JP2003027901A - Axial flow turbine - Google Patents

Axial flow turbine

Info

Publication number
JP2003027901A
JP2003027901A JP2001214143A JP2001214143A JP2003027901A JP 2003027901 A JP2003027901 A JP 2003027901A JP 2001214143 A JP2001214143 A JP 2001214143A JP 2001214143 A JP2001214143 A JP 2001214143A JP 2003027901 A JP2003027901 A JP 2003027901A
Authority
JP
Japan
Prior art keywords
blade
rotor
final stage
rotor blade
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001214143A
Other languages
Japanese (ja)
Inventor
Toshihiro Miyawaki
俊裕 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001214143A priority Critical patent/JP2003027901A/en
Publication of JP2003027901A publication Critical patent/JP2003027901A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the turbine efficiency of an axial flow turbine of low boss ratio. SOLUTION: In order to reduce the Mach number in the steam flowing into a final stage rotor blade 24 from a final stage stator blade 28 of the axial flow turbine 10, the final stage rotor blade 24 and a rotor blade 26 on the upstream side by one stage of the final stage rotor blade 24 are arranged so that the line L to connect a leading edge root 24a of the final stage rotor blade 24 to a trailing edge root 26a of the rotor blade 26 on the upstream side by one stage of the final stage rotor blade 24 is inclined on a rotor 12 side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は軸流タービン、特に
低圧蒸気タービンに関する。
FIELD OF THE INVENTION This invention relates to axial flow turbines, and more particularly to low pressure steam turbines.

【0002】[0002]

【従来の技術】蒸気タービン、特に低圧軸流タービンの
排気損失を低減するためには、軸流タービンの排気環状
面積を大きくする必要がある。一方、排気環状面積を大
きくするために、軸流タービンの最終段動翼を長くする
と、該最終段動翼に作用する遠心力が大きくなる。そこ
で、軸流タービンの最終段動翼に作用する遠心力を低く
抑えながら排気環状面積を大きくするために、翼の基端
側直径(R0)を小さくし、翼基端側直径(R0)と翼先
端側直径(R1)の比で定義されるボス比(R0/R1
を小さくすることが有効である。
2. Description of the Related Art In order to reduce the exhaust loss of a steam turbine, particularly a low pressure axial flow turbine, it is necessary to increase the exhaust ring area of the axial flow turbine. On the other hand, if the final stage moving blade of the axial turbine is lengthened in order to increase the annular area of the exhaust gas, the centrifugal force acting on the final stage moving blade increases. Therefore, in order to increase the exhaust annulus area while suppressing the centrifugal force acting on the final stage blade of the axial flow turbine, blade proximal diameter (R 0) is reduced, Tsubasamototan side diameter (R 0 ) And the blade tip side diameter (R 1 ), defined as the boss ratio (R 0 / R 1 ).
It is effective to reduce.

【0003】[0003]

【発明が解決しようとする課題】然しながら、このよう
に軸流タービンの最終段動翼のボス比を小さくすると、
最終段動翼へ流入する蒸気の反動度が低下して、タービ
ン効率が低下する問題がある。本発明はこうした従来技
術の問題を解決することを技術課題としており、タービ
ン効率を低減することなく、軸流タービン最終段動翼の
ボス比を低減した軸流タービンを提供することを目的と
している。
However, when the boss ratio of the final stage rotor blade of the axial flow turbine is reduced in this way,
There is a problem that the degree of reaction of steam flowing into the final stage rotor blades is reduced, and turbine efficiency is reduced. The present invention has a technical problem to solve the problems of the conventional techniques, and an object thereof is to provide an axial flow turbine in which the boss ratio of the final stage rotor blades of the axial flow turbine is reduced without reducing the turbine efficiency. .

【0004】[0004]

【課題を解決するための手段】請求項1に記載の本発明
は、軸流タービンの最終段静翼から最終段動翼へ流入す
る蒸気のマッハ数が低減するように、前記最終段動翼の
前縁根元と前記最終段動翼の一段上流側の動翼と後縁根
元とを結ぶ直線がロータ側に傾斜するように前記最終段
動翼と前記最終段動翼の一段上流側の動翼とを配置した
ことを特徴とする軸流タービンを要旨とする。
According to the present invention as set forth in claim 1, in order to reduce the Mach number of steam flowing from the final stage stationary blade of the axial turbine to the final stage moving blade, the front stage of the final stage moving blade is reduced. A final stage rotor blade and a rotor blade on the one stage upstream side of the last stage rotor blade such that a straight line connecting the edge root and the rotor blade on the one stage upstream side of the last stage rotor blade and the trailing edge root is inclined toward the rotor side; The gist is an axial-flow turbine characterized by arranging

【0005】好ましくは、最終段動翼の前縁根元と前記
最終段動翼の一段上流側の動翼と後縁根元とを結ぶ直線
が、ロータ中心軸線に対して25°から50°の角度と
なるように前記最終段動翼と前記最終段動翼の一段上流
側の動翼とを配置する。
Preferably, the straight line connecting the leading edge root of the final stage moving blade, the moving blade on the one stage upstream side of the final stage moving blade and the trailing edge root forms an angle of 25 ° to 50 ° with respect to the rotor center axis. The final stage rotor blade and the rotor blade on the upstream side of the final stage rotor blade are arranged so that

【0006】また、本発明の他の特徴によれば、前記最
終段動翼の前縁根元と、前記最終段動翼の一段上流側の
動翼の後縁根元との間のロータ側内壁を、前記軸流ター
ビンを流通する蒸気の前記最終段動翼入口におけるマッ
ハ数を低減するように、ロータ側に拡開したことを特徴
とする軸流タービンが提供される。
According to another feature of the present invention, the rotor-side inner wall between the leading edge root of the final stage moving blade and the trailing edge root of the moving blade one stage upstream of the final stage moving blade is formed. An axial flow turbine is provided which is expanded to the rotor side so as to reduce the Mach number at the inlet of the final stage moving blade of the steam flowing through the axial flow turbine.

【0007】前記ロータ側内壁は、好ましくは、ロータ
中心軸線を含む平面で切断した断面の前記ロータ中心軸
線に対する平均角度が25°から50°となるように形
成する。
The rotor-side inner wall is preferably formed such that an average angle of a cross section taken along a plane including the rotor central axis with respect to the rotor central axis is 25 ° to 50 °.

【0008】[0008]

【発明の実施の形態】以下、添付図面を参照して本発明
の好ましい実施形態を説明する。図1は、本発明の一実
施形態による軸流タービンのロータの中心軸線(ロータ
中心軸線)Oを含む鉛直断面で切断した半断面図であ
る。軸流タービン10は、好ましくは低圧軸流タービン
であって、中心軸線Oに沿って長手方向に延設されたロ
ータ12を具備し、多段の翼列14がロータ12に沿っ
て左右対称に設けられ、該翼列14は内車室16により
包囲されている。ロータ12、翼列14および内車室1
6は外車室18により全体が包囲されている。翼列14
に蒸気を供給するために、蒸気供給管20が、外車室1
8を横断方向に貫通して内車室16に接続されている。
より詳細には、蒸気供給管20の先端には、管内の蒸気
の流に方向に先細りにテーパ状に形成された蒸気入口部
20aが設けられており、該蒸気入口部20aは、内車
室16、より詳細には内車室16内において中心軸線O
に関して横断方向に延設された蒸気通路22に接続され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a half sectional view taken along a vertical section including a central axis line (rotor central axis line) O of a rotor of an axial flow turbine according to an embodiment of the present invention. The axial turbine 10 is preferably a low-pressure axial turbine and includes a rotor 12 extending in the longitudinal direction along a central axis O, and a multi-stage blade row 14 is provided symmetrically along the rotor 12. The blade row 14 is surrounded by the inner casing 16. Rotor 12, blade row 14 and inner casing 1
6 is entirely surrounded by an outer casing 18. Wing row 14
The steam supply pipe 20 for supplying steam to the outside
8 is transversely penetrated and connected to the inner casing 16.
More specifically, the tip of the steam supply pipe 20 is provided with a steam inlet portion 20a that is tapered in the direction of the flow of steam in the pipe. 16, more specifically, the central axis O in the inner casing 16
Is connected to a steam passage 22 extending in a transverse direction.

【0009】翼列14は、最終段動翼24、最終段動翼
24の一段上流側の動翼26、動翼24、26の間に配
設された最終段静翼28を有している。最終段静翼28
の両端には、該軸流タービン10の翼列14を横断する
蒸気通路のロータ側内壁を形成する内側シュラウド30
と、車室側内壁を形成する外側シュラウド32が連結さ
れている。
The blade row 14 has a final stage moving blade 24, a moving blade 26 upstream of the final stage moving blade 24 by one stage, and a final stage stationary blade 28 arranged between the moving blades 24, 26. Last stage stationary blade 28
At both ends of the inner shroud 30 that form the rotor-side inner wall of the steam passage that crosses the blade row 14 of the axial flow turbine 10.
And an outer shroud 32 forming an inner wall on the vehicle compartment side are connected.

【0010】蒸気供給管20を介して軸流タービン10
に供給された蒸気は、蒸気通路22を流通して翼列14
を軸方向に中心から左右に外側へ流通し、温度、圧力を
低下させながらロータ12を駆動する。本実施形態で
は、翼列14を流通する蒸気が最終段動翼24の一段上
流側の動翼26から最終段動翼24へかけて半径方向内
側に拡がり、最終段静翼28から最終段動翼24へ流入
する蒸気のマッハ数が低減するように、最終段動翼24
の前縁根元24aと最終段動翼24の一段上流側の動翼
26と後縁根元26aとを結ぶ直線Lが、ロータ12側
に傾斜するように最終段動翼24と最終段動翼の一段上
流側の動翼26とを配置した。より詳細には、前記直線
Lの中心軸線Oに対する角度αが25°から50°とな
るようにする。
An axial flow turbine 10 is provided via a steam supply pipe 20.
The steam supplied to the blades flows through the steam passage 22 and the blade row 14
Circulates in the axial direction from the center to the left and right, and drives the rotor 12 while lowering the temperature and pressure. In the present embodiment, the steam flowing through the blade row 14 spreads radially inward from the rotor blade 26 on the upstream side of the last stage rotor blade 24 to the final stage rotor blade 24, and the steam from the final stage stator blades 28 to the final stage rotor blades 24. To reduce the Mach number of steam flowing into the final stage rotor blades 24
The straight line L connecting the leading edge root 24a, the moving blade 26 on the one-stage upstream side of the final stage moving blade 24, and the trailing edge root 26a of the final stage moving blade 24 The moving blade 26 on the upstream side of the first stage is arranged. More specifically, the angle α of the straight line L with respect to the central axis O is set to 25 ° to 50 °.

【0011】図2は、翼列14を流通する蒸気の最終段
動翼24の出口におけるマッハ数を数値計算により求め
た結果を、本発明の一実施形態(実線)と従来技術(破
線)とで比較した示すグラフである。図2において、横
軸は中心軸線Oからの翼のスパン方向または高さ方向の
座標(中心軸線Oからの距離)であり、縦軸はマッハ数
である。また、図3は、最終段動翼24における反動度
を数値計算により求めた結果を、本発明の一実施形態
(実線)と従来技術(破線)とで比較した示すグラフで
ある。図3において、横軸は中心軸線Oからの翼のスパ
ン方向または高さ方向の座標(中心軸線Oからの距離)
であり、縦軸は反動度である。
FIG. 2 shows the results obtained by numerical calculation of the Mach number at the outlet of the final stage moving blades 24 of the steam flowing through the blade row 14 in one embodiment of the present invention (solid line) and in the prior art (broken line). It is a graph which shows in comparison. In FIG. 2, the horizontal axis represents the spanwise or heightwise coordinate of the blade from the central axis O (distance from the central axis O), and the vertical axis represents the Mach number. Further, FIG. 3 is a graph showing the results of numerically calculating the recoil degree in the final stage rotor blade 24 in one embodiment of the present invention (solid line) and in the related art (broken line). In FIG. 3, the horizontal axis is the coordinate in the span direction or height direction of the blade from the central axis O (distance from the central axis O).
And the vertical axis is the reaction degree.

【0012】本実施形態による軸流タービンでは、図3
に示すように最終段動翼24の特に根元近傍において反
動度が著しく増加するため、図2に示す如く最終段動翼
24の入口根元近傍においてマッハ数が著しく低下す
る。
In the axial flow turbine according to this embodiment, as shown in FIG.
As shown in FIG. 2, the reaction degree increases remarkably in the vicinity of the root of the final stage moving blade 24, so that the Mach number significantly decreases in the vicinity of the inlet root of the final stage moving blade 24 as shown in FIG.

【0013】角度αが25°以下の場合には、最終段静
翼28の内側(ロータ側)の端部近傍における蒸気の流
れ(流線)が、十分にロータ側に変化せずに、最終段静
翼28の出口および最終段動翼24の入口の根元近傍で
マッハ数が十分に低減されない。他方、角度αが50°
以上となると、翼根元において流れが壁面に追従できず
に剥離流を生じて圧力損失が増大する。角度αを25°
から50°の範囲に選定することにより、軸流タービン
の性能が向上する。
When the angle α is 25 ° or less, the steam flow (streamline) in the vicinity of the inner (rotor side) end of the final stage stationary blade 28 does not sufficiently change to the rotor side, and the final stage stationary blade 28 The Mach number is not sufficiently reduced in the vicinity of the roots of the outlet of and the inlet of the final stage moving blade 24. On the other hand, the angle α is 50 °
In the above case, the flow cannot follow the wall surface at the blade root, a separated flow is generated, and the pressure loss increases. Angle α is 25 °
By selecting the range from 50 ° to 50 °, the performance of the axial turbine is improved.

【0014】好ましくは、最終段動翼24の前縁根元2
4aと、最終段動翼24の一段上流側の動翼26の後縁
根元26aとの間のロータ側内壁、つまり、最終段静翼
28の内側シュラウド30を、マッハ数を低減するよう
にロータ側に拡開するように形成し、より好ましくは、
内側シュラウド30の中心軸線Oを含む平面で切断した
断面の中心軸線Oに対する平均角度を25°から50°
となるように形成するようにしてもよい。
Preferably, the leading edge root 2 of the final stage moving blade 24
4a and the rotor side inner wall between the trailing edge root 26a of the rotor blade 26 on the one stage upstream side of the last stage rotor blade 24, that is, the inner shroud 30 of the last stage stator blade 28 is connected to the rotor side so as to reduce the Mach number. It is formed so as to expand, and more preferably,
The average angle of the cross section taken along the plane including the central axis O of the inner shroud 30 with respect to the central axis O is 25 ° to 50 °.
You may make it form so that it may become.

【0015】[0015]

【発明の効果】本発明によれば、最終段動翼の特に根元
近傍において反動度が増加するため、最終段動翼の入口
の特に根元近傍においてマッハ数が低下しタービン効率
が改善される。
According to the present invention, since the reaction degree increases particularly near the root of the final stage moving blade, the Mach number decreases and the turbine efficiency improves, especially near the root of the inlet of the final stage moving blade.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好ましい実施形態による軸流タービン
の長手方向の半断面図である。
1 is a longitudinal half-section view of an axial flow turbine according to a preferred embodiment of the present invention.

【図2】翼列を流通する蒸気の最終段動翼におけるマッ
ハ数を数値計算により求めた結果を本発明の一実施形態
(実線)と従来技術(破線)とで比較した示すグラフで
ある。
FIG. 2 is a graph showing a result obtained by numerical calculation of a Mach number in a final stage moving blade of steam flowing through a blade row, in comparison with an embodiment of the present invention (solid line) and a conventional technique (broken line).

【図3】最終段動翼における反動度を数値計算により求
めた結果を本発明の一実施形態(実線)と従来技術(破
線)とで比較した示すグラフである。
FIG. 3 is a graph showing a result obtained by numerically calculating a recoil degree in a final stage rotor blade in one embodiment of the present invention (solid line) and in the related art (broken line).

【符号の説明】[Explanation of symbols]

10…軸流タービン 12…ロータ 14…翼列 16…内車室 18…外車室18により全体が包囲されている。 20…蒸気供給管 20a…蒸気入口部 22…蒸気通路 24…最終段動翼 26…最終段動翼の一段上流側の動翼 28…最終段静翼 30…内側シュラウド 32…外側シュラウド O…中心軸線 10 ... axial turbine 12 ... rotor 14 ... Cascade 16 ... Inside car room 18 ... The entire outer casing 18 is surrounded. 20 ... Steam supply pipe 20a ... Steam inlet 22 ... Steam passage 24 ... Final stage rotor blade 26 ... Moving blade on the upstream side of the final stage moving blade 28 ... Final stage Shizuka 30 ... Inside shroud 32 ... Outer shroud O ... central axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軸流タービンの最終段静翼から最終段動
翼へ流入する蒸気のマッハ数が低減するように、前記最
終段動翼の前縁根元と前記最終段動翼の一段上流側の動
翼と後縁根元とを結ぶ直線がロータ側に傾斜するように
前記最終段動翼と前記最終段動翼の一段上流側の動翼と
を配置したことを特徴とする軸流タービン。
1. A motion of a leading edge root of the last stage moving blade and one stage upstream side of the last stage moving blade so that the Mach number of steam flowing from the last stage stationary blade of the axial turbine to the final stage moving blade is reduced. An axial flow turbine characterized in that the final stage rotor blade and the rotor blade on the one stage upstream side of the final stage rotor blade are arranged so that a straight line connecting the blade and the trailing edge root is inclined toward the rotor.
【請求項2】 最終段動翼の前縁根元と前記最終段動翼
の一段上流側の動翼と後縁根元とを結ぶ直線が、ロータ
中心軸線に対して25°から50°の角度となるように
前記最終段動翼と前記最終段動翼の一段上流側の動翼と
を配置した請求項1に記載の軸流タービン。
2. A straight line connecting the leading edge root of the final stage moving blade, the moving blade on the one stage upstream side of the final stage moving blade, and the trailing edge root forms an angle of 25 ° to 50 ° with respect to the rotor center axis. The axial flow turbine according to claim 1, wherein the final stage rotor blade and the rotor blade on the one stage upstream side of the final stage rotor blade are arranged so that
【請求項3】 前記最終段動翼の前縁根元と、前記最終
段動翼の一段上流側の動翼の後縁根元との間のロータ側
内壁を、前記軸流タービンを流通する蒸気の前記最終段
動翼入口におけるマッハ数を低減するように、ロータ側
に拡開したことを特徴とする軸流タービン。
3. A rotor-side inner wall between a leading edge root of the final stage rotor blade and a trailing edge root of the rotor blade on the one stage upstream side of the final stage rotor blade An axial flow turbine characterized by being expanded to the rotor side so as to reduce the Mach number at the inlet of the final stage moving blade.
【請求項4】 前記ロータ側内壁を、ロータ中心軸線を
含む平面で切断した断面の前記ロータ中心軸線に対する
平均角度が25°から50°となるように形成した請求
項3に記載の軸流タービン。
4. The axial turbine according to claim 3, wherein the rotor-side inner wall is formed such that an average angle of a cross section cut along a plane including the rotor central axis with respect to the rotor central axis is 25 ° to 50 °. .
JP2001214143A 2001-07-13 2001-07-13 Axial flow turbine Withdrawn JP2003027901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214143A JP2003027901A (en) 2001-07-13 2001-07-13 Axial flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214143A JP2003027901A (en) 2001-07-13 2001-07-13 Axial flow turbine

Publications (1)

Publication Number Publication Date
JP2003027901A true JP2003027901A (en) 2003-01-29

Family

ID=19049011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214143A Withdrawn JP2003027901A (en) 2001-07-13 2001-07-13 Axial flow turbine

Country Status (1)

Country Link
JP (1) JP2003027901A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7429161B2 (en) 2005-03-31 2008-09-30 Hitachi, Ltd. Axial turbine
JP2010216321A (en) * 2009-03-16 2010-09-30 Hitachi Ltd Moving blade of steam turbine, and steam turbine using the same
JP2012031864A (en) * 2010-07-30 2012-02-16 Alstom Technology Ltd Low-pressure steam turbine and method for operating the same
EP2434094A2 (en) 2010-09-28 2012-03-28 Hitachi Ltd. Steam turbine stator vane and steam turbine
RU2482394C2 (en) * 2008-12-10 2013-05-20 АйЭйчАй КОРПОРЕЙШН Combustion chamber
US10036265B2 (en) 2013-06-28 2018-07-31 Mitsubishi Heavy Industries Compressor Corporation Axial flow expander
US10385832B2 (en) 2013-06-28 2019-08-20 Exxonmobil Upstream Research Company Systems and methods of utilizing axial flow expanders
JP2020090952A (en) * 2018-12-07 2020-06-11 三菱重工コンプレッサ株式会社 Steam turbine blade and steam turbine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901179B2 (en) 2004-06-03 2011-03-08 Hitachi, Ltd. Axial turbine
US8308421B2 (en) 2005-03-31 2012-11-13 Hitachi, Ltd. Axial turbine
US7547187B2 (en) 2005-03-31 2009-06-16 Hitachi, Ltd. Axial turbine
EP2362063A2 (en) 2005-03-31 2011-08-31 Hitachi Ltd. Axial turbine
US7429161B2 (en) 2005-03-31 2008-09-30 Hitachi, Ltd. Axial turbine
RU2482394C2 (en) * 2008-12-10 2013-05-20 АйЭйчАй КОРПОРЕЙШН Combustion chamber
JP2010216321A (en) * 2009-03-16 2010-09-30 Hitachi Ltd Moving blade of steam turbine, and steam turbine using the same
EP2236754A2 (en) 2009-03-16 2010-10-06 Hitachi Ltd. Steam turbine rotor blade and corresponding steam turbine
JP2012031864A (en) * 2010-07-30 2012-02-16 Alstom Technology Ltd Low-pressure steam turbine and method for operating the same
JP2012092825A (en) * 2010-09-28 2012-05-17 Hitachi Ltd Steam turbine stator vane, and steam turbine using the same
EP2434094A2 (en) 2010-09-28 2012-03-28 Hitachi Ltd. Steam turbine stator vane and steam turbine
US9011084B2 (en) 2010-09-28 2015-04-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine using the same
US10036265B2 (en) 2013-06-28 2018-07-31 Mitsubishi Heavy Industries Compressor Corporation Axial flow expander
US10385832B2 (en) 2013-06-28 2019-08-20 Exxonmobil Upstream Research Company Systems and methods of utilizing axial flow expanders
JP2020090952A (en) * 2018-12-07 2020-06-11 三菱重工コンプレッサ株式会社 Steam turbine blade and steam turbine
CN111287801A (en) * 2018-12-07 2020-06-16 三菱重工压缩机有限公司 Steam turbine blade and steam turbine
JP7061557B2 (en) 2018-12-07 2022-04-28 三菱重工コンプレッサ株式会社 Steam turbine

Similar Documents

Publication Publication Date Title
US20240159151A1 (en) Airfoil for a turbine engine
CN111677556B (en) Fillet optimization for turbine airfoils
US6511294B1 (en) Reduced-stress compressor blisk flowpath
JP4667787B2 (en) Counter stagger type compressor airfoil
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
JP5410014B2 (en) The latest booster stator vane
JP4095060B2 (en) Stator blade assembly for gas turbine engine
US8573941B2 (en) Tandem blade design
US8061980B2 (en) Separation-resistant inlet duct for mid-turbine frames
JP2005337251A (en) Rotor blade
EP1756409B1 (en) Shockwave-induced boundary layer bleed for transonic gas turbine
JP5172320B2 (en) Gas turbine engine including inclined vanes and method of assembling the same
JP2004534920A (en) First stage high pressure turbine bucket airfoil
JP2001132696A (en) Stationary blade having narrow waist part
JP2008157247A (en) Turbine assembly of gas turbine engine and its manufacturing method
JP2008138679A (en) Advanced booster system
EP1260674B1 (en) Turbine blade and turbine
CN114000922A (en) Engine component with cooling holes
US11603852B2 (en) Compressor bleed port structure
JP2017106452A (en) Gas turbine engine with fillet film holes
JP2011094616A (en) Turbine airfoil-sidewall integration
JP2003027901A (en) Axial flow turbine
US11933193B2 (en) Turbine engine with an airfoil having a set of dimples
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
US11852033B2 (en) Rotor blade for a turbomachine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060315

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007