JP2003026481A - Ceramic joined material and parts used with the same - Google Patents

Ceramic joined material and parts used with the same

Info

Publication number
JP2003026481A
JP2003026481A JP2001212693A JP2001212693A JP2003026481A JP 2003026481 A JP2003026481 A JP 2003026481A JP 2001212693 A JP2001212693 A JP 2001212693A JP 2001212693 A JP2001212693 A JP 2001212693A JP 2003026481 A JP2003026481 A JP 2003026481A
Authority
JP
Japan
Prior art keywords
ceramic
conductive plate
base material
ceramic base
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001212693A
Other languages
Japanese (ja)
Inventor
Kinji Saijo
謹二 西條
Kazuo Yoshida
一雄 吉田
Hiroaki Okamoto
浩明 岡本
Shinji Osawa
真司 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2001212693A priority Critical patent/JP2003026481A/en
Publication of JP2003026481A publication Critical patent/JP2003026481A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)
  • ing And Chemical Polishing (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic joined material formed by laminating and joining a ceramic base material and a conductive plate without using a high-temperature process and parts used with the same. SOLUTION: The ceramic joined material 20 is obtained by subjecting the surfaces facing each other of a conductive plate 26 and a ceramic base material 28 housed in a recessed part 34a of a cylindrical body section of a vessel to activation treatment under an extremely low pressure, touching, superposing and laminating the flanged section 34b and the conductive plate 36 of the cylindrical body section of the vessel in the state of housing the ceramic base material 28, hermetically press welding the flanged section in a vacuum or reduced pressure state to form the hermetic vessel 30 and subjecting this hermetic vessel to isostatic pressurizing thereby laminating and joining the conductive plate 26 and the ceramic base material 28. Parts, such as printed circuit boards, are produced by using such ceramic joined material 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、セラミック基材と
導電板とを積層接合したセラミック接合材およびそれを
用いた部品に関する。
TECHNICAL FIELD The present invention relates to a ceramic bonding material in which a ceramic base material and a conductive plate are laminated and bonded, and a component using the same.

【0002】[0002]

【従来の技術】従来より、セラミック部材は耐熱性、耐
摩耗性、電気絶縁性などの点で優れた特性を持つ反面、
一般的に靭性に乏しいとされるため金属材料とセラミッ
ク部材を接合した複合材が数多く提案されており、エレ
クトロニクス、自動車、産業部品など幅広い分野で応用
されてきている。
2. Description of the Related Art Conventionally, ceramic members have excellent properties such as heat resistance, wear resistance, and electrical insulation, but
Since it is generally considered to have poor toughness, many composite materials in which a metal material and a ceramic member are joined have been proposed and have been applied in a wide range of fields such as electronics, automobiles, and industrial parts.

【0003】セラミック部材と金属材料の接合方法とし
ては、高融点金属法、活性金属法、蒸着法などいくつか
の方法が提案されている。この他にも例えば、特開平4
−46070号公報では、セラミック部材と金属材料の
接合面を極低圧力下で活性化処理し、真空槽内で冷間圧
接する方法が提案されている。
Several methods such as a high melting point metal method, an active metal method, and a vapor deposition method have been proposed as a method for joining a ceramic member and a metal material. In addition to this, for example, Japanese Patent Laid-Open No. Hei 4
JP-A-46070 proposes a method in which a joint surface between a ceramic member and a metal material is activated under an extremely low pressure and cold-welded in a vacuum chamber.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の接合法では、以下のような問題点があった。
すなわち高温プロセスを用いる場合には熱膨張差による
残留応力や接合界面での脆弱化合物層の形成といった悪
影響が生じたり、金属などの導電体部分に比較的厚いも
のが要求された場合には複数の異なった製造プロセスを
併用しなければならないなどの煩雑さがあった。また真
空槽内で冷間圧接する場合は、セラミック材の脆性など
のために破損する場合があるなどの問題点である。
However, the conventional joining method as described above has the following problems.
That is, when a high temperature process is used, there are adverse effects such as residual stress due to a difference in thermal expansion and formation of a fragile compound layer at the bonding interface, and when a relatively thick conductor such as metal is required, a plurality of However, there are complications such as having to use different manufacturing processes together. Further, when cold pressure welding is performed in a vacuum chamber, there is a problem that the ceramic material may be damaged due to brittleness or the like.

【0005】本発明は、上記のような技術的背景に鑑
み、セラミック基材に所要の厚みを有する導電板を静水
圧加圧により積層接合したセラミック接合材、およびセ
ラミック接合材を用いたプリント配線板、ICパッケー
ジなどの部品を提供することを課題とする。
In view of the above technical background, the present invention has a ceramic bonding material in which a conductive material having a required thickness is laminated and bonded to a ceramic substrate by hydrostatic pressing, and a printed wiring using the ceramic bonding material. It is an object to provide components such as boards and IC packages.

【0006】[0006]

【課題を解決するための手段】前記課題に対する第1の
解決手段として本発明のセラミック接合材は、セラミッ
ク基材と導電板を積層接合してなるセラミック接合材で
あって、導電板、セラミック基材および前記セラミック
基材を納めた容器胴体部のフランジ部を活性化処理し、
前記導電板と前記容器胴体部のフランジ部を圧接して気
密容器を形成し、前記気密容器に静水圧加圧を行うこと
により前記導電板と前記セラミック基材とを積層接合し
てなる構成とした。
As a first solution to the above-mentioned problems, a ceramic bonding material of the present invention is a ceramic bonding material obtained by laminating and bonding a ceramic base material and a conductive plate. Activated the flange of the container body containing the material and the ceramic base,
An airtight container is formed by press-contacting the conductive plate and the flange portion of the container body, and the conductive plate and the ceramic substrate are laminated and bonded by performing hydrostatic pressure on the airtight container. did.

【0007】前記課題に対する第2の解決手段として本
発明のセラミック接合材は、前記第1の解決手段におけ
る活性化処理が、不活性ガス雰囲気中でグロー放電を行
わせて、導電板面とセラミック基材面およびセラミック
基材を納めた容器胴体部のフランジ部面をスパッタエッ
チング処理する構成とした。
As a second means for solving the above problems, in the ceramic bonding material of the present invention, the activation treatment in the first means causes glow discharge in an inert gas atmosphere, and the conductive plate surface and the ceramic are joined. The substrate surface and the flange surface of the container body containing the ceramic substrate are sputter-etched.

【0008】前記課題に対する第3の解決手段として本
発明のセラミック接合材は、前記セラミック基材が非平
面形状を有する構成とした。
As a third means for solving the above problems, in the ceramic bonding material of the present invention, the ceramic base material has a non-planar shape.

【0009】前記課題に対する第4の解決手段として本
発明の部品は、セラミック接合材を用いた構成とした。
また前記部品は、プリント配線板、ICパッケージのい
ずれかに適用される構成とした。
As a fourth means for solving the above problems, the component of the present invention has a structure using a ceramic bonding material.
In addition, the parts are configured to be applied to either a printed wiring board or an IC package.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施形態を説明
する。図1は、本発明のセラミック接合材20の一実施
形態を示す概略断面図であり、基材全体が概略平板状
で、片面に凹凸を有し、他面が平坦であるセラミック基
材28の凹凸側面に導電板26を積層接合した例を示し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a schematic cross-sectional view showing one embodiment of a ceramic bonding material 20 of the present invention. A ceramic base material 28 in which the entire base material has a substantially flat plate shape, one surface has irregularities, and the other surface is flat. An example is shown in which the conductive plate 26 is laminated and joined to the uneven side surface.

【0011】セラミック基材28の材質としては、セラ
ミック接合材を製造可能な素材であれば特にその種類は
限定されず、セラミック接合材の用途により適宜選択し
て用いることができる。例えば、アルミナ、クロム酸ラ
ンタン、珪化モリブデン、コーディエライト、サイアロ
ン、酸化亜鉛、酸化イットリウム、酸化カリウム、酸化
珪素、酸化錫、酸化チタン、酸化ベリリウム、酸化ホウ
素、酸化マグネシウム、シリカ、ジルコニア、ジルコ
ン、ジルコン酸チタン酸塩、ステアタイト、スポジュメ
ン、炭化珪素、炭化チタン、炭化タングステン、炭化ホ
ウ素、チタン酸ストロンチウム、チタン酸バリウム、窒
化アルミニウム、窒化珪素、窒化チタン、窒化ホウ素、
ニオブ酸リチウム、フェライト、ベリリア、ホルステラ
イト、マグネシア、ムライト、ジルコニウムボライド、
チタンボライド、ランタンボライド、硫化カドミウム、
硫化モリブデン、PLZT(Pb,La(Zr,Ti)
)、PZT(Pb(Zr,Ti)O)などの他、
水晶やダイヤモンド、DLC(ダイヤモンド・ライク・
カーボン)、ガラスなど、さらにこれらを他の基材(例
えば、金属材や合金材、ガラス材、高分子材、セラミッ
ク材など)に膜形成したものや、これらを基材として金
属層や合金層(例えば、導電板26に適用される材質な
ど)を積層した積層材(蒸着材、メッキ材など)などが
適用される。セラミック接合材をプリント配線板などに
適用する場合には、アルミナなどが用いられる。
The material of the ceramic base material 28 is not particularly limited as long as it is a material capable of producing a ceramic bonding material, and can be appropriately selected and used according to the application of the ceramic bonding material. For example, alumina, lanthanum chromate, molybdenum silicide, cordierite, sialon, zinc oxide, yttrium oxide, potassium oxide, silicon oxide, tin oxide, titanium oxide, beryllium oxide, boron oxide, magnesium oxide, silica, zirconia, zircon, Zirconate titanate, steatite, spodumene, silicon carbide, titanium carbide, tungsten carbide, boron carbide, strontium titanate, barium titanate, aluminum nitride, silicon nitride, titanium nitride, boron nitride,
Lithium niobate, ferrite, beryllia, forsterite, magnesia, mullite, zirconium boride,
Titanium boride, lanthanum boride, cadmium sulfide,
Molybdenum sulfide, PLZT (Pb, La (Zr, Ti)
O 3 ), PZT (Pb (Zr, Ti) O 3 ) and the like,
Crystals, diamonds, DLC (diamond like
Carbon), glass, etc., and those obtained by film-forming them on other base materials (for example, metal materials, alloy materials, glass materials, polymer materials, ceramic materials, etc.), or metal layers or alloy layers using these materials as base materials. A laminated material (evaporated material, plated material, etc.) in which (for example, a material applied to the conductive plate 26) is laminated is applied. Alumina or the like is used when the ceramic bonding material is applied to a printed wiring board or the like.

【0012】またセラミック基材28の断面形状は、セ
ラミック接合材を製造可能であれば特にその形状は限定
されず、セラミック接合材の用途により適宜選定され
る。例えば、平板状でもよいし、概略円弧状や概略球面
状あるいは表面に凹凸を有するような非平面形状でもよ
い。セラミック接合材の用途がプリント配線板などであ
れば、セラミック基材の断面形状は概略平板状が好まし
いが、セラミック基材の片面または両面に凹凸を有して
いてもよい。セラミック基材の厚みや凹凸の高低差につ
いても、セラミック接合材を製造可能であれば特に限定
されず、セラミック接合材の用途により適宜選定され
る。
The sectional shape of the ceramic base material 28 is not particularly limited as long as a ceramic bonding material can be manufactured, and is appropriately selected depending on the application of the ceramic bonding material. For example, it may have a flat plate shape, a substantially arc shape, a substantially spherical shape, or a non-planar shape having irregularities on the surface. If the application of the ceramic bonding material is a printed wiring board or the like, the ceramic base material preferably has a substantially flat cross section, but the ceramic base material may have irregularities on one side or both sides. The thickness of the ceramic base material and the height difference of the unevenness are not particularly limited as long as the ceramic bonding material can be manufactured, and are appropriately selected depending on the application of the ceramic bonding material.

【0013】導電板26の材質としては、セラミック接
合材を製造可能な素材であれば特にその種類は限定され
ず、セラミック接合材の用途により適宜選択して用いる
ことができる。例えば、常温で固体である金属(例え
ば、Al、Ni、Cu、Ag、Pt、Auなど)やこれ
らの金属のうち少なくとも1種類を含む合金(例えば、
JISに規定の合金など)あるいはこれらの金属や合金
を少なくとも1層有する積層体(例えば、クラッド材、
メッキ材、蒸着膜材など)などが適用される。セラミッ
ク接合材の用途がプリント配線板であれば、電極として
導電性に優れた金属であるCu、Alなどやこれらの金
属のうち少なくとも1種類を含む合金あるいはこれらの
金属や合金を少なくとも1層有する積層体などが適用さ
れる。
The material of the conductive plate 26 is not particularly limited as long as it is a material capable of producing a ceramic bonding material, and can be appropriately selected and used according to the application of the ceramic bonding material. For example, a metal that is solid at room temperature (eg, Al, Ni, Cu, Ag, Pt, Au, etc.) or an alloy containing at least one of these metals (eg,
JIS specified alloys) or a laminate having at least one layer of these metals or alloys (eg, clad material,
Plating materials, vapor deposition film materials, etc.) are applied. If the application of the ceramic bonding material is a printed wiring board, it has Cu, Al, etc., which are metals having excellent conductivity as electrodes, an alloy containing at least one of these metals, or at least one layer of these metals or alloys. A laminated body or the like is applied.

【0014】JISに規定の合金としては合金鋼やステ
ンレス鋼の他に、例えば、Cu系合金では、無酸素銅、
タフピッチ銅、りん脱酸銅、丹銅、黄銅、快削黄銅、す
ず入り黄銅、アドミラルティ黄銅、ネーバル黄銅、アル
ミニウム青銅、白銅など、Al系合金では、2000
系、3000系、5000系、6000系、7000系
など、Ni系合金では、常炭素ニッケル、低炭素ニッケ
ル、ニッケル−銅合金、ニッケル−銅−アルミニウム−
チタン合金、ニッケル−モリブデン合金、ニッケル−モ
リブデン−クロム合金、ニッケル−クロム−鉄−モリブ
デン−銅合金、ニッケル−クロム−モリブデン−鉄合金
などが適用できる。
In addition to alloy steel and stainless steel as the alloy specified in JIS, for example, Cu-based alloys include oxygen-free copper,
With Al-based alloys such as tough pitch copper, phosphorous deoxidized copper, red copper, brass, free-cutting brass, tin-containing brass, Admiralty brass, naval brass, aluminum bronze, and white copper, 2000
System, 3000 series, 5000 series, 6000 series, 7000 series, etc., Ni-based alloys include normal carbon nickel, low carbon nickel, nickel-copper alloy, nickel-copper-aluminum-
A titanium alloy, a nickel-molybdenum alloy, a nickel-molybdenum-chromium alloy, a nickel-chromium-iron-molybdenum-copper alloy, a nickel-chromium-molybdenum-iron alloy, etc. can be applied.

【0015】また導電板26の厚みも、セラミック接合
材を製造可能であれば特に限定はされず、セラミック接
合材の用途により適宜選定される。例えば、1〜100
0μmであることが好ましい。1μm未満の場合には導
電板としての製造が難しくなり、1000μmを超える
とセラミック接合材としての製造が難しくなる。より好
ましくは、10〜500μmである。
The thickness of the conductive plate 26 is not particularly limited as long as the ceramic bonding material can be manufactured, and is appropriately selected depending on the application of the ceramic bonding material. For example, 1-100
It is preferably 0 μm. If it is less than 1 μm, it becomes difficult to manufacture it as a conductive plate, and if it exceeds 1000 μm, it becomes difficult to manufacture it as a ceramic bonding material. More preferably, it is 10 to 500 μm.

【0016】図1に示すセラミック接合材20の製造方
法について説明する。まずセラミック基材28を容器胴
体部の凹部34aに納め、容器胴体部34に納めたセラ
ミック基材28および導電板26を真空槽内に装填し、
導電板26とセラミック基材28の接合予定面をそれぞ
れ活性化処理装置により活性化処理する。このとき容器
胴体部34の導電板26と接合する容器胴体部のフラン
ジ部34bの接合予定部側面も一緒に活性化処理され
る。
A method of manufacturing the ceramic bonding material 20 shown in FIG. 1 will be described. First, the ceramic base material 28 is placed in the concave portion 34a of the container body portion, and the ceramic base material 28 and the conductive plate 26 placed in the container body portion 34 are loaded into the vacuum chamber.
The surfaces to be joined of the conductive plate 26 and the ceramic base material 28 are each subjected to activation treatment by an activation treatment device. At this time, the side surface of the flange portion 34b of the container body portion to be joined with the conductive plate 26 of the container body portion 34 is also activated.

【0017】セラミック接合材20に用いられるセラミ
ック基材28、導電板26の活性化処理は、以下のよう
にして実施する。すなわち、真空槽内に装填されたセラ
ミック基材28を納めた容器胴体部34と導電板26を
それぞれ絶縁支持された一方の電極Aと接触させ、アー
ス接地された他の電極Bとの間に10〜1×10−3
aの極低圧不活性ガス雰囲気好ましくはアルゴンガス中
で、1〜50MHzの交流を印加してグロー放電を行わ
せ、グロー放電によって生じたプラズマ中に露出される
電極Aと接触したセラミック基材28を納めた容器胴体
部34と導電板26のそれぞれの面積が、電極Bの面積
の1/3以下となるようにスパッタエッチング処理す
る。なお不活性ガス圧力が1×10−3Pa未満では安
定したグロー放電が行いにくく高速エッチングが困難で
あり、10Paを超えると活性化処理効率が低下する。
印加する交流は、1MHz未満では安定したグロー放電
を維持するのが難しく連続エッチングが困難であり、5
0MHzを超えると発振し易く電力の供給系が複雑とな
り好ましくない。また、効率よくエッチングするために
は電極Aと接触したセラミック基材28を納めた容器胴
体部34と導電板26のそれぞれの面積を電極Bの面積
より小さくする必要があり、1/3以下とすることによ
り充分な効率でエッチング可能となる。
The activation treatment of the ceramic base material 28 and the conductive plate 26 used for the ceramic bonding material 20 is carried out as follows. That is, the container body 34 accommodating the ceramic base material 28 loaded in the vacuum chamber and the conductive plate 26 are brought into contact with one electrode A which is insulated and supported, and between the other electrode B which is grounded. 10 ~ 1 x 10 -3 P
A ceramic substrate 28 in contact with the electrode A exposed in plasma generated by glow discharge by applying an alternating current of 1 to 50 MHz in an extremely low pressure inert gas atmosphere of a, preferably argon gas The sputter etching process is performed so that the area of each of the container body 34 and the conductive plate 26 in which is stored becomes 1/3 or less of the area of the electrode B. Note that when the inert gas pressure is less than 1 × 10 −3 Pa, stable glow discharge is difficult to perform and high-speed etching is difficult, and when it exceeds 10 Pa, the activation treatment efficiency decreases.
If the applied alternating current is less than 1 MHz, it is difficult to maintain a stable glow discharge, and continuous etching is difficult.
If it exceeds 0 MHz, oscillation is likely to occur and the power supply system becomes complicated, which is not preferable. Further, in order to perform etching efficiently, it is necessary to make the area of each of the container body 34 accommodating the ceramic base material 28 in contact with the electrode A and the conductive plate 26 smaller than the area of the electrode B, which is 1/3 or less. By doing so, etching can be performed with sufficient efficiency.

【0018】その後静水圧加圧装置で加圧処理できるよ
うに、これら活性化処理されたセラミック基材28を納
めた容器胴体部のフランジ部34bと導電板26を、図
2に示すように活性化処理された面が対向するようにし
て両者を当接して重ね合わせて積層し、真空または減圧
状態で気密容器形状に対応したプレス面を有するプレス
装置などで容器胴体部のフランジ部34bを冷間圧接す
ることにより、接合部36を形成し、気密容器30が製
造される。この圧接の加圧条件として、接合する材料の
うち、低強度材料で、その降伏強度以上の加圧力であれ
ば良い。より好ましくは、接合する材料のうち、低強度
材料の降伏強度の2〜3倍以上の加圧力で行う。加圧力
の上限は接合する際に、破断が起きない範囲内で良い。
このときセラミック基材28および導電板26の活性化
処理された面は、気密容器30内で活性状態が維持され
ている。
Then, the flange portion 34b of the container body containing the activated ceramic base material 28 and the conductive plate 26 are activated as shown in FIG. 2 so that they can be pressure-treated by the hydrostatic pressure device. The surfaces that have been subjected to the chemical treatment face each other so that they are in contact with each other and are laminated on top of each other, and the flange portion 34b of the container body is cooled with a pressing device having a pressing surface corresponding to the shape of the airtight container under vacuum or reduced pressure. The airtight container 30 is manufactured by forming the joint portion 36 by performing pressure contact. As the pressurizing condition for this pressure contact, it is sufficient that the material to be joined is a low-strength material and the pressure is equal to or higher than the yield strength. More preferably, among the materials to be joined, the pressing is performed at a pressure of 2 to 3 times the yield strength of the low-strength material. The upper limit of the pressing force may be within a range that does not cause breakage during joining.
At this time, the activated surfaces of the ceramic base material 28 and the conductive plate 26 are kept active in the airtight container 30.

【0019】気密容器30を形成する容器胴体部34の
材質は静水圧加工条件などにより適宜選択でき、導電板
26に適用できる材質であれば特に限定されず、導電板
26と同一材でも異なる材質でもよい。また容器胴体部
34の厚みも導電板26と同じでも異なっていてもよ
い。
The material of the container body 34 forming the airtight container 30 can be appropriately selected depending on the hydrostatic processing conditions and the like and is not particularly limited as long as it is a material applicable to the conductive plate 26, and the same material as the conductive plate 26 or a different material. But it's okay. The thickness of the container body 34 may be the same as or different from that of the conductive plate 26.

【0020】その後、封止された気密容器30を静水圧
加圧装置で静水圧加圧してセラミック基材28と導電板
26を積層接合する。この際導電板26はバルジ加工の
ようにセラミック基材28を成形金型として成形され、
静水圧加圧により等方的に加圧がなされるため、セラミ
ック基材28の脆性を克服して圧接が可能となる。静水
圧加圧用の加圧用媒体として、水、油などの液体、ある
いはガスなど公知のものが使用できる。なお導電板26
の塑性変形に要する力によりセラミック基材28の脆性
が問題となる場合には、導電板26に予めセラミック基
材28の凹凸形状に対応した形状に成形しておいてもよ
い。この際の静水圧加圧力は、例えば導電板26に銅や
アルミニウムをなどを用いる場合には、1×10
1.5×10Paが好ましい。1×10Pa未満で
は充分な接合力が得られず、1.5×10Paを超え
ると加圧装置が大掛かりになるため好ましくない。より
好ましくは、3×10〜1×10Paである。この
際の積層接合は、低温度で可能であり、セラミック基材
28、導電板26ならびに積層接合に組織変化などとい
った悪影響を軽減または排除することが可能である。T
をセラミック基材、導電板の温度(℃)とするとき、0
℃<T≦300℃で良好な圧接状態が得られる。0℃以
下では特別な冷却装置が必要となり、300℃を超える
と組織変化などの悪影響が生じてくるため好ましくな
い。
Thereafter, the sealed airtight container 30 is hydrostatically pressurized by a hydrostatic pressure device to laminate and join the ceramic base material 28 and the conductive plate 26. At this time, the conductive plate 26 is molded by using the ceramic base material 28 as a molding die like bulging.
Since isostatic pressure is applied by hydrostatic pressure, the brittleness of the ceramic base material 28 can be overcome and pressure welding can be performed. As the pressurizing medium for hydrostatic pressurization, a known one such as water, liquid such as oil, or gas can be used. The conductive plate 26
When the brittleness of the ceramic base material 28 becomes a problem due to the force required for the plastic deformation, the conductive plate 26 may be preliminarily formed into a shape corresponding to the uneven shape of the ceramic base material 28. The hydrostatic pressure at this time is 1 × 10 8 to, for example, when copper or aluminum is used for the conductive plate 26.
1.5 × 10 9 Pa is preferable. If it is less than 1 × 10 8 Pa, a sufficient bonding force cannot be obtained, and if it exceeds 1.5 × 10 9 Pa, the pressure device becomes large, which is not preferable. More preferably, it is 3 × 10 8 to 1 × 10 9 Pa. The lamination joining at this time can be performed at a low temperature, and it is possible to reduce or eliminate adverse effects such as a structural change in the ceramic base material 28, the conductive plate 26, and the lamination joining. T
Is the temperature (° C) of the ceramic substrate and conductive plate, 0
A good pressure contact state can be obtained at a temperature of <T ≦ 300 ° C. If the temperature is 0 ° C. or lower, a special cooling device is required, and if it exceeds 300 ° C., adverse effects such as microstructural change occur, which is not preferable.

【0021】上記のように静水圧加圧により積層接合す
ることにより、図1に示すようなセラミック接合材20
が形成され、気密容器30を静水圧加圧装置より取り出
し、開封したまま、または必要により適当な大きさに切
り出して、セラミック接合材20が製造される。
As described above, the ceramic joining material 20 as shown in FIG. 1 is obtained by laminating and joining by hydrostatic pressure.
Then, the airtight container 30 is taken out from the hydrostatic pressure application device and left open or cut into an appropriate size if necessary to manufacture the ceramic bonding material 20.

【0022】図2に示す気密容器30において、容器胴
体部の凹部34aのセラミック基材28を置いた部分は
活性化処理されていないので、セラミック基材28上面
と導電板26の接合面に比べて、セラミック基材28底
面と容器胴体部の凹部34aの加圧による接着力は非常
に弱く開封時に問題となることはない。ただしセラミッ
ク基材28側面や容器胴体部の側面や凹部の一部など形
状によっては活性化される可能性もあり、開封時に支障
をきたす場合などは必要により非活性表面を有する緩衝
材を挿入してもよい。この緩衝材の材質や厚みは導電板
26に適用できるものであれば特に限定されず、導電板
26や容器胴体部34と同じでも異なっていてもよい。
また図3に示すように導電板26の代わりに、接着剤な
どの適当な手段を用いて導電板26に導電板22を保持
したものを用いることによってもセラミック接合材を製
造することができる。この場合導電板22がセラミック
基材28に積層接合される。導電板22の材質や厚みは
導電板26に適用できるものであれば特に限定されず、
導電板26と同じでも異なっていてもよい。
In the airtight container 30 shown in FIG. 2, the portion of the concave portion 34a of the container body on which the ceramic base material 28 is placed is not subjected to activation treatment, so that compared with the bonding surface between the upper surface of the ceramic base material 28 and the conductive plate 26. Thus, the adhesive force between the bottom surface of the ceramic substrate 28 and the recess 34a of the container body portion due to the pressure is very weak and does not pose a problem during opening. However, it may be activated depending on the shape such as the side surface of the ceramic base material 28, the side surface of the body of the container, or a part of the concave portion, and if a problem occurs during opening, insert a cushioning material having an inactive surface if necessary. May be. The material and thickness of the cushioning material are not particularly limited as long as they can be applied to the conductive plate 26, and may be the same as or different from those of the conductive plate 26 and the container body 34.
Further, as shown in FIG. 3, instead of the conductive plate 26, a ceramic bonding material can be manufactured by using the conductive plate 26 holding the conductive plate 22 by using an appropriate means such as an adhesive. In this case, the conductive plate 22 is laminated and joined to the ceramic base material 28. The material and thickness of the conductive plate 22 are not particularly limited as long as they can be applied to the conductive plate 26.
It may be the same as or different from the conductive plate 26.

【0023】このようにして製造されたセラミック接合
材に、必要により導電板の残留応力の除去または低減な
どのために熱処理を施してもよい。
The ceramic bonding material thus manufactured may be heat-treated to remove or reduce residual stress of the conductive plate, if necessary.

【0024】さらに両面に導電板を積層接合してなるセ
ラミック接合材は、上記説明におけるセラミック基材2
8の代わりに片面に導電板を有するセラミック接合材2
0を用いることで同様にして製造される。
Further, the ceramic bonding material obtained by laminating and bonding conductive plates on both sides is the ceramic base material 2 in the above description.
Ceramic bonding material 2 having a conductive plate on one side instead of 8
It is manufactured in the same manner by using 0.

【0025】本発明のセラミック接合材のセラミック基
材にアルミナを、導電板に導電性の優れた銅などを用い
て、必要により適当な大きさに切り出した後、このセラ
ミック接合材の導電板にエッチング加工などを施して回
路パターンを形成して回路基板を得ることができる。こ
のためパワー半導体などのプリント配線板やモジュール
基板、ハイブリッドIC基板などに適用でき、CSP
(チップサイズパッケージまたはチップスケールパッケ
ージ)やBGA(ボールグリッドアレイ)などのICパ
ッケージなどにも応用できる。
Alumina is used as the ceramic base material of the ceramic bonding material of the present invention, and copper or the like having excellent conductivity is used for the conductive plate. A circuit board can be obtained by forming a circuit pattern by etching or the like. Therefore, it can be applied to printed wiring boards such as power semiconductors, module boards, and hybrid IC boards.
(Chip size package or chip scale package) and BGA (ball grid array) and other IC packages can also be applied.

【0026】[0026]

【実施例】以下に、実施例を図面に基づいて説明する。
セラミック基材28として厚み500μmのアルミナ基
板を用い、導電板26として厚み35μmの銅箔を用
い、容器胴体部34として厚み100μmの凹部加工を
施したアルミニウム製容器を用いた。アルミニウム製容
器に納めたアルミナ基板および銅箔をセラミック接合材
製造装置にセットし、容器胴体部のフランジ部34b、
アルミナ基板ならびに銅箔を10−2Paのアルゴンガ
ス雰囲気の活性化処理ユニット内でスパッタエッチング
法により活性化処理した。次にこれら活性化処理したア
ルミナ基板を納めた容器胴体部のフランジ部34bと銅
箔を当接して積層し、減圧状態で気密圧接して気密容器
30を形成し、静水圧加圧装置にて8×10Pa程度
の加圧力で処理した後、気密容器30を取り出し開封し
て所定の大きさに切り出しセラミック接合材20を製造
した。
Embodiments Embodiments will be described below with reference to the drawings.
An alumina substrate having a thickness of 500 μm was used as the ceramic base material 28, a copper foil having a thickness of 35 μm was used as the conductive plate 26, and a 100 μm thick recessed aluminum container was used as the container body 34. The alumina substrate and the copper foil contained in the aluminum container are set in the ceramic bonding material manufacturing apparatus, and the flange portion 34b of the container body is
The alumina substrate and the copper foil were subjected to activation treatment by a sputter etching method in an activation treatment unit in an argon gas atmosphere of 10 −2 Pa. Next, the flange portion 34b of the container body containing the activated alumina substrate and the copper foil are brought into contact with each other and laminated, and airtightly pressure-contacted in a depressurized state to form an airtight container 30. After treating with a pressure of about 8 × 10 8 Pa, the airtight container 30 was taken out, opened, and cut into a predetermined size to manufacture the ceramic bonding material 20.

【0027】[0027]

【発明の効果】以上説明したように本発明のセラミック
接合材は、導電板とセラミック基材およびセラミック基
材を納めた容器胴体部のフランジ部を活性化処理した
後、セラミック基材を納めた容器胴体部のフランジ部と
導電板を対向するように当接し重ね合わせて積層して冷
間圧接して気密容器を形成し、気密容器に静水圧加圧を
施して導電板とセラミック基材を積層接合して形成した
ものである。このため非平面形状を有する場合にもセラ
ミック接合材の各接合部に等方的な圧接力が作用するた
め充分な接合力が得られる。さらに高温プロセスを用い
ておらず熱膨張差による残留応力や接合界面での脆弱化
合物層の形成といった悪影響を排除もしくは軽減でき、
プリント配線板などへの適用も好適である。
As described above, in the ceramic bonding material of the present invention, the conductive plate, the ceramic base material, and the flange portion of the container body containing the ceramic base material are activated and then the ceramic base material is stored. The flange portion of the body of the container and the conductive plate are brought into contact with each other so as to face each other, and the conductive plate and the ceramic substrate are laminated by stacking them by cold pressure to form an airtight container, and applying hydrostatic pressure to the conductive plate and the ceramic base material. It is formed by stacking and joining. Therefore, even if it has a non-planar shape, an isotropic pressure contact force acts on each joint of the ceramic joint material, so that a sufficient joint force can be obtained. Furthermore, without using a high temperature process, it is possible to eliminate or reduce adverse effects such as residual stress due to thermal expansion difference and formation of a fragile compound layer at the bonding interface.
Application to printed wiring boards and the like is also suitable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミック接合材の一実施形態を示す
概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a ceramic bonding material of the present invention.

【図2】本発明のセラミック接合材の製造に用いる気密
容器の一実施形態を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an embodiment of an airtight container used for manufacturing the ceramic bonding material of the present invention.

【図3】本発明のセラミック接合材の製造に用いる気密
容器の他の一実施形態を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the airtight container used for manufacturing the ceramic bonding material of the present invention.

【符号の説明】[Explanation of symbols]

20 セラミック接合材 22 導電板 26 導電板 28 セラミック基材 30 気密容器 34 容器胴体部 34a 容器胴体部の凹部 34b 容器胴体部のフランジ部 36 接合部 20 Ceramic bonding material 22 Conductive plate 26 Conductive plate 28 Ceramic substrate 30 airtight container 34 Container body 34a Recess of container body 34b Flange of container body 36 joint

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23F 4/00 C23F 4/00 A H05K 1/02 H05K 1/02 A 3/00 3/00 R 3/38 3/38 D // B23K 101:40 B23K 101:40 101:42 101:42 (72)発明者 大澤 真司 山口県下松市東豊井1296番地の1 東洋鋼 鈑株式会社技術研究所内 Fターム(参考) 4E067 AA01 AA18 BA06 DA05 DA13 DA17 DB01 DB03 EA04 EC02 4G026 BA03 BB22 BC01 BC02 BD04 BD08 BF57 BG03 BG14 BG23 BH07 4K057 DA01 DB04 DB20 DD02 DK10 DN10 5E338 AA01 AA05 AA18 EE60 5E343 AA01 AA23 BB22 BB28 BB52 BB67 EE36 FF30 GG02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C23F 4/00 C23F 4/00 A H05K 1/02 H05K 1/02 A 3/00 3/00 R 3 / 38 3/38 D // B23K 101: 40 B23K 101: 40 101: 42 101: 42 (72) Inventor Shinji Osawa 1 No. 1296 Higashitoyoi, Shimomatsu City, Yamaguchi Prefecture Toyo Kohan Co., Ltd. Technical Research Institute F-term (reference) 4E067 AA01 AA18 BA06 DA05 DA13 DA17 DB01 DB03 EA04 EC02 4G026 BA03 BB22 BC01 BC02 BD04 BD08 BF57 BG03 BG14 BG23 BH07 4K057 DA01 DB04 DB20 DD02 DK10 DN10 5E338 ABB01 AA05 AA18 EE60 5E338 ABB01 AA05 AA18 EE60 5E338 AA01 AA05 AA18 EE60 5E338 ABB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基材と導電板とを積層接合し
てなるセラミック接合材であって、導電板、セラミック
基材および前記セラミック基材を納めた容器胴体部のフ
ランジ部を活性化処理し、前記導電板と前記容器胴体部
のフランジ部を圧接して気密容器を形成し、前記気密容
器に静水圧加圧を行うことにより前記導電板と前記セラ
ミック基材とを積層接合してなることを特徴とするセラ
ミック接合材。
1. A ceramic bonding material comprising a ceramic base and a conductive plate laminated and bonded together, wherein the conductive plate, the ceramic base and the flange of the container body containing the ceramic base are activated. The conductive plate and the flange portion of the container body are pressure-contacted to each other to form an airtight container, and the conductive plate and the ceramic substrate are laminated and joined by applying hydrostatic pressure to the airtight container. Ceramic bonding material characterized by.
【請求項2】 前記活性化処理が、不活性ガス雰囲気中
でグロー放電を行わせて、導電板面とセラミック基材面
およびセラミック基材を納めた容器胴体部フランジ部面
をスパッタエッチング処理することを特徴とする請求項
1に記載のセラミック接合材。
2. The activation treatment is such that glow discharge is performed in an inert gas atmosphere, and the conductive plate surface, the ceramic base material surface, and the container body flange portion surface accommodating the ceramic base material are sputter-etched. The ceramic bonding material according to claim 1, wherein:
【請求項3】 前記セラミック基材が非平面形状を有す
ることを特徴とする請求項1または2に記載のセラミッ
ク接合材。
3. The ceramic bonding material according to claim 1, wherein the ceramic base material has a non-planar shape.
【請求項4】 請求項1〜3のいずれかに記載のセラミ
ック接合材を用いたことを特徴とする部品。
4. A component using the ceramic bonding material according to claim 1.
【請求項5】 前記部品が、プリント配線板、ICパッ
ケージのいずれかであることを特徴とする請求項4に記
載の部品。
5. The component according to claim 4, wherein the component is one of a printed wiring board and an IC package.
JP2001212693A 2001-07-12 2001-07-12 Ceramic joined material and parts used with the same Withdrawn JP2003026481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212693A JP2003026481A (en) 2001-07-12 2001-07-12 Ceramic joined material and parts used with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212693A JP2003026481A (en) 2001-07-12 2001-07-12 Ceramic joined material and parts used with the same

Publications (1)

Publication Number Publication Date
JP2003026481A true JP2003026481A (en) 2003-01-29

Family

ID=19047808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212693A Withdrawn JP2003026481A (en) 2001-07-12 2001-07-12 Ceramic joined material and parts used with the same

Country Status (1)

Country Link
JP (1) JP2003026481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501883A (en) * 2013-12-10 2017-01-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Method for manufacturing a metal ceramic substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017501883A (en) * 2013-12-10 2017-01-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Method for manufacturing a metal ceramic substrate

Similar Documents

Publication Publication Date Title
US6912130B2 (en) Combined member of aluminum-ceramics
US8683682B2 (en) Method for the production of a metal-ceramic substrate
WO2013008865A1 (en) Layered body and manufacturing method for layered body
JP7196799B2 (en) COPPER/CERAMIC JOINT, INSULATED CIRCUIT BOARD, METHOD FOR MANUFACTURING COPPER/CERAMIC JOINT, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
JP4107643B2 (en) Manufacturing method of joined body
KR100374379B1 (en) Substrate
KR20230022132A (en) Ceramic heat dissipation substrate manufacturing method
JP2003026481A (en) Ceramic joined material and parts used with the same
JP2003026480A (en) Method of manufacturing ceramic joined material
JP2003039598A (en) Ceramic laminated material and component using ceramic laminated material
JP2003039593A (en) Manufacturing method of ceramic laminated material
CN115136299A (en) Method for manufacturing bonded body and method for manufacturing insulated circuit board
JPWO2002074531A1 (en) Polymer plate conductive plate assembly and component using polymer plate conductive plate assembly
JP2003025073A (en) Method of manufacturing metal joined material
US4750262A (en) Method of fabricating a printed circuitry substrate
WO2002085621A1 (en) Laminated plate and part using the laminated plate
JP2021031315A (en) Copper/ceramic joint, insulated circuit board, copper/ceramic joint producing method, insulated circuit board producing method
JP2003025072A (en) Metal joined material and parts used with the same
EP4159704A1 (en) Copper/ceramic bonded body and insulated circuit board
JP3499061B2 (en) Multilayer aluminum nitride circuit board
JP4048914B2 (en) Circuit board manufacturing method and circuit board
JP2003136626A (en) Conductive layer-laminated material and part using the material
JP2003080621A (en) Method for manufacturing conducting sheet laminate
JP2023044869A (en) Copper/ceramic joint body and insulated circuit board
JP2003080622A (en) Conducting sheet laminate and part using conducting sheet laminate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007