JP2003031208A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2003031208A
JP2003031208A JP2001209662A JP2001209662A JP2003031208A JP 2003031208 A JP2003031208 A JP 2003031208A JP 2001209662 A JP2001209662 A JP 2001209662A JP 2001209662 A JP2001209662 A JP 2001209662A JP 2003031208 A JP2003031208 A JP 2003031208A
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
aqueous electrolyte
active material
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001209662A
Other languages
Japanese (ja)
Other versions
JP4929540B2 (en
Inventor
Naomi Awano
直実 粟野
Kyohei Usami
恭平 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001209662A priority Critical patent/JP4929540B2/en
Publication of JP2003031208A publication Critical patent/JP2003031208A/en
Application granted granted Critical
Publication of JP4929540B2 publication Critical patent/JP4929540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high safety. SOLUTION: This nonaqueous electrolyte secondary battery contains a shut off means isolating between active materials and/or between the active material and a current collector when the inside of the nonaqueous electrolyte secondary battery becomes a prescribed temperature or higher in an active material layer. When the nonaqueous electrolyte secondary battery causes thermal runaway due to unexpected situation, reaction proceeds in succession on the inside of the nonaqueous electrolyte secondary battery to generate heat, and the reaction is further accelerated. When the inside of the nonaqueous electrolyte secondary battery becomes a specified temperature or higher, the connection between the active materials or between the active material and the current collector is isolated and is electrically shut off, and further proceeding of the reaction is prevented to suppress the increase of the temperature inside the nonaqueous electrolyte secondary battery. As the shut off means, thermal expansion powder expanding its volume at a specified temperature or higher is listed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、安全性の高い非水
電解液二次電池に関する。
TECHNICAL FIELD The present invention relates to a highly safe non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、ノート型コンピューター、小型携
帯機器、自動車等に用いられるクリーンなエネルギー源
として高性能二次電池の開発が盛んである。ここで用い
られる二次電池には、小型軽量でありながら大容量・高
出力であること、即ち高エネルギー密度・高出力密度で
あることが求められている。また、高エネルギーを貯蔵
することから安全性の確保が重要である。高エネルギー
密度・高出力密度を達成できる二次電池としては、リチ
ウム二次電池等の非水電解質二次電池が有力視されてい
る。
2. Description of the Related Art In recent years, high-performance secondary batteries have been actively developed as clean energy sources used in notebook computers, small portable devices, automobiles and the like. The secondary battery used here is required to have a large capacity and a high output while being small and lightweight, that is, a high energy density and a high output density. In addition, it is important to ensure safety because it stores high energy. Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are regarded as promising as secondary batteries capable of achieving high energy density and high output density.

【0003】一般的にリチウム二次電池は、リチウムイ
オンを放出できる正極と、正極から放出されたリチウム
イオンを吸蔵および放出できる負極と、正極及び負極の
間に介在する多孔質セパレータと、正極と負極との間で
リチウムイオンを移動させる電解液とを備えている。
Generally, a lithium secondary battery has a positive electrode capable of releasing lithium ions, a negative electrode capable of absorbing and releasing lithium ions released from the positive electrode, a porous separator interposed between the positive electrode and the negative electrode, and a positive electrode. And an electrolytic solution for moving lithium ions to and from the negative electrode.

【0004】ここで非水電解質二次電池の高エネルギー
密度化、高出力化等の高性能化を図る際には、安全性の
確保が重要な問題である。たとえばリチウム二次電池で
は、化学的活性の高いリチウム、可燃性の高い電解液、
充電状態での熱安定性の低い酸化物正極活物質を用いて
いるので電池の取扱いについては細心の注意が必要とな
る。特に高性能のリチウム電池を市場に出す場合は、誤
使用に基づく危険に対する充分な安全対策を施すことが
必要となる。たとえば、電池の短絡、過充電、高温下で
の放置等の誤使用による電池の破損等の不都合が挙げら
れる。誤使用に基づく不都合(熱暴走)の原因としては
電池材料間の化学反応が過熱により促進されることが挙
げられる。
[0004] Here, in order to improve the performance of the non-aqueous electrolyte secondary battery such as high energy density and high output, ensuring safety is an important issue. For example, in a lithium secondary battery, chemically active lithium, highly flammable electrolyte,
Since an oxide positive electrode active material having a low thermal stability in a charged state is used, it is necessary to be careful when handling the battery. Particularly when a high-performance lithium battery is put on the market, it is necessary to take sufficient safety measures against the danger due to misuse. For example, there are inconveniences such as battery short circuit, overcharge, and damage to the battery due to misuse such as leaving it at high temperature. One of the causes of inconvenience (thermal runaway) due to misuse is that a chemical reaction between battery materials is accelerated by overheating.

【0005】たとえば、満充電状態から更に充電する過
充電状態において、ある値以上の電流を流しつづける
と、ジュール熱によって電池温度は上昇する。この状態
が続くと、正極においては、正極活物質からリチウムが
放出され、また、負極においては、負極がカーボンの場
合はリチウムが析出し始めたり、負極がリチウム金属の
場合には、リチウムのデンドライトが形成される。この
ように正負活物質は不安定状態になる。
For example, in the overcharged state in which the battery is fully charged, the battery temperature rises due to Joule heat if a current of a certain value or more continues to flow. When this state continues, in the positive electrode, lithium is released from the positive electrode active material, and in the negative electrode, when the negative electrode is carbon, lithium begins to precipitate, or when the negative electrode is lithium metal, lithium dendrite. Is formed. In this way, the positive and negative active materials become unstable.

【0006】この不安定な正負活物質は、ある温度に達
すると電池内の有機電解液と発熱反応を徐々に開始す
る。この発熱反応によって電池自身の温度が更に上昇
し、ある状態を境に急激な反応に発展し、激しい発煙を
伴う熱暴走状態となる。
This unstable positive and negative active material gradually starts an exothermic reaction with the organic electrolyte in the battery when it reaches a certain temperature. Due to this exothermic reaction, the temperature of the battery itself further rises and develops into a rapid reaction at a certain state, resulting in a thermal runaway state accompanied by intense smoke emission.

【0007】この非水電解液二次電池の安全性を向上さ
せる改善策として、種々の方法が提案されている。例え
ば、熱暴走発生前の電池の内圧上昇を利用して、機械的
に電流が流れるリード部を切る電流遮断器(特開200
0−113874)や、大電流が流れ電池内部が高温と
なると、PTC素子(特開平11−273651)や温
度が上昇すると抵抗値が増加する正極活物質(特開平7
−161389)により抵抗を増加させるもの、融点の
低いポリプロピレン、ポリエチレンをセパレ−タに用い
た電池内部温度上昇に伴うセパレ−タのシャットダウン
効果による過電流のカット等の方法がある。しかし、こ
れらの方法は、自動車動力等の高い信頼性が要求される
用途においては、振動などによる誤動作や電池のコスト
アップ、低い確実性などにより、実用性が充分とはいえ
ない。
Various methods have been proposed as measures for improving the safety of this non-aqueous electrolyte secondary battery. For example, a current breaker that disconnects a lead portion through which a current mechanically flows by utilizing the increase in internal pressure of the battery before the occurrence of thermal runaway (Japanese Patent Application Laid-Open No. 200-200200).
0-113874) or a high current flows inside the battery to raise the temperature, the PTC element (Japanese Patent Laid-Open No. 11-273651) and the positive electrode active material whose resistance value increases as the temperature rises (Japanese Laid-Open Patent Publication No.
161389) to increase the resistance, polypropylene or polyethylene having a low melting point is used as a separator, and there is a method of cutting off the overcurrent due to the shutdown effect of the separator due to the rise of the internal temperature of the battery. However, these methods are not sufficiently practical in applications where high reliability such as automobile power is required due to malfunctions due to vibrations, increased battery cost, low reliability, and the like.

