JP2003027416A - Vibration control device for parallel cables - Google Patents

Vibration control device for parallel cables

Info

Publication number
JP2003027416A
JP2003027416A JP2001218415A JP2001218415A JP2003027416A JP 2003027416 A JP2003027416 A JP 2003027416A JP 2001218415 A JP2001218415 A JP 2001218415A JP 2001218415 A JP2001218415 A JP 2001218415A JP 2003027416 A JP2003027416 A JP 2003027416A
Authority
JP
Japan
Prior art keywords
cable
vibration damping
vibration
damping
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001218415A
Other languages
Japanese (ja)
Other versions
JP4623696B2 (en
Inventor
Tatsuji Matsumoto
達治 松本
Kazuhiro Fujisawa
一裕 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001218415A priority Critical patent/JP4623696B2/en
Publication of JP2003027416A publication Critical patent/JP2003027416A/en
Application granted granted Critical
Publication of JP4623696B2 publication Critical patent/JP4623696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Road Signs Or Road Markings (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control device which allows larger displacement of parallel cables as a member to be damped, and has excellent damping function and high durability imparted thereto. SOLUTION: According to the vibration control device 30 for the parallel diagonal tensioning bridge cables 3, 3 as the member to be damped, each cable 3 has a rubber damper 32 at a location between a cable flange 31 and a damper housing 33, and a connecting member 35 connects the damper housings 33 to each other. Each rubber damper 32 is shaped like the vee in cross section, for instance, and has a pair of V-shaped hypotenuse portions 32b, 32b diagonally extending from an apex 32a closer to the damper housing 33 toward an inner diameter of the cable. Ends of the hypotenuse portions 32b, 32b are attached to a peripheral surface 31a of the cable flange 31. When the diagonal tensioning cable 3 is radially oscillated and compressed, the V-shaped hypotenuse portions 32b, 32b of the rubber damper 32 are elastically deformed and expanded outward, to thereby absorb vibration energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、斜張橋ケーブル、
吊り橋ケーブル、ポール、支柱、街灯、道路灯、信号
機、避雷針、煙突、その他の構造物における並列ケーブ
ルの制振装置に関するものである。
TECHNICAL FIELD The present invention relates to a cable-stayed bridge cable,
The present invention relates to a vibration damping device for parallel cables in suspension bridge cables, poles, columns, street lights, road lights, traffic lights, lightning rods, chimneys, and other structures.

【0002】[0002]

【従来の技術】以下、斜張橋に用いる斜張橋ケーブルを
被制振部材とする並列ケーブルの制振装置を例に従来技
術を説明する。図8(a)は斜張橋の概略を示したもの
であって、同図で1は橋桁、2は支塔、3は斜張橋ケー
ブル、4はケーブル制振装置である。ケーブル制振装置
4は、風や走行車両などの影響による斜張橋ケーブル3
の振動を減衰させ、斜張橋ケーブル3に掛かる負荷を緩
和して、斜張橋ケーブル3の破損を防止するものであ
る。
2. Description of the Related Art A conventional technique will be described below by taking as an example a parallel cable damping device using a cable-stayed bridge cable used for a cable-stayed bridge as a member to be damped. FIG. 8A shows an outline of a cable-stayed bridge. In the figure, 1 is a bridge girder, 2 is a tower, 3 is a cable-stayed bridge cable, and 4 is a cable damping device. The cable damping device 4 is used for the cable-stayed bridge cable 3 under the influence of wind and traveling vehicles.
Is dampened, the load applied to the cable-stayed bridge cable 3 is alleviated, and the cable-stayed bridge cable 3 is prevented from being damaged.

【0003】このケーブル制振装置4は、図8(b)
(c)に示すように、橋桁1に取り付けたケーブル定着
部11の近傍において、粘弾性体の一種である減衰性を
有するゴムからなるゴムダンパー12を斜張橋ケーブル
3の周囲に複数個等配状態で配設し、ゴムダンパー12
の一端をケーブル定着部11側に取り付け、他端を斜張
橋ケーブル3側に固定したもので、雨水や紫外線を遮蔽
するためカバー13で覆ってある。ゴムダンパー12の
取り付けは、図8(d)に示すように、ゴムダンパー1
2の一端に接着した鋼板製の取付板14を、ケーブル定
着部11の上端の固定リング15に固着したフランジ1
6に取り付け、ゴムダンパー12の他端に接着した鋼板
製の取付板17を斜張橋ケーブル3にクランプリング1
8で固定したホルダ19に取り付けている。
This cable damping device 4 is shown in FIG.
As shown in (c), in the vicinity of the cable fixing portion 11 attached to the bridge girder, a plurality of rubber dampers 12 made of rubber having a damping property which is a kind of viscoelastic body are provided around the cable-stayed bridge cable 3 or the like. Arranged in a distributed state, rubber damper 12
Is attached to the cable fixing unit 11 side and the other end is fixed to the cable-stayed bridge cable 3 side, and is covered with a cover 13 to shield rainwater and ultraviolet rays. The rubber damper 12 is attached to the rubber damper 1 as shown in FIG. 8 (d).
A flange 1 in which a mounting plate 14 made of a steel plate adhered to one end of 2 is fixed to a fixing ring 15 at the upper end of the cable fixing portion 11
6, a mounting plate 17 made of a steel plate adhered to the other end of the rubber damper 12 is attached to the cable 3 of the cable-stayed bridge with a clamp ring 1
It is attached to the holder 19 fixed by 8.

【0004】このケーブル制振装置4によれば、風など
の影響により振動する斜張橋ケーブル3の振動エネルギ
ーを受けてゴムダンパー12がせん断方向に弾性変形
し、そのせん断方向の反力で振動を減衰させて斜張橋ケ
ーブル3の振動を抑制する仕組みになっている。
According to this cable damping device 4, the rubber damper 12 is elastically deformed in the shearing direction by the vibration energy of the cable 3 of the cable-stayed bridge vibrating under the influence of wind and the like, and is vibrated by the reaction force in the shearing direction. To suppress the vibration of the cable-stayed bridge cable 3.

【0005】上記の制振装置は、振動のエネルギーを受
けてせん断方向に変形するゴムダンパー12のせん断方
向の反力により振動を減衰させるものである。一般に同
一材料で作られた同一断面積のゴム体の場合、引張方向
の弾性係数である縦弾性係数E(σ/ε)と、せん断方
向の弾性係数である横弾性係数G(τ/γ)との比
(E:G)は、約3:1の関係にある。このことから、一
般のゴム体は、同じ値の応力を引張(圧縮)方向に与え
た場合とせん断方向に与えた場合とでは、せん断方向に
応力を与えた場合の方がより大きく変形する性質があ
る。換言すれば、一般のゴム体は引張(圧縮)方向によ
りもせん断方向の方が軟らかい性質がある。
The above-described vibration damping device damps the vibration by the reaction force in the shearing direction of the rubber damper 12, which is deformed in the shearing direction by receiving the energy of the vibration. In general, in the case of a rubber body made of the same material and having the same cross-sectional area, the longitudinal elastic modulus E (σ / ε) which is the elastic modulus in the tensile direction and the lateral elastic modulus G (τ / γ) which is the elastic modulus in the shearing direction The ratio (E: G) is about 3: 1. From this, the general rubber body is deformed to a greater extent when stress is applied in the shearing direction when the same value of stress is applied in the tensile (compression) direction and when it is applied in the shearing direction. There is. In other words, a general rubber body has a property that the shear direction is softer than the tensile (compression) direction.

【0006】このため、上記の制振装置4のように、斜
張橋ケーブル3の半径方向の変位に対してゴムダンパー
12がせん断方向に弾性変形するようにゴムダンパー1
2を配設している。
Therefore, like the vibration damping device 4 described above, the rubber damper 1 is elastically deformed in the shearing direction in response to the radial displacement of the cable-stayed bridge cable 3.
2 are arranged.

【0007】しかし、ゴムダンパー12のせん断歪と、
せん断歪を受けたときの反力との関係は、図9に示すよ
うに、ゴムダンパー12が破断するまでほぼ線形関係に
あるので、例えば、設計時に想定した力よりも異常に大
きな力が斜張橋ケーブル3に掛かった場合に、せん断歪
に伴う反力を十分に発揮し得ないまま、ゴムダンパー1
2が弾性変形域を越えて破損してしまう可能性がある。
However, due to the shear strain of the rubber damper 12,
As shown in FIG. 9, the relationship with the reaction force when subjected to shear strain is a substantially linear relationship until the rubber damper 12 breaks. Therefore, for example, a force that is abnormally larger than the force assumed at the time of design is inclined. When it is applied to the cable bridge 3, the rubber damper 1 is not able to fully exert the reaction force due to the shear strain.
2 may be damaged beyond the elastic deformation range.

【0008】並列ケーブルの振動を防止するためには、
隣接するケーブル間にステンレスワイヤや紐または鋼製
の棒で連結し、ケーブル剛性および減衰を高めるととも
に、ケーブル同士を連結したことによる質量効果に期待
していた。その他の方法として、ケーブル同士を連結す
る連結部材に減衰性を有するゴム材料からなる制振部材
を介して振動を抑制していた。
In order to prevent the vibration of the parallel cable,
It was expected that the adjacent cables would be connected with stainless wires, strings, or steel rods to increase the rigidity and damping of the cables, and that the cables would be connected to each other with a mass effect. As another method, vibration is suppressed by a damping member made of a rubber material having a damping property for a coupling member that couples the cables.

【0009】[0009]

【発明が解決しようとする課題】前者のケーブル同士を
連結させる方法においては、接続した点が節となり、異
なるモードの振動が発生する。また、この方法は、複数
のケーブルにおける振動変位の位相遅れを利用するもの
であり、同位相で振動した場合には制振効果は得られな
い。さらに、ケーブルの面外振動には対応できず、事前
に減衰効果を推定することが難しいなどの欠点がある。
In the former method of connecting cables to each other, the connecting points become nodes, and vibrations of different modes occur. In addition, this method uses the phase delay of the vibration displacement in a plurality of cables, and if the vibrations occur in the same phase, the damping effect cannot be obtained. Furthermore, there is a drawback that it cannot cope with out-of-plane vibration of the cable and it is difficult to estimate the damping effect in advance.

【0010】一方、後者の制振構造としては、特開平8
−41821号公報に開示されたように、各ケーブルと
連結部材とを高減衰ゴム製の吸振手段を介して連結した
ものや、特開平10−159017号公報および特開2
000−130568号公報に開示されたように連結部
材の一部を高減衰ゴム製の制振部材を用いて構成したも
のがある。
On the other hand, the latter damping structure is disclosed in Japanese Patent Laid-Open No.
-41821, each cable and the connecting member are connected via a vibration absorbing means made of high-damping rubber, and JP-A-10-159017 and JP-A-2
As disclosed in Japanese Patent Application Laid-Open No. 000-130568, there is a structure in which a part of the connecting member is configured by using a vibration damping member made of high damping rubber.

【0011】図10は、上記の特開平8−41821号
公報に開示された制振装置20の軸線に垂直な横断面図
で、並列ケーブル3,3を鋼製の2割型の連結部材21
で連結し、並列ケーブル3,3と連結部材21との間
に、高減衰ゴム製の吸振手段22を介在させたものであ
る。
FIG. 10 is a transverse sectional view of the vibration damping device 20 disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 8-41821, which is perpendicular to the axis of the vibration control device.
The high-damping rubber vibration absorbing means 22 is interposed between the parallel cables 3 and 3 and the connecting member 21.

【0012】図11は、上記の特開平10−15901
7号公報に開示された制振装置23で、並列ケーブル
3,3をそれぞれ把持する鋼製の2割型の把持部材2
4,24間を、中央に穴25aを有する高減衰ゴム製の
制振部材25を介在して結合したものである。
FIG. 11 shows the above-mentioned Japanese Patent Laid-Open No. 10-15901.
In the vibration damping device 23 disclosed in Japanese Unexamined Patent Publication No. 7-27, a two-piece steel gripping member 2 that grips the parallel cables 3 and 3 respectively.
A vibration damping member 25 made of high-damping rubber having a hole 25a in the center is connected between the Nos. 4 and 24.

【0013】図12は、上記の特開2000−1305
68号公報に開示された制振装置26で、並列ケーブル
3,3をそれぞれ把持する鋼製の2割型の把持部材2
7,27間を、高減衰ゴム製の制振部材28を介在して
結合したものである。
FIG. 12 shows the above-mentioned Japanese Patent Laid-Open No. 2000-1305.
In the vibration damping device 26 disclosed in Japanese Patent No. 68, a two-piece steel gripping member 2 that grips the parallel cables 3 and 3 respectively.
7, 7 and 27 are connected via a damping member 28 made of high-damping rubber.

【0014】上記の図10、図11、図12に示すケー
ブル同士を高減衰ゴム製の吸振手段22または制振部材
25,28を介して連結する制振装置20,23,26
は、引張変位に対して抑制能力が弱く、ウェークフラッ
ターやウェークギャロッピングなどの空力不安定現象に
よりケーブル3,3が大きな振幅で振動し、連結したケ
ーブルの位相距離が大きくなり、高減衰ゴム材料で作ら
れた吸振部材または制振部材の許容引張変位を超えた場
合には破断に至るという問題点があった。
A vibration damping device 20, 23, 26 for connecting the cables shown in FIGS. 10, 11 and 12 to each other via a vibration damping means 22 or vibration damping members 25, 28 made of high damping rubber.
Is weak in its ability to suppress tensile displacement, the cables 3 and 3 vibrate with a large amplitude due to aerodynamic instability phenomena such as wake flutter and wake galloping, and the phase distance of the connected cables becomes large. There has been a problem that fracture occurs when the allowable tensile displacement of the manufactured vibration absorbing member or vibration damping member is exceeded.

【0015】そこで、本発明は、制振性が高く、空力不
安定現象により大きな振幅の振動が生じるような状況で
も安定した性能を発揮する並列ケーブルの制振装置を提
供することを目的とする。
Therefore, it is an object of the present invention to provide a vibration damping device for a parallel cable, which has a high vibration damping property and exhibits stable performance even in a situation where a large amplitude vibration occurs due to an aerodynamic instability phenomenon. .

【0016】[0016]

【課題を解決するための手段】請求項1に記載の並列ケ
ーブルの制振装置は、並列ケーブルの各ケーブルの外周
に配設した振動減衰機能を有する高分子弾性材を含む制
振部材と、前記制振部材を支持するダンパーハウジング
とを少なくとも備えた並列ケーブルの制振装置におい
て、前記制振部材の形状が応力を受けたときに弾性的に
変形するように構成されており、かつ、前記制振部材が
前記各ケーブルと該ケーブルの各ダンパーハウジングと
の間に少なくとも一対延在する各制振装置部分を連結部
材で連結したことを特徴とする。
According to a first aspect of the present invention, there is provided a vibration damping device for a parallel cable, wherein the vibration damping device includes a polymer elastic material having a vibration damping function, which is disposed on an outer periphery of each cable of the parallel cable. A damping device for a parallel cable, comprising at least a damper housing that supports the vibration damping member, wherein the shape of the vibration damping member is elastically deformed when stressed, and The damping member is characterized in that at least a pair of damping device portions extending between the respective cables and the respective damper housings of the cables are coupled by a coupling member.

【0017】上記の並列ケーブルの制振装置によれば、
制振部材の形状が応力を受けたときに弾性的に圧縮変
形,引張変形ないしせん断変形するように構成されてい
ることによって、比較的小さいスペースで高い制振効果
が得られ、また、前記制振部材が前記各ケーブルと該ケ
ーブルの各ダンパーハウジングとの間に少なくとも一対
延在する各制振装置部分を連結部材で連結することによ
って、ウェークギャロッピング現象などで生じるケーブ
ル間の相対的な変位がケーブル外周に配置された制振部
材によって相乗的に減衰され、さらに振動を効果的に抑
制することができる。
According to the above-described vibration damping device for parallel cables,
Since the shape of the vibration damping member is configured to elastically compressively deform, tensilely deform, or shear when stressed, a high vibration damping effect can be obtained in a relatively small space. The vibration member connects at least one pair of vibration damping device portions extending between the respective cables and the respective damper housings of the cables with the connecting member, so that the relative displacement between the cables caused by the wake galloping phenomenon or the like is prevented. The vibration damping member arranged on the outer circumference of the cable synergistically damps the vibration, further effectively suppressing the vibration.

【0018】請求項2に記載の並列ケーブルの制振装置
は、前記連結部材が、構造対数減衰率が0.01以下の
部材により構成されていることを特徴とするものであ
る。
A vibration damping device for a parallel cable according to a second aspect of the invention is characterized in that the connecting member is formed of a member having a structural logarithmic damping factor of 0.01 or less.

【0019】ここで、「構造対数減衰率」とは、構造物
自身が有する対数減衰率で、連結部材を構成する材料の
構造対数減衰率が大きいということは、ケーブルに作用
する応力によって連結部材で変形が発生しやすいことに
なり、制振部材に効果的により大きな荷重を負荷するこ
とができなくなることを意味する。したがって、制振部
材による大きな制振効果を得るためには、連結部材の構
造対数減衰率は小さいほど望ましいことになる。ケーブ
ルの構造対数減衰率は、その長さ、張力、単位重量など
によって異なるが、一般に0.003〜0.01程度で
ある。そのため、連結部材の構造対数減衰率は、少なく
とも被制振部材であるケーブルの構造対数減衰率0.0
1以下に設定する。なお、制振部材を取り付けた際の対
数減衰率は、「連結部材の構造対数減衰率」+「制振部
材の付加対数減衰率」で与えられる。上記の並列ケーブ
ルの制振装置によれば、連結部材の変形を小さくして、
効果的に制振部材に荷重を負荷することができ、制振部
材により並行ケーブルの振動を効果的に抑制することが
できる。
Here, the "structural logarithmic decrement" is the logarithmic decrement of the structure itself, and the fact that the structural logarithmic decrement of the material forming the connecting member is large means that the stress acting on the cable causes the connecting member. This means that deformation easily occurs, and it becomes impossible to effectively apply a larger load to the vibration damping member. Therefore, in order to obtain a large damping effect by the damping member, the smaller the structural logarithmic decrement of the connecting member, the more desirable. The structural logarithmic decrement of the cable varies depending on its length, tension, unit weight, etc., but is generally about 0.003 to 0.01. Therefore, the structural logarithmic decrement of the connecting member should be at least 0.0 for the structural logarithmic decrement of the cable that is the damping member.
Set to 1 or less. The logarithmic decrement when the damping member is attached is given by "structural logarithmic decrement of connecting member" + "added logarithmic decrement of damping member". According to the above parallel cable vibration damping device, the deformation of the connecting member is reduced,
A load can be effectively applied to the vibration damping member, and the vibration of the parallel cable can be effectively suppressed by the vibration damping member.

【0020】請求項3に記載の並列ケーブルの制振装置
は、前記制振部材を、前記被制振部材とダンパーハウジ
ングとの間で延在する少なくとも一対の制振部材で構成
するとともに、前記制振部材の形状を、当該制振部材に
作用する引張応力およびせん断応力によって変形し、そ
の際に生ずる履歴減衰により制振エネルギーを吸収する
ように構成したことを特徴とするものである。
According to another aspect of the present invention, there is provided a damping device for a parallel cable, wherein the damping member comprises at least a pair of damping members extending between the damping member and the damper housing. It is characterized in that the shape of the vibration damping member is deformed by the tensile stress and the shear stress acting on the vibration damping member, and the damping energy is absorbed by the hysteresis damping generated at that time.

【0021】上記の並列ケーブルの制振装置によれば、
制振部材の変形によって制振エネルギーを吸収すること
により、並列ケーブルの振動を効果的に抑制することが
できる。
According to the above-described vibration damping device for parallel cables,
The vibration of the parallel cable can be effectively suppressed by absorbing the vibration damping energy by the deformation of the vibration damping member.

【0022】請求項4に記載の並列ケーブルの制振装置
は、さらにケーブルフランジを有し、前記制振部材が、
ケーブルフランジおよびダンパーハウジングと接する部
分で固定接続・接着されていることを特徴とするもので
ある。
The damping device for a parallel cable according to claim 4 further has a cable flange, and the damping member comprises:
It is characterized in that it is fixedly connected / adhered at a portion in contact with the cable flange and the damper housing.

【0023】上記の並列ケーブルの制振装置によれば、
ケーブルフランジおよびダンパーハウジングによって、
制振部材を確実に保持することができ、ケーブルの振動
を効果的に抑制することができる。
According to the above parallel cable vibration damping device,
With cable flange and damper housing,
The vibration damping member can be reliably held, and the vibration of the cable can be effectively suppressed.

【0024】請求項5に記載の並列ケーブルの制振装置
は、前記制振部材が高減衰ゴムで構成され、その高減衰
ゴムの内部損失(tanδ)が0.2以上、かつ、0.7
以下であることを特徴とするものである。
In the vibration damping device for a parallel cable according to claim 5, the vibration damping member is made of high damping rubber, and the internal loss (tan δ) of the high damping rubber is 0.2 or more and 0.7 or less.
It is characterized by the following.

【0025】上記の並列ケーブルの制振装置によれば、
高減衰ゴムによって、高い振動抑制効果が得られる。こ
こで、高減衰ゴムの内部損失(tanδ)が0.2未満で
は振動抑制効果がなく、また、0.7を超えると反力が
高すぎる。したがって、高減衰ゴムの内部損失(tan
δ)は0.2以上、かつ、0.7以下に設定される。
According to the above parallel cable vibration damping device,
The high damping rubber provides a high vibration suppressing effect. Here, if the internal loss (tan δ) of the high damping rubber is less than 0.2, there is no vibration suppressing effect, and if it exceeds 0.7, the reaction force is too high. Therefore, the internal loss (tan
δ) is set to 0.2 or more and 0.7 or less.

【0026】請求項6に記載の並列ケーブルの制振装置
は、前記制振部材の少なくとも一対は、前記連結部材に
よって連結された連結方向軸線に直列の位置に配置され
ていることを特徴とするものである。
According to a sixth aspect of the present invention, there is provided a parallel cable vibration damping device in which at least a pair of the vibration damping members are arranged in series with a connecting direction axis connected by the connecting member. It is a thing.

【0027】上記の並列ケーブルの制振装置によれば、
連結された連結方向軸線に直列の位置に配置されている
制振部材により、並列ケーブルの間に作用する引張力ま
たは反発力を効果的に吸収して、振動を抑制することが
できる。
According to the above-mentioned vibration damping device for parallel cables,
The vibration damping member arranged at a position in series with the connected connecting direction axis can effectively absorb the tensile force or repulsive force acting between the parallel cables to suppress the vibration.

【0028】[0028]

【発明の実施の形態】以下、斜張橋ケーブルを被制振部
材とする本発明の一実施形態に係る制振装置30を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A damping device 30 according to an embodiment of the present invention in which a cable-stayed bridge cable is used as a vibration-damped member will be described below with reference to the drawings.

【0029】図1は、被制振部材としての並列ケーブル
である斜張橋ケーブル3,3に取り付けられた制振装置
30の軸線方向の縦断面図であり、図2(a)は、図1
における軸線方向に垂直なA−A線に沿った横断面図で
ある。図1および図2(a)において、31,31は斜
張橋ケーブル3,3に固定されたケーブルフランジ、3
2,32は制振部材としてのゴムダンパー、33,33
は内周面33a,33aがケーブルフランジ31,31
の外周面31a,31aに対向するように配設した円筒
形状のダンパーハウジング、34,34はダンパーハウ
ジング33,33の変形を防ぐためにゴムダンパー3
2,32の取り付け位置に対してダンパーハウジング3
3,33の外周面に装着した拘束リングである。
FIG. 1 is a longitudinal sectional view in the axial direction of a vibration damping device 30 attached to cable-stayed bridge cables 3 and 3 which are parallel cables as members to be damped, and FIG. 1
FIG. 4 is a transverse sectional view taken along line AA perpendicular to the axial direction in FIG. 1 and 2 (a), 31 and 31 are cable flanges fixed to cable-stayed bridge cables 3 and 3,
2, 32 are rubber dampers as damping members, 33, 33
The inner peripheral surfaces 33a, 33a are cable flanges 31, 31
The cylindrical damper housings arranged to face the outer peripheral surfaces 31a, 31a of the rubber dampers 34, 34 are rubber dampers 3 for preventing the damper housings 33, 33 from being deformed.
Damper housing 3 with respect to the mounting positions of 2, 32
The restraint rings are attached to the outer peripheral surfaces of 3, 33.

【0030】前記拘束リング34,34は、連結部材3
5によって連結されている。この連結部材35は、例え
ば、鋼材などからなる構造対数減衰率が0.01以下の
部材よりなる丸棒材によって構成される。
The restraint rings 34, 34 are connected to each other by the connecting member 3.
They are connected by 5. The connecting member 35 is formed of, for example, a round bar member made of steel or the like and having a structural logarithmic decrement of 0.01 or less.

【0031】前記ゴムダンパー32は、(例えば、損失
係数tanδが0.30よりも大きな)高減衰性を有する
高分子弾性材からなるゴム製の制振部材であって、図3
(a)に示すように、斜張橋ケーブル3の軸線方向に沿
った断面形状がV字形を有し、その頂部32aから内径
方向に向けて上下に斜めに延在するV字形の一対の斜辺
部32b,32bを有し、ケーブルフランジ31の周囲
に一体に連続してなるリング状の部材である。そして、
V字形の斜辺部32b,32bの内周面に鋼板32c,
32cを接着してケーブルフランジ31の外周面31a
に取り付け、かつ、V字形の頂部32aの外周面に鋼板
32dを接着してダンパーハウジング33の内周面33
aに取り付けてある。このゴムダンパー32はV字形の
頂部32aが斜張橋ケーブル3の振動エネルギーを受け
て、V字形の斜辺部32b,32bがダンパーハウジン
グ33からの反力を受ける。
The rubber damper 32 is a rubber damping member made of a polymeric elastic material having a high damping property (for example, a loss coefficient tan δ is larger than 0.30).
As shown in (a), the cable-stayed bridge cable 3 has a V-shaped cross-sectional shape along the axial direction, and a pair of V-shaped hypotenuses obliquely extending vertically from the top portion 32a toward the inner diameter direction. It is a ring-shaped member that has portions 32b and 32b and is integrally continuous around the cable flange 31. And
A steel plate 32c is formed on the inner peripheral surface of the V-shaped hypotenuse part 32b, 32b,
32c is adhered to the outer peripheral surface 31a of the cable flange 31.
And a steel plate 32d is attached to the outer peripheral surface of the V-shaped top portion 32a, and the inner peripheral surface 33 of the damper housing 33 is attached.
It is attached to a. In this rubber damper 32, the V-shaped top portion 32a receives the vibration energy of the cable-stayed bridge cable 3, and the V-shaped hypotenuse portions 32b and 32b receive the reaction force from the damper housing 33.

【0032】詳しくは、ゴムダンパー32の断面形状
は、図3(a)に示すように、リング部材の外周面にお
いて頂部32aを有し、内径方向にV字形の一対の斜辺
部32b,32bは、互いに外側に少し膨らんだ形で
「く字形」に屈折した部分kを形成してある。この「く
字形」の屈折した部分は、半径方向に圧縮させる外力が
ゴムダンパー32に作用した場合に、一対の斜辺部32
b,32bが上下外方へ変形して相互間距離を増大する
ような変形を促す部分である。
More specifically, as shown in FIG. 3 (a), the rubber damper 32 has a cross section having a top portion 32a on the outer peripheral surface of the ring member and a pair of V-shaped oblique sides 32b, 32b in the inner diameter direction. , The portions k which are bent outward in a slight bulge are bent in a "dogleg" shape. When the external force for compressing in the radial direction acts on the rubber damper 32, the bent portion of the "<" shape has a pair of oblique sides 32.
Reference numerals b and 32b are portions for urging the deformation so as to deform upward and downward and increase the mutual distance.

【0033】なお、頂部32aの幅Wと、V字形の斜辺部
32b,32bの端部間の距離Dとの関係は、例えば、
0.75W≦D≦1.5Wとなっていることが望まし
い。0.75W≦D≦1.5Wの関係にある場合、斜張
橋ケーブル3の振動エネルギーを受けた初期の段階で
の、V字形の斜辺部32b,32bの屈曲を抑止するこ
とができ、斜辺部32b,32bの弾性変形段階でのよ
り大きな振動エネルギーの吸収が可能となる。
The relationship between the width W of the top portion 32a and the distance D between the ends of the V-shaped hypotenuse portions 32b and 32b is, for example,
It is desirable that 0.75W ≦ D ≦ 1.5W. When 0.75W ≦ D ≦ 1.5W, the bending of the V-shaped hypotenuse portions 32b, 32b at the initial stage of receiving the vibration energy of the cable-stayed bridge cable 3 can be suppressed. Larger vibration energy can be absorbed at the elastically deforming stage of the parts 32b, 32b.

【0034】これにより、このゴムダンパー32は、図
3(b)に示すように、斜張橋ケーブル3が半径方向に
振動して圧縮される場合、斜張橋ケーブル3の振動エネ
ルギーとダンパーハウジング33の反力を受けて、V字
形の斜辺部32b,32bからなる上下の面が弾性変形
して外側に膨らむようになる。このゴムダンパー32
は、図3(c)に示すように、V字形の斜面部32b,
32bに囲まれた空間32eがほとんど無くなる程度ま
で、斜辺部32b,32bの弾性変形が進むから、斜張
橋ケーブル3の半径方向において約50%の圧縮歪に相
当する圧縮変形にも十分に耐えることができ、斜張橋ケ
ーブル3のより大きな変位を吸収することができる。
As a result, as shown in FIG. 3 (b), when the cable-stayed bridge cable 3 is vibrated and compressed in the radial direction, the rubber damper 32 has the vibration energy of the cable-stayed bridge cable 3 and the damper housing. Upon receiving the reaction force of 33, the upper and lower surfaces of the V-shaped hypotenuse portions 32b and 32b elastically deform and bulge outward. This rubber damper 32
Is a V-shaped slope portion 32b, as shown in FIG.
Since the elastic deformation of the hypotenuse portions 32b and 32b progresses to the extent that the space 32e surrounded by 32b almost disappears, it sufficiently withstands a compressive deformation equivalent to a compressive strain of about 50% in the radial direction of the cable-stayed bridge cable 3. Therefore, it is possible to absorb a larger displacement of the cable-stayed bridge cable 3.

【0035】また、このゴムダンパー32においては、
斜張橋ケーブル3の半径方向の圧縮歪(自然状態での半
径方向の長さに対する圧縮変形量の割合)とその反力s
との関係は、図4に示すように、0〜30%の圧縮歪に
おける変形初期において、図中の破線tで示す吸収エネ
ルギーに比べてより大きな反力sを発揮することができ
る。
Further, in this rubber damper 32,
Radial compressive strain of cable-stayed bridge cable 3 (ratio of compressive deformation amount to radial length in natural state) and its reaction force s
As shown in FIG. 4, in the initial stage of deformation at a compression strain of 0 to 30%, a larger reaction force s than the absorbed energy indicated by the broken line t in the figure can be exhibited.

【0036】すなわち、このゴムダンパー32は、斜張
橋ケーブル3の振動によって0〜20%程度圧縮歪が生
じるが、ゴムの減衰能力内で十分に斜張橋ケーブル3の
振動エネルギーを吸収することができる。また、斜張橋
ケーブル3の振動の吸収エネルギーtが小さな段階で、
より大きな反発力を発揮することことができるので、よ
り大きな制振作用を発揮することができる。
That is, the rubber damper 32 causes a compressive strain of about 0 to 20% due to the vibration of the cable-stayed bridge cable 3, but must sufficiently absorb the vibration energy of the cable-stayed bridge cable 3 within the damping capacity of rubber. You can In addition, when the vibration absorption energy t of the cable-stayed bridge cable 3 is small,
Since a greater repulsive force can be exerted, a greater damping effect can be exerted.

【0037】次に、約30%〜50%までの圧縮歪で
は、図4に示すように反力sは略一定である。これは、
図3(c)に示すようにV字形の一対の斜辺部32b,
32bが互いに外側に膨らむ変形が約30%の圧縮歪を
超えると一定の応力で変形が進むことを示している。さ
らに変形が進んで約50%の圧縮歪を超えると、図3
(c)の空間32eがなくなり、ゴムダンパー32がケ
ーブルフランジ31とダンパーハウジング33との間に
挟み込まれた状態となってこれ以上変形できなくなる。
このため反力sが急激に上昇する。この状態では斜張橋
ケーブル3は通常の振動状態にあらず、異常に変位して
おり、ゴムダンパー32は振動抑制という作用よりもむ
しろ、斜張橋ケーブル3の変位を拘束するストッパーと
して作用している。
Next, at a compressive strain of about 30% to 50%, the reaction force s is substantially constant as shown in FIG. this is,
As shown in FIG. 3 (c), a pair of V-shaped hypotenuse parts 32b,
It is shown that when the deformations in which 32b bulge outwards exceed a compressive strain of about 30%, the deformations proceed with a constant stress. When the deformation further progresses and exceeds about 50% compression strain,
The space 32e in (c) is eliminated, and the rubber damper 32 is sandwiched between the cable flange 31 and the damper housing 33, and cannot be further deformed.
Therefore, the reaction force s rapidly rises. In this state, the cable-stayed bridge cable 3 is not in a normal vibration state and is abnormally displaced, and the rubber damper 32 acts as a stopper that restrains the displacement of the cable-stayed bridge cable 3 rather than the action of suppressing vibration. ing.

【0038】すなわち、この制振装置30は、ゴムダン
パー32が通常の斜張橋ケーブル3の振動を変形初期に
おけるその減衰域内で吸収して十分な耐久性と優れた制
振機能を発揮することができるとともに、斜張橋ケーブ
ル3に異常に大きな変位が生じた場合でも、半径方向の
圧縮変形に対する許容量が大きく、50%程度の圧縮歪
を許容することができるから構造的に破損する可能性が
低く、かつ、斜張橋ケーブル3の異常な変位に対しては
より大きな反力を発揮して斜張橋ケーブル3を拘束する
ように作用することができる。
That is, in the vibration damping device 30, the rubber damper 32 absorbs the vibration of the ordinary cable-stayed bridge cable 3 within its damping range at the initial stage of deformation and exhibits sufficient durability and an excellent vibration damping function. In addition, even if the cable-stayed bridge cable 3 undergoes an abnormally large displacement, it has a large allowance for compressive deformation in the radial direction and can accept a compressive strain of about 50%, so structural damage is possible. In addition, the cable-stayed bridge cable 3 has a low reaction force and exerts a larger reaction force against an abnormal displacement of the cable-stayed bridge cable 3 and can act to restrain the cable-stayed bridge cable 3.

【0039】以上、本発明の一実施形態を説明したが、
上記の実施形態に限定されるものではない。特に、被制
振部材は、斜張橋ケーブルに限定されず、吊り橋ケーブ
ル、支柱、街灯、道路灯、信号機、避雷針、煙突、その
他の振動を伴う構造物における並列ケーブルの制振装置
として広く適用することができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above embodiment. In particular, the vibration-damped member is not limited to the cable-stayed bridge cable, but is widely applied as a vibration damper for parallel cables in suspension bridge cables, columns, street lights, road lights, traffic lights, lightning rods, chimneys, and other structures with vibration. can do.

【0040】上記実施形態では、ゴムダンパー32は、
ケーブルフランジ31の外周面31aとダンパーハウジ
ング33の内周面33aの両方に接着してあるが、ゴム
ダンパー32の内周面の鋼板32c,32cをケーブル
フランジ31の外周面31aに接着せず、ゴムダンパー
32の外周面をダンパーハウジング33の内周面33a
に接着して配設するようにしてもよい。この場合、ゴム
ダンパー32には、斜張橋ケーブル3が振れ動いた側で
圧縮され、その反発力で斜張橋ケーブル3の振動を抑制
するようになる。同様に、ゴムダンパー32の外周面の
鋼板32dをダンパーハウジング33の内周面33aに
接着せず、ゴムダンパー32の内周面をケーブルフラン
ジ31の外周面に接着してゴムダンパー32を配設する
ようにしてもよい。
In the above embodiment, the rubber damper 32 is
Although bonded to both the outer peripheral surface 31a of the cable flange 31 and the inner peripheral surface 33a of the damper housing 33, the steel plates 32c, 32c on the inner peripheral surface of the rubber damper 32 are not bonded to the outer peripheral surface 31a of the cable flange 31, The outer peripheral surface of the rubber damper 32 is attached to the inner peripheral surface 33a of the damper housing 33.
You may make it adhere | attach and to arrange | position. In this case, the rubber damper 32 is compressed on the side where the cable-stayed bridge cable 3 swings, and the repulsive force suppresses the vibration of the cable-stayed bridge cable 3. Similarly, the steel plate 32d on the outer peripheral surface of the rubber damper 32 is not adhered to the inner peripheral surface 33a of the damper housing 33, but the inner peripheral surface of the rubber damper 32 is adhered to the outer peripheral surface of the cable flange 31 to dispose the rubber damper 32. You may do it.

【0041】また、上記実施形態では、断面形状がV字
形のゴムダンパー32は頂部32aを外周側にし、斜辺
部32b,32bの端部を内周側にした構成を有してい
るが、頂部32aを内周側にしてケーブルフランジ31
側に対向させ、斜辺部32b,32bの端部を外周側に
してダンパーハウジング33側に対向させた構成として
もよい。
In the above embodiment, the rubber damper 32 having a V-shaped cross section has a structure in which the top 32a is on the outer peripheral side and the ends of the hypotenuse parts 32b, 32b are on the inner peripheral side. Cable flange 31 with 32a on the inner circumference side
It may be configured such that it faces the damper housing 33 side with the ends of the oblique sides 32b and 32b on the outer peripheral side.

【0042】上記の実施形態では、ゴムダンパー32を
斜張橋ケーブル3の周囲において、図2(a)に示すよ
うに、周方向に一体に連続したリング状の部材としてい
るが、ゴムダンパー32を周方向に分断して間欠的に設
けたものでもよい。この場合、ゴムダンパー32を斜張
橋ケーブルケーブル3の周方向に各複数個ずつ設置する
ことができ、ゴムダンパー32の設置が容易になる。な
お、このように、ゴムダンパー32を複数個に分割して
設置する場合、少なくとも一対のゴムダンパー32が連
結部材の連結方向の軸線に直列の方向に配置する。その
ようにした場合、その連結部材の連結方向の軸線に直列
の方向に配置されたゴムダンパー32によって、ケーブ
ル3,3間に作用する引張力または反発力に対して、ケ
ーブル3,3の振動を効果的に抑制することができる。
さらに、このように、ゴムダンパー32を分割して配置
する場合、図2(b)に示すように、ダンパーハウジン
グ33’を多角形状として、ゴムダンパー32’および
鋼板32c’と鋼板32d’を製造し易い平板的な形状
にして製造コストの低減を図ってもよい。
In the above embodiment, the rubber damper 32 is a ring-shaped member which is integrally continuous in the circumferential direction around the cable-stayed bridge cable 3 as shown in FIG. 2A. It may be provided by intermittently dividing it in the circumferential direction. In this case, a plurality of rubber dampers 32 can be installed in the circumferential direction of the cable 3 of the cable-stayed bridge, and the rubber dampers 32 can be easily installed. When the rubber damper 32 is divided into a plurality of pieces and installed in this way, at least a pair of the rubber dampers 32 are arranged in series with the axis of the connecting member in the connecting direction. In such a case, the rubber damper 32 arranged in a direction in series with the axis of the connection direction of the connecting member vibrates the cables 3 and 3 against the tensile force or repulsive force acting between the cables 3 and 3. Can be effectively suppressed.
Further, in the case where the rubber damper 32 is divided and arranged in this way, as shown in FIG. 2B, the damper housing 33 ′ has a polygonal shape, and the rubber damper 32 ′, the steel plate 32c ′ and the steel plate 32d ′ are manufactured. The manufacturing cost may be reduced by forming a flat plate shape that is easy to perform.

【0043】また、制振部材であるゴムダンパーの断面
形状は、上記に限定されない。例えば、図5に示すゴム
ダンパー41は、より大きな圧縮変形を可能とするべ
く、頂部41aの幅Wを広く形成し、その上下の端部か
ら一対の斜辺部41b,41bを半径方向に延在させた
π字形の断面形状を備えるものである。
The cross-sectional shape of the rubber damper, which is the vibration damping member, is not limited to the above. For example, in the rubber damper 41 shown in FIG. 5, the width W of the top portion 41a is formed to be wider so that a larger compression deformation is possible, and a pair of oblique sides 41b and 41b are extended in the radial direction from the upper and lower ends thereof. The cross section has a π-shaped cross section.

【0044】また、図6に示す制振部材であるゴムダン
パー43は、周方向に中空穴43cを備えた断面形状が
D字形であって、例えば、D字形の直線部43aをケー
ブルフランジ31の外周面31aに接着し、円弧部43
bをダンパーハウジング33の内周面33aに対向させ
たものである。この場合、ゴムダンパー43に半径方向
に圧縮する力が掛かると、中空穴43cにより円弧部4
3bが上下に広がる方向に弾性変形し、この弾性変形が
ある程度進んでからゴムダンパー43の圧縮変形に移行
するので、大きな変位を吸収でき、かつ、耐久性を発揮
することができる。
Further, the rubber damper 43, which is a vibration damping member shown in FIG. 6, has a D-shaped cross-section with a hollow hole 43c in the circumferential direction. For example, a D-shaped straight portion 43a is formed on the cable flange 31. It is bonded to the outer peripheral surface 31a, and the arc portion
b is opposed to the inner peripheral surface 33a of the damper housing 33. In this case, when a force is applied to the rubber damper 43 in the radial direction, the hollow portion 43c causes the arc portion 4 to move.
3b is elastically deformed in the direction of expanding in the vertical direction, and after this elastic deformation progresses to some extent, it shifts to the compressive deformation of the rubber damper 43, so that a large displacement can be absorbed and durability can be exhibited.

【0045】また、図7に示す制振部材であるゴムダン
パー45は、ケーブルフランジ31側の部分45aと、
ダンパーハウジング33側の部分45bとの上下両側間
を、互いに離れあうように形成した一対の円弧形状の制
振部分45c,45dで連結して、両制振部分45c,
45d間にラグビーボール状の周方向の穴部45eを形
成したもので、ゴムダンパー45に作用する圧縮応力に
よって、上下両側の制振部分45c,45dが上下方向
に広がって弾性変形し、この弾性変形がある程度進んで
からゴムダンパー45の圧縮変形に移行するので、大き
な変位を吸収でき、かつ、耐久性を発揮することができ
る。
A rubber damper 45, which is a vibration damping member shown in FIG. 7, has a portion 45a on the cable flange 31 side,
The upper and lower sides of the damper housing 33 side portion 45b are connected to each other by a pair of arc-shaped damping portions 45c and 45d formed so as to be separated from each other.
A rugby ball-shaped circumferential hole 45e is formed between 45d. The compressive stress acting on the rubber damper 45 causes the vibration damping parts 45c and 45d on the upper and lower sides to spread in the vertical direction and elastically deform. Since the rubber damper 45 is compressed and deformed after the deformation progresses to some extent, a large displacement can be absorbed and durability can be exhibited.

【0046】[0046]

【発明の効果】本発明の制振装置は、並列ケーブルの各
ケーブルの外周に配設した振動減衰機能を有する高分子
弾性材を含む制振部材と、前記制振部材を支持するダン
パーハウジングとを少なくとも備えた並列ケーブルの制
振装置において、前記制振部材の形状が応力を受けたと
きに弾性的に変形するように構成されており、かつ、前
記制振部材が前記各ケーブルと該ケーブルの各ダンパー
ハウジングとの間に少なくとも一対延在する各制振装置
部分を連結部材で連結したものであるから、制振部材が
弾性変形してから圧縮変形に移行するので、制振部分の
弾性変形域において被制振部材のより大きな変位を許容
でき、より高い制振機能と、より高い耐久性を発揮する
ことができる。
The vibration damping device of the present invention includes a vibration damping member disposed on the outer periphery of each cable of a parallel cable and including a polymer elastic material having a vibration damping function, and a damper housing supporting the vibration damping member. In a vibration damping device for a parallel cable including at least, the shape of the damping member is configured to elastically deform when subjected to stress, and the damping member includes the cables and the cables. Since at least one pair of vibration damping device portions extending between the damper housing and each of the damper housings are connected by the connecting member, the vibration damping member is elastically deformed and then compressed and deformed. A larger displacement of the vibration-damped member can be allowed in the deformation region, and a higher vibration-damping function and higher durability can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る制振装置の軸線に沿
った縦断面図である。
FIG. 1 is a vertical sectional view taken along an axis of a vibration damping device according to an embodiment of the present invention.

【図2】(a)は図1の制振装置における軸線に垂直な
A−A線に沿っ横断面図、(b)は他の実施形態におけ
る制振装置におけ軸線に垂直A−A線に沿った横断面図
である。
2A is a cross-sectional view taken along the line AA perpendicular to the axis of the vibration damping device of FIG. 1, and FIG. 2B is a vertical line AA of the vibration damping device according to another embodiment. FIG.

【図3】本発明の一実施形態に係る制振装置の制振部材
の制振状態を示す拡大部分縦断面図で、(a)は制振部
材が圧縮されていない状態を示す拡大部分縦断面図、
(b)は制振部材が途中まで圧縮された状態を示す拡大
部分縦断面図、(c)は制振部材が略完全に圧縮された
状態を示す拡大部分縦断面図である。
FIG. 3 is an enlarged partial vertical cross-sectional view showing a vibration damping state of a vibration damping member of a vibration damping device according to an embodiment of the present invention, and FIG. 3 (a) is an enlarged partial vertical section showing a state where the vibration damping member is not compressed. Floor plan,
(B) is an enlarged partial vertical sectional view showing a state where the vibration damping member is partially compressed, and (c) is an enlarged partial vertical sectional view showing a state where the vibration damping member is substantially completely compressed.

【図4】 本発明の一実施形態に係る制振部材の圧縮歪
と反力の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a compressive strain and a reaction force of the vibration damping member according to the embodiment of the present invention.

【図5】本発明の他の実施形態に係る制振部材の断面形
状を示す拡大部分縦断面図である。
FIG. 5 is an enlarged partial vertical sectional view showing a sectional shape of a vibration damping member according to another embodiment of the present invention.

【図6】本発明の別の実施形態に係る制振部材の断面形
状を示す拡大部分縦断面図である。
FIG. 6 is an enlarged partial vertical cross-sectional view showing a cross-sectional shape of a vibration damping member according to another embodiment of the present invention.

【図7】本発明のさらに別の実施形態に係る制振部材の
断面形状を示す拡大部分縦断面図である。
FIG. 7 is an enlarged partial vertical sectional view showing a sectional shape of a vibration damping member according to yet another embodiment of the present invention.

【図8】(a)は一般的な斜張橋の概略図、(b)は従
来の斜張橋ケーブルの制振装置の部分側断面図、(c)
は(b)のケーブル制振装置の軸線に垂直な拡大横断面
図、(d)は(b)の制振部材を示す部分拡大図であ
る。
8A is a schematic view of a general cable-stayed bridge, FIG. 8B is a partial side sectional view of a conventional cable-damped bridge cable damping device, and FIG.
[Fig. 3] is an enlarged cross-sectional view perpendicular to the axis of the cable damping device in (b), and (d) is a partial enlarged view showing the damping member in (b).

【図9】せん断歪と反力との関係を示す図である。FIG. 9 is a diagram showing the relationship between shear strain and reaction force.

【図10】従来の並列ケーブルにおける制振装置の横断
面図である。
FIG. 10 is a cross-sectional view of a conventional vibration damping device for a parallel cable.

【図11】従来の他の並列ケーブルにおける制振装置の
斜視図である。
FIG. 11 is a perspective view of a vibration damping device in another conventional parallel cable.

【図12】従来のさらに他の並列ケーブルにおける制振
装置の斜視図である。
FIG. 12 is a perspective view of a vibration damping device in another conventional parallel cable.

【符号の説明】[Explanation of symbols]

3 斜張橋ケーブル 30 制振装置 31,31’ ケーブルフランジ 32,32’,41,43,45 制振部材(ゴムダン
パー) 32a,41a 頂部 32b,42b 斜辺部 32c,32c’,32d,32d’ 鋼板 33,33’ ダンパーハウジング 34,34’ 拘束リング 35 連結部材
3 Cable-stayed bridge cable 30 Damping device 31, 31 'Cable flange 32, 32', 41, 43, 45 Damping member (rubber damper) 32a, 41a Top part 32b, 42b Inclined part 32c, 32c ', 32d, 32d' Steel plate 33, 33 'Damper housing 34, 34' Restraint ring 35 Connecting member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D059 AA41 BB06 BB08 GG13 GG17 2D064 AA11 BA01 BA19 CA02 CA04 DB00 HA15 JA01 JA02 3J048 AA01 BA02 BD08 DA06 EA39   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2D059 AA41 BB06 BB08 GG13 GG17                 2D064 AA11 BA01 BA19 CA02 CA04                       DB00 HA15 JA01 JA02                 3J048 AA01 BA02 BD08 DA06 EA39

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 並列ケーブルの各ケーブルの外周に配設
した振動減衰機能を有する高分子弾性材を含む制振部材
と、前記制振部材を支持するダンパーハウジングとを少
なくとも備えた並列ケーブルの制振装置において、前記
制振部材の形状が応力を受けたときに弾性的に変形する
ように構成されており、 かつ、前記制振部材が前記各ケーブルと該ケーブルの各
ダンパーハウジングとの間に少なくとも一対延在する各
制振装置部分を連結部材で連結したことを特徴とする並
列ケーブルの制振装置。
1. A parallel cable damper comprising at least a vibration damping member disposed on the outer periphery of each cable of the parallel cable, the damping member including a polymer elastic material having a vibration damping function, and a damper housing supporting the vibration damping member. In the vibration device, the shape of the vibration damping member is configured to elastically deform when subjected to stress, and the vibration damping member is provided between the cables and the damper housings of the cables. A vibration damping device for a parallel cable, characterized in that at least a pair of vibration damping device portions extending from each other are connected by a connecting member.
【請求項2】 前記連結部材が、構造対数減衰率が0.
01以下の部材により構成されていることを特徴とする
請求項1に記載の並列ケーブルの制振装置。
2. The structural member has a structural logarithmic decrement of 0.
The vibration damping device for a parallel cable according to claim 1, wherein the vibration damping device is configured by members of 01 or less.
【請求項3】 前記制振部材を、前記被制振部材とダン
パーハウジングとの間で延在する少なくとも一対の制振
部材で構成するとともに、前記制振部材の形状を、当該
制振部材に作用する圧縮応力,引張応力およびせん断応
力によって変形し、その際に生ずる履歴減衰により制振
エネルギーを吸収するように構成したことを特徴とする
請求項1または2に記載の並列ケーブルの制振装置。
3. The damping member is composed of at least a pair of damping members extending between the damping member and a damper housing, and the shape of the damping member is the same as that of the damping member. The vibration damping device for a parallel cable according to claim 1 or 2, wherein the vibration damping device is configured to be deformed by acting compressive stress, tensile stress and shear stress, and to absorb vibration damping energy by hysteresis damping generated at that time. .
【請求項4】 さらにケーブルフランジを備え、前記制
振部材が、ケーブルフランジおよびダンパーハウジング
と接する部分で固定接続・接着されていることを特徴と
する請求項1ないし3のいずれかに記載の並列ケーブル
の制振装置。
4. The parallel arrangement according to claim 1, further comprising a cable flange, wherein the vibration damping member is fixedly connected and bonded at a portion in contact with the cable flange and the damper housing. Cable damping device.
【請求項5】 前記制振部材が高減衰ゴムで構成され、
その高減衰ゴムの内部損失(tanδ)が0.2以上、か
つ、0.7以下であることを特徴とする請求項1ないし
4のいずれかに記載の並列ケーブルの制振装置。
5. The damping member is made of high damping rubber,
The vibration damping device for a parallel cable according to any one of claims 1 to 4, wherein the high-damping rubber has an internal loss (tan δ) of 0.2 or more and 0.7 or less.
【請求項6】 前記制振部材の少なくとも一対は、前記
連結部材で連結された連結方向軸線に直列の位置に配置
されていることを特徴とする請求項1ないし5のいずれ
かに記載の並列ケーブルの制振装置。
6. The parallel arrangement according to claim 1, wherein at least a pair of the vibration damping members are arranged at a position in series with a connecting direction axis line connected by the connecting member. Cable damping device.
JP2001218415A 2001-07-18 2001-07-18 Damping device for parallel cable Expired - Fee Related JP4623696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218415A JP4623696B2 (en) 2001-07-18 2001-07-18 Damping device for parallel cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218415A JP4623696B2 (en) 2001-07-18 2001-07-18 Damping device for parallel cable

Publications (2)

Publication Number Publication Date
JP2003027416A true JP2003027416A (en) 2003-01-29
JP4623696B2 JP4623696B2 (en) 2011-02-02

Family

ID=19052594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218415A Expired - Fee Related JP4623696B2 (en) 2001-07-18 2001-07-18 Damping device for parallel cable

Country Status (1)

Country Link
JP (1) JP4623696B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528072A (en) * 2008-07-15 2011-11-10 シーメンス アクチエンゲゼルシヤフト Method for assembling tower and tower
CN102776837A (en) * 2012-08-13 2012-11-14 长安大学 Stay cable damping system based on damping auxiliary ropes
JP2014146621A (en) * 2013-01-25 2014-08-14 Sharp Corp Power cable holding tool, power cable member including the same, solar cell module, and solar cell module mounting structure
CN104631322A (en) * 2015-01-29 2015-05-20 哈尔滨工业大学 Passive spring-damping negative stiffness damper for inhaul cable vibration mitigation
CN104762880A (en) * 2015-05-03 2015-07-08 李孟平 Improved bridge inhaul cable structure and hanging method thereof
CN112609572A (en) * 2020-12-21 2021-04-06 合肥学院 Anti-seismic traffic guardrail device for highway bridge
CN113012385A (en) * 2021-03-18 2021-06-22 成都市达岸信息技术有限公司 Intelligent identification safety control device based on Internet of things
WO2021180298A1 (en) * 2020-03-09 2021-09-16 Dywidag-Systems International Gmbh Cable bending limiting arrangement and combination of a cable bending limiting arrangement with a cable, an anchorage, a compacting clamp unit and a recess pipe
CN114278699A (en) * 2021-11-16 2022-04-05 中国石油大学(华东) Two-dimensional plane negative stiffness device
CN114934717A (en) * 2022-04-22 2022-08-23 国网甘肃省电力公司 Intelligent security fence for power transmission engineering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518040B (en) * 2011-11-23 2013-11-20 深圳大学 Shock absorption damping device for bridge cable or suspender

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517914A (en) * 1991-07-17 1993-01-26 Taisei Corp Preventing device for falling of bridge used as damper in common
JPH0573012U (en) * 1992-03-13 1993-10-05 三菱重工業株式会社 Cable damping device for cable-stayed bridge
JPH05271463A (en) * 1992-03-24 1993-10-19 Murata Mfg Co Ltd Vibration-proof composite material
JPH0658369A (en) * 1992-08-11 1994-03-01 Mitsubishi Heavy Ind Ltd Vibration control device for cable
JPH06193015A (en) * 1992-12-25 1994-07-12 Nippon Mentetsuku Kk Damping method of cable and device thereof
JPH07119115A (en) * 1993-09-03 1995-05-09 Sumitomo Rubber Ind Ltd Damping device of slantwise stretched bridge cables
JPH0841821A (en) * 1994-07-29 1996-02-13 Pub Works Res Inst Ministry Of Constr Vibration control method of parallel cable in diagonal tension bridge and device
JPH09291968A (en) * 1996-04-30 1997-11-11 Sumitomo Electric Ind Ltd Dumping type antenna device
JPH10184094A (en) * 1996-12-20 1998-07-14 Tatsuji Ishimaru Damping mechanism, vibration isolation structure using the damping mechanism, and damping device
JPH11280293A (en) * 1998-03-31 1999-10-12 Ando Kensetsu Kk Multistage hysteresis damper
JP2001115414A (en) * 1999-10-19 2001-04-24 Sumitomo Rubber Ind Ltd Vibration damper for parallel cable

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517914A (en) * 1991-07-17 1993-01-26 Taisei Corp Preventing device for falling of bridge used as damper in common
JPH0573012U (en) * 1992-03-13 1993-10-05 三菱重工業株式会社 Cable damping device for cable-stayed bridge
JPH05271463A (en) * 1992-03-24 1993-10-19 Murata Mfg Co Ltd Vibration-proof composite material
JPH0658369A (en) * 1992-08-11 1994-03-01 Mitsubishi Heavy Ind Ltd Vibration control device for cable
JPH06193015A (en) * 1992-12-25 1994-07-12 Nippon Mentetsuku Kk Damping method of cable and device thereof
JPH07119115A (en) * 1993-09-03 1995-05-09 Sumitomo Rubber Ind Ltd Damping device of slantwise stretched bridge cables
JPH0841821A (en) * 1994-07-29 1996-02-13 Pub Works Res Inst Ministry Of Constr Vibration control method of parallel cable in diagonal tension bridge and device
JPH09291968A (en) * 1996-04-30 1997-11-11 Sumitomo Electric Ind Ltd Dumping type antenna device
JPH10184094A (en) * 1996-12-20 1998-07-14 Tatsuji Ishimaru Damping mechanism, vibration isolation structure using the damping mechanism, and damping device
JPH11280293A (en) * 1998-03-31 1999-10-12 Ando Kensetsu Kk Multistage hysteresis damper
JP2001115414A (en) * 1999-10-19 2001-04-24 Sumitomo Rubber Ind Ltd Vibration damper for parallel cable

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8484905B2 (en) 2008-07-15 2013-07-16 Siemens Aktiengesellschaft Tower and method for the assembly of a tower
JP2011528072A (en) * 2008-07-15 2011-11-10 シーメンス アクチエンゲゼルシヤフト Method for assembling tower and tower
CN102776837B (en) * 2012-08-13 2015-08-26 长安大学 A kind of suspension cable vibration insulating system based on band damping lazy halyard
CN102776837A (en) * 2012-08-13 2012-11-14 长安大学 Stay cable damping system based on damping auxiliary ropes
JP2014146621A (en) * 2013-01-25 2014-08-14 Sharp Corp Power cable holding tool, power cable member including the same, solar cell module, and solar cell module mounting structure
CN104631322A (en) * 2015-01-29 2015-05-20 哈尔滨工业大学 Passive spring-damping negative stiffness damper for inhaul cable vibration mitigation
CN104762880A (en) * 2015-05-03 2015-07-08 李孟平 Improved bridge inhaul cable structure and hanging method thereof
WO2021180298A1 (en) * 2020-03-09 2021-09-16 Dywidag-Systems International Gmbh Cable bending limiting arrangement and combination of a cable bending limiting arrangement with a cable, an anchorage, a compacting clamp unit and a recess pipe
CN112609572A (en) * 2020-12-21 2021-04-06 合肥学院 Anti-seismic traffic guardrail device for highway bridge
CN113012385A (en) * 2021-03-18 2021-06-22 成都市达岸信息技术有限公司 Intelligent identification safety control device based on Internet of things
CN114278699A (en) * 2021-11-16 2022-04-05 中国石油大学(华东) Two-dimensional plane negative stiffness device
CN114278699B (en) * 2021-11-16 2024-03-05 中国石油大学(华东) Two-dimensional plane negative stiffness device
CN114934717A (en) * 2022-04-22 2022-08-23 国网甘肃省电力公司 Intelligent security fence for power transmission engineering
CN114934717B (en) * 2022-04-22 2023-09-01 国网甘肃省电力公司 Intelligent security rail for power transmission engineering

Also Published As

Publication number Publication date
JP4623696B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JPS6117984B2 (en)
US20060169557A1 (en) Constrained layer viscoelastic laminate tuned mass damper and method of use
JP2003027416A (en) Vibration control device for parallel cables
US8857111B2 (en) Composite damper
JP2010526973A (en) Yield fuse member of cast structure
KR101319698B1 (en) Steel damper using cantilever behavior
JP2002101541A (en) Damper for aerial wire
EP2742254B1 (en) Hysteretic tuned-mass damper device (tmd) for passive control of mechanical vibrations
JP2001220923A (en) Seismic control support structure for ground-based installation
KR101129479B1 (en) Energy absorption device for base isolation system
RU2325475C2 (en) Anti-seismic bridge
JPS5930006Y2 (en) Vibration damping devices in bridges
JP2002227127A (en) Bridge and aseismatic strength reinforcing method for bridge pier
JP2001106455A (en) Elevator guide rail supporting device
JP2002181130A (en) Damping device
JP4883740B2 (en) Vibration control device
JP2003120752A (en) Damping device
JP2000136508A (en) Damping device for parallel cables
JPH06351139A (en) Damper
JP3300305B2 (en) Articulated bridge fall prevention device
JP7502202B2 (en) Manufacturing method of seismic isolation device
JP2010261484A (en) Base isolation device
JP3079050B2 (en) Parallel cable damping device
JPH06351138A (en) Damper
JPH0542202Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4623696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees