JP2003031866A - Tunnelling magnetoresistive effect film and magnetoresistance storage device - Google Patents

Tunnelling magnetoresistive effect film and magnetoresistance storage device

Info

Publication number
JP2003031866A
JP2003031866A JP2001213439A JP2001213439A JP2003031866A JP 2003031866 A JP2003031866 A JP 2003031866A JP 2001213439 A JP2001213439 A JP 2001213439A JP 2001213439 A JP2001213439 A JP 2001213439A JP 2003031866 A JP2003031866 A JP 2003031866A
Authority
JP
Japan
Prior art keywords
film
thickness
close
layer
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001213439A
Other languages
Japanese (ja)
Inventor
Tetsuya Mizuguchi
徹也 水口
Kosuke Narisawa
浩亮 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001213439A priority Critical patent/JP2003031866A/en
Publication of JP2003031866A publication Critical patent/JP2003031866A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a tunnelling magnetoresistive effect (TMR) film having an excellent orientation property by making the TMR film side of the foundation layer of the TMR film to function as an electrode layer without increasing the surface roughness of the foundation layer by selecting the crystal structure of the TMR film side of the foundation layer. SOLUTION: The TMR film is formed on the foundation layer 12 composed of a laminated film of a body-centered cubic film 121 composed of a metal or alloy and a close-packed film 122 composed of a metal or alloy. Consequently, the crystal orientation of the TMR film is improved while the surface roughness and specific resistance of the foundation layer 12 are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル磁気抵抗
効果膜および磁気抵抗記憶装置に関し、詳しくはトンネ
ル磁気抵抗効果膜が形成される下地層に特徴を有するト
ンネル磁気抵抗効果膜および磁気抵抗記憶装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel magnetoresistive effect film and a magnetoresistive storage device, and more particularly to a tunnel magnetoresistive effect film and a magnetoresistive storage device characterized by an underlying layer on which a tunnel magnetoresistive effect film is formed. Regarding

【0002】[0002]

【従来の技術】トンネル磁気抵抗効果(以下TMRとい
う、TMRはTunnel Magnetic Resistanceの略)膜の特
性は、その膜の結晶配向性によって左右される。この配
向性は、TMR膜を成膜する下地層によって制御され
る。したがって、下地層を適切に選択することにより、
TMR膜の配向性が良好になる。
2. Description of the Related Art The characteristics of a tunnel magnetoresistive effect (hereinafter referred to as TMR, TMR is an abbreviation for Tunnel Magnetic Resistance) film depend on the crystal orientation of the film. This orientation is controlled by the underlayer on which the TMR film is formed. Therefore, by properly selecting the underlayer,
The orientation of the TMR film becomes good.

【0003】また、TMR素子では、その上下に電極が
形成される。その電極の抵抗値はTMR膜の特性に影響
を及ぼす。その影響は形状効果とよばれ、例えば、App
l. Phys. Lett. 69 (1996) p.708 に開示されているよ
うに、TMR膜のトンネルバリア層の抵抗と電極の抵抗
とが近い値であると形状効果が顕著になる。このため、
電極の抵抗は低くする必要があり、抵抗を下げるには、
比抵抗の低い材料を用いるか、もしくは電極を厚く形成
する必要がある。
In the TMR element, electrodes are formed above and below the TMR element. The resistance value of the electrode affects the characteristics of the TMR film. The effect is called shape effect.
As disclosed in L. Phys. Lett. 69 (1996) p. 708, the shape effect becomes remarkable when the resistance of the tunnel barrier layer of the TMR film and the resistance of the electrode are close to each other. For this reason,
The resistance of the electrode needs to be low, and to reduce the resistance,
It is necessary to use a material having a low specific resistance or to form a thick electrode.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、下部電
極では、その形状効果により下部電極上に積層される膜
の配向性が影響を受ける。また、下部電極を厚く形成す
ると、結晶粒の成長により表面が粗くなる。このような
粗い表面にTMR膜を形成した場合、1nm程度の厚さ
の薄膜で形成されるトンネルバリア層の成膜が全面にわ
たって均一にできず、そのためトンネルバリア層を挟ん
でショートを引き起こす原因となる。
However, in the lower electrode, the orientation effect of the film laminated on the lower electrode is affected by the shape effect. Further, if the lower electrode is formed thick, the surface becomes rough due to the growth of crystal grains. When a TMR film is formed on such a rough surface, a tunnel barrier layer formed of a thin film having a thickness of about 1 nm cannot be formed uniformly over the entire surface, which causes a short circuit across the tunnel barrier layer. Become.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされた磁気抵抗効果膜および磁気抵抗記
憶装置である。
The present invention is a magnetoresistive film and a magnetoresistive storage device, which have been made to solve the above problems.

【0006】本発明のトンネル磁気抵抗効果膜は、下地
層上に形成されるトンネル磁気抵抗効果膜であって、前
記下地層は、金属もしくは合金からなる体心立方構造膜
と、金属もしくは合金からなる最密構造膜(例えば、立
方最密(面心立方)構造膜もしくは六方最密構造膜)と
の積層膜からなるものである。
The tunnel magnetoresistive effect film of the present invention is a tunnel magnetoresistive effect film formed on an underlayer, wherein the underlayer comprises a body-centered cubic structure film made of a metal or an alloy, and a metal or an alloy. And a close-packed structure film (for example, a cubic close-packed (face-centered cubic) structure film or a hexagonal close-packed structure film).

【0007】上記トンネル磁気抵抗効果膜では、下層電
極上層に積層形成される磁気抵抗効果膜の特性を確保す
る下地層に体心立方構造膜と最密構造膜の2層構造を採
用したことにより、表面の粗さを粗くすることなく電極
層として用いる下地層の膜厚を厚くすることが可能にな
る。すなわち、体心立方構造膜上に最密構造膜を形成す
ることにより、最密構造膜の結晶成長の速度を抑制する
ことができるために、最密構造膜の表面が粗くなるのが
抑制される。よって、結晶配向性を良好に保ちつつ表面
粗さを抑えて電極層の抵抗値が低減される。
In the above tunnel magnetoresistive effect film, by adopting the two-layer structure of the body-centered cubic structure film and the close-packed structure film as the underlayer which secures the characteristics of the magnetoresistive effect film laminated on the lower layer electrode, It is possible to increase the film thickness of the underlayer used as the electrode layer without increasing the surface roughness. That is, by forming the close-packed structure film on the body-centered cubic structure film, the rate of crystal growth of the close-packed structure film can be suppressed, so that the surface of the close-packed structure film is prevented from becoming rough. It Therefore, the surface roughness is suppressed while maintaining good crystal orientation, and the resistance value of the electrode layer is reduced.

【0008】一般的にスピンバルブ膜の格子構造は面心
立方構造であり、この配向性を向上させることにより、
特性が向上するため、上記説明したように、下地層とし
て最適なのが立方最密(面心立方)構造もしくは六方最
密構造を持つ金属膜である。
Generally, the lattice structure of a spin valve film is a face-centered cubic structure, and by improving this orientation,
As described above, a metal film having a cubic close-packed (face-centered cubic) structure or a hexagonal close-packed structure is most suitable as the underlayer because the characteristics are improved.

【0009】本発明の磁気抵抗記憶装置は、下地層上に
形成されるトンネル磁気抵抗効果膜を記憶素子に用いた
磁気抵抗記憶装置であって、前記下地層は、金属もしく
は合金からなる最密構造膜と、金属もしくは合金からな
る体心立方格子膜との積層膜からなるものである。
A magnetoresistive memory device of the present invention is a magnetoresistive memory device using a tunnel magnetoresistive film formed on an underlayer as a memory element, wherein the underlayer is a close-packed metal or alloy. It is composed of a laminated film of a structural film and a body-centered cubic lattice film made of a metal or an alloy.

【0010】上記磁気抵抗記憶装置では、下地層の表面
あらさが抑制されるので、TMR膜の特に1nm程度の
薄膜で形成されるトンネルバリア層を均一に成膜するこ
とが可能になるので、トンネルバリア層を付き抜けてシ
ョートが発生することがなくなる。したがって、結晶配
向性を良好に保ちつつ表面あらさを抑えて電極層の抵抗
値を低減することができるTMR膜を用いることができ
るので、信頼性の高い磁気抵抗記憶装置となる。
In the above magnetoresistive memory device, since the surface roughness of the underlayer is suppressed, it is possible to uniformly form a tunnel barrier layer formed of a thin film of about 1 nm of the TMR film. No short circuit will occur through the barrier layer. Therefore, since the TMR film capable of suppressing the surface roughness and reducing the resistance value of the electrode layer while maintaining the good crystal orientation can be used, the magnetoresistive storage device has high reliability.

【0011】[0011]

【発明の実施の形態】本発明の磁気抵抗効果膜に係る第
1の実施の形態を、図1の概略構成断面図によって説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the magnetoresistive effect film of the present invention will be described with reference to the schematic sectional view of the configuration of FIG.

【0012】図1に示すように、基板11上には、下地
層12が形成されている。この下地層12は、体心立方
構造膜121(タンタル膜:厚さは例えば3nm)と最
密構造(立方最密構造)膜122(銅膜13:厚さは例
えば10nm)とを順に積層形成されたものからなって
いる。上記下地層12上には、反強磁性層13(白金マ
ンガン膜:厚さは例えば13nm)、積層フェリ固定層
14、トンネルバリア層15、自由層16、電極層17
が順に積層形成されている。上記積層フェリ固定層14
は、例えば、強磁性層141(コバルト鉄:厚さが例え
ば1.5nm)、ルテニウム膜142(厚さは例えば
0.8nm)、強磁性層143(コバルト鉄:厚さが例
えば2nm)を順に積層形成したものからなる。上記ト
ンネルバリア層15は、例えば酸化アルミニウム(厚さ
が例えば1nm)からなる。上記自由層16は、例えば
強磁性層のコバルト鉄(厚さが例えば1.5nm)から
なる。上記電極層19は、例えば体心立方構造のタンタ
ル膜(厚さは例えば5nm)からなる。
As shown in FIG. 1, a base layer 12 is formed on a substrate 11. The underlayer 12 is formed by sequentially stacking a body-centered cubic structure film 121 (tantalum film: thickness is 3 nm, for example) and a close-packed structure (cubic close-packed structure) film 122 (copper film 13: thickness is, for example, 10 nm). It consists of An antiferromagnetic layer 13 (platinum-manganese film: thickness is, for example, 13 nm), a laminated ferri pinned layer 14, a tunnel barrier layer 15, a free layer 16, and an electrode layer 17 are formed on the underlayer 12.
Are sequentially stacked. The laminated ferri pinning layer 14
Is, for example, a ferromagnetic layer 141 (cobalt iron: thickness is, for example, 1.5 nm), a ruthenium film 142 (thickness is, for example, 0.8 nm), and a ferromagnetic layer 143 (cobalt iron: thickness is, for example, 2 nm). It consists of laminated layers. The tunnel barrier layer 15 is made of, for example, aluminum oxide (thickness is 1 nm, for example). The free layer 16 is made of, for example, a ferromagnetic layer of cobalt iron (thickness is, for example, 1.5 nm). The electrode layer 19 is made of, for example, a tantalum film having a body-centered cubic structure (thickness is 5 nm, for example).

【0013】上記第1の実施の形態では、スピンバルブ
型磁気抵抗効果膜に、固定層が自由層より先に積層され
ている、いわゆるボトム型スピンバルブの構造を示した
が、いわゆるトップ型スピンバルブにも本発明の構成は
適用できる。次に、第2の実施の形態として、トップ型
スピンバルブの磁気抵抗効果膜を図2によって説明す
る。
In the first embodiment, the structure of the so-called bottom type spin valve in which the fixed layer is laminated on the spin valve type magnetoresistive film before the free layer is shown. The configuration of the present invention can be applied to a valve. Next, as a second embodiment, a magnetoresistive effect film of a top spin valve will be described with reference to FIG.

【0014】図2に示すように、基板31上には、下地
層32が形成されている。この下地層12は、体心立方
構造膜321(タンタル膜:厚さは例えば3nm)と最
密構造(立方最密構造)膜322(銅膜13:厚さは例
えば10nm)とを順に積層形成されたものからなって
いる。上記下地層32上には、自由層33(コバルト
鉄:厚さが例えば2nm)、トンネルバリア層34(酸
化アルミニウム:厚さが例えば1nm)、積層フェリ固
定層35が順に積層形成されている。この積層フェリ固
定層35は、例えば、強磁性層351(コバルト鉄:厚
さが例えば2nm)、ルテニウム膜352(厚さは例え
ば0.8nm)、強磁性層353(コバルト鉄:厚さが
例えば1.5nm)からなる。上記積層フェリ固定層3
5上には、反強磁性層36(白金マンガン膜:厚さは例
えば30nm)、電極層37が順に積層形成されてい
る。上記電極層37は体心立方構造のタンタル膜(厚さ
は例えば10nm)からなっている。
As shown in FIG. 2, a base layer 32 is formed on the substrate 31. The base layer 12 is formed by sequentially stacking a body-centered cubic structure film 321 (tantalum film: thickness is 3 nm, for example) and a close-packed structure (cubic close-packed structure) film 322 (copper film 13: thickness is, for example, 10 nm). It consists of A free layer 33 (cobalt iron: thickness is, for example, 2 nm), a tunnel barrier layer 34 (aluminum oxide: thickness is, for example, 1 nm), and a laminated ferri pinning layer 35 are sequentially laminated on the underlayer 32. The laminated ferri pinned layer 35 includes, for example, a ferromagnetic layer 351 (cobalt iron: thickness is, for example, 2 nm), a ruthenium film 352 (thickness is, for example, 0.8 nm), and a ferromagnetic layer 353 (cobalt iron: is, for example, thickness). 1.5 nm). The laminated ferri pinned layer 3
An antiferromagnetic layer 36 (platinum-manganese film: thickness is, for example, 30 nm) and an electrode layer 37 are sequentially stacked on the electrode 5. The electrode layer 37 is composed of a tantalum film having a body-centered cubic structure (thickness is, for example, 10 nm).

【0015】上記第1、第2の実施の形態〔以下の説明
において( )内の符号は第2の実施の形態を示す〕で
は、下地層12(32)に体心立方構造膜121(32
1)と最密構造膜122(322)の2層構造を採用し
たことにより、表面の粗さを粗くすることなく電極層と
して用いる下地層12(32)の膜厚を厚くすることが
可能になる。すなわち、体心立方構造膜121(32
1)上に最密構造膜122(322)を形成することに
より、最密構造膜122(322)の結晶成長の速度を
抑制することができるために、最密構造膜122(32
2)の表面が粗くなるのを抑制する。表1に電極層の構
造と表面粗さの関係を示す。
In the first and second embodiments (the reference numerals in parentheses in the following description indicate the second embodiment), the body-centered cubic structure film 121 (32) is formed on the underlayer 12 (32).
By adopting the two-layer structure of 1) and the close-packed structure film 122 (322), it is possible to increase the thickness of the underlayer 12 (32) used as an electrode layer without roughening the surface roughness. Become. That is, the body-centered cubic structure film 121 (32
1) By forming the close-packed structure film 122 (322) thereon, the crystal growth rate of the close-packed structure film 122 (322) can be suppressed, so that the close-packed structure film 122 (32) is formed.
It suppresses that the surface of 2) becomes rough. Table 1 shows the relationship between the structure of the electrode layer and the surface roughness.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示すように、試料1〜試料6の各種
電極層について、中心線平均粗さ(Ra)を比較する。
As shown in Table 1, the center line average roughness (Ra) of the various electrode layers of Sample 1 to Sample 6 is compared.

【0018】試料1:タンタル(Ta)膜(厚さt=3
nm)/銅(Cu)膜(厚さt=5nm)/タンタル
(Ta)膜(厚さt=3nm)の積層構造ではRa=
0.558nmとなった。
Sample 1: Tantalum (Ta) film (thickness t = 3
nm) / copper (Cu) film (thickness t = 5 nm) / tantalum (Ta) film (thickness t = 3 nm) in the laminated structure Ra =
It became 0.558 nm.

【0019】試料2:タンタル(Ta)膜(厚さt=3
nm)/銅(Cu)膜(厚さt=10nm)/タンタル
(Ta)膜(厚さt=3nm)の積層構造ではRa=
0.699nmとなった。
Sample 2: Tantalum (Ta) film (thickness t = 3
nm) / copper (Cu) film (thickness t = 10 nm) / tantalum (Ta) film (thickness t = 3 nm) in the laminated structure Ra =
It became 0.699 nm.

【0020】試料3:タンタル(Ta)膜(厚さt=3
nm)/銅(Cu)膜(厚さt=20nm)/タンタル
(Ta)膜(厚さt=3nm)の積層構造ではRa=
1.041nmとなった。
Sample 3: Tantalum (Ta) film (thickness t = 3
nm) / copper (Cu) film (thickness t = 20 nm) / tantalum (Ta) film (thickness t = 3 nm) in the laminated structure Ra =
It became 1.041 nm.

【0021】試料4:タンタル(Ta)膜(厚さt=3
nm)/銅(Cu)膜(厚さt=50nm)/タンタル
(Ta)膜(厚さt=3nm)の積層構造ではRa=
1.586nmとなった。
Sample 4: Tantalum (Ta) film (thickness t = 3
nm) / copper (Cu) film (thickness t = 50 nm) / tantalum (Ta) film (thickness t = 3 nm) in the laminated structure Ra =
It became 1.586 nm.

【0022】試料5:タンタル(Ta)膜(厚さt=3
nm)/〔銅(Cu)膜(厚さt=2nm)/タンタル
(Ta)膜(厚さt=2nm)〕を24層/銅(Cu)
膜(厚さt=2nm)/タンタル(Ta)膜(厚さt=
3nm)の積層構造ではRa=0.489nmとなっ
た。
Sample 5: Tantalum (Ta) film (thickness t = 3
nm) / [copper (Cu) film (thickness t = 2 nm) / tantalum (Ta) film (thickness t = 2 nm)] 24 layers / copper (Cu)
Film (thickness t = 2 nm) / tantalum (Ta) film (thickness t =
In the laminated structure of 3 nm), Ra = 0.489 nm.

【0023】試料6:タンタル(Ta)膜(厚さt=3
nm)/〔銅(Cu)膜(厚さt=5nm)/タンタル
(Ta)膜(厚さt=2nm)〕を9層/銅(Cu)膜
(厚さt=5nm)/タンタル(Ta)膜(厚さt=3
nm)の積層構造ではRa=0.83nmとなった。
Sample 6: Tantalum (Ta) film (thickness t = 3
nm) / [copper (Cu) film (thickness t = 5 nm) / tantalum (Ta) film (thickness t = 2 nm)] 9 layers / copper (Cu) film (thickness t = 5 nm) / tantalum (Ta) ) Membrane (thickness t = 3
(nm) has a laminated structure of Ra = 0.83 nm.

【0024】このように、体心立方構造121のタンタ
ル膜と最密構造の銅膜とを積層することにより銅膜の総
膜厚を増大させても、表面あらさが大きくなるのを抑制
することが可能になる。
In this way, even if the total film thickness of the copper film is increased by stacking the tantalum film of the body-centered cubic structure 121 and the copper film of the close-packed structure, it is possible to prevent the surface roughness from increasing. Will be possible.

【0025】上記各実施の形態では、下地層12(3
2)の最密構造膜122(322)に立方最密(面心立
方)構造の銅を用いたが、銅の他に、立方最密(面心立
方)構造のアルミニウム、ニッケル、ジルコニウム、ル
テニウム、パラジウム、銀、ハフニウム、イリジウム、
白金、金を用いることができる。または六方最密構造の
チタン、コバルト、ロジウム、レニウムを用いることが
できる。また上記体心立方構造膜121(321)にタ
ンタルを用いたが、タンタルの他に、上記体心立方構造
のα−鉄、モリブデン、タングステン、クロム、ニオ
ブ、バナジウムを用いることができる。
In each of the above embodiments, the underlayer 12 (3
Copper of cubic close-packed (face-centered cubic) structure was used for the close-packed structure film 122 (322) of 2). , Palladium, silver, hafnium, iridium,
Platinum or gold can be used. Alternatively, hexagonal close-packed titanium, cobalt, rhodium, or rhenium can be used. Although tantalum is used for the body-centered cubic structure film 121 (321), α-iron, molybdenum, tungsten, chromium, niobium, and vanadium having the body-centered cubic structure can be used in addition to tantalum.

【0026】上記各実施の形態では、磁性層(強磁性
層)141、143(351、353)にコバルト鉄を
用いたが、コバルト、ニッケル、鉄のいずれか、もしく
はこれらを少なくとも1種類以上含んだ合金、もしくは
それらからなる積層膜で形成することも可能である。
In each of the above embodiments, cobalt iron was used for the magnetic layers (ferromagnetic layers) 141, 143 (351, 353), but any one of cobalt, nickel, iron, or at least one or more of these is included. It is also possible to form it with a metal alloy or a laminated film made of them.

【0027】上記各実施の形態では、反強磁性層13
(36)に白金マンガンを用いたが、同様の規則合金で
あるニッケルマンガン、不規則合金のイリジウムマンガ
ン、ロジウム(Rh)マンガン、鉄マンガン等を用いる
こともできる。
In each of the above embodiments, the antiferromagnetic layer 13 is used.
Although platinum manganese is used for (36), nickel manganese which is a similar ordered alloy, iridium manganese which is a disordered alloy, rhodium (Rh) manganese, iron manganese and the like can also be used.

【0028】上記各実施の形態では固定層に積層フェリ
構造を用いているが、単層の強磁性層で構成したもので
あってもよい。
In each of the above-mentioned embodiments, the laminated ferri structure is used for the fixed layer, but it may be composed of a single ferromagnetic layer.

【0029】上記各実施の形態では、自由層16(3
3)がコバルト鉄の単層構造であるが、積層構造を用い
ることもできる。例えば、ニッケル鉄とコバルト鉄との
積層構造を用いることができる。
In each of the above embodiments, the free layer 16 (3
Although 3) has a single layer structure of cobalt iron, a laminated structure can also be used. For example, a laminated structure of nickel iron and cobalt iron can be used.

【0030】また、上記磁気抵抗効果膜を記憶素子に用
いた磁気抵抗記憶装置では、下地層の表面あらさが抑制
されるので、TMR膜の特に1nm程度の薄膜で形成さ
れるトンネルバリア層を均一に成膜することが可能にな
るので、トンネルバリア層を付き抜けてショートが発生
することがなくなる。したがって、信頼性の高い磁気抵
抗記憶装置となる。
Further, in the magnetoresistive storage device using the magnetoresistive effect film as a storage element, the surface roughness of the underlayer is suppressed, so that the tunnel barrier layer formed of a thin film of about 1 nm of the TMR film is uniform. Since it is possible to form a film on the substrate, it is possible to prevent the occurrence of short circuit through the tunnel barrier layer. Therefore, the magnetoresistive memory device has high reliability.

【0031】[0031]

【発明の効果】以上、説明したように本発明の磁気抵抗
効果膜によれば、結晶配向性を良好に保ちつつ表面あら
さを抑えて電極層の抵抗値を低減することができる。よ
って、TMR膜の特性の向上が図れる。
As described above, according to the magnetoresistive effect film of the present invention, the surface roughness can be suppressed and the resistance value of the electrode layer can be reduced while maintaining good crystal orientation. Therefore, the characteristics of the TMR film can be improved.

【0032】本発明の磁気抵抗記憶装置によれば、結晶
配向性を良好に保ちつつ表面あらさを抑えて電極層の抵
抗値を低減することができるTMR膜を用いることがで
きるので、信頼性の高い磁気抵抗記憶装置となる。
According to the magnetoresistive memory device of the present invention, since the TMR film capable of suppressing the surface roughness and reducing the resistance value of the electrode layer while maintaining the good crystal orientation can be used, the reliability is improved. It becomes a high magnetoresistive memory device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果膜に係わる第1の実施の
形態を示す概略構成断面図である。
FIG. 1 is a schematic sectional view showing a first embodiment of a magnetoresistive effect film according to the present invention.

【図2】本発明の磁気抵抗効果膜に係わる第1の実施の
形態を示す概略構成断面図である。
FIG. 2 is a schematic configuration sectional view showing a first embodiment of a magnetoresistive film of the present invention.

【符号の説明】[Explanation of symbols]

12…下地層、121…体心立方構造膜、122…最密
構造膜
12 ... Underlayer, 121 ... Body-centered cubic structure film, 122 ... Close-packed structure film

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/32 H01L 27/10 447 H01L 27/105 G01R 33/06 R Fターム(参考) 2G017 AA01 AB07 AD55 AD65 5D034 BA04 BA05 BA08 BA21 CA08 5E049 AA01 AA04 AA09 AC00 AC05 BA06 DB12 5F083 FZ10 GA30 JA36 JA37 JA38 JA39 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01F 10/32 H01L 27/10 447 H01L 27/105 G01R 33/06 R F term (reference) 2G017 AA01 AB07 AD55 AD65 5D034 BA04 BA05 BA08 BA21 CA08 5E049 AA01 AA04 AA09 AC00 AC05 BA06 DB12 5F083 FZ10 GA30 JA36 JA37 JA38 JA39

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下地層上に形成されるトンネル磁気抵抗
効果膜であって、 前記下地層は、金属もしくは合金からなる体心立方構造
膜と金属もしくは合金からなる最密構造膜との積層膜か
らなることを特徴とするトンネル磁気抵抗効果膜。
1. A tunnel magnetoresistive effect film formed on an underlayer, wherein the underlayer is a laminated film of a body-centered cubic structure film made of a metal or an alloy and a close-packed structure film made of a metal or an alloy. A tunnel magnetoresistive effect film comprising:
【請求項2】 前記最密構造膜は、立方最密構造膜もし
くは六方最密構造膜からなることを特徴とする請求項1
記載のトンネル磁気抵抗効果膜。
2. The close-packed structure film comprises a cubic close-packed structure film or a hexagonal close-packed structure film.
The tunnel magnetoresistive film described.
【請求項3】 前記下地層は複数層に形成されているこ
とを特徴とする請求項1記載のトンネル磁気抵抗効果
膜。
3. The tunnel magnetoresistive effect film according to claim 1, wherein the underlayer is formed in a plurality of layers.
【請求項4】 下地層上に形成されるトンネル磁気抵抗
効果膜を記憶素子に用いた磁気抵抗記憶装置であって、 前記下地層は、金属もしくは合金からなる体心立方構造
膜と金属もしくは合金からなる最密構造膜との積層膜か
らなることを特徴とするトンネル磁気抵抗記憶装置。
4. A magnetoresistive memory device using a tunnel magnetoresistive film formed on an underlayer as a memory element, wherein the underlayer comprises a body-centered cubic structure film made of a metal or an alloy and a metal or an alloy. 2. A tunnel magnetoresistive memory device comprising a laminated film with a close-packed structure film made of.
【請求項5】 前記最密構造膜は、立方最密構造膜もし
くは六方最密構造膜からなることを特徴とする請求項4
記載のトンネル磁気抵抗記憶装置。
5. The close-packed structure film comprises a cubic close-packed structure film or a hexagonal close-packed structure film.
A tunnel magnetoresistive storage device as described.
【請求項6】 前記下地層は複数層に形成されているこ
とを特徴とする請求項4記載のトンネル磁気抵抗記憶装
置。
6. The tunnel magnetoresistive memory device according to claim 4, wherein the underlayer is formed in a plurality of layers.
JP2001213439A 2001-07-13 2001-07-13 Tunnelling magnetoresistive effect film and magnetoresistance storage device Pending JP2003031866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001213439A JP2003031866A (en) 2001-07-13 2001-07-13 Tunnelling magnetoresistive effect film and magnetoresistance storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001213439A JP2003031866A (en) 2001-07-13 2001-07-13 Tunnelling magnetoresistive effect film and magnetoresistance storage device

Publications (1)

Publication Number Publication Date
JP2003031866A true JP2003031866A (en) 2003-01-31

Family

ID=19048415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001213439A Pending JP2003031866A (en) 2001-07-13 2001-07-13 Tunnelling magnetoresistive effect film and magnetoresistance storage device

Country Status (1)

Country Link
JP (1) JP2003031866A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253807A (en) * 2003-02-20 2004-09-09 Headway Technologies Inc Mtj element, mtj element array, and mtj element manufacture method
JP2004266252A (en) * 2003-03-03 2004-09-24 Samsung Electronics Co Ltd Magnetic tunnel junction structure and method of manufacturing the same
US7961441B2 (en) 2008-01-28 2011-06-14 Tdk Corporation Exchange coupled film including hafnium and amorphous layers usable in a magnetoresistive element in a thin-film magnetic head
US8068315B2 (en) 2007-09-26 2011-11-29 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane GMR and TMR sensors with improved magnetic properties using Ru/Si seed layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303477A (en) * 1997-04-30 1998-11-13 Nec Corp Magnetoresistance effect element, magneto-resistance effect sensor using this, magnetoresistance detection system, and magnetic storage system
JP2001084532A (en) * 1999-09-09 2001-03-30 Toshiba Corp Manufacture of magnetoresistance effect element
JP2002084016A (en) * 2000-09-07 2002-03-22 Fujitsu Ltd Ferromagnetic tunnel junction element and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303477A (en) * 1997-04-30 1998-11-13 Nec Corp Magnetoresistance effect element, magneto-resistance effect sensor using this, magnetoresistance detection system, and magnetic storage system
JP2001084532A (en) * 1999-09-09 2001-03-30 Toshiba Corp Manufacture of magnetoresistance effect element
JP2002084016A (en) * 2000-09-07 2002-03-22 Fujitsu Ltd Ferromagnetic tunnel junction element and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253807A (en) * 2003-02-20 2004-09-09 Headway Technologies Inc Mtj element, mtj element array, and mtj element manufacture method
JP2004266252A (en) * 2003-03-03 2004-09-24 Samsung Electronics Co Ltd Magnetic tunnel junction structure and method of manufacturing the same
US8068315B2 (en) 2007-09-26 2011-11-29 Hitachi Global Storage Technologies Netherlands B.V. Current perpendicular to plane GMR and TMR sensors with improved magnetic properties using Ru/Si seed layers
US7961441B2 (en) 2008-01-28 2011-06-14 Tdk Corporation Exchange coupled film including hafnium and amorphous layers usable in a magnetoresistive element in a thin-film magnetic head

Similar Documents

Publication Publication Date Title
US10783945B2 (en) Memory device
US6990014B2 (en) Magnetoresistive element and magnetic memory unit
JP5153061B2 (en) Magnetic memory structure, tunnel magnetoresistive read head and manufacturing method thereof
JP5100403B2 (en) Magnetic tunnel junction element and manufacturing method thereof
JP3557140B2 (en) Magnetoresistive element and magnetic reproducing device
EP3264481A1 (en) Perpendicularly magnetized ferromagnetic layers having an oxide interface allowing for improved control of oxidation
US7978443B2 (en) Tunnel magnetoresistive effect element having a tunnel barrier layer of a crystalline insulation material and manufacturing method of tunnel magnetoresistive effect element
US11296276B2 (en) Memory device based on multi-bit perpendicular magnetic tunnel junction
JP2004266252A (en) Magnetic tunnel junction structure and method of manufacturing the same
JP2006005356A (en) Magnetic tunnel junction element and method of forming the same, magnetic memory structure and tunnel magnetoresistance effect type reproducing head
US7005014B2 (en) Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
JPWO2008050790A1 (en) Tunnel-type magnetic sensing element and manufacturing method thereof
JP2008159653A (en) Magnetism detecting element
JP2004253807A (en) Mtj element, mtj element array, and mtj element manufacture method
JPH0268706A (en) Reluctance sensor
US6790541B2 (en) Exchange coupling film and electroresistive sensor using the same
US20010053053A1 (en) Exchange coupling film and electroresistive sensor using the same
JP4940176B2 (en) Magnetoresistive element and magnetic memory
JP2003031866A (en) Tunnelling magnetoresistive effect film and magnetoresistance storage device
US8130476B2 (en) Tunneling magnetic sensing element and method for manufacturing the same
JP4389423B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic memory device
US20080186638A1 (en) Tunneling magnetic sensing element having free magnetic layer inserted with nonmagnetic metal layers
US7969690B2 (en) Tunneling magnetoresistive element which includes Mg-O barrier layer and in which nonmagnetic metal sublayer is disposed in one of magnetic layers
JP2006128410A (en) Magnetic detecting element and its manufacturing method
US20020101689A1 (en) High sensitivity spin valve stacks using oxygen in spacer layer deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091008

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419