JP2003027158A - Gold alloy for forming optical recording disk reflection film - Google Patents

Gold alloy for forming optical recording disk reflection film

Info

Publication number
JP2003027158A
JP2003027158A JP2001215754A JP2001215754A JP2003027158A JP 2003027158 A JP2003027158 A JP 2003027158A JP 2001215754 A JP2001215754 A JP 2001215754A JP 2001215754 A JP2001215754 A JP 2001215754A JP 2003027158 A JP2003027158 A JP 2003027158A
Authority
JP
Japan
Prior art keywords
film
gold alloy
reflective film
optical recording
reflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001215754A
Other languages
Japanese (ja)
Inventor
Tsukasa Nakai
司 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001215754A priority Critical patent/JP2003027158A/en
Publication of JP2003027158A publication Critical patent/JP2003027158A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gold alloy giving a reflection film which has high reflectance and high thermal conductivity for increasing the recording density of an optical disk, and has excellent corrosion resistance and heat resistance. SOLUTION: The gold alloy for forming the optical recording disk reflection film has a composition containing at least one kind of element selected from the groups consisting of Mg, Al, Ti, Co, Ge, Zr, Sb, Zn, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy and Ca in 0.05 to 0.2 wt.%, and the balance Au.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光記録ディスク反
射膜形成用金合金に関し、さらに詳しくは、高い反射率
と高い熱伝導率を有し、耐食性、耐熱性にも優れた光記
録ディスク反射膜を与える金合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gold alloy for forming a reflective film on an optical recording disk, and more particularly, it has high reflectance and high thermal conductivity, and has excellent corrosion resistance and heat resistance. It relates to a gold alloy that gives a film.

【0002】[0002]

【従来の技術】コンピュータ情報や映像情報あるいは音
楽情報を記録する媒体として、CD、CD−R、CD−
RW、DVD、DVD−RW、DVD−RAM、MO
D、MD等の各種の光記録ディスク(以下、光ディス
ク)が用いられているが、これらの光ディスクは、その
記録・再生方式によりそれぞれ層構造が異なるものの、
いずれも透明なプラスチック製基板上に各種機能を有す
る薄膜、例えば記録膜、反射膜、保護膜等を層状に形成
することによって作製されている。
2. Description of the Related Art As a medium for recording computer information, video information or music information, CD, CD-R, CD-
RW, DVD, DVD-RW, DVD-RAM, MO
Various optical recording discs (hereinafter, optical discs) such as D and MD are used. These optical discs have different layer structures depending on their recording / reproducing systems.
Each of them is manufactured by forming a thin film having various functions, such as a recording film, a reflective film, a protective film, etc., in layers on a transparent plastic substrate.

【0003】前記反射膜(DVD等の多層ディスクの半
透膜を含む)は、情報の読み書きに使用するレーザー光
を反射する機能、レーザー光に起因する熱を逃す機能等
を有しており、全ての記録・再生方式の光ディスクに用
いられている。また、反射膜としては、主として、A
l、Au、Ag、又はそれらの合金からなる金属薄膜が
用いられており、例えば、CDやDVDの読み出し専用
の光ディスクには耐食性が良好な純Auの薄膜、DVD
等の多層ディスクの半透膜には純Auや純Siの薄膜が
主に用いられている。
The reflective film (including a semi-transparent film of a multilayer disc such as a DVD) has a function of reflecting a laser beam used for reading and writing information, a function of radiating heat caused by the laser beam, and the like. It is used for optical disks of all recording / playback systems. Further, as the reflection film, mainly A
A thin metal film made of 1, 1, Au, Ag, or an alloy thereof is used. For example, a read-only optical disk such as a CD or a DVD has a pure Au thin film and a DVD with good corrosion resistance.
A thin film of pure Au or pure Si is mainly used as a semi-permeable film of a multi-layer disc.

【0004】近年、例えば、比較的初期に製品化され、
製造から10〜15年が経過したオーディオ用のCDに
劣化が認められ、光ディスクの長期保存性(長期信頼
性)が問題視され始めている。この光ディスクの長期保
存性を改善するための方策として、反射膜には高い耐食
性が要求されるようになってきている。また、コンピュ
ータの普及に伴って情報量が急激に増加しており、その
記録媒体となる光ディスクの高記録密度化も急速に進行
している。この光ディスクの高記録密度化に対応して、
反射膜には高い反射率と高い熱伝導性が要求されるよう
になってきている。
In recent years, for example, it was commercialized relatively early,
Deterioration has been recognized in audio CDs that have been manufactured for 10 to 15 years, and the long-term storability (long-term reliability) of optical discs is beginning to be a problem. As a measure for improving the long-term storage stability of this optical disk, the reflective film is required to have high corrosion resistance. Moreover, the amount of information is rapidly increasing with the spread of computers, and the recording density of an optical disk, which is a recording medium thereof, is rapidly increasing. Corresponding to the high recording density of this optical disc,
High reflectance and high thermal conductivity are required for the reflective film.

【0005】しかしながら、Al合金については、耐食
性に関し、通常の使用状態においては比較的良好である
が長期信頼性には欠けるという問題があり、また、熱伝
導性が低いため、高記録密度化への対応が難しいという
問題がある。Ag合金については、高い熱伝導性を有す
るため、特に高記録密度化への対応を目的に耐食性の向
上が図られているものの、長期信頼性については十分検
討されておらず、長期信頼性に不安が残るという状況に
ある。また、Siについては、Auに代わる低コストの
半透膜として使用され始めているが、反射率が低いた
め、高記録密度化には対応できないという問題がある。
However, Al alloys have a problem in that they have relatively good corrosion resistance in normal use, but lack long-term reliability, and have low thermal conductivity. There is a problem that it is difficult to deal with. Since Ag alloy has high thermal conductivity, its corrosion resistance has been improved especially for the purpose of coping with higher recording density, but long-term reliability has not been sufficiently examined and long-term reliability has not been improved. I am in a situation where my anxiety remains. Further, although Si is beginning to be used as a low-cost semi-transparent film in place of Au, it has a problem that it cannot cope with high recording density because of its low reflectance.

【0006】一方、Auは、耐食性に優れると共に、高
い反射率と高い熱伝導性を有しており、前記要求を満た
し得る材料であるが、データの書き換え、消去、長期保
存等における熱負荷により結晶組織が粗大化(結晶粒が
成長)し、膜の表面粗さが増大して反射率が局所的に低
下するため、C/N比、ジッター、変調度といったディ
スク特性が悪化しやすいという耐熱性の問題を抱えてい
る。尚、Auを多層ディスクの半透膜として使用した場
合には、反射率に加えて透過率が局所的に変動し、ディ
スク特性が悪化する。
On the other hand, Au has excellent corrosion resistance, high reflectance and high thermal conductivity, and is a material that can meet the above requirements. However, due to the heat load in data rewriting, erasing, long-term storage, etc. Heat resistance that the disk characteristics such as C / N ratio, jitter, and modulation degree are likely to deteriorate because the crystal structure becomes coarse (crystal grains grow), the surface roughness of the film increases, and the reflectance locally decreases. Have sex problems. When Au is used as a semi-permeable film of a multi-layer disc, the transmittance locally changes in addition to the reflectance, and the disk characteristics deteriorate.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術の問題点に鑑み、光ディスクの高記録密度化に
対応可能な、高い反射率と高い熱伝導性を有し、耐食
性、耐熱性にも優れる反射膜を与える金合金を提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, an object of the present invention is to have a high reflectance and a high thermal conductivity, which are compatible with the high recording density of an optical disk, and have a corrosion resistance and a heat resistance. Another object of the present invention is to provide a gold alloy that provides a reflective film having excellent properties.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、特定の元素を添加した
金合金により、上記課題が解決されることを見出し、斯
かる知見に基づいて本発明を完成するに至った。即ち、
本発明によれば、以下に示す光記録ディスク反射膜形成
用の金合金が提供される。 (1)光記録ディスク反射膜形成用の金合金であって、
Mg、Al、Ti、Co、Ge、Zr、Sb、Zn、L
a、Ce、Nd、Sm、Eu、Gd、Tb、Dy、及び
Caからなる群より選ばれる少なくとも1種の元素を
0.05〜0.2重量%含有し、残部がAuからなるこ
とを特徴とする光記録ディスク反射膜形成用金合金。 (2)Agを0.1〜20重量%含有する前記(1)に
記載の光記録ディスク反射膜形成用金合金。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a gold alloy containing a specific element. Based on this, the present invention has been completed. That is,
According to the present invention, the following gold alloy for forming a reflective film of an optical recording disk is provided. (1) A gold alloy for forming an optical recording disk reflection film,
Mg, Al, Ti, Co, Ge, Zr, Sb, Zn, L
Characterized by containing 0.05 to 0.2% by weight of at least one element selected from the group consisting of a, Ce, Nd, Sm, Eu, Gd, Tb, Dy, and Ca, with the balance being Au. A gold alloy for forming a reflective film on an optical recording disk. (2) The gold alloy for forming an optical recording disk reflective film according to (1), which contains 0.1 to 20% by weight of Ag.

【0009】[0009]

【発明の実施の形態】本発明の光記録ディスク反射膜形
成用金合金は、Mg、Al、Ti、Co、Ge、Zr、
Sb、Zn、La、Ce、Nd、Sm、Eu、Gd、T
b、Dy、及びCaからなる群より選ばれる少なくとも
1種の元素を0.05〜0.2重量%含有し、残部がA
uからなることを特徴とする。尚、該金合金中に上記元
素以外の微量成分(不可避不純物)が含まれる場合も、
本発明と同様の作用効果を有する限り、本発明の金合金
に包含される。また、本発明でいう反射膜には、前述の
通り、DVD等の多層ディスクに用いられる半透膜を包
含する。
BEST MODE FOR CARRYING OUT THE INVENTION The gold alloy for forming an optical recording disk reflective film of the present invention is composed of Mg, Al, Ti, Co, Ge, Zr,
Sb, Zn, La, Ce, Nd, Sm, Eu, Gd, T
It contains 0.05 to 0.2% by weight of at least one element selected from the group consisting of b, Dy, and Ca, and the balance is A
It is characterized by consisting of u. Even when the gold alloy contains trace components (unavoidable impurities) other than the above elements,
As long as it has the same effects as the present invention, it is included in the gold alloy of the present invention. Further, the reflective film in the present invention includes, as described above, a semi-permeable film used for a multilayer disc such as a DVD.

【0010】一般に、Cu、Ni等の合金元素を多量に
添加することによりAu膜の結晶組織の粗大化を防止で
きることが知られているが、この場合には、Au膜の熱
伝導性や耐食性が低下するという問題が生じる。本発明
においては、Mg、Al、Ti、Co、Ge、Zr、S
b、Zn、La、Ce、Nd、Sm、Eu、Gd、T
b、Dy、及びCaからなる群より選ばれる少なくとも
1種の元素をAuに少量添加する。
It is generally known that coarsening of the crystal structure of the Au film can be prevented by adding a large amount of alloying elements such as Cu and Ni. In this case, however, the thermal conductivity and corrosion resistance of the Au film are high. Occurs. In the present invention, Mg, Al, Ti, Co, Ge, Zr, S
b, Zn, La, Ce, Nd, Sm, Eu, Gd, T
A small amount of at least one element selected from the group consisting of b, Dy, and Ca is added to Au.

【0011】前記元素はAu膜の結晶組織を微細化する
作用に極めて優れており、これら元素の少なくとも1種
をAuに少量添加することにより、スパッタ条件によら
ず微細な結晶組織を有する反射膜が得られると共に、そ
の後の製造工程や使用時における反射膜の結晶組織の粗
大化を防止することができる。また、前記元素の少なく
とも1種をAuに添加することにより、スパッタリング
用ターゲットの結晶組織が微細化されてスパッタリング
レートが均一化され、さらに、反射膜とプラスチック製
基板との間の密着性も向上する。即ち、本発明の金合金
は、高い反射率と高い熱伝導性を有すると共に、耐食
性、耐熱性にも優れているため、データの書き換え、消
去、長期保存等における熱負荷による結晶組織の粗大化
が防止され、反射率の低下がない反射膜を得ることがで
きる。
The above-mentioned elements are extremely excellent in the function of refining the crystal structure of the Au film, and by adding a small amount of at least one of these elements to Au, a reflecting film having a fine crystal structure regardless of sputtering conditions. In addition to the above, it is possible to prevent the crystal structure of the reflective film from coarsening during the subsequent manufacturing process or use. Further, by adding at least one of the above-mentioned elements to Au, the crystal structure of the sputtering target is miniaturized and the sputtering rate is made uniform, and further the adhesion between the reflective film and the plastic substrate is improved. To do. That is, the gold alloy of the present invention has high reflectance and high thermal conductivity, as well as excellent corrosion resistance and heat resistance, so that the crystal structure becomes coarse due to a heat load during data rewriting, erasing, long-term storage, etc. It is possible to obtain a reflection film in which the reflectance is prevented and the reflectance is not lowered.

【0012】光ディスクでは、反射膜に要求される熱伝
導率がディスクの膜構成(組成や膜厚等)により異な
る。本発明によれば、添加元素の種類、量を変えること
により、反射率を低下させることなく、反射膜の熱伝導
率を要求される範囲に制御することができる。また、本
発明の金合金は、耐熱性、耐食性と共に、反射鏡、照明
器具、標識、リフレクター等の反射膜等の高い反射率が
要求される用途、また、液晶ディスプレイ(LCD)、
プラズマディスプレイ(PDP)、EL(エレクトロル
ミネッセンス)ディスプレイ等の放熱反射膜等の高い放
熱が要求される用途、さらに、各種配線材料等の低い電
気抵抗率が要求される用途にも有用である。
In the optical disk, the thermal conductivity required for the reflective film differs depending on the film structure (composition, film thickness, etc.) of the disk. According to the present invention, the thermal conductivity of the reflective film can be controlled within the required range by reducing the type and amount of the additive element without lowering the reflectance. Further, the gold alloy of the present invention is used in applications requiring high reflectivity such as a reflective film such as a reflecting mirror, a lighting fixture, a sign, and a reflector, as well as heat resistance and corrosion resistance, and a liquid crystal display (LCD),
It is also useful for applications such as plasma display (PDP) and EL (electroluminescence) displays that require high heat dissipation such as a heat dissipation reflection film, and also for applications that require low electrical resistivity such as various wiring materials.

【0013】本発明においては、前記元素の添加量を、
全合金重量に対し、0.05〜0.2重量%、好ましく
は0.05〜0.1重量%とする。元素の添加量が前記
範囲より少なくなると、十分な耐熱性の向上が得られな
いので好ましくなく、一方、前記範囲より多くなると、
反射膜の熱伝導性、耐食性が急激に低下するので好まし
くない。尚、反射膜の反射率は、高C/N比を得て記録
速度を向上させるために80%以上とすることが好まし
い。
In the present invention, the addition amount of the above elements is
It is 0.05 to 0.2% by weight, preferably 0.05 to 0.1% by weight, based on the total weight of the alloy. When the addition amount of the element is less than the above range, it is not preferable because sufficient heat resistance cannot be obtained, while when it is more than the above range,
It is not preferable because the thermal conductivity and corrosion resistance of the reflective film are sharply reduced. The reflectance of the reflective film is preferably 80% or more in order to obtain a high C / N ratio and improve the recording speed.

【0014】また、本発明においては、金合金の製造コ
ストを低下させるために、前記金合金中のAuの一部を
Agに置き換えることができる。この場合、Agの添加
量は、全合金重量に対し、通常0.1〜20重量%、好
ましくは0.1〜10重量%、より好ましくは0.1〜
5重量%とする。Agの添加量が前記範囲より少なくな
ると、十分な添加効果が得られないので好ましくなく、
一方、前記範囲より多くなると、反射膜の熱伝導性や耐
食性が極端に低下するので好ましくない。尚、反射膜の
熱伝導率は、通常60W/m・K以上、好ましくは10
0W/m・K以上、より好ましくは150W/m・K以
上とする。熱伝導率がこの範囲より低くなると、放熱機
能が十分に発揮されないので好ましくない。
Further, in the present invention, in order to reduce the manufacturing cost of the gold alloy, part of Au in the gold alloy can be replaced with Ag. In this case, the amount of Ag added is usually 0.1 to 20% by weight, preferably 0.1 to 10% by weight, more preferably 0.1 to 10% by weight, based on the total weight of the alloy.
5% by weight. If the addition amount of Ag is less than the above range, it is not preferable because a sufficient addition effect cannot be obtained.
On the other hand, if the amount exceeds the above range, the thermal conductivity and corrosion resistance of the reflective film are extremely lowered, which is not preferable. The thermal conductivity of the reflective film is usually 60 W / m · K or more, preferably 10
It is 0 W / m · K or more, and more preferably 150 W / m · K or more. When the thermal conductivity is lower than this range, the heat dissipation function is not sufficiently exhibited, which is not preferable.

【0015】本発明の金合金を製造する方法としては、
従来公知の方法が使用でき、例えば、純度99.99%
以上のAuと前記元素とを特定の割合で配合した後、ア
ルミナルツボ、黒鉛ルツボ等に充填し、高真空又は不活
性ガス雰囲気中で約1200℃で溶解し、さらに真空又
は不活性ガス雰囲気中で鋳造することによりAu合金鋳
塊を製造することができる。
The method for producing the gold alloy of the present invention includes:
A conventionally known method can be used, for example, a purity of 99.99%
After mixing the above Au and the above elements in a specific ratio, the mixture is filled in an alumina crucible, a graphite crucible, etc., melted at about 1200 ° C. in a high vacuum or an inert gas atmosphere, and further in a vacuum or an inert gas atmosphere. It is possible to manufacture an Au alloy ingot by casting with.

【0016】本発明の金合金を加工してスパッタリング
用ターゲットを作製する方法としては、従来公知の方法
が使用でき、例えば、前記合金鋳塊を熱間加工(鍛造・
圧延)した後、機械加工することにより、又は、Au粉
と添加元素粉とを混合してホットプレス法により焼結す
ることによりスパッタリング用ターゲットを作製するこ
とができる。
As a method for processing the gold alloy of the present invention to produce a sputtering target, a conventionally known method can be used. For example, the alloy ingot is hot worked (forged
The target for sputtering can be produced by performing mechanical processing after rolling, or by mixing Au powder and additive element powder and sintering by hot pressing.

【0017】前記反射膜を作製する方法としては、スパ
ッタリング法、真空蒸着法、イオンプレーティング法、
CVD法、めっき法等の従来公知の方法が使用できる
が、スパッタリング法を使用することが好ましく、例え
ば、前記ターゲットを冷却板にはんだ付けした後、直流
マグネトロンスパッタリング装置に取り付け、ガラス基
板、Si基板、あるいはプラスチック製基板上に合金薄
膜を形成することにより反射膜を作製することができ
る。尚、スパッタリング法においては、前記ターゲット
に代えて、Auターゲット上に添加元素のチップ(例え
ば、5mm×5mm×0.5mm厚さ)を配置したター
ゲットや、Auターゲット中に添加元素のペレットを埋
め込んだターゲットを用いることもできる。
As the method for producing the above-mentioned reflective film, a sputtering method, a vacuum deposition method, an ion plating method,
Although a conventionally known method such as a CVD method or a plating method can be used, it is preferable to use a sputtering method. For example, after soldering the target to a cooling plate, the target is attached to a DC magnetron sputtering device, and a glass substrate or a Si substrate is used. Alternatively, the reflective film can be prepared by forming an alloy thin film on a plastic substrate. In the sputtering method, instead of the target, a target in which a chip of the additional element (for example, 5 mm × 5 mm × 0.5 mm thickness) is arranged on the Au target, or a pellet of the additional element is embedded in the Au target. You can also use a target.

【0018】[0018]

【実施例】以下に、実施例及び比較例を挙げて本発明を
さらに詳細に説明するが、本発明はこれらの実施例によ
り限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0019】(保護膜、記録膜、反射膜の作製方法)ス
パッタリング開始前のチャンバー内の到達真空度を6.
0×10-5Pa以下とし、表1に示すスパッタリング・
ターゲット、スパッタリング条件にて、スパッタ法によ
り保護膜、記録膜、反射膜の各膜を作製した。 (膜特性の試験・評価方法) (1)膜組成 各膜の組成は、ガラス基板上にそれぞれの膜を作製し、
ICP(Induced Coupling Plas
ma Analysis)により分析した。表1に保護
膜用と記録膜用のターゲット組成、表2に反射膜用ター
ゲット組成と反射膜組成、また、表3に触針法により測
定した各膜の膜厚を示す。尚、反射膜作製用のターゲッ
トとしては、ホットプレス法(純度99.99重量%の
Au粉と添加元素粉とを混合し、1.0×10-3Tor
r以下に真空引きした後に、600TorrのAr雰囲
気下、又は、1.0×10-3Torr以下の真空下、8
50℃の温度、24.5MPaの圧力で焼結)により得
られた焼結体ターゲットと、溶解法(純度99.999
重量%のAu地金と純度99.99重量%の添加元素の
ショット又は粉を、不活性ガス雰囲気中又は真空中で1
200〜1500℃で溶解)により得られた溶解鋳造タ
ーゲットの2種のターゲットを用いたが、両ターゲット
共に、ターゲット組成と反射膜組成とはほぼ同一であ
り、反射膜内各部での組成もほぼ均一であった。 (2)熱伝導率 反射膜の熱伝導率は、直流4端子法により膜の電気抵抗
率を測定し、次式(Widemann−Franz則)
より求めた。 λ・ρ/T=L02.43×10-8 ここで、λ、ρ、T、L0は、それぞれ、熱伝導率(W
/m・K)、電気抵抗率(Ω・cm)、絶対温度
(K)、Lorentz数(W・Ω/K2)である。電
気抵抗率は、20mm×70mm×0.8mm厚みのカ
バーガラスに反射膜を成膜した後、3mm×6mmに切
り出し、測定を行った。尚、各試料の膜厚は3000Å
であった。 (3)反射率 反射率は、分光光度計を用い、波長650nmと780
nmにて測定した。尚、各試料の膜厚は3000Åであ
った。 (4)耐熱性 スパッタ後の膜と、これをアニール処理(1.0×10
-5Pa以下の高真空中、150℃で48時間保持)した
膜について、以下の方法で結晶粒径と表面粗さを測定
し、反射膜の耐熱性を評価した。尚、各試料の膜厚は3
000Åであった。 結晶粒径 結晶粒径は、X線回折(XRD)を行い、回折ピーク位
置と半値幅から結晶粒の粒径を求めると共に、微量の膜
をエッチングしてSEMで観察、確認した。 表面粗さ 表面粗さは、表面粗さ(中心線表面粗さRa)が20Å
以下のガラス基板とSi基板上に膜を形成し、Topo
Metrix社製のAFM(原子間力顕微鏡)を用い
て測定すると共に、接触式の表面粗さ計で測定、確認し
た。
(Method for producing protective film, recording film and reflective film) The ultimate vacuum in the chamber before the start of sputtering is set to 6.
The sputtering shown in Table 1 was performed at 0 × 10 −5 Pa or less.
Under the target and sputtering conditions, a protective film, a recording film, and a reflective film were formed by a sputtering method. (Testing / Evaluation Method of Film Characteristics) (1) Film Composition The composition of each film is as follows:
ICP (Induced Coupling Plas)
ma Analysis). Table 1 shows the target composition for the protective film and the recording film, Table 2 shows the target composition for the reflective film and the reflective film composition, and Table 3 shows the film thickness of each film measured by the stylus method. As a target for producing the reflective film, a hot pressing method (Au powder having a purity of 99.99% by weight and additive element powder were mixed, and 1.0 × 10 −3 Tor was mixed.
After evacuation to r or less, under an Ar atmosphere of 600 Torr or under a vacuum of 1.0 × 10 −3 Torr or less, 8
Sintered body target obtained by sintering at a temperature of 50 ° C. and a pressure of 24.5 MPa, and a melting method (purity 99.999)
1% by weight shot or powder of Au ingot and 99.99% by weight of additional element in an inert gas atmosphere or vacuum.
Two types of targets, a melt-casting target obtained by melting at 200 to 1500 ° C.), were used, but the target composition and the reflective film composition of both targets were almost the same, and the composition in each part in the reflective film was also almost the same. It was uniform. (2) Thermal conductivity The thermal conductivity of the reflective film is measured by measuring the electrical resistivity of the film by the direct current 4-terminal method, and the following formula (Widemann-Franz law) is used.
I asked more. λ · ρ / T = L 0 2.43 × 10 −8 where λ, ρ, T, and L 0 are thermal conductivity (W
/ M · K), electrical resistivity (Ω · cm), absolute temperature (K), and Lorentz number (W · Ω / K 2 ). The electrical resistivity was measured by forming a reflective film on a cover glass having a thickness of 20 mm × 70 mm × 0.8 mm and then cutting the film into 3 mm × 6 mm. The film thickness of each sample is 3000Å
Met. (3) Reflectance The reflectance is measured using a spectrophotometer at wavelengths of 650 nm and 780.
It was measured in nm. The film thickness of each sample was 3000Å. (4) Heat-resistant sputtered film and annealing treatment (1.0 × 10
The crystal grain size and surface roughness of the film, which was kept at 150 ° C. for 48 hours in a high vacuum of −5 Pa or less, were measured to evaluate the heat resistance of the reflective film. The film thickness of each sample is 3
It was 000Å. Crystal grain size The crystal grain size was determined by performing X-ray diffraction (XRD) to determine the grain size of the crystal grain from the diffraction peak position and the half-value width, and observing and confirming by SEM after etching a small amount of the film. Surface roughness Surface roughness (center line surface roughness Ra) is 20Å
A film is formed on the following glass substrate and Si substrate, and Topo
The measurement was performed using an AFM (atomic force microscope) manufactured by Metrix Co., Ltd., and at the same time, it was measured and confirmed by a contact type surface roughness meter.

【0020】実施例1〜39、比較例1〜5 評価用のディスクとして、下記の通り、CD系用、DV
D系用の2種類のディスクを作製した。射出成形により
作製された厚さ1.2mm、直径120mmで、ピッチ
1.6μm、深さ50nmの溝付きポリカーボネート基
板(以下、PC基板1と称す)上に、スパッタ法によ
り、下部保護膜、記録膜、上部保護膜、反射膜を順次形
成した。次に、反射膜の上に紫外線硬化樹脂(大日本イ
ンキ社製 SD−318)をスピンコート法により塗布
した後、紫外線を照射して硬化させ、5μmのオーバー
コート層を積層した。これをCD系の評価用のディスク
とした。また、射出成形により作製された厚さ0.6m
m、直径120mmで、ピッチ0.8μm、深さ30n
mの溝付きポリカーボネート基板(以下、PC基板2と
称す)上に、スパッタ法により、下部保護膜、記録膜、
上部保護膜、反射膜を順次形成した。次に、反射膜の上
に紫外線硬化樹脂(大日本インキ社製 SD−318)
をスピンコート法により塗布した後、紫外線を照射して
硬化させ、4μmのオーバーコート層を積層した。次い
で、この基板上に、厚さ0.6mm、直径120mmの
ポリカーボネート基板(ブランク・ディスク)を紫外線
硬化樹脂(大日本インキ社製 SD−318)を用いて
張り合わせ、DVD系用の評価用のディスクとした。次
に、媒体面において10mWのDC光により、ディスク
全面を十分に結晶化させて初期(未記録)状態とし、ナ
カシチ社製の光ディスク評価装置OMS−2000 S
ystemを相変化型光ディスク用に改良したものを用
いて以下の条件でディスク特性を評価した。CD系ディ
スクに対しては、波長780nmの半導体レーザー光
を、NA0.55のレンズを通して媒体面で直径1μm
のスポット径に絞り込み、基板から照射した。読み取り
パワーPrを0.9mWとし、光ディスクの線速を2.
0、5.0、10.0m/secの3水準、レーザーパ
ワーをPe/Pw=0.5として、Pwを8〜16mW
まで変化させ、CNR(キャリア対ノイズ比)が大き
く、ジッターが小さくなる条件を選択し、CNR(キャ
リア対ノイズ比)、ジッター、変調度を測定した。ま
た、DVD系ディスクに対しては、波長633nmの半
導体レーザー光を、NA0.6のレンズを通して媒体面
で直径0.5μmのスポット径に絞り込み、基板から照
射した。読み取りパワーPrを0.9mWとし、光ディ
スクの線速を7.0、15.0m/secの2水準、レ
ーザーパワーをPe/Pw=0.5として、Pwを8〜
16mWまで変化させ、CNR(キャリア対ノイズ比)
が大きく、ジッターが小さくなる条件を選択し、CNR
(キャリア対ノイズ比)、ジッター、変調度を測定し
た。続いて、高温高湿保管試験として、各ディスクを9
0℃、95%RHの高温高湿の状態に2000時間放置
後、上記初期状態のディスクと同様にして、ディスク特
性を測定した。尚、高温高湿保管試験としては、80
℃、85%RH、500時間放置程度の条件で試験する
ことが一般的であるが、ディスク特性の変化をさらに長
期間に渡って追跡(長期保存性を確認)するため、より
厳しい条件で保管試験を行った。表4に反射膜特性を、
表5にディスク特性を示す。尚、ディスク特性について
は、実施例は各線速の中で一番悪い線速のデータを、比
較例は各線速の中で一番良い線速のデータを代表データ
として使用した。
Examples 1 to 39, Comparative Examples 1 to 5 As evaluation disks, the following were used for CD systems and DV.
Two types of discs for D system were produced. A lower protective film and a recording layer were formed on a polycarbonate substrate (hereinafter referred to as PC substrate 1) having a thickness of 1.2 mm, a diameter of 120 mm, a pitch of 1.6 μm and a depth of 50 nm, which was produced by injection molding, by a sputtering method. A film, an upper protective film, and a reflective film were sequentially formed. Next, an ultraviolet curable resin (SD-318 manufactured by Dainippon Ink and Chemicals, Inc.) was applied on the reflective film by a spin coating method, and then irradiated with ultraviolet rays to be cured to form a 5 μm overcoat layer. This was used as a CD-based evaluation disk. Also, the thickness of 0.6m produced by injection molding
m, diameter 120 mm, pitch 0.8 μm, depth 30 n
On a polycarbonate substrate with a groove of m (hereinafter referred to as PC substrate 2), a lower protective film, a recording film,
An upper protective film and a reflective film were sequentially formed. Next, an ultraviolet curable resin (SD-318 manufactured by Dainippon Ink and Chemicals) is formed on the reflective film.
Was applied by a spin coating method and then irradiated with ultraviolet rays to be cured to form a 4 μm overcoat layer. Then, onto this substrate, a polycarbonate substrate (blank disc) having a thickness of 0.6 mm and a diameter of 120 mm was stuck using an ultraviolet curing resin (SD-318 manufactured by Dainippon Ink and Chemicals), and a disc for evaluation for DVD system was used. And Then, the entire surface of the disk was fully crystallized by DC light of 10 mW on the medium surface to an initial (unrecorded) state, and an optical disk evaluation device OMS-2000S manufactured by Nakashichi Co., Ltd.
The disc characteristics were evaluated under the following conditions using a system in which the system was improved for a phase change type optical disc. For CD discs, a semiconductor laser beam with a wavelength of 780 nm is passed through a lens of NA 0.55 and the diameter is 1 μm on the medium surface.
The spot diameter was narrowed down to irradiate from the substrate. The reading power Pr is 0.9 mW and the linear velocity of the optical disk is 2.
3 levels of 0, 5.0, 10.0 m / sec, Pw of 8-16 mW with laser power Pe / Pw = 0.5
The CNR (carrier-to-noise ratio), the jitter, and the modulation factor were measured by selecting the conditions in which the CNR (carrier-to-noise ratio) is large and the jitter is small. For a DVD disc, semiconductor laser light with a wavelength of 633 nm was narrowed down to a spot diameter of 0.5 μm on the medium surface through a lens of NA 0.6 and irradiated from the substrate. The reading power Pr is 0.9 mW, the linear velocity of the optical disk is two levels of 7.0 and 15.0 m / sec, the laser power is Pe / Pw = 0.5, and Pw is 8 to 8.
CNR (carrier-to-noise ratio) varied up to 16 mW
Is selected and the jitter is reduced, the CNR is selected.
(Carrier to noise ratio), jitter, and degree of modulation were measured. Next, as a high temperature and high humidity storage test,
After being left in a high temperature and high humidity condition of 0 ° C. and 95% RH for 2000 hours, the disk characteristics were measured in the same manner as the disk in the initial state. As a high temperature and high humidity storage test, 80
It is common to test under conditions of ℃, 85% RH and 500 hours of storage, but in order to track changes in disk characteristics over a longer period (long-term storage stability is confirmed), storage under more severe conditions The test was conducted. Table 4 shows the reflective film characteristics.
Table 5 shows the disk characteristics. Regarding the disk characteristics, the example used the data of the worst linear velocity among the respective linear velocities, and the comparative example used the data of the best linear velocity among the respective linear velocities as the representative data.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】表4、5の結果から明らかなように、本発
明の金合金によれば、高い反射率と高い熱伝導性を有す
ると共に、耐食性、耐熱性にも優れているため、高温高
湿保管による結晶組織の粗大化が防止され、反射率の低
下がない反射膜(長期保存性に優れた光ディスク)を得
ることができる。
As is clear from the results of Tables 4 and 5, the gold alloy of the present invention has high reflectance and high thermal conductivity, as well as excellent corrosion resistance and heat resistance. It is possible to obtain a reflective film (optical disk excellent in long-term storage stability) in which coarsening of the crystal structure due to storage is prevented and the reflectance is not lowered.

【0027】[0027]

【発明の効果】以上説明した通り、本発明の金合金によ
れば、光ディスクの高記録密度化に対応可能な、高い反
射率と高い熱伝導性を有し、耐食性、耐熱性にも優れる
反射膜を得ることができる。
As described above, according to the gold alloy of the present invention, a reflection having a high reflectance and a high thermal conductivity, which is compatible with a high recording density of an optical disk, and is excellent in corrosion resistance and heat resistance. A membrane can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光記録ディスク反射膜形成用の金合金で
あって、Mg、Al、Ti、Co、Ge、Zr、Sb、
Zn、La、Ce、Nd、Sm、Eu、Gd、Tb、D
y、及びCaからなる群より選ばれる少なくとも1種の
元素を0.05〜0.2重量%含有し、残部がAuから
なることを特徴とする光記録ディスク反射膜形成用金合
金。
1. A gold alloy for forming a reflective film of an optical recording disk, comprising: Mg, Al, Ti, Co, Ge, Zr, Sb,
Zn, La, Ce, Nd, Sm, Eu, Gd, Tb, D
A gold alloy for forming an optical recording disk reflective film, which contains 0.05 to 0.2% by weight of at least one element selected from the group consisting of y and Ca, and the balance being Au.
【請求項2】 Agを0.1〜20重量%含有する請求
項1に記載の光記録ディスク反射膜形成用金合金。
2. The gold alloy for forming a reflective film of an optical recording disk according to claim 1, which contains 0.1 to 20% by weight of Ag.
JP2001215754A 2001-07-16 2001-07-16 Gold alloy for forming optical recording disk reflection film Pending JP2003027158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215754A JP2003027158A (en) 2001-07-16 2001-07-16 Gold alloy for forming optical recording disk reflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215754A JP2003027158A (en) 2001-07-16 2001-07-16 Gold alloy for forming optical recording disk reflection film

Publications (1)

Publication Number Publication Date
JP2003027158A true JP2003027158A (en) 2003-01-29

Family

ID=19050337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215754A Pending JP2003027158A (en) 2001-07-16 2001-07-16 Gold alloy for forming optical recording disk reflection film

Country Status (1)

Country Link
JP (1) JP2003027158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287565A (en) * 2009-05-14 2010-12-24 Mitsubishi Materials Corp Al ALLOY-REFLECTING ELECTRODE FILM FOR FORMING ANODE LAYER OF TOP-EMISSION TYPE ORGANIC EL ELEMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287565A (en) * 2009-05-14 2010-12-24 Mitsubishi Materials Corp Al ALLOY-REFLECTING ELECTRODE FILM FOR FORMING ANODE LAYER OF TOP-EMISSION TYPE ORGANIC EL ELEMENT
CN102422716A (en) * 2009-05-14 2012-04-18 三菱综合材料株式会社 Al alloy reflective electrode film for forming anode layer for top-emitting organic el element

Similar Documents

Publication Publication Date Title
TWI327602B (en) Silver alloy reflective film, sputtering target therefor, and optical information recording medium using the same
CN1186772C (en) Reflective layer or semi-transparent reflective layer for optical informatino recording media, optical information recording media and sputtering target for optical information recording media
TWI336471B (en) Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media
JP4379602B2 (en) Optical recording medium having translucent reflective film or reflective film as constituent layer, and Ag alloy sputtering target used for forming said reflective film
JP4377877B2 (en) Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium
JP2002015464A (en) Reflecting layer or translucent reflecting layer for optical information recording medium, optical information recording medium and sputtering target for the medium
JP2007035104A (en) Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM AND Ag ALLOY SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM
JP2002319185A (en) Silver alloy for reflection film for optical recording disk
JP2000109943A (en) Sputtering target material for thin film formation, thin film formed by using it and optical recording medium
US8309195B2 (en) Read-only optical information recording medium
JPWO2005056851A1 (en) Silver alloy with excellent reflectance maintenance characteristics
WO2005056850A1 (en) Silver alloy excelling in performance of reflectance maintenance
JP3957259B2 (en) Reflective layer for optical information recording medium and optical information recording medium
TW501112B (en) Reflecting layer, optical recording medium with reflecting layer and sputtering target for forming reflecting layer
JP2003030901A (en) Aluminum alloy for forming reflecting film in optical recording disk
TWI381377B (en) Optical information recording media
JP2008305529A (en) Optical storage medium and method of producing optical storage medium
JP2003027158A (en) Gold alloy for forming optical recording disk reflection film
WO2010119888A1 (en) Optical information recording medium, and sputtering target for forming reflective film for optical information recording medium
JP5331420B2 (en) Read-only optical information recording medium and sputtering target for forming a transflective film of the optical information recording medium
JP2003022570A (en) Optical recording medium and manufacturing method therefor
JP2002235130A (en) Silver alloy for optical disk reflection film
JP2000348383A (en) Optical information recording medium and its production
JP5600632B2 (en) Optical information recording medium
JP2898112B2 (en) Melted Al alloy sputtering target for forming Al alloy thin film for reflective film of optical recording medium with excellent composition uniformity