【0008】また、電池内に感熱性マイクロカプセルを
含有し、電池温度の上昇に伴い電解重合性モノマーを放
出し、電解液を重合させることによって、電解液のイオ
ン導電率を低下させ、電池特性を失わせる方法(特開平
9−45369、特開平10−270084)がある。
しかし、これらの方法は、重合反応に時間がかかるた
め、過充電電極と電解液との発熱反応開始から熱暴走に
至るまでのわずかな時間内に、電池特性を失わせること
は困難であり、充分な効果は得られない。
In addition, the thermosensitive microcapsules are contained in the battery, the electrolytically polymerizable monomer is released as the battery temperature rises, and the electrolytic solution is polymerized to lower the ionic conductivity of the electrolytic solution, thereby improving the battery characteristics. There is a method (Japanese Patent Application Laid-Open No. 9-45369, Japanese Patent Application Laid-Open No. 10-270084).
However, since these methods take a long time for the polymerization reaction, it is difficult to lose the battery characteristics within a short time from the start of the exothermic reaction between the overcharge electrode and the electrolytic solution to the thermal runaway, Not enough effect.

【0009】[0009]

【発明が解決しようとする課題】このように従来から多
くの安全手段が開発されているが、さらなる安全性向上
の要求はとどまるところを知らない。また、安全性向上
のためには多種類の安全手段を開発し併用することも有
効である。
As described above, although many safety measures have been conventionally developed, there is no end to the demand for further improvement in safety. It is also effective to develop and use various kinds of safety measures in order to improve safety.

【0010】したがって本発明は、従来と異なる手段で
安全性を確保した非水電解質二次電池を提供することを
解決すべき課題とする。
Therefore, it is an object of the present invention to provide a non-aqueous electrolyte secondary battery whose safety is ensured by means different from the conventional one.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する目的
で本発明者等は鋭意研究を行った結果、以下の発明を行
った。すなわち、本発明の非水電解液二次電池は、集電
体及び該集電体上に形成されたリチウムイオンを吸蔵及
び脱離できる活物質を含む活物質層を少なくともいずれ
かにもつ正極及び負極を有する非水電解液二次電池であ
って、前記活物質層は、前記非水電解液二次電池内が所
定温度以上となったときに、前記活物質間及び/又は該
活物質と前記集電体との間を孤立化させて電気的に遮断
する特性をもつ遮断手段を含むことを特徴とする。
Means for Solving the Problems The present inventors have made the following inventions as a result of earnest researches for the purpose of solving the above problems. That is, the non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode having at least one of an active material layer containing a current collector and an active material capable of inserting and extracting lithium ions formed on the current collector. In the non-aqueous electrolyte secondary battery having a negative electrode, the active material layer, when the inside of the non-aqueous electrolyte secondary battery is a predetermined temperature or higher, between the active materials and / or and the active material The present invention is characterized by including a breaking means having a characteristic of electrically isolating the current collector by isolating it from the current collector.

【0012】不測の事態によって非水電解液二次電池が
熱暴走を起こした場合に、非水電解液二次電池内部で
は、反応が連鎖的に進行する結果発熱し、さらに反応が
促進される。したがって、非水電解液二次電池内部が所
定温度以上となったときに、活物質間及び/又は活物質
と集電体との間を孤立化させて電気的に遮断すること
で、それ以上の反応が進行することを防止して、非水電
解液二次電池内部の温度が上昇することを防止する。
When the non-aqueous electrolyte secondary battery undergoes thermal runaway due to an unforeseen situation, heat is generated inside the non-aqueous electrolyte secondary battery as a result of chain reaction, and the reaction is further promoted. . Therefore, when the inside of the non-aqueous electrolyte secondary battery reaches a predetermined temperature or higher, the active materials are separated from each other and / or the active material and the current collector are isolated from each other and electrically cut off. The reaction is prevented from proceeding and the temperature inside the non-aqueous electrolyte secondary battery is prevented from rising.

【0013】前記遮断手段としては、所定温度以上で体
積膨張を起こす熱膨張粉末を活物質層内(請求項2)
や、多孔質膜からなるセパレータ上乃至セパレータ内
(請求項5)又は該非水電解液内(請求項6)に存在さ
せることで達成できる。
As the shut-off means, a thermal expansion powder which causes volume expansion at a predetermined temperature or higher is used in the active material layer (claim 2).
Alternatively, it can be achieved by being present on or in the separator made of a porous film (Claim 5) or in the non-aqueous electrolyte (Claim 6).

【0014】電池異常時など電池温度が上昇した場合
に、熱膨張粉末が活物質層内で体積膨張を起こすこと
で、同極内の活物質間並びに活物質及び集電体の間に体
積膨張した熱膨張粉末が侵入し、電極内の導伝パスを遮
断し、その電気的接続を遮断できる。その場合に好まし
い熱膨張粉末の粒子径としては、活物質の粒子径の3倍
以下が挙げられる(請求項3)。この範囲の粒子径とす
ることで、所定温度以下では活物質間の導電性が確保で
き、かつ、熱膨張粉末を活物質の周りに均一に存在させ
ることができる。そして、熱膨張粉末の粒子径を活物質
層に含まれる導電材の粒子径以上とすることがさらに好
ましい(請求項4)。導電材以上の粒子径とすること
で、体積膨張時の電気的接続の遮断をより確実に行うこ
とができる。
When the battery temperature rises, such as when the battery is abnormal, the thermal expansion powder causes volume expansion in the active material layer, so that volume expansion occurs between the active materials in the same pole and between the active material and the current collector. The thermal expansion powder thus entered penetrates and cuts off the conductive path in the electrode, so that its electrical connection can be cut off. In that case, the preferable particle diameter of the thermal expansion powder is 3 times or less the particle diameter of the active material (claim 3). By setting the particle diameter in this range, the conductivity between the active materials can be ensured at a predetermined temperature or lower, and the thermal expansion powder can be uniformly present around the active material. Further, it is more preferable that the particle diameter of the thermal expansion powder is equal to or larger than the particle diameter of the conductive material contained in the active material layer (claim 4). By setting the particle size to be equal to or larger than that of the conductive material, it is possible to more reliably cut off the electrical connection during volume expansion.

【0015】そして、熱膨張粉末がセパレータ上乃至セ
パレータ内部で体積膨張することで、セパレータの孔を
塞ぐことができ正極及び負極の間のイオン伝導を遮断す
ることができる。同様に、熱膨張粉末が非水電解液内に
おいて体積膨張することでも、両極間のイオン伝導を遮
断できる。
The volume of the thermally expanded powder expands on or inside the separator, so that the pores of the separator can be closed and the ionic conduction between the positive electrode and the negative electrode can be blocked. Similarly, the thermal expansion powder expands in volume in the non-aqueous electrolytic solution, so that the ionic conduction between both electrodes can be blocked.

【0016】所定温度以上で体積膨張を起こす熱膨張粉
末としては、化学発泡剤又は物理発泡剤を内部に含有す
る粉末が例示でき(請求項7)、具体的には、沸点が所
定温度以下の低沸点液体が内部に封入されたマイクロカ
プセル(請求項8)や、所定温度で体積変化を伴い相転
移する材料から形成される粉末(請求項9)が例示でき
る。
As the thermal expansion powder which causes volume expansion at a predetermined temperature or higher, a powder containing a chemical foaming agent or a physical foaming agent can be exemplified (Claim 7). Specifically, the boiling point is not higher than the predetermined temperature. Examples thereof include microcapsules in which a low boiling point liquid is enclosed (claim 8) and powders (claim 9) formed from a material that undergoes a phase transition with a volume change at a predetermined temperature.

【0017】前記した所定温度としては80〜180℃
の間であることが安全性確保の観点からは好ましい(請
求項10)。特に所定温度を熱暴走開始温度以下とする
ことで、電池が熱暴走しない。
The above-mentioned predetermined temperature is 80 to 180 ° C.
From the viewpoint of ensuring safety (claim 10). In particular, by setting the predetermined temperature to be equal to or lower than the thermal runaway start temperature, the battery does not run into thermal runaway.

【0018】[0018]

【発明の実施の形態】以下に本発明の非水電解質二次電
池をリチウム二次電池に適用した実施形態に基づいて説
明する。なお、本発明は、以下の実施形態により限定さ
れるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention will be described below based on an embodiment applied to a lithium secondary battery. The present invention is not limited to the embodiments below.

【0019】本実施形態のリチウム二次電池は、少なく
とも一方は集電体及び集電体上に形成されたリチウムイ
オンを吸蔵及び脱離できる活物質を含む活物質層をもつ
正極及び負極を有する。そして、非水電解液二次電池内
が所定温度以上となったときに、活物質間及び/又は活
物質と集電体との間を孤立化させて電気的に遮断する遮
断手段をもつ。また、その他必要に応じた要素をもつ。
所定温度としては、80〜180℃の間とすることが好
ましい。電池内部の熱暴走が進行する温度よりも低い温
度で且つ通常の使用状態で到達しない温度を設定するこ
とで、確実に熱暴走を防止すると共に、誤作動を防止で
きる。
The lithium secondary battery of this embodiment has at least one of a positive electrode and a negative electrode having a current collector and an active material layer formed on the current collector and containing an active material capable of inserting and extracting lithium ions. . Further, when the inside of the non-aqueous electrolyte secondary battery has reached a predetermined temperature or higher, the active material and / or the active material and the current collector are isolated from each other and electrically isolated. It also has other elements as required.
The predetermined temperature is preferably between 80 and 180 ° C. By setting the temperature lower than the temperature at which the thermal runaway inside the battery progresses and does not reach in the normal use condition, thermal runaway can be surely prevented and malfunction can be prevented.

【0020】遮断手段としては、所定温度以上で体積膨
張する熱膨張粉末が挙げられる。熱膨張粉末としては、
低沸点液体等を内部に封入した熱膨張マイクロカプセル
や、相転移により体積膨張する物質からなる粉末が例示
できる。
As the blocking means, there is a thermal expansion powder which expands in volume at a predetermined temperature or higher. As the thermal expansion powder,
Examples thereof include thermal expansion microcapsules in which a low boiling point liquid or the like is enclosed, and powders made of a substance that expands in volume by a phase transition.

【0021】熱膨張粉末は、後述する電極内に含有・分
散させることが好ましい。電極内に含有・分散させる方
法としては、後述する活物質と混合して電極を作成する
ことで活物質間に熱膨張粉末が分散できる。正負どちら
の電極に分散させても構わないし、両方の電極に含有さ
せてもよい。電極に熱膨張粉末を含有させることで、過
充電時等の熱暴走に至る過程の途中の所定温度で、体積
膨張し、電極内の導伝パス(活物質間、活物質−集電体
間)を遮断することで活物質を孤立化させ、電池抵抗を
急激に上昇させることができる。この電池の抵抗上昇に
より、過充電電流を遮断することが可能となる。この場
合に熱膨張粉末の粒子径は、後述する活物質の粒子径の
3倍以下であることが好ましい。さらに後述する導電材
の粒子径以上であることが好ましい。
The thermal expansion powder is preferably contained / dispersed in the electrode described later. As a method of containing / dispersing in the electrode, the thermal expansion powder can be dispersed between the active materials by mixing with an active material described later to form an electrode. It may be dispersed in either the positive or negative electrode, or may be contained in both electrodes. By containing thermal expansion powder in the electrode, the electrode expands in volume at a predetermined temperature in the process of thermal runaway such as overcharge, and the conductive path (between active materials, between active material and current collector) in the electrode. ), The active material can be isolated and the battery resistance can be rapidly increased. This increase in battery resistance makes it possible to cut off the overcharge current. In this case, the particle size of the thermal expansion powder is preferably 3 times or less the particle size of the active material described later. Further, it is preferable that the particle size is equal to or larger than the particle diameter of the conductive material described later.

【0022】また、この熱膨張粉末をセパレ−タ或いは
電解液内に含有させた場合も同様の効果が期待される。
さらに、固体電解質を採用する電池ではその内部に含有
させることも可能である。本来ポリエチレンセパレ−タ
やポリプロピレンセパレ−タは所定の温度に達するとセ
パレ−タが溶融し、セパレ−タの開孔を塞ぎイオンの透
過を遮断するシャットダウン機能を備えている。さら
に、上記の熱膨張マイクロカプセルをセパレ−タ内に含
有させることにより、任意の所定温度で、体積膨張させ
ることができ、セパレ−タの孔等を塞いで抵抗を増大で
きる。
Similar effects are expected when the thermal expansion powder is contained in a separator or an electrolytic solution.
Further, in a battery employing a solid electrolyte, it can be contained therein. Originally, a polyethylene separator or a polypropylene separator has a shutdown function of melting the separator when it reaches a predetermined temperature, blocking the opening of the separator and blocking the permeation of ions. Further, by containing the above-mentioned thermally expanded microcapsules in the separator, it is possible to expand the volume at an arbitrary predetermined temperature and block the holes of the separator to increase the resistance.

【0023】そして、セパレ−タ等に熱膨張粉末を含有
させることで正負極間の厚み、すなわち正負極間の距離
が広がることにより、電池抵抗を増大させる効果もあ
る。熱膨張粉末を電池内に含有させることにより、セパ
レ−タ本来の持っているシャットダウン機能が働く温度
に達する前でも、電流遮断が可能になる。
Further, the thermal expansion powder is contained in the separator or the like, so that the thickness between the positive and negative electrodes, that is, the distance between the positive and negative electrodes is widened, which also has the effect of increasing the battery resistance. By including the thermal expansion powder in the battery, the current can be cut off even before the temperature at which the shutdown function originally possessed by the separator is reached.

【0024】この熱膨張粉末は、内部にアゾ化合物、ニ
トロソ化合物、ヒドラジン誘導体、セミカルバジド化合
物、テトラゾール化合物、イソシアネート化合物、重炭
酸塩・炭酸塩、亜硝酸塩・水素化物、重炭酸ナトリウム
+酸、過酸化水素+イースト菌、亜鉛粉末+酸などによ
る化学発泡剤や、ブタン、ペンタン、ヘキサン、ジクロ
ルエタン、ジクロルメタン、フロン、空気、炭酸ガス、
窒素ガスなどの物理発泡剤を含んだ熱可塑性樹脂で形成
されている。
This thermal expansion powder has azo compounds, nitroso compounds, hydrazine derivatives, semicarbazide compounds, tetrazole compounds, isocyanate compounds, bicarbonates / carbonates, nitrites / hydrides, sodium bicarbonate + acids, peroxides inside. Chemical blowing agents such as hydrogen + yeast, zinc powder + acid, butane, pentane, hexane, dichloroethane, dichloromethane, freon, air, carbon dioxide,
It is made of a thermoplastic resin containing a physical foaming agent such as nitrogen gas.

【0025】なかでも熱膨張マイクロカプセルは、内部
の低沸点液体が気化すること等により、内部圧力がマイ
クロカプセルを膨張させるのに充分な圧力となることで
体積膨張するものが好ましい。体積膨張する所定温度を
制御する方法としては、内部に封入する低沸点液体とし
て、その沸点が所定温度付近の液体を選択することで、
容易に制御できる。また、体積膨張をより容易に進行さ
せるために、マイクロカプセルの外殻部分を形成する部
分を所定温度以下に軟化点をもつ熱可塑性樹脂等により
形成することも好ましい。マイクロカプセルの形成はコ
アセルべーション法等の公知の方法等が採用できる。
Among them, the thermally expandable microcapsules are preferably those which undergo volume expansion when the internal pressure becomes a sufficient pressure to expand the microcapsules due to vaporization of the low boiling point liquid inside. As a method for controlling the predetermined temperature at which the volume expands, as the low boiling point liquid to be sealed inside, by selecting a liquid whose boiling point is near the predetermined temperature,
It can be controlled easily. Further, in order to facilitate the volume expansion, it is also preferable to form the portion forming the outer shell portion of the microcapsule with a thermoplastic resin or the like having a softening point at a predetermined temperature or lower. For forming the microcapsules, a known method such as a coacervation method can be adopted.

【0026】熱膨張マイクロカプセルとしては、例えば
日本フェライト株式会社製のエクスパンセル051D
U,007WU,053WU,053DU,054W
U,091DU,091−080DU,091−140
−DU,092−120DU,093−120DU,8
20WU,642WU,551WU,551DU,55
1−20WU,551−20DU,551−80WU,
551−80DU,461WU,461DU,461−
20や、松本油脂製株式会社製のマイクロカプセルF−
20,F−30,F−40,F−50,F−80S,F
−82,F−85,F−100などがある。これらの材
料は、共重合体の外殻と、その内部にある低沸点の低炭
化水素により構成されており、約70℃から200℃の
間の所定の温度に達すると、外殻部分の軟化及び内容物
の気化によって、自身の体積が40−60倍まで膨張す
る。
As the thermal expansion microcapsule, for example, Expancel 051D manufactured by Nippon Ferrite Co., Ltd.
U, 007WU, 053WU, 053DU, 054W
U, 091DU, 091-080DU, 091-140
-DU, 092-120DU, 093-120DU, 8
20 WU, 642 WU, 551 WU, 551 DU, 55
1-20 WU, 551-20 DU, 551-80 WU,
551-80DU, 461WU, 461DU, 461-
20 and Microcapsule F- manufactured by Matsumoto Yushi Co., Ltd.
20, F-30, F-40, F-50, F-80S, F
-82, F-85, F-100, etc. These materials are composed of an outer shell of a copolymer and a low hydrocarbon with a low boiling point inside, and when the temperature reaches a predetermined temperature between about 70 ° C and 200 ° C, the outer shell softens. And, due to the vaporization of the contents, its own volume expands up to 40-60 times.

【0027】相転移により体積膨張する物質としては、
例えば、(株)十川ゴム製の熱膨張ゴムが例示できる。
As the substance that expands in volume by the phase transition,
For example, thermal expansion rubber manufactured by Togawa Rubber Co., Ltd. can be exemplified.

【0028】さらに遮断手段としては、外部から電池温
度を監視して、電池温度が所定温度以上となったとき
に、電池に振動等を付与することで電池内部の電極等を
崩壊させる手段が挙げられる。
Further, as the shut-off means, means for monitoring the battery temperature from the outside and, when the battery temperature becomes a predetermined temperature or more, applying vibration or the like to the battery to collapse the electrodes and the like inside the battery is cited. To be

【0029】本実施形態のリチウム二次電池は、その形
状には特に制限を受けず、コイン型、円筒型、角型等、
種々の形状の電池として使用できる。本実施形態では、
円筒型のリチウム二次電池に基づいて説明を行う。
The lithium secondary battery of this embodiment is not particularly limited in its shape, and may be a coin type, a cylindrical type, a square type, or the like.
It can be used as a battery of various shapes. In this embodiment,
The description will be given based on a cylindrical lithium secondary battery.

【0030】本実施形態のリチウム二次電池は、正極お
よび負極をシート形状として両者をセパレータを介して
積層し渦巻き型に多数回巻回した巻回体を空隙を満たす
電解液とともに所定の円筒状のケース内に収納したもの
である。正極と正極端子部とが、そして負極と負極端子
部とが、それぞれ電気的に接合されている。
In the lithium secondary battery of this embodiment, a positive electrode and a negative electrode are formed into a sheet shape, and both are laminated with a separator interposed between them. It is stored in the case. The positive electrode and the positive electrode terminal portion are electrically connected to each other, and the negative electrode and the negative electrode terminal portion are electrically connected to each other.

【0031】正極は、リチウムイオンを充電時には放出
し且つ放電時には吸蔵することができる正極活物質をも
つ。正極活物質としては、層状構造またはスピネル構造
のリチウム−金属複合酸化物のうちの1種以上であるリ
チウム−金属複合酸化物含有活物質が例示できる。
The positive electrode has a positive electrode active material capable of releasing lithium ions during charging and occluding lithium ions during discharging. Examples of the positive electrode active material include a lithium-metal composite oxide-containing active material that is at least one kind of a lithium-metal composite oxide having a layered structure or a spinel structure.

【0032】リチウム−金属複合酸化物含有活物質とし
ては、たとえば、Li(1-X)NiO2、Li(1-X)Mn
2、Li(1-X)Mn24、Li(1-X)CoO2、Li
(1-X)FeO 2等や、各々にLi、Al、そしてCr等の
遷移金属を添加または置換した材料等である。この例示
におけるXは0〜1の数を示す。なお、これらのリチウ
ム−金属複合酸化物を正極活物質として用いる場合には
単独で用いるばかりでなくこれらを複数種類混合して用
いることもできる。このなかでもリチウム−金属複合酸
化物含有活物質としては、層状構造またはスピネル構造
のリチウムマンガン含有複合酸化物、リチウムニッケル
含有複合酸化物およびリチウムコバルト含有複合酸化物
のうちの1種以上であることが好ましい。コスト低減の
観点からはリチウム−金属複合酸化物含有活物質は、層
状構造またはスピネル構造のリチウムマンガン含有複合
酸化物およびリチウムニッケル含有複合酸化物のうちの
1種以上であることがさらに好ましい。
As an active material containing a lithium-metal composite oxide
For example, Li(1-X)NiO2, Li(1-X)Mn
O2, Li(1-X)Mn2OFour, Li(1-X)CoO2, Li
(1-X)FeO 2Etc., Li, Al, Cr, etc.
For example, a material to which a transition metal is added or replaced. This example
X in represents a number of 0 to 1. In addition, these Richiu
When using a metal-metal composite oxide as the positive electrode active material,
Not only used alone, but also as a mixture of multiple types
You can also Among these, lithium-metal composite acid
As the compound-containing active material, a layered structure or a spinel structure
Lithium manganese-containing composite oxide, lithium nickel
-Containing complex oxide and lithium-cobalt-containing complex oxide
It is preferable that it is one or more of the above. Cost reduction
From the viewpoint, the lithium-metal composite oxide-containing active material is a layer.
-Like structure or spinel structure containing lithium manganese
Of oxides and lithium nickel-containing composite oxides
More preferably, it is one or more.

【0033】正極は前述の正極活物質を結着材、導電材
等の公知の添加材と混合した後に金属箔等からなる集電
体上に塗布され正極合材層が形成される。
The positive electrode is formed by mixing the above-mentioned positive electrode active material with a known additive such as a binder and a conductive material and then applying the mixture on a current collector made of metal foil or the like to form a positive electrode mixture layer.

【0034】負極は、リチウムイオンを充電時には吸蔵
し、かつ放電時には放出する負極活物質を用いることが
できれば、その材料構成で特に限定されるものではな
く、公知の材料・構成のものを用いることができる。た
とえば、リチウム金属、グラファイト又は非晶質炭素等
の炭素材料等である。そのなかでも特に炭素材料を用い
ることが好ましい。炭素材料は比表面積が比較的大きく
でき、リチウムの吸蔵、放出速度が速いため大電流での
充放電特性、出力・回生密度に対して良好となる。特
に、出力・回生密度のバランスを考慮すると、充放電に
伴ない電圧変化の比較的大きい炭素材料を使用すること
が好ましい。また、このような炭素材料を負極活物質に
用いることで、より高い充放電効率と良好なサイクル特
性とが得られる。
The negative electrode is not particularly limited in material constitution as long as it can use a negative electrode active material which absorbs lithium ions during charging and discharges during discharging, and a known material and constitution can be used. You can For example, it is a carbon material such as lithium metal, graphite or amorphous carbon. Among them, it is particularly preferable to use a carbon material. Since the carbon material can have a relatively large specific surface area and has a high lithium absorption / desorption rate, it has good charging / discharging characteristics at a large current and good output / regeneration density. In particular, in consideration of the balance between the output and the regenerative density, it is preferable to use a carbon material having a relatively large voltage change with charge and discharge. Further, by using such a carbon material as the negative electrode active material, higher charge / discharge efficiency and good cycle characteristics can be obtained.

【0035】このように負極活物質として炭素材料を用
いた場合には、これに必要に応じて導電材および結着材
を混合して得られた負極合材が集電体に塗布されてなる
ものを用いることが好ましい。
When the carbon material is used as the negative electrode active material as described above, the negative electrode mixture obtained by mixing the conductive material and the binder as necessary is applied to the current collector. It is preferable to use one.

【0036】非水電解液は、有機溶媒に支持塩を溶解さ
せたものである。
The non-aqueous electrolytic solution is a solution in which a supporting salt is dissolved in an organic solvent.

【0037】有機溶媒は、通常リチウム二次電池の電解
液の用いられる有機溶媒であれば特に限定されるもので
はなく、例えば、カーボネート類、ハロゲン化炭化水
素、エーテル類、ケトン類、ニトリル類、ラクトン類、
オキソラン化合物等を用いることができる。特に、プロ
ピレンカーボネート、エチレンカーボネート、1,2−
ジメトキシエタン、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート等及びそれらの
混合溶媒が適当である。
The organic solvent is not particularly limited as long as it is an organic solvent usually used in an electrolytic solution of a lithium secondary battery, and examples thereof include carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, Lactones,
An oxolane compound or the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-
Dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and the like and mixed solvents thereof are suitable.

【0038】例に挙げたこれらの有機溶媒のうち、特
に、カーボネート類、エーテル類からなる群より選ばれ
た一種以上の非水溶媒を用いることにより、支持塩の溶
解性、誘電率および粘度において優れ、電池の充放電効
率も高いので、好ましい。
Among these organic solvents listed as examples, by using at least one non-aqueous solvent selected from the group consisting of carbonates and ethers, the solubility, dielectric constant and viscosity of the supporting salt can be improved. It is preferable because it is excellent and the charge / discharge efficiency of the battery is high.

【0039】支持塩は、その種類が特に限定されるもの
ではないが、LiPF6、LiBF4、LiClO4およ
びLiAsF6から選ばれる無機塩、該無機塩の誘導
体、LiSO3CF3、LiC(SO3CF32、LiN
(SO3CF32、LiN(SO2252およびLi
N(SO2CF3)(SO249)から選ばれる有機
塩、並びにその有機塩の誘導体の少なくとも1種である
ことが好ましい。
The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO). 3 CF 3 ) 2 , LiN
(SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and Li
It is preferably at least one of an organic salt selected from N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) and a derivative of the organic salt.

【0040】これらの支持塩の使用により、電池性能を
さらに優れたものとすることができ、かつその電池性能
を室温以外の温度域においてもさらに高く維持すること
ができる。支持塩の濃度についても特に限定されるもの
ではなく、用途に応じ、支持塩および有機溶媒の種類を
考慮して適切に選択することが好ましい。
By using these supporting salts, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature. The concentration of the supporting salt is not particularly limited, and it is preferable to appropriately select it in consideration of the types of the supporting salt and the organic solvent according to the application.

【0041】セパレータは、正極および負極を電気的に
絶縁し、電解液を保持する役割を果たすものである。た
とえば、多孔性合成樹脂膜、特にポリオレフィン系高分
子(ポリエチレン、ポリプロピレン)の多孔膜を用いれ
ばよい。なおセパレータは、正極と負極との絶縁を担保
するため、正極および負極よりもさらに大きいものとす
るのが好ましい。
The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of polyolefin polymer (polyethylene, polypropylene) may be used. The separator is preferably larger than the positive electrode and the negative electrode in order to ensure the insulation between the positive electrode and the negative electrode.

【0042】ケースは、特に限定されるものではなく、
公知の材料、形態で作成することができる。
The case is not particularly limited,
It can be made of a known material and form.

【0043】ガスケットは、ケースと正負の両端子部の
間の電気的な絶縁と、ケース内の密閉性とを担保するも
のである。たとえば、電解液にたいして、化学的、電気
的に安定であるポリプロピレンのような高分子等から構
成できる。
The gasket ensures electrical insulation between the case and both the positive and negative terminal portions and the airtightness inside the case. For example, the electrolyte may be composed of a polymer such as polypropylene that is chemically and electrically stable.

【0044】[0044]

【実施例】〈実施例1〉 (電池の作成) (正極の作製)正極活物質としてのLiNiO2 を80
質量部と、導電材としてのアセチレンブラックを10質
量部と、カルボキシメチルセルロースナトリウムを2質
量部と、ポリテトラフルオロエチレンを1質量部と、熱
膨張粉末としての熱膨張マイクロカプセル(日本フィラ
イト株式会社製 DU051)を10質量部とを混合し
て、正極材料とした。この正極材料を水に分散させ、ス
ラリー状とした。このスラリーをアルミニウム製の正極
集電体両面に塗布し、乾燥後、プレス圧を調整し、正極
板とした。その後、この正極板を所定の大きさにカット
し、電流取り出し用のリードタブ溶接部となる部分の電
極合材を掻き取ることでシート状正極を作製した。この
シート状正極は熱膨張粉末を正極活物質間に有する。
EXAMPLES Example 1 (Preparation of Battery) (Preparation of Positive Electrode) LiNiO 2 as a positive electrode active material was added to 80%.
Parts by mass, 10 parts by mass of acetylene black as a conductive material, 2 parts by mass of sodium carboxymethyl cellulose, 1 part by mass of polytetrafluoroethylene, and thermally expanded microcapsules as thermally expanded powder (manufactured by Nippon Philite Co., Ltd.). DU051) was mixed with 10 parts by mass to obtain a positive electrode material. This positive electrode material was dispersed in water to form a slurry. This slurry was applied on both sides of a positive electrode current collector made of aluminum, dried and then the pressing pressure was adjusted to obtain a positive electrode plate. Then, this positive electrode plate was cut into a predetermined size, and a sheet-shaped positive electrode was produced by scraping off the electrode mixture material in the portion that will be the lead tab weld for current extraction. This sheet-shaped positive electrode has a thermal expansion powder between the positive electrode active materials.

【0045】(負極の作製)負極活物質としての炭素材
料粉末を92.5質量部と、PVDFを7.5質量部と
を混合して、負極材料とした。この負極材料をN−メチ
ル−2−ピロリドン(NMP)に分散させてスラリー状
とした。このスラリーを銅製の負極集電体両面に塗布
し、乾燥後、プレス成型して、正極と同様の操作で負極
板とした。その後、この負極板を所定の大きさにカット
し、電流取り出し用のリードタブ溶接部となる部分の電
極合材を掻き取ることでシート状負極を作製した。
(Production of Negative Electrode) 92.5 parts by mass of carbon material powder as a negative electrode active material and 7.5 parts by mass of PVDF were mixed to prepare a negative electrode material. This negative electrode material was dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. This slurry was applied to both surfaces of a negative electrode current collector made of copper, dried and press-molded to obtain a negative electrode plate in the same manner as the positive electrode. Then, this negative electrode plate was cut into a predetermined size, and the sheet-shaped negative electrode was produced by scraping off the electrode mixture material in the portion which will be the lead tab weld for current extraction.

【0046】(電解液の調製)エチレンカーボネートと
ジエチルカーボネートと3:7の混合有機溶媒に、Li
PF6を1モル/リットルの濃度で溶解し、電解液とし
た。
(Preparation of Electrolyte Solution) A mixed organic solvent of ethylene carbonate, diethyl carbonate and 3: 7 was added to Li.
PF 6 was dissolved at a concentration of 1 mol / liter to prepare an electrolytic solution.

【0047】(電池の組み立て)以上で得られたシート
状正極およびシート状負極を、セパレータとしての厚さ
25μmの微孔ポリエチレン製のフィルムを介した状態
で巻回させて、巻回型電極体を形成した。得られた巻回
型電極体をケースの内部に挿入し、ケース内に保持し
た。このときシート状正極およびシート状負極のリード
タブ溶接部に集電リードの一端を溶接し、その集電リー
ドの他端のそれぞれをケースの正極端子及び負極端子に
接合した。その後、電解液を巻回型電極体を保持したケ
ース内に注入した後、ケースを密閉、封止した。
(Assembly of Battery) The sheet-shaped positive electrode and the sheet-shaped negative electrode obtained as described above are wound in a state of interposing a film made of microporous polyethylene having a thickness of 25 μm as a separator to form a wound electrode body. Was formed. The obtained wound electrode body was inserted into the case and held in the case. At this time, one end of the current collecting lead was welded to the lead tab welding portion of the sheet-shaped positive electrode and the sheet-shaped negative electrode, and the other ends of the current collecting lead were joined to the positive electrode terminal and the negative electrode terminal of the case, respectively. After that, the electrolytic solution was injected into the case holding the spirally wound electrode body, and then the case was sealed and sealed.

【0048】以上の手順により、φ18mm、軸方向の
長さ65mmの円筒型リチウム二次電池を製作した。
By the above procedure, a cylindrical lithium secondary battery having a diameter of 18 mm and an axial length of 65 mm was manufactured.

【0049】(熱膨張マイクロカプセルについて)な
お、本実施例で使用した熱膨張マイクロカプセルは、1
06℃以上で体積膨張を起こす。この体積膨張は、熱膨
張マイクロカプセル単独で加熱した場合に、体積比で約
60倍である。
(Regarding Thermal Expansion Microcapsule) The thermal expansion microcapsule used in this example is 1
Volume expansion occurs at 06 ° C or higher. The volume expansion is about 60 times in volume ratio when the thermally expanded microcapsules alone are heated.

【0050】〈実施例2〉 (正極の作製)LiNiO2を85質量部と、アセチレ
ンブラックを10質量部と、PVDFを5質量部とを混
合して、正極材料とした。この正極材料をN−メチル−
2−ピロリドン(NMP)に分散させ、スラリー状と
し、その後、実施例1の電池と同様の操作により、シー
ト状正極を作製した。
Example 2 Preparation of Positive Electrode 85 parts by mass of LiNiO 2 , 10 parts by mass of acetylene black and 5 parts by mass of PVDF were mixed to prepare a positive electrode material. This positive electrode material is N-methyl-
2-pyrrolidone (NMP) was dispersed to make a slurry, and then a sheet-shaped positive electrode was produced by the same operation as in the battery of Example 1.

【0051】(負極の作製)炭素材料粉末を98質量部
と、カルボキシメチルセルロースナトリウムを1質量部
と、SBRを1質量部と、熱膨張マイクロカプセル(日
本フィライト株式会社製 DU051)を10質量部と
を混合して、負極材料とした。この負極材料を水に分散
させてスラリー状とし、その後、実施例1と同様の操作
により、シート状負極を作製した。このシート状負極は
熱膨張粉末を正極活物質間に有する。
(Preparation of Negative Electrode) 98 parts by mass of carbon material powder, 1 part by mass of sodium carboxymethyl cellulose, 1 part by mass of SBR, and 10 parts by mass of thermal expansion microcapsules (DU051 manufactured by Nippon Philite Co., Ltd.). Were mixed to obtain a negative electrode material. This negative electrode material was dispersed in water to form a slurry, and then a sheet-shaped negative electrode was produced by the same operation as in Example 1. This sheet-shaped negative electrode has a thermal expansion powder between positive electrode active materials.

【0052】(電池の組み立て)以上で得られたシート
状正極と、シート状負極とを実施例1の電池組み立て方
法と同様に組み合わせて、実施例2の電池を作成した。
(Assembly of Battery) The sheet-like positive electrode and the sheet-like negative electrode obtained above were combined in the same manner as in the battery assembling method of Example 1 to prepare a battery of Example 2.

【0053】〈比較例〉実施例1のシート状負極と、実
施例2のシート状正極とを実施例1の電池組み立て方法
と同様に組み合わせて、比較例の電池を作成した。つま
り、比較例の電池は熱膨張粉末を有さない以外は、実施
例1及び2の電池と同様の構成を有する。
<Comparative Example> The sheet-shaped negative electrode of Example 1 and the sheet-shaped positive electrode of Example 2 were combined in the same manner as in the battery assembly method of Example 1 to prepare a battery of Comparative Example. That is, the battery of the comparative example has the same configuration as that of the batteries of Examples 1 and 2 except that it does not have the thermal expansion powder.

【0054】〈試験〉 (初期放電容量)各電池について、充電電流0.25m
A/cm2で4.1Vまで定電流・定電圧充電を行い、
その後、放電電流0.33mA/cm2で3.0Vまで
定電流放電を行った。次に充電電流1.1mA/cm2
で4.1Vまで定電流・定電圧充電後、放電電流1.1
mA/cm2で3.0Vまで定電流放電を行うサイクル
を4サイクル行った。そして、充電電流1.1mA/c
2で4.1Vまで定電流・定電圧充電を行った。その
後、放電電流0.33mA/cm2で3.0Vまで定電
流放電を行った時の放電容量を電池初期容量とした。な
お、測定は20℃の雰囲気で行った。
<Test> (Initial discharge capacity) For each battery, charging current 0.25 m
Constant current / constant voltage charging up to 4.1V at A / cm 2
Then, constant current discharge was performed at a discharge current of 0.33 mA / cm 2 to 3.0 V. Next, charging current 1.1 mA / cm 2
After constant current / constant voltage charging up to 4.1V, discharge current 1.1
Four cycles of constant current discharge at mA / cm 2 up to 3.0 V were performed. And charging current 1.1mA / c
Constant current / constant voltage charging was performed up to 4.1 V at m 2 . After that, the discharge capacity when constant current discharge was performed up to 3.0 V at a discharge current of 0.33 mA / cm 2 was taken as the battery initial capacity. The measurement was performed in an atmosphere of 20 ° C.

【0055】(過充電試験)過酷な条件における電池の
安定性を調べる目的で、4.1Vまで充電電流1.5m
A/cm2で定電流・定電圧充電した満充電状態の各電
池について、その後更に250%充電になるまで5Aで
連続充電を行ない、そのときの電池温度及び電池挙動を
観察した。
(Overcharge test) For the purpose of investigating the stability of the battery under severe conditions, the charging current was 1.5 m up to 4.1V.
Each battery in a fully charged state, which was charged at a constant current and a constant voltage at A / cm 2 , was then continuously charged at 5 A until further charged to 250%, and the battery temperature and the battery behavior at that time were observed.

【0056】〈結果〉実施例1、実施例2及び比較例の
電池の電池容量比及び過充電試験結果を表1に示す。放
電容量比は比較例の電池を100とした。
<Results> Table 1 shows the battery capacity ratios and the results of overcharge tests of the batteries of Examples 1, 2 and Comparative Example. The discharge capacity ratio was set to 100 for the battery of the comparative example.

【0057】[0057]

【表1】 [Table 1]

【0058】表1から明らかなように、熱膨張マイクロ
カプセルをいずれかの電極中に含有させることにより、
過充電時の熱暴走を抑制することが可能となった。そし
て、充分効果のある量の熱膨張マイクロカプセルを含有
させた各実施例の電池についても熱膨張マイクロカプセ
ルを含有させない電池と比較して電池容量の低下はごく
僅かであった。
As is clear from Table 1, the inclusion of the thermally expanded microcapsules in either electrode
It has become possible to suppress thermal runaway during overcharge. The decrease in battery capacity of the batteries of the respective examples containing a sufficiently effective amount of the thermal expansion microcapsules was very small as compared with the batteries containing no thermal expansion microcapsules.

【0059】また、実施例1及び実施例2(比較例)の
シート状正極について、熱処理前後(熱膨張マイクロカ
プセルの体積膨張前後)の比抵抗を測定した。結果を表
2に示す。
Further, the sheet-like positive electrodes of Example 1 and Example 2 (comparative example) were measured for specific resistance before and after heat treatment (before and after volume expansion of thermally expanded microcapsules). The results are shown in Table 2.

【0060】[0060]

【表2】 [Table 2]

【0061】表2より明らかなように、熱膨張マイクロ
カプセルを有する実施例1のシート状正極は熱処理後に
大幅に比抵抗が増加していることがわかった。この比抵
抗の増加は熱暴走が進行する温度よりも大幅に低い13
0℃で1分以内という条件でも進行することは特筆すべ
きである。また、この熱膨張マイクロカプセルは、所定
温度を境に急激に膨張し、所定温度未満では変化しない
ため、所定温度以下での遮断手段の誤作動乃至は遮断手
段の作動に起因した温度上昇による電池性能の劣化が防
止できると同時に、所定温度以上における速やかな電池
反応の遮断が期待できる。
As is clear from Table 2, it was found that the sheet-shaped positive electrode of Example 1 having the thermal expansion microcapsules had a significantly increased specific resistance after heat treatment. This increase in resistivity is significantly lower than the temperature at which thermal runaway progresses13
It should be noted that the process proceeds even under conditions of 0 ° C. and 1 minute or less. In addition, since the thermal expansion microcapsule expands rapidly at a predetermined temperature and does not change below the predetermined temperature, malfunction of the breaking means below the predetermined temperature or temperature rise due to operation of the breaking means results in a battery. It can be expected that the deterioration of the performance can be prevented, and at the same time, the battery reaction can be promptly cut off at a predetermined temperature or higher.

【0062】[0062]

【発明の効果】以上説明したように、本発明の非水電解
液二次電池は、安全性の高い非水電解質二次電池を提供
できる。
As described above, the non-aqueous electrolyte secondary battery of the present invention can provide a highly safe non-aqueous electrolyte secondary battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H021 AA06 CC00 EE01 EE02 EE04 EE21 HH01 HH06 5H022 AA09 EE06 EE07 KK01 5H029 AJ12 AK03 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 DJ04 DJ07 DJ08 DJ16 EJ03 EJ11 EJ12 HJ05 HJ14 5H050 AA15 BA16 BA17 CA07 CA08 CA09 CB07 CB08 CB09 CB12 DA01 DA09 EA01 EA21 EA23 FA17 HA05 HA14    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H021 AA06 CC00 EE01 EE02 EE04                       EE21 HH01 HH06                 5H022 AA09 EE06 EE07 KK01                 5H029 AJ12 AK03 AL06 AL07 AL08                       AL12 AM02 AM03 AM04 AM05                       AM07 DJ04 DJ07 DJ08 DJ16                       EJ03 EJ11 EJ12 HJ05 HJ14                 5H050 AA15 BA16 BA17 CA07 CA08                       CA09 CB07 CB08 CB09 CB12                       DA01 DA09 EA01 EA21 EA23                       FA17 HA05 HA14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 集電体及び該集電体上に形成されたリチ
ウムイオンを吸蔵及び脱離できる活物質を含む活物質層
を少なくともいずれかにもつ正極及び負極を有する非水
電解液二次電池であって、 前記活物質層は、前記非水電解液二次電池内が所定温度
以上となったときに、前記活物質間及び/又は該活物質
と前記集電体との間を孤立化させて電気的に遮断する特
性をもつ遮断手段を含むことを特徴とする非水電解液二
次電池。
1. A non-aqueous electrolyte secondary having a positive electrode and a negative electrode having at least one of an active material layer containing a current collector and an active material capable of inserting and extracting lithium ions formed on the current collector. In the battery, the active material layer isolates between the active materials and / or between the active material and the current collector when the temperature inside the non-aqueous electrolyte secondary battery rises to a predetermined temperature or higher. A non-aqueous electrolyte secondary battery comprising a shut-off means having a characteristic of electrically shutting off.
【請求項2】 前記遮断手段は、前記活物質層内に分散
され、所定温度以上で体積膨張を起こす熱膨張粉末であ
る請求項1に記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the blocking means is a thermal expansion powder which is dispersed in the active material layer and causes volume expansion at a predetermined temperature or higher.
【請求項3】 前記熱膨張粉末の粒子径は、前記活物質
の粒子径の3倍以下である請求項2に記載の非水電解液
二次電池
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the particle diameter of the thermal expansion powder is 3 times or less the particle diameter of the active material.
【請求項4】 前記活物質層は、前記活物質間並びに該
活物質及び前記集電体の間に導電性を付与する導電材を
含み、 前記熱膨張粉末の粒子径は、前記導電材の粒子径以上で
ある請求項2又は3に記載の非水電解液二次電池。
4. The active material layer includes a conductive material that imparts conductivity between the active materials and between the active material and the current collector, and a particle diameter of the thermal expansion powder is equal to that of the conductive material. The non-aqueous electrolyte secondary battery according to claim 2, which has a particle size or more.
【請求項5】 さらに、前記正極及び前記負極の間に狭
持される多孔質物質からなるセパレータを有し、 前記遮断手段は、所定温度以上で体積膨張を起こし前記
セパレータの孔を閉塞する熱膨張粉末を前記セパレータ
上乃至該セパレータ内にもつ請求項1〜4のいずれかに
記載の非水電解液二次電池。
5. The separator further comprises a separator made of a porous material sandwiched between the positive electrode and the negative electrode, wherein the blocking means causes a volume expansion at a temperature equal to or higher than a predetermined temperature to close a hole of the separator. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein expanded powder is provided on or in the separator.
【請求項6】 さらに、非水電解液を有し、 前記遮断手段は、所定温度以上で体積膨張を起こす熱膨
張粉末を該非水電解液内にもつ請求項1〜5のいずれか
に記載の非水電解液二次電池。
6. The non-aqueous electrolyte solution is further provided, and the blocking means has a thermal expansion powder which causes volume expansion at a predetermined temperature or higher in the non-aqueous electrolyte solution. Non-aqueous electrolyte secondary battery.
【請求項7】 前記熱膨張粉末は、化学発泡剤又は物理
発泡剤を内部に含有する粉末である請求項2〜6のいず
れかに記載の非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 2, wherein the thermal expansion powder is a powder containing a chemical foaming agent or a physical foaming agent inside.
【請求項8】 前記熱膨張粉末は、低沸点液体が内部に
封入されたマイクロカプセルである請求項2〜7のいず
れかに記載の非水電解液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 2, wherein the thermal expansion powder is a microcapsule in which a low boiling point liquid is enclosed.
【請求項9】 前記熱膨張粉末は、前記所定温度が体積
変化を伴う相転移温度である材料から形成される請求項
2〜8のいずれかに記載の非水電解液二次池。
9. The non-aqueous electrolyte secondary pond according to claim 2, wherein the thermal expansion powder is formed of a material in which the predetermined temperature is a phase transition temperature accompanied by a volume change.
【請求項10】 前記所定温度は80〜180℃の間で
ある請求項1〜9のいずれかに記載の非水電解液二次電
池。
10. The non-aqueous electrolyte secondary battery according to claim 1, wherein the predetermined temperature is between 80 and 180 ° C.
JP2001209662A 2001-07-10 2001-07-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4929540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209662A JP4929540B2 (en) 2001-07-10 2001-07-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209662A JP4929540B2 (en) 2001-07-10 2001-07-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003031208A true JP2003031208A (en) 2003-01-31
JP4929540B2 JP4929540B2 (en) 2012-05-09

Family

ID=19045286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209662A Expired - Fee Related JP4929540B2 (en) 2001-07-10 2001-07-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4929540B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049494A1 (en) * 2002-11-27 2004-06-10 Danionics International A/S Electrochemical cell
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
KR100854239B1 (en) 2006-03-03 2008-08-25 주식회사 엘지화학 Electrochemical device with high safety at high temperature
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR100880525B1 (en) 2006-03-03 2009-01-28 주식회사 엘지화학 Electrochemical device with high safety at high temperature and overvoltage and method for preventing ignition and explosion of the electrochemical device
JP2009026674A (en) * 2007-07-23 2009-02-05 Hitachi Vehicle Energy Ltd Lithium ion cell
JP2010146726A (en) * 2007-11-30 2010-07-01 Kyoritsu Kagaku Sangyo Kk Conductive composition
JP2012195314A (en) * 2007-02-14 2012-10-11 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2013505553A (en) * 2009-09-28 2013-02-14 エルジー・ケム・リミテッド Secondary battery and manufacturing method thereof
WO2014119095A1 (en) * 2013-02-04 2014-08-07 シャープ株式会社 Secondary battery
KR20150067035A (en) * 2013-12-06 2015-06-17 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2015115107A (en) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Fine particle mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105914378A (en) * 2016-06-30 2016-08-31 深圳博磊达新能源科技有限公司 Negative pole piece of lithium-ion battery and preparation method of negative pole piece and lithium-ion battery
JP2018174068A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2019065972A1 (en) 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
CN109818056A (en) * 2018-12-29 2019-05-28 余姚天开能源技术有限公司 A kind of electrolyte and the lithium ion battery containing the electrolyte
WO2019189865A1 (en) * 2018-03-30 2019-10-03 三井化学株式会社 Negative electrode containing microcapsules, and lithium-ion secondary battery equipped with same
WO2020180115A1 (en) * 2019-03-06 2020-09-10 주식회사 엘지화학 Battery module having structure capable of preventing inflow of air into module when thermal runaway occurs and battery pack including same
WO2020196710A1 (en) 2019-03-27 2020-10-01 株式会社Gsユアサ Current collector, paste for forming electroconductive layer, electrode, and power storage element
CN111758174A (en) * 2018-03-30 2020-10-09 三井化学株式会社 Positive electrode having undercoat layer containing microcapsules, and lithium ion secondary battery
CN112993206A (en) * 2021-02-05 2021-06-18 珠海冠宇电池股份有限公司 Electrode slice and electrochemical energy storage device
US11527757B2 (en) 2017-03-29 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
WO2023008267A1 (en) * 2021-07-27 2023-02-02 日本ゼオン株式会社 Electrode for electrochemical element, and method of manufacturing electrode for electrochemical element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085919A1 (en) 2015-11-19 2017-05-26 日本ゼオン株式会社 Electrode for lithium-ion secondary battery
KR102628821B1 (en) 2015-12-28 2024-01-23 니폰 제온 가부시키가이샤 Heat sensitive layer for lithium ion secondary batteries
JP6879289B2 (en) 2018-12-13 2021-06-02 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515499B2 (en) * 1986-06-04 1993-03-01 Matsumoto Yushi Seiyaku Kk
JPH09320568A (en) * 1996-05-28 1997-12-12 Toray Ind Inc Nonaqueous electrolyte secondary battery
JPH10275545A (en) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd Thermal fuse and mounting structure of thermal fuse in secondary battery
WO1999067837A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515499B2 (en) * 1986-06-04 1993-03-01 Matsumoto Yushi Seiyaku Kk
JPH09320568A (en) * 1996-05-28 1997-12-12 Toray Ind Inc Nonaqueous electrolyte secondary battery
JPH10275545A (en) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd Thermal fuse and mounting structure of thermal fuse in secondary battery
WO1999067837A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067841A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049494A1 (en) * 2002-11-27 2004-06-10 Danionics International A/S Electrochemical cell
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
JP4686182B2 (en) * 2004-12-29 2011-05-18 恵和株式会社 Battery separator, manufacturing method, and secondary battery
KR100854239B1 (en) 2006-03-03 2008-08-25 주식회사 엘지화학 Electrochemical device with high safety at high temperature
KR100880525B1 (en) 2006-03-03 2009-01-28 주식회사 엘지화학 Electrochemical device with high safety at high temperature and overvoltage and method for preventing ignition and explosion of the electrochemical device
JP2012195314A (en) * 2007-02-14 2012-10-11 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2008262785A (en) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2009026674A (en) * 2007-07-23 2009-02-05 Hitachi Vehicle Energy Ltd Lithium ion cell
JP2010146726A (en) * 2007-11-30 2010-07-01 Kyoritsu Kagaku Sangyo Kk Conductive composition
JP2013201133A (en) * 2007-11-30 2013-10-03 Kyoritsu Kagaku Sangyo Kk Conductive composition
JP2015038876A (en) * 2007-11-30 2015-02-26 協立化学産業株式会社 Conductive composition
JP2013505553A (en) * 2009-09-28 2013-02-14 エルジー・ケム・リミテッド Secondary battery and manufacturing method thereof
WO2014119095A1 (en) * 2013-02-04 2014-08-07 シャープ株式会社 Secondary battery
KR102276260B1 (en) * 2013-12-06 2021-07-12 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
KR20150067035A (en) * 2013-12-06 2015-06-17 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2015115107A (en) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Fine particle mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105914378A (en) * 2016-06-30 2016-08-31 深圳博磊达新能源科技有限公司 Negative pole piece of lithium-ion battery and preparation method of negative pole piece and lithium-ion battery
US11527757B2 (en) 2017-03-29 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
JP2018174068A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2019065972A1 (en) 2017-09-29 2019-04-04 株式会社Gsユアサ Electrode and power storage element
CN111758174A (en) * 2018-03-30 2020-10-09 三井化学株式会社 Positive electrode having undercoat layer containing microcapsules, and lithium ion secondary battery
WO2019189865A1 (en) * 2018-03-30 2019-10-03 三井化学株式会社 Negative electrode containing microcapsules, and lithium-ion secondary battery equipped with same
JPWO2019189865A1 (en) * 2018-03-30 2020-10-08 三井化学株式会社 Negative electrode including microcapsules and lithium ion secondary battery equipped with this
CN111758173A (en) * 2018-03-30 2020-10-09 三井化学株式会社 Negative electrode comprising microcapsules and lithium ion secondary battery provided with same
CN111758173B (en) * 2018-03-30 2023-10-24 三井化学株式会社 Negative electrode comprising microcapsules and lithium ion secondary battery provided with same
US11784355B2 (en) 2018-03-30 2023-10-10 Mitsui Chemicals, Inc. Negative electrode including microcapsule and lithium ion secondary battery including the negative electrode
CN109818056A (en) * 2018-12-29 2019-05-28 余姚天开能源技术有限公司 A kind of electrolyte and the lithium ion battery containing the electrolyte
WO2020180115A1 (en) * 2019-03-06 2020-09-10 주식회사 엘지화학 Battery module having structure capable of preventing inflow of air into module when thermal runaway occurs and battery pack including same
JP2021523528A (en) * 2019-03-06 2021-09-02 エルジー・ケム・リミテッド A battery module having a structure that can prevent the inflow of air into the module when a thermal runaway phenomenon occurs, and a battery pack containing the battery module.
JP7105919B2 (en) 2019-03-06 2022-07-25 エルジー エナジー ソリューション リミテッド A battery module and a battery pack including the same having a structure capable of preventing air from flowing into the module when a thermal runaway phenomenon occurs
US11462801B2 (en) 2019-03-06 2022-10-04 Lg Energy Solution, Ltd. Battery module having structure capable of preventing inflow of air into module when thermal runaway occurs and battery pack including same
CN112335097A (en) * 2019-03-06 2021-02-05 株式会社Lg化学 Battery module having structure capable of preventing air from flowing into module when thermal runaway occurs, and battery pack including the same
WO2020196710A1 (en) 2019-03-27 2020-10-01 株式会社Gsユアサ Current collector, paste for forming electroconductive layer, electrode, and power storage element
CN112993206A (en) * 2021-02-05 2021-06-18 珠海冠宇电池股份有限公司 Electrode slice and electrochemical energy storage device
WO2023008267A1 (en) * 2021-07-27 2023-02-02 日本ゼオン株式会社 Electrode for electrochemical element, and method of manufacturing electrode for electrochemical element
KR20240035448A (en) 2021-07-27 2024-03-15 니폰 제온 가부시키가이샤 Electrode for electrochemical device and method for manufacturing electrode for electrochemical device

Also Published As

Publication number Publication date
JP4929540B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929540B2 (en) Non-aqueous electrolyte secondary battery
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
JP3586195B2 (en) Composite electrode containing PTC polymer
JP4727021B2 (en) Electrode and non-aqueous battery using the same
TW529201B (en) Non-aqueous electrolyte secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
JP4454340B2 (en) Lithium ion secondary battery
WO2002031904A1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP2007165111A (en) Nonaqueous secondary battery
JP2011181409A (en) Battery and battery module
JP2008066094A (en) Separator for battery, and lithium secondary battery
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP4385586B2 (en) Non-aqueous electrolyte secondary battery
JP2002216755A (en) Nonaqueous electrolyte secondary battery
JP2007273127A (en) Nonaqueous secondary battery
CN109671909B (en) Negative electrode and nonaqueous electrolyte secondary battery provided with same
JP2006073308A (en) Non-aqueous electrolytic liquid secondary battery
JP4595205B2 (en) Nonaqueous electrolyte secondary battery
US20060172180A1 (en) Non-aqueous electrolyte secondary battery
KR100449758B1 (en) Lithium battery with improved safety
JP2015069898A (en) Electrode and lithium ion secondary battery using the same
JP2007194069A (en) Current shut off mechanism and battery
JP4411823B2 (en) Battery electrode and battery using the same
JP2013069490A (en) Method of manufacturing sealed lithium secondary battery
JP2003288946A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees