or a product gas compressor, it is often used when generating a small amount of product gas. In particular, when the source gas is air and the product gas is oxygen, it is often used for medical purposes or the like when it is convenient for supply that a small amount of product oxygen has a slight pressure.

【0004】また、圧力変動吸着分離法に用いられる装
置の構成は、原料ガス圧縮機と、少なくとも一つの吸着
筒と、製品槽と、必要に応じて設けられる吸着剤再生用
の真空ポンプや製品ガスの圧送機とを備えるとともに、
これらの機器を連結する分離プロセスに対応した配管と
により形成されている。さらに、圧力変動吸着分離装置
では、コンピューター、シーケンサー等の制御機器を用
いて、予め入力された分離プロセスのプログラムに従っ
て電気信号を出力し、自動切換え弁の開閉を制御し、前
述の吸着・再生の操作を繰り返すことにより製品である
ガスが分離回収される。
The apparatus used in the pressure fluctuation adsorption separation method is composed of a raw material gas compressor, at least one adsorption column, a product tank, and a vacuum pump or a product for adsorbent regeneration provided as necessary. With a gas pump,
It is formed by a pipe corresponding to a separation process for connecting these devices. Furthermore, in the pressure fluctuation adsorption separation device, a control device such as a computer and a sequencer is used to output an electric signal in accordance with a program of the separation process input in advance to control the opening and closing of the automatic switching valve to control the adsorption / regeneration described above. By repeating the operation, the product gas is separated and collected.

【0005】このような圧力変動吸着分離法で用いられ
る吸着剤には、例えば空気から酸素を製品として得る場
合は、吸着除去すべき対象成分が窒素であるため、窒素
を選択的に吸着する吸着剤としてゼオライトを使用して
いる。このゼオライトとしては、例えば、Ca−A型、
Na−X型、Ca−X型、Ba−X型が好適である。最
近は、Na−X型のNaイオンを種々のイオンで交換し
たゼオライト、特にLiイオンで交換したゼオライトL
i−X型が広く用いられている。
In the adsorbent used in such a pressure fluctuation adsorption separation method, for example, when oxygen is obtained as a product from air, the target component to be adsorbed and removed is nitrogen, so that the adsorbent selectively adsorbs nitrogen. Zeolite is used as an agent. As this zeolite, for example, Ca-A type,
Na-X type, Ca-X type, and Ba-X type are preferable. Recently, zeolites in which Na-X type Na ions are exchanged with various ions, particularly zeolite L in which Li ions are exchanged
The i-X type is widely used.

【0006】また、圧力変動吸着分離装置の一般的設計
法に関しては、A.I.LaCava等の文献、CHE
MICAL ENGINEERING/JUNE 19
98,pp.110−118がある。この文献では、圧
力変動吸着分離装置の構成機器の設計法について詳細に
説明しているが、圧力変動吸着分離プロセスの開発は、
小型装置による実験から始まるとし、小型実験で得られ
る性能は工業規模装置より高めの値を与えるので、リス
ク回避の一つの方法は、中間規模のパイロット装置を作
ることであると記載している。続けて、「パイロット装
置の筒高さは必要とされる実装置規模と同等とすべきで
ある。一般的には2m程度である。」と言う記述があ
る。この文献に述べられているように、一般的な吸着筒
の設計方法として、実装置の吸着筒の大きさは、以下の
ようにして決められている。
Regarding the general design method of the pressure fluctuation adsorption separation device, see A. I. References such as LaCava, CHE
MICAL ENGINEERING / JUNE 19
98, pp. 110-118. This document describes in detail the method of designing the components of the pressure swing adsorption separation device.
Starting with an experiment with a small device, the performance obtained in the small experiment gives a higher value than that of an industrial-scale device, so one method of risk avoidance is described to be to make an intermediate-scale pilot device. Subsequently, there is a statement that "the cylinder height of the pilot device should be equal to the required actual device scale. Generally, it is about 2 m." As described in this document, as a general suction cylinder design method, the size of the suction cylinder of the actual device is determined as follows.

【0007】まず、用いる吸着剤を決めて小型装置での
実験、パイロット装置での実験を行い、用いた吸着剤重
量当たり(容積当たりでも良い)の製品量を求める。次
に、実装置で必要とされる製品量を前項の吸着剤量当た
り発生製品量で割ると、必要とする吸着剤重量(あるい
は吸着剤容積)が求められる。そして、吸着筒の充填高
さを実験と同一とすると、「吸着剤重量=吸着剤充填容
積×吸着剤充填密度」という関係から、吸着筒の直径が
求められる。上記方法により、過去様々な種類の吸着剤
を用いた圧力変動吸着分離法による装置設計が行われて
きた。
First, the adsorbent to be used is determined and an experiment in a small device and an experiment in a pilot device are performed to obtain the product amount per weight of adsorbent used (or per volume). Next, the required adsorbent weight (or adsorbent volume) is determined by dividing the product amount required in the actual device by the product amount generated per adsorbent amount in the preceding paragraph. Then, assuming that the filling height of the adsorption cylinder is the same as in the experiment, the diameter of the adsorption cylinder can be obtained from the relationship of “adsorbent weight = adsorbent filling volume × adsorbent filling density”. By the above method, device design by pressure fluctuation adsorption separation method using various kinds of adsorbents has been performed in the past.

【0008】また、ここで用いられる吸着剤の形状も様
々である。特に、吸着剤の粒径は、一般的には1/16
インチサイズ、1/8インチサイズのペレットや、8〜
12メッシュのビーズ等が多く採用されているが、更に
小さい粒径の吸着剤も用いられていた。通常、大きい吸
着剤粒子を用いた場合は、吸着剤充填層の圧力損失は小
さいが、吸着剤内部への吸着分子の拡散経路が長くなる
ため、総括の物質移動係数は小さくなる。
The shape of the adsorbent used here is also various. In particular, the particle size of the adsorbent is generally 1/16
Inch size, 1/8 inch size pellets, 8 ~
Many 12 mesh beads and the like were used, but an adsorbent having a smaller particle size was also used. Usually, when large adsorbent particles are used, the pressure loss of the adsorbent packed bed is small, but the diffusion path of the adsorbed molecules inside the adsorbent becomes long, so the overall mass transfer coefficient becomes small.

【0009】一方、相対的に小さい吸着剤粒子を用いた
場合は、吸着剤充填層の圧力損失は大きいが、物質移動
係数は大きくなるという傾向を持つとされている。吸着
剤充填層の圧力損失は、原料空気の供給にあたって大き
い動力を必要とすることになり、また、物質移動係数の
大きさは、いわゆる吸着帯長さ(Mass Trans
fer Zone)に関係するため、必要とする吸着剤
量に関わってくる。さらに、真空再生を行う場合は、吸
着筒下部の圧力と上部の圧力とに差ができ、吸着筒内の
場所毎に吸着剤の再生程度が異なるという問題が発生す
る。
On the other hand, when relatively small adsorbent particles are used, it is said that the mass transfer coefficient tends to be large although the pressure loss of the adsorbent packed bed is large. The pressure loss of the adsorbent-packed bed requires a large amount of power to supply the raw material air, and the magnitude of the mass transfer coefficient depends on the so-called adsorption band length (Mass Trans).
Since it is related to the fer zone, it is related to the amount of adsorbent required. Further, when performing vacuum regeneration, there is a problem in that the pressure in the lower part of the adsorption cylinder and the pressure in the upper part of the adsorption cylinder are different, and the degree of regeneration of the adsorbent varies depending on the location in the adsorption cylinder.

【0010】このため、用いる吸着剤粒子径をいかなる
寸法、形状にするかは、吸着装置設計にとって大きい問
題であったが、様々な寸法、形状の吸着剤を、どのよう
に使い分けるかについての定量的な指針が従来は無かっ
た。そこで、効率的な吸着装置の設計、すなわち、吸着
剤使用量を最少とし、かつ、圧力変動吸着分離装置とし
ての性能をいかに良くするか、特に、電力原単位に優れ
た装置とするための方法が種々工夫されている。
For this reason, what size and shape of the adsorbent particle size to be used has been a big problem for the design of the adsorbing device, but it is necessary to quantify how to use the adsorbent of various sizes and shapes. In the past, there was no specific guideline. Therefore, a method for designing an efficient adsorption device, that is, how to minimize the amount of adsorbent used and how to improve the performance as a pressure fluctuation adsorption separation device, in particular, a method for making the device excellent in electric power consumption rate Have been devised in various ways.

【0011】例えば、分離技術11巻5号p11〜17
(1981)では、ガス中の水分除去を例として、小粒
径吸着剤と大粒径吸着剤との組み合わせを提案してい
る。この場合、上流側に大粒径、下流側に小粒径の吸着
剤をそれぞれ配置することにより、上流側での圧力損失
を小さくできるとともに、下流側での吸着帯の幅(長
さ)を小さくできるということが述べられている。すな
わち、大粒径吸着剤のみを用いた場合の、圧力損失は小
さいが吸着剤使用量は多いという問題と、小粒径吸着剤
のみを用いた場合の、圧力損失は大きいが吸着剤使用量
は少ないという問題とを、小粒径吸着剤と大粒径吸着剤
とを組み合わせることで融和、調和し、それぞれの粒径
の吸着剤が持つ相反する問題の解決を図っている。しか
し、吸着剤層床の厚さについては、充填層の圧力損失に
関するエルガンの式を示し、粒子径と共に充填空隙率が
重要との指摘をしているのみであり、動力的に最少とな
る大粒径吸着剤、小粒径吸着剤の積み方は示唆されてい
ない。
For example, Separation Technology Vol. 11, No. 5, p. 11 to 17
(1981) proposes a combination of a small particle size adsorbent and a large particle size adsorbent, taking removal of water in a gas as an example. In this case, by disposing an adsorbent with a large particle size on the upstream side and an adsorbent with a small particle size on the downstream side, it is possible to reduce the pressure loss on the upstream side and reduce the width (length) of the adsorption zone on the downstream side. It is stated that it can be made smaller. That is, when using only a large particle size adsorbent, the pressure loss is small but the amount of adsorbent used is large, and when only the small particle size adsorbent is used, the pressure loss is large but the amount of adsorbent used is large. By combining a small particle size adsorbent and a large particle size adsorbent, the problem of being small is integrated and harmonized, and the contradictory problems of the adsorbents having respective particle sizes are solved. However, regarding the thickness of the bed of the adsorbent layer, the Elghan's equation regarding the pressure loss of the packed bed is shown, and it is only pointed out that the packed porosity is important together with the particle size. How to stack particle size adsorbents and small particle size adsorbents is not suggested.

【0012】一方、特開平11−179132号公報に
は、従来技術として、過去の圧力変動吸着分離法に関す
る特許の中から、用いる吸着剤粒子径とそのときの吸着
剤層床の厚さ、更に、圧力変動吸着分離操作のサイクル
時間とを開示した多くの例を挙げ、同じ直径の粒子につ
いて、床の厚さは互いにかなり異なり、正確に選定でき
ないこと、吸着筒内の死容積による形状的束縛が考慮さ
れていないことを指摘している。
On the other hand, Japanese Patent Application Laid-Open No. 11-179132 discloses, as a conventional technique, a particle size of an adsorbent to be used and a thickness of a bed of an adsorbent layer at that time, among patents relating to a pressure fluctuation adsorption separation method in the past. , The cycle time of the pressure fluctuation adsorption separation operation was given, and for the particles of the same diameter, the bed thicknesses were significantly different from each other and could not be selected accurately, and the geometrical constraint due to the dead volume in the adsorption cylinder Point out that is not considered.

【0013】その上で、同公報には、吸着剤層床の厚さ
が吸着剤が球状であるときは、実質的に直径のみに依存
し、死容積の形状的束縛を考慮して圧力変動吸着分離法
のエネルギー消費にマイナスの影響を持たないような圧
力変動吸着分離法を提供すると述べて、吸着剤粒度と吸
着剤層床の厚さとの関係を開示し、吸着剤層床の好適な
範囲、吸着剤粒度の好適な範囲を示している。しかし、
与えられた関係式では変数が2個あり、粒子径を決めて
も不等式の範囲内で通常用いられるような床厚さが幅広
く示されるのみであって、この径を持つ粒子が最も性能
を良くするというようなことは述べられていない。
Further, in the publication, when the thickness of the bed of the adsorbent layer is spherical, the pressure fluctuation substantially depends only on the diameter, and the shape fluctuation of the dead volume is taken into consideration. Disclosed is to provide a pressure fluctuation adsorption separation method that does not have a negative effect on the energy consumption of the adsorption separation method, discloses the relationship between the adsorbent particle size and the thickness of the adsorbent layer bed, and a suitable adsorbent layer bed The range and the suitable range of the adsorbent particle size are shown. But,
There are two variables in the given relational expression, and even if the particle size is determined, only the bed thickness that is usually used within the range of the inequality is widely shown, and particles with this size give the best performance. There is no mention of doing so.

【0014】また、圧力変動吸着分離法に用いられる吸
着塔の設計に関して、用いる吸着剤の種類は、吸着剤メ
ーカーから購入できるものの中から、静的/動的吸着性
能を考慮して決定されるが、酸素を採取する圧力変動吸
着分離装置に用いられる吸着剤の粒子径として、該装置
の性能を最も高めることができるもの、すなわち、電力
原単位を低くすることができる粒子径はどのようなもの
であるか、このような吸着剤をどのようなガス流速の元
で使用すべきか、そのときの充填高さをいかにすべき
か、については、先のLaCava等の文献が示すよう
に、実験を基準として決めるほかに手段が無く、技術的
改善が求められていた。
Regarding the design of the adsorption tower used in the pressure fluctuation adsorption separation method, the type of the adsorbent used is determined from those available from the adsorbent manufacturer in consideration of static / dynamic adsorption performance. However, as the particle size of the adsorbent used in the pressure fluctuation adsorption separation device for collecting oxygen, what is the particle size that can maximize the performance of the device, that is, what is the particle size that can reduce the power consumption rate? As to what kind of gas flow rate such an adsorbent should be used for, and how the filling height at that time should be used, as described in the literature such as LaCava et al. There was no means other than the standard, and technical improvement was required.

【0015】[0015]

【発明が解決しようとする課題】そこで、本発明者ら
は、酸素を製品とする圧力変動吸着分離装置の電力原単
位を指標とし、吸着剤の粒子形状や寸法を様々に変え
て、電力原単位が最も低くなるような粒子形状、寸法を
種々検討した。
Therefore, the inventors of the present invention use the power consumption unit of a pressure fluctuation adsorption separation device using oxygen as an index, and variously change the particle shape and size of the adsorbent to obtain the power consumption. Various studies were made on the particle shape and size such that the unit was the lowest.

【0016】さらに、様々な粒子形状、寸法の吸着剤に
対して最適な吸着筒の形状、すなわち、吸着剤の形状特
性に対して最適なガス空筒速度があることを明らかに
し、選定した吸着剤の形状特性に基づいて吸着筒の径を
決定することにより、従来以上の圧力変動吸着分離性能
が得られることを見出した。
Further, it has been clarified that there is an optimum adsorption cylinder shape for adsorbents having various particle shapes and sizes, that is, there is an optimum gas empty velocity for adsorbent shape characteristics, and the selected adsorption It was found that the pressure fluctuation adsorption separation performance higher than the conventional one can be obtained by determining the diameter of the adsorption cylinder based on the shape characteristics of the agent.

【0017】本発明は、上記知見に基づいて成されたも
のであって、圧力変動吸着分離法により空気中の酸素を
製品として採取するにあたり、電力原単位を低減できる
特定寸法及び形状の吸着剤に対して最適な形状の吸着筒
及び圧力変動吸着分離性能に優れた圧力変動吸着分離装
置を提供することを目的としている。
The present invention has been made based on the above findings, and when collecting oxygen in the air as a product by the pressure fluctuation adsorption separation method, an adsorbent of a specific size and shape which can reduce the electric power consumption rate. It is an object of the present invention to provide an adsorption column having an optimal shape and a pressure fluctuation adsorption separation device having excellent pressure fluctuation adsorption separation performance.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明の圧力変動吸着分離法により空気中の酸素を
分離採取するための吸着剤を充填した吸着筒は、該吸着
剤のサイズが、吸着剤が球状のときは直径を、吸着剤が
円柱状、楕円球状、楕円柱状のときは相当直径を、a
[mm]としたときに、空筒速度u[m/s]が、u=
0.07a+0.095の±25%の範囲になるように
設定したことを特徴としている。
In order to achieve the above object, an adsorption column filled with an adsorbent for separating and collecting oxygen in air by the pressure swing adsorption separation method of the present invention has a size of the adsorbent. , The diameter when the adsorbent is spherical, and the equivalent diameter when the adsorbent is columnar, elliptical, or elliptic, a
[Mm], the empty cylinder velocity u [m / s] is u =
The feature is that the range is set to ± 25% of 0.07a + 0.095.

【0019】特に、前記吸着塔に使用される吸着剤は、
該吸着剤をタイラー標準ふるいで粒径分布を測定したと
きに、該粒径分布が12メッシュから20メッシュまで
の範囲の吸着剤粒子が少なくも70%以上含まれている
こと、あるいは、吸着剤の直径又は相当直径aが、1.
0±0.2mmの範囲であることが好ましい。
In particular, the adsorbent used in the adsorption tower is
When the particle size distribution of the adsorbent is measured with a Tyler standard sieve, the adsorbent particles having a particle size distribution of 12 mesh to 20 mesh contain at least 70% or more, or the adsorbent is Or the equivalent diameter a is 1.
The range is preferably 0 ± 0.2 mm.

【0020】また、本発明では、前記吸着剤として、C
a−A型ゼオライト、Na−X型、該Na−X型のNa
の少なくも一部をCa,Mg,Liでイオン交換したゼ
オライトのいずれかを好適に使用できる。さらに、前記
圧力変動吸着分離法が、真空再生を行う圧力変動吸着分
離法であることが好ましい。また、上述の吸着筒を備え
た圧力変動吸着分離装置場合に、より有効である。
In the present invention, the adsorbent is C
a-A type zeolite, Na-X type, Na of the Na-X type
At least a part of the zeolite ion-exchanged with Ca, Mg or Li can be preferably used. Furthermore, it is preferable that the pressure fluctuation adsorption separation method is a pressure fluctuation adsorption separation method in which vacuum regeneration is performed. Further, it is more effective in the case of the pressure fluctuation adsorption / separation device equipped with the adsorption cylinder described above.

【0021】ここで、圧力変動吸着分離プロセスは、吸
着筒内の圧力、温度、ガス流量、ガス組成が時間と共に
複雑に変化する非定常プロセスであり、装置性能を把握
するためには、実験と共にダイナミックシミュレーショ
ンが有効である。以下ダイナミックシミュレーションを
用いて本発明を説明する。
Here, the pressure fluctuation adsorption separation process is a non-steady process in which the pressure, temperature, gas flow rate, and gas composition in the adsorption cylinder change intricately with time. Dynamic simulation is effective. The present invention will be described below using dynamic simulation.

【0022】日本酸素技報No.17,p18−24
(1998)には、酸素を製品とする圧力変動吸着分離
法(以下、酸素PSAという)のシミュレーション方法
が記載されている。ここで、対象としている酸素PSA
は2塔式であり、そのプロセスは、充圧/製品回収工
程、均圧工程、真空再生工程、パージ再生工程、均圧工
程からなり、いくつかの仮定の下に理論モデルが組み立
てられている。また、基礎方程式は、全体の物質収支、
各成分の物質収支、吸着速度式、平衡吸着量推算式、熱
収支式等から成っている。
Japan Oxygen Technical Report No. 17, p18-24
(1998) describes a simulation method of a pressure swing adsorption separation method (hereinafter referred to as oxygen PSA) using oxygen as a product. Here, the target oxygen PSA
Is a two-column system, and the process consists of charging / product recovery process, pressure equalization process, vacuum regeneration process, purge regeneration process, pressure equalization process, and the theoretical model is assembled under some assumptions. . In addition, the basic equation is the total mass balance,
It consists of mass balance of each component, adsorption rate formula, equilibrium adsorption amount estimation formula, heat balance formula, etc.

【0023】さらに、物質収支は、原料空気を供給する
空気ブロワー送気量と、製品量及び吸着剤を再生する排
気用真空ポンプの排気ガス量の和とが等しくなるよう
に、空気ブロワー吐出圧力及び/又は真空ポンプ到達真
空度を調整要素として取られる。前記物質収支によって
圧力変動吸着分離装置(PSA装置)に付属する回転機
の条件が決まり、従って、回転機に必要な電力量が求め
られ、ひいてはPSA装置にとって最も重要な性能の一
つである電力原単位が求められる。
Further, the mass balance is such that the air blower discharge pressure is equal to the sum of the air blower air supply amount for supplying the raw material air and the exhaust gas amount of the exhaust vacuum pump for regenerating the product and the adsorbent. And / or the degree of vacuum reached by the vacuum pump is taken as an adjusting element. The material balance determines the conditions of the rotating machine attached to the pressure fluctuation adsorption separation apparatus (PSA apparatus), and therefore the amount of electric power required for the rotating machine is obtained, and thus the electric power which is one of the most important performances for the PSA apparatus. Basic unit is required.

【0024】先のシミュレーターに、吸着剤特性として
粒子径と粒子内物質移動係数の関係式(河添邦太郎:化
学工学,31.4.354−358.(1967))を
入れて、吸着剤粒子径と吸着速度とを関係付けた。勿
論、実測により総括物質移動係数と粒子径との関係を求
めても差し支えない。
The above-mentioned simulator was loaded with the relational expression of the particle size and the mass transfer coefficient in the particle (Kunitaro Kawazoe: Chemical Engineering, 31.354-358. (1967)) as the adsorbent characteristic, and the adsorbent particle size was obtained. And the adsorption rate were related. Of course, the relationship between the overall mass transfer coefficient and the particle size may be obtained by actual measurement.

【0025】また、吸着剤粒子径が電力原単位に直接影
響する要素と考えられるので、吸着剤充填層に対してエ
ルガンの式を適用し、充填する吸着剤粒子径を変えるこ
とによる充填層高さ方向の圧力損失を計算し、吸着筒内
の各高さにおける吸着圧力/再生圧力を求めて製品酸素
量及び消費動力に対する影響を演算した。
Further, since the adsorbent particle diameter is considered to be a factor that directly affects the electric power consumption rate, the Elgan's equation is applied to the adsorbent packed bed and the packed bed height is changed by changing the packed adsorbent particle diameter. The pressure loss in the depth direction was calculated, and the adsorption pressure / regeneration pressure at each height in the adsorption cylinder was obtained to calculate the influence on the product oxygen amount and the consumption power.

【0026】前記シミュレーターを用いて、まず、真空
再生式PSA装置(VSA)において、空気ブロワー容
量、真空ポンプ容量、用いる吸着剤量を一定の条件の下
に、用いる吸着剤粒子径を決め、吸着筒径を種々変えて
規定濃度の酸素ガス(例えば93%O)が得られる量
を求めた。空気ブロワーと真空ポンプとの消費動力の和
を、製品酸素ガス量で割ると電力原単位が求まり、電力
原単位が最少値になるときの吸着筒径がその吸着剤粒子
径における最も望ましい吸着筒径になる。
Using the simulator, first, in a vacuum regeneration type PSA device (VSA), the adsorbent particle size to be used is determined by setting the air blower capacity, the vacuum pump capacity, and the adsorbent amount to be used under certain conditions. Various amounts of the oxygen gas (for example, 93% O 2 ) having a specified concentration were obtained by changing the cylinder diameter. Dividing the sum of the power consumption of the air blower and the vacuum pump by the product oxygen gas amount gives the power consumption unit, and the adsorption cylinder diameter when the power consumption becomes the minimum value is the most desirable adsorption cylinder of the adsorbent particle size. Diameter.

【0027】一方、前記計算により、PSA装置に原料
空気として供給すべき原料空気量が求められる。ここ
に、原料空気量を標準状態(0℃、1atm絶対圧)に
換算し、吸着筒断面積で割った値を空筒速度と定義す
る。用いる吸着剤粒子径を変えて前記同様に計算する
と、吸着剤粒子径毎に最適な空筒速度が得られる。
On the other hand, the amount of raw material air to be supplied to the PSA device as raw material air is obtained by the above calculation. Here, the raw material air amount is converted into a standard state (0 ° C., 1 atm absolute pressure), and the value divided by the adsorption cylinder cross-sectional area is defined as the empty cylinder velocity. When the adsorbent particle size to be used is changed and the same calculation is performed as described above, the optimum empty cylinder velocity is obtained for each adsorbent particle size.

【0028】さらに付言すれば、PSA装置の設計にお
いて、実験あるいはシミュレーションから、所定のPS
A操作の実行によって酸素の回収率、吸着剤単位量当た
りの酸素発生量が得られる。すなわち、実装置において
要求される酸素量(純酸素量換算値)に対して、 必要原料空気量=(純酸素換算)必要酸素量/(酸素回収
率×空気中酸素含有率) 必要吸着剤量=要求酸素量/吸着剤単位量当たり酸素発
生量 吸着塔断面積=必要原料空気量/空筒速度 吸着剤充填高さ=必要吸着剤量/(充填密度×吸着塔断
面積) というような計算により、吸着筒の形状(筒径)が決定
できる。なお、酸素回収率は、原料空気中に含まれる酸
素の含有量をベースにしている。
In addition, in designing the PSA device, a predetermined PS is determined from experiments or simulations.
By performing the operation A, the oxygen recovery rate and the oxygen generation amount per unit amount of the adsorbent can be obtained. That is, with respect to the oxygen amount (pure oxygen equivalent value) required in the actual device, the required raw material air amount = (pure oxygen equivalent) required oxygen amount / (oxygen recovery rate x oxygen content in air) required adsorbent amount = Required oxygen amount / Oxygen generation amount per unit of adsorbent Adsorption column cross section = Required raw air amount / Vacancy velocity Adsorbent filling height = Required adsorbent amount / (Filling density x Adsorption column cross section) Thus, the shape (cylinder diameter) of the suction cylinder can be determined. The oxygen recovery rate is based on the content of oxygen contained in the raw material air.

【0029】本発明において、吸着剤粒子径とは、球形
粒子においては直径を、その他の形状においては相当直
径を意味する。例えば、直径d、高さhの円柱状(ペレ
ット状)の吸着剤の場合は、 表面積/体積=(2d+4h)/(d×h) に対して、相当直径aを持つ球と仮定した場合、前記式
と同様にすると、表面積/体積=6/a=(2d+4
h)/(d×h)から、a=3d×h/(d+2h)と
なる。
In the present invention, the adsorbent particle diameter means a diameter for spherical particles and an equivalent diameter for other shapes. For example, in the case of a columnar (pellet-shaped) adsorbent having a diameter d and a height h, assuming that the surface area / volume = (2d + 4h) / (d × h) is a sphere having an equivalent diameter a, By the same equation as above, surface area / volume = 6 / a = (2d + 4
From h) / (d × h), a = 3d × h / (d + 2h).

【0030】このような関係については、Fundam
entals of Adsorption.Proc
eedings of the Engineerin
gFoundation Conference he
ld at Schloss Elmau,Bavar
ia,West Germany,(1983)のp4
9〜に記載されているが、本発明で採用する相当直径
は、これに限定されるものでなく、粒径分布のピーク値
あるいは分布の平均値等、簡易的な方法で決めた直径も
包含する。
Regarding such a relationship, Fundam
entals of Adjustment. Proc
needs of the engineerin
gFoundation Conference he
ld at Schloss Elmau, Bavar
ia, West Germany, (1983) p4
However, the equivalent diameter used in the present invention is not limited to this, and includes the diameter determined by a simple method such as the peak value of the particle size distribution or the average value of the distribution. To do.

【0031】そして、本発明で使用する吸着剤は、従
来、一般的に用いられてきた吸着剤の形状及び寸法、す
なわち、1/8インチサイズ、1/16インチサイズの
ペレット形状あるいは8〜12メッシュのビーズ形状等
の形状及び寸法を持つ吸着剤における前記直径又は相当
直径に対して、前記シミュレーターにて演算し、圧力損
失と物質移動係数の大きさとの関わり合いで、直径又は
相当直径が1mmの吸着剤を使えば、原単位的に最も良
い値まで最適化が可能という結論を得、さらに、該結論
は、プロセスとは関係しないことも示すとともに、最適
な空筒速度を求め、選定した吸着剤の形状及び寸法と空
筒速度との関係を導きだし、前記関係式に基づいて吸着
筒の径を決定することにより、PSA法によって空気か
ら酸素ガスを分離回収する装置におけるPSA性能を従
来以上のものとすることができる。
The adsorbent used in the present invention has the shape and size of the adsorbent generally used in the past, that is, a pellet shape of 1/8 inch size, 1/16 inch size, or 8-12. The diameter or equivalent diameter of 1 mm is calculated by the simulator with respect to the diameter or equivalent diameter of the adsorbent having the shape and dimensions such as the bead shape of the mesh, and the relationship between the pressure loss and the mass transfer coefficient. It was concluded that the optimum value can be optimized in terms of the basic unit by using the adsorbent of No. 1, and further, the conclusion is not related to the process, and the optimum empty cylinder velocity was obtained and selected. The relationship between the shape and size of the adsorbent and the cylinder velocity is derived, and the diameter of the adsorption cylinder is determined based on the above relational expression to separate the oxygen gas from the air by the PSA method. PSA performance in device for a can be of more conventional.

【0032】[0032]

【発明の実施の形態】図1は、上述のシミュレーション
の対象としたPSA装置を示す系統図である。なお、こ
こでは、2筒式のPSA装置を示したが、特にこれに限
定するものではないこと言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing a PSA device which is the object of the above simulation. Although the two-cylinder PSA device is shown here, it is needless to say that the present invention is not limited to this.

【0033】図1に示す2筒式PSA装置は、原料空気
ブロワー11、二つの吸着筒12a,12b、サージタ
ンク13、真空ポンプ14、吸着筒12a,12b内に
それぞれ充填した吸着剤及び関係配管(弁を含む)と制
御装置とにより形成されている。空気の流れを簡単に説
明すると、大気中の空気は、原料空気ブロワー11で5
00〜5000mmAq(4900〜49030Pa)
まで加圧された後、吸着筒12a,12bのいずれか、
例えば吸着筒12aに導入される。吸着筒12aでは、
水分等の不純物及び窒素ガスが吸着剤に吸着され、吸着
されにくい酸素ガスが吸着筒12aの頂部から導出され
る。導出された酸素ガスは、サージタンク13に送ら
れ、その一部が製品として導出されるとともに、残部は
再生中の他方の吸着筒12bのガスパージや再生済みの
吸着筒12bの充圧に使用される。一方、吸着剤に吸着
されたガスは、真空ポンプ14で吸着筒内が減圧される
ことにより脱着し、これによって吸着剤が再生される。
真空ポンプ14からは排ガスが排出される。
The two-cylinder PSA apparatus shown in FIG. 1 comprises a raw material air blower 11, two adsorption cylinders 12a and 12b, a surge tank 13, a vacuum pump 14, adsorbents filled in the adsorption cylinders 12a and 12b, and related pipes. (Including a valve) and a control device. Briefly describing the flow of air, the air in the atmosphere is 5
00-5000mmAq (4900-49030Pa)
After being pressurized up to one of the adsorption cylinders 12a and 12b,
For example, it is introduced into the adsorption cylinder 12a. In the adsorption cylinder 12a,
Impurities such as water and nitrogen gas are adsorbed by the adsorbent, and oxygen gas that is difficult to adsorb is led out from the top of the adsorption column 12a. The derived oxygen gas is sent to the surge tank 13, a part of which is discharged as a product, and the remaining part is used for gas purging of the other adsorbing cylinder 12b being regenerated and charging of the regenerated adsorbing cylinder 12b. It On the other hand, the gas adsorbed by the adsorbent is desorbed by depressurizing the inside of the adsorption column by the vacuum pump 14, and thereby the adsorbent is regenerated.
Exhaust gas is discharged from the vacuum pump 14.

【0034】本装置におけるPSAプロセスの一例を図
2に示す。PSAプロセスとしては、これに限定される
ことなく幾多のプロセスが利用できる。代表例としての
図2のプロセスを説明すると、対象としている2塔式P
SAのプロセスは、(イ)充圧/製品回収工程、(ロ)
均圧工程、(ハ)真空再生工程、(ニ)パージ再生工
程、(ホ)均圧工程、の各工程からなるものである。各
工程について、2塔のうちの1筒、吸着筒12aに着目
して説明する。
An example of the PSA process in this apparatus is shown in FIG. The PSA process is not limited to this, and various processes can be used. The process of FIG. 2 as a typical example will be described.
SA process is (a) charging / product recovery process, (b)
It comprises a pressure equalizing step, (c) vacuum regeneration step, (d) purge regeneration step, and (e) pressure equalization step. Each process will be described by focusing on one of the two towers and the adsorption cylinder 12a.

【0035】(イ)充圧/製品回収工程では、原料空気
ブロワー11から供給される原料空気が吸着筒12aの
下部から導入され、該吸着筒12a内を上昇し、この間
に不純物である水、炭酸ガス、窒素が吸着除去されて該
吸着筒12aの頂部から酸素ガスが導出され、サージタ
ンク13を経て製品として採取される。
(A) In the charging / product collecting step, the raw material air supplied from the raw material air blower 11 is introduced from the lower part of the adsorption column 12a and rises in the adsorption column 12a, and water as an impurity during this period, Carbon dioxide gas and nitrogen are adsorbed and removed, oxygen gas is led out from the top of the adsorption column 12a, and is collected as a product through the surge tank 13.

【0036】(ロ)均圧工程では、該吸着筒12aへの
原料空気の導入及び該吸着筒12aからの製品取り出し
が一旦停止される。そして、該吸着筒12aのガスは、
該吸着筒12aの上下部から同時に他の吸着筒12bへ
導かれる。
(B) In the pressure equalizing step, the introduction of the raw material air into the adsorption cylinder 12a and the removal of the product from the adsorption cylinder 12a are temporarily stopped. Then, the gas in the adsorption cylinder 12a is
From the upper and lower parts of the suction cylinder 12a, they are simultaneously guided to another suction cylinder 12b.

【0037】(ハ)真空再生工程では、該吸着筒12a
の底部から筒内のガスを真空ポンプ14に導いて該吸着
筒12aを減圧再生する。
(C) In the vacuum regeneration step, the adsorption cylinder 12a
The gas in the cylinder is guided to the vacuum pump 14 from the bottom of the column to regenerate the adsorption cylinder 12a under reduced pressure.

【0038】(ニ)パージ再生工程では、前記真空再生
工程が所定の真空度に到達したとき、サージタンク13
から採取した酸素の一部を該吸着筒12aの頂部から導
入し、かつ、真空ポンプ14による減圧を続行する。
(D) In the purge regeneration step, when the vacuum regeneration step reaches a predetermined degree of vacuum, the surge tank 13
A part of the oxygen collected from the above is introduced from the top of the adsorption column 12a, and the pressure reduction by the vacuum pump 14 is continued.

【0039】(ホ)均圧工程では、前記パージ再生が終
了したとき、前記均圧工程(ロ)とガスの流れを逆に
し、他の吸着筒12bからのガスを該吸着筒12aの頂
部及び底部から受け入れる。そして、該吸着筒12aの
圧力が所定の均圧終了圧力まで上昇したとき、(イ)の
吸着工程に戻り、該吸着筒12aの底部から原料空気を
導入し、該吸着筒12aを加圧し、所定の圧力に到達し
たときに、該吸着筒12a頂部からサージタンク13へ
製品の導出が始まる。
(E) In the pressure equalizing step, when the purge regeneration is completed, the gas flow is reversed from that in the pressure equalizing step (b), and the gas from the other adsorption cylinder 12b is supplied to the top of the adsorption cylinder 12a. Accept from the bottom. Then, when the pressure of the adsorption cylinder 12a rises to a predetermined equalization end pressure, the process returns to the adsorption step (a), the raw material air is introduced from the bottom of the adsorption cylinder 12a, and the adsorption cylinder 12a is pressurized, When a predetermined pressure is reached, the product starts to be discharged from the top of the adsorption cylinder 12a to the surge tank 13.

【0040】以上の各工程を両吸着筒12a,12bに
ついて交互に繰り返すことにより、製品酸素ガスを連続
的に採取することができる。また、各工程の切り替え条
件を、前記説明では圧力を条件として記述したが、時間
を条件としてもよい。
The product oxygen gas can be continuously sampled by alternately repeating the above steps for both adsorption cylinders 12a and 12b. Further, although the switching condition of each process is described with the pressure as the condition in the above description, the time may be used as the condition.

【0041】本シミュレーションを行うにあたり、吸着
筒12a,12bには、原料空気流入端側に水分吸着用
として活性アルミナが、下流側に窒素吸着分離用のゼオ
ライトとして高度にLiイオン交換したX型がそれぞれ
充填されていると仮定した。そして、各吸着剤の充填容
積は、活性アルミナを約0.4m3、ゼオライトを約
2.2m3とし、各計算で一定とした。その他のPSA
の運転条件を以下に示す。
In carrying out this simulation, the adsorption cylinders 12a and 12b are made of activated alumina for adsorbing water on the feed air inflow end side and X-type on the downstream side for highly adsorbing Li ions as nitrogen adsorption / separation zeolite. It was assumed that each was filled. The packed volume of each adsorbent was about 0.4 m3 for activated alumina and about 2.2 m3 for zeolite, and was constant in each calculation. Other PSAs
The operating conditions of are shown below.

【0042】サイクルタイム 82秒 充圧/製品回収工程 37秒 均圧工程 4秒 真空再生工程 27秒 パージ再生工程 10秒 均圧工程 4秒 原料空気温度 300K 製品純度 93.0% パージガス流量 160Nm3/hCycle time 82 seconds Charging / product recovery process 37 seconds Pressure equalization process 4 seconds Vacuum regeneration process 27 seconds Purge regeneration process 10 seconds Pressure equalization process 4 seconds Raw material air temperature 300K Product purity 93.0% Purge gas flow rate 160 Nm3 / h

【0043】また、計算に用いたパラメーターを以下に
示す。なお、計算の精度として、計算格子は、格子長さ
0.01mの等間隔格子を使用し、時間刻み0.1se
cで時間積分を行った。
The parameters used in the calculation are shown below. As the accuracy of the calculation, the calculation grid uses an equidistant grid with a grid length of 0.01 m, and the time interval is 0.1 sec.
Time integration was performed at c.

【0044】原料空気組成 水蒸気 0.5% 窒素 77.7% 酸素 20.9% アルゴン 0.9% 壁−充填層間熱伝達係数 1.0W/(m2・K) (活性アルミナ) (ゼオライト) 充填量 320kg 1400kg 充填密度 784kg/m3 644kg/m3 空隙率 0.4 0.37 熱容量 1050J/(kg・K) 920 J/(kg・K)Raw air composition Water vapor 0.5% Nitrogen 77.7% Oxygen 20.9% Argon 0.9% Heat transfer coefficient between wall-filling layer 1.0W / (m2 ・ K)                   (Activated alumina) (Zeolite)     Filling amount 320kg 1400kg     Packing density 784 kg / m3 644 kg / m3     Porosity 0.4 0.37     Heat capacity 1050 J / (kg ・ K) 920 J / (kg ・ K)

【0045】また、PSA操作が定常状態になるまでを
約2000サイクルとし、該定常状態における装置性能
をシミュレーション結果とした。
Also, the PSA operation was set to about 2000 cycles until it reached a steady state, and the apparatus performance in the steady state was taken as a simulation result.

【0046】まず、吸着剤粒子の相当直径aが0.6m
m、1.0mm、1.6mmの3種類について、原料空
気の空筒速度を変えたときの電力原単位の変化を求め
た。このように、各粒子径については電力原単位を最小
にするような最適流速が存在する。求めた結果から、相
当直径aが1.0mmにおける電力原単位が最少値を示
した値を基準として電力原単位の比を算出し、原料空気
の空筒速度uと相関させたものを図3に示す。
First, the equivalent diameter a of the adsorbent particles is 0.6 m.
For three types of m, 1.0 mm, and 1.6 mm, the change in the electric power consumption rate when the hollow velocity of the raw material air was changed was obtained. Thus, for each particle size, there is an optimum flow velocity that minimizes the power consumption. From the obtained results, the ratio of the electric power consumption rate is calculated with reference to the value showing the minimum electric power consumption rate when the equivalent diameter a is 1.0 mm, and it is shown in FIG. Shown in.

【0047】次に、図3から、各粒子相当直径aと、各
粒子相当直径aにおいて電力原単位が最少となる原料空
気の空筒速度uとを求め、吸着剤の粒子相当直径aと電
力原単位が最少となる原料空気の空筒速度uとの関係を
算出した。その結果を図4に示す。
Next, from FIG. 3, the particle equivalent diameter a and the hollow velocity u of the raw material air for which the power consumption rate is the minimum at each particle equivalent diameter a are determined, and the particle equivalent diameter a of the adsorbent and the power are calculated. The relationship with the empty cylinder velocity u of the raw material air having the minimum unit consumption was calculated. The result is shown in FIG.

【0048】そして、図4から、吸着剤の相当直径aと
電力原単位が最少となる原料空気の空筒速度uとの関係
が直線で近似でき、以下の式で表されることがわかる。
u=0.07a+0.095
From FIG. 4, it can be seen that the relationship between the equivalent diameter a of the adsorbent and the empty velocity u of the raw material air that minimizes the electric power consumption can be approximated by a straight line and is expressed by the following equation.
u = 0.07a + 0.095

【0049】さらに、図3から、各粒子相当直径aに対
する電力原単位の比が電力原単位の最少値から許容でき
る上昇範囲として約3%以内にするためには、設計上の
空筒速度Uの上下限は、 0.75u≦U≦1.25u となる。
Further, from FIG. 3, in order to keep the ratio of the electric power consumption rate to the particle equivalent diameter a to within about 3% as the allowable increase range from the minimum value of the electric power consumption rate, the designed empty cylinder speed U The lower limit is 0.75u ≦ U ≦ 1.25u.

【0050】これらの結果からわかるように、吸着剤粒
子の相当直径aによって最適な原料空気空筒速度が存在
する。また、電力原単位として最小値が得られた点と吸
着剤粒子の相当直径aとの関係を求めたものを図5に示
す。
As can be seen from these results, there is an optimum feed air void velocity depending on the equivalent diameter a of the adsorbent particles. Further, FIG. 5 shows a relationship between the point where the minimum value is obtained as the electric power consumption rate and the equivalent diameter a of the adsorbent particles.

【0051】図5から明らかなように、吸着剤粒子の相
当直径aが1mmにおいて、酸素PSA装置の電力原単
位が最小値を示すことがわかる。
As is clear from FIG. 5, when the equivalent diameter a of the adsorbent particles is 1 mm, the electric power consumption rate of the oxygen PSA device shows the minimum value.

【0052】ここで、一般に市販されている吸着剤粒子
の形状、特に、ビーズ状の吸着剤においては、粒径分布
を持ち、大小粒子径の混合物となっている。吸着剤の粒
子径が問題となるような装置においては、特定の粒子径
のところに粒径分布のピーク値を持つようにふるい分け
されて販売されている。
Here, the shape of the adsorbent particles that are generally commercially available, particularly the adsorbent in the form of beads, has a particle size distribution and is a mixture of large and small particle sizes. In an apparatus in which the particle size of the adsorbent is a problem, it is sold by sieving so that the particle size distribution has a peak value at a specific particle size.

【0053】本発明においては、PSA装置用吸着剤と
して特定の相当直径(直径を含む)を有する吸着剤を用
いることによってPSA装置の電力原単位を最少とする
ものであるから、前述の粒径分布のピークが特定値の範
囲内にあることが望ましい。
In the present invention, the power unit consumption of the PSA device is minimized by using an adsorbent having a specific equivalent diameter (including the diameter) as the adsorbent for the PSA device. It is desirable that the peak of the distribution be within a specific value range.

【0054】また、吸着剤の粒径分布の測定は、タイラ
ー標準ふるい等のふるいを用いて測定されるが、用いる
ふるいの目開きにより14メッシュから以下、16メッ
シュまで以上の範囲粒子が概ね1mmの径を持つことに
なる。一般には、このような狭い範囲で粒子径を選ぶ
と、商品として販売できる量が少なくなることから、あ
る程度ふるいに幅を持たせて、その範囲にある粒子の量
(例えば重量%)が一定の割合以上とすることが行われ
ている。
The particle size distribution of the adsorbent is measured by using a sieve such as a Tyler standard sieve, and the range of particles from 14 mesh to 16 mesh and above is generally 1 mm depending on the size of the sieve used. Will have a diameter of. Generally, if the particle size is selected within such a narrow range, the amount that can be sold as a product will be reduced, so the size of the particles within a certain range (for example,% by weight) can be kept constant by giving the sieve a certain width. It is done to be more than the ratio.

【0055】本発明で使用する吸着剤としては、1mm
を中心とするその前後として、12メッシュ以下20メ
ッシュ以上の粒子が、重量%で全体の70%以上を占め
るものが望ましい。これより高いパーセンテージであれ
ばなお望ましいが、これより小さい割合であると、すな
わち、より大きい、あるいは、より小さい粒子が相対的
に多く含まれていると、得られるPSA装置の性能とし
て、期待される電力原単位の最小値が得られないことに
なる。
The adsorbent used in the present invention is 1 mm
It is preferable that particles having 12 mesh or less and 20 mesh or more occupy 70% or more of the whole by weight% before and after that. Higher percentages are still desirable, but lower percentages, that is, relatively large numbers of larger or smaller particles, are expected as the performance of the resulting PSA device. Therefore, the minimum value of power consumption per unit will not be obtained.

【0056】なお、先のふるいの目開きを数値として表
すと、20メッシュが0.833mm、12メッシュが
1.397mmであるから、粒子径としては概ね1±
0.2mmが許容されることになる。前述の粒径分布に
よる表現を取れば、1±0.2mmの範囲の相当直径又
は直径を持つ量が全吸着剤量の少なくも70%ともいう
ことができる。
When the mesh size of the above-mentioned sieve is expressed as a numerical value, 20 mesh is 0.833 mm and 12 mesh is 1.397 mm.
0.2 mm will be allowed. Taking the above-mentioned particle size distribution, it can be said that the equivalent diameter or the amount having a diameter in the range of 1 ± 0.2 mm is at least 70% of the total amount of the adsorbent.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
酸素PSA装置の電力原単位を最小にすることができ
る。また、吸着剤に対して特定の関係が成立するように
吸着筒を形成することにより、酸素PSA装置の性能を
向上させることができる。
As described above, according to the present invention,
The power consumption of the oxygen PSA device can be minimized. In addition, the performance of the oxygen PSA device can be improved by forming the adsorption cylinder so as to establish a specific relationship with the adsorbent.

【図面の簡単な説明】[Brief description of drawings]

【図1】 シミュレーションの対象とした酸素PSA装
置を示す系統図である。
FIG. 1 is a system diagram showing an oxygen PSA apparatus which is a simulation target.

【図2】 酸素PSAプロセスの一例を示す図である。FIG. 2 is a diagram showing an example of an oxygen PSA process.

【図3】 原料空気の空筒速度と電力原単位の比との関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a blank speed of raw material air and a ratio of electric power consumption rate.

【図4】 粒子相当直径と電力原単位が最少となる原料
空気の空筒速度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a particle equivalent diameter and a void velocity of raw material air having a minimum electric power consumption rate.

【図5】 電力原単位として最小値が得られた点と吸着
剤粒子の相当直径との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a point at which a minimum value is obtained as a power consumption unit and an equivalent diameter of adsorbent particles.

【符号の説明】[Explanation of symbols]

11…原料空気ブロワー、12a,12b…吸着筒、1
3…サージタンク、14…真空ポンプ
11 ... Raw material air blower, 12a, 12b ... Adsorption cylinder, 1
3 ... surge tank, 14 ... vacuum pump

フロントページの続き Fターム(参考) 4D012 BA02 CA05 CB16 CD07 CF02 CF10 CG01 CG05 4G066 AA61B AA62B BA20 CA27 CA43 DA03 GA14 Continued front page    F-term (reference) 4D012 BA02 CA05 CB16 CD07 CF02                       CF10 CG01 CG05                 4G066 AA61B AA62B BA20 CA27                       CA43 DA03 GA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧力変動吸着分離法により空気中の酸素
を分離採取するための吸着剤を充填した吸着筒におい
て、該吸着剤のサイズが、吸着剤が球状のときは直径
を、吸着剤が円柱状、楕円球状、楕円柱状のときは相当
直径を、a[mm]としたときに、空筒速度u[m/
s]が、u=0.07a+0.095の±25%の範囲
になるように設定したことを特徴とする圧力変動吸着分
離用吸着筒。
1. An adsorption column filled with an adsorbent for separating and collecting oxygen in air by a pressure swing adsorption separation method, wherein the size of the adsorbent is the diameter when the adsorbent is spherical, and the adsorbent is When the equivalent diameter is set to a [mm] in the case of a cylindrical shape, an elliptic shape, or an elliptic shape, the empty cylinder velocity u [m /
[s] is set to be in the range of ± 25% of u = 0.07a + 0.095, the adsorption cylinder for pressure fluctuation adsorption separation.
【請求項2】 前記吸着剤は、該吸着剤をタイラー標準
ふるいで粒径分布を測定したときに、該粒径分布が12
メッシュから20メッシュまでの範囲の吸着剤粒子が少
なくも70%以上含まれていることを特徴とする請求項
1記載の圧力変動吸着分離用吸着筒。
2. The adsorbent has a particle size distribution of 12 when measured with a Tyler standard sieve.
The adsorption column for pressure fluctuation adsorption separation according to claim 1, wherein the adsorbent particles in the range of mesh to 20 mesh are contained at least 70% or more.
【請求項3】 前記吸着剤は、該吸着剤の直径又は相当
直径aが、1.0±0.2mmの範囲であることを特徴
とする請求項1記載の圧力変動吸着分離用吸着筒。
3. The adsorption cylinder for pressure fluctuation adsorption separation according to claim 1, wherein the adsorbent has a diameter or equivalent diameter a of the adsorbent in the range of 1.0 ± 0.2 mm.
【請求項4】 前記吸着剤が、Ca−A型ゼオライト、
あるいは、Na−X型及び該Na−X型のNaの少なく
も一部をCa,Mg,Liでイオン交換したゼオライト
のいずれかであることを特徴とする請求項1記載の圧力
変動吸着分離用吸着筒。
4. The adsorbent is a Ca-A type zeolite,
Alternatively, the pressure fluctuation adsorption separation according to claim 1, which is one of Na-X type and zeolite in which at least a part of Na of the Na-X type is ion-exchanged with Ca, Mg, Li. Adsorption cylinder.
【請求項5】 前記圧力変動吸着分離法が、真空再生を
行う圧力変動吸着分離法であることを特徴とする請求項
1記載の圧力変動吸着分離用吸着筒。
5. The adsorption cylinder for pressure fluctuation adsorption separation according to claim 1, wherein the pressure fluctuation adsorption separation method is a pressure fluctuation adsorption separation method for performing vacuum regeneration.
【請求項6】 請求項1乃至5のいずれか1項記載の吸
着筒を備えていることを特徴とする圧力変動吸着分離装
置。
6. A pressure fluctuation adsorption / separation apparatus comprising the adsorption cylinder according to claim 1. Description:
JP2002161385A 2002-06-03 2002-06-03 Adsorption cylinder design method and pressure fluctuation adsorption separation apparatus for pressure fluctuation adsorption separation Expired - Fee Related JP3884328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161385A JP3884328B2 (en) 2002-06-03 2002-06-03 Adsorption cylinder design method and pressure fluctuation adsorption separation apparatus for pressure fluctuation adsorption separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161385A JP3884328B2 (en) 2002-06-03 2002-06-03 Adsorption cylinder design method and pressure fluctuation adsorption separation apparatus for pressure fluctuation adsorption separation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000192303A Division JP2002001113A (en) 2000-06-27 2000-06-27 Adsorbent, adsorption cylinder and apparatus for pressure swing adsorption separation

Publications (2)

Publication Number Publication Date
JP2003033618A true JP2003033618A (en) 2003-02-04
JP3884328B2 JP3884328B2 (en) 2007-02-21

Family

ID=19194957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161385A Expired - Fee Related JP3884328B2 (en) 2002-06-03 2002-06-03 Adsorption cylinder design method and pressure fluctuation adsorption separation apparatus for pressure fluctuation adsorption separation

Country Status (1)

Country Link
JP (1) JP3884328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010679A (en) * 2011-05-30 2013-01-17 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
JP2013155091A (en) * 2012-01-31 2013-08-15 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Also Published As

Publication number Publication date
JP3884328B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US8016918B2 (en) Performance stability in rapid cycle pressure swing adsorption systems
JP2002001113A (en) Adsorbent, adsorption cylinder and apparatus for pressure swing adsorption separation
CN1306988C (en) Operation and optimization of variation of pressure sewing adsorption method
KR100851241B1 (en) Absorbent for Separating Nitrogen from Mixed Gas of Oxygen And Nitrogen
US7651549B2 (en) Pressure swing adsorption process with improved recovery of high-purity product
US6551384B1 (en) Medical oxygen concentrator
CA2604410C (en) Performance stability in shallow beds in pressure swing adsorption systems
Warmuziński et al. Multicomponent pressure swing adsorption Part I. Modelling of large-scale PSA installations
US8192526B2 (en) High frequency PSA process for gas separation
JPH0477681B2 (en)
JPH05146624A (en) Method for separation by adsorption and adsorbing device
AU784559B2 (en) adsorption processes
TWI725506B (en) Multi-bed rapid cycle kinetic psa
JP2003071232A (en) Nitrogen manufacturing method and apparatus therefor
WO2013069768A1 (en) Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas
Choi et al. Incorporation of a valve equation into the simulation of a pressure swing adsorption process
WO2014130833A1 (en) Oxygen concentrator system and method
JP2003033618A (en) Adsorption cylinder for pressure swing adsorption and separation, and pressure swing adsorption separator
Liow et al. The backfill cycle of the pressure swing adsorption process
JPH11179132A (en) Pressure swing adsorption method for gas flow separation
Sircarm et al. Fractionated vacuum swing adsorption process for air separation
祝显强 et al. 中间气两步充压对快速真空变压吸附制氧的影响
US20220184547A1 (en) Method and arrangement for processing a gas mixture
JPH0295409A (en) Separation of gaseous nitrogen
MOON et al. JG JEE, SJ LEE, AND CH LEE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees