JP2003025157A - Manufacturing method of die for injection molding of worm wheel - Google Patents

Manufacturing method of die for injection molding of worm wheel

Info

Publication number
JP2003025157A
JP2003025157A JP2001248402A JP2001248402A JP2003025157A JP 2003025157 A JP2003025157 A JP 2003025157A JP 2001248402 A JP2001248402 A JP 2001248402A JP 2001248402 A JP2001248402 A JP 2001248402A JP 2003025157 A JP2003025157 A JP 2003025157A
Authority
JP
Japan
Prior art keywords
worm wheel
tooth
mold
injection molding
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001248402A
Other languages
Japanese (ja)
Inventor
Tomoharu Sakai
伴治 酒井
Mitsuharu Sakai
光治 酒井
Shozo Ishiguro
章三 石黒
Morio Nakamura
守男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAE KANAGATA KOGYO KK
Original Assignee
SAKAE KANAGATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAE KANAGATA KOGYO KK filed Critical SAKAE KANAGATA KOGYO KK
Priority to JP2001248402A priority Critical patent/JP2003025157A/en
Publication of JP2003025157A publication Critical patent/JP2003025157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for injection-molding a worm wheel having a recessed part in a tip, and the worm wheel. SOLUTION: An electrode 50 having an arc-shaped part 50E is inserted in a die, and after the electrode reaches a center flat surface of the die, the oscillating motion is given, and the oscillating shape is gradually expanded, and a projecting tooth profile is formed by the electric discharge machining. The die having a center part in the tooth width direction of the projecting tooth profile can be manufactured on an inner circumferential surface thereby, and a resin worm wheel is formed by using this die.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ウォームホイール
を合成樹脂で射出成形によって製作する場合に適用する
ウォームホイール射出成形用金型の製造方法に関する。 【0002】 【従来の技術】ウォームギア及びこれと噛み合うウォー
ムホイールとの組み合わせは、大きな減速比により強い
回転力を発生させることができるので、パワーウインド
ウ、ワイパー等の自動車、医療機器、家電製品等の駆動
装置の出力部分に広く用いられている。このウォームホ
イールは軽量化や量産化のために、さらには内部含浸オ
イルの自己潤滑作用等による低摩擦化等のために合成樹
脂製(ガラス繊維等の強化剤混合の場合もある)とする
要望が大きい。 【0003】ところが図5(A)に示されるように、こ
のようなウォームホイール14はウォームギア12との
噛み合い歯先の歯幅方向(矢印A方向)の中間部に凹部
16を有しているので、合成樹脂の射出成形によって製
作しようとすると、歯先部分を成形するための金型が凹
部16と嵌り合う形状の突部を有する必要がある。また
ウォームホイール14の歯幅方向がウォームホイール1
4の軸心Oを中心とした捩じれ方向すなわち旋回方向に
形成されているため、歯幅方向は図5の紙面と平行では
なく捩じれた状態になっている。すなわち図5の歯幅方
向(矢印A方向)は紙面と平行ではなく捩じれを有して
軸心O回りに旋回する状態となっている。このためこの
ような射出成形金型を製作するのは難しく、代替えとし
てウォームホイールの歯先凹部16を直線状としたハス
バ歯車を用いることが多い。しかしハスバ歯車は凹部1
6を有するウォームホイールと異なりウォームギアとの
接触面積が小さいので、歯車噛み合い時の円滑さを欠
き、大きな伝達荷重も得られない。 【0004】このため凹部16の片側を直線状にした変
形ウォームホイールが提案されている。(実開平4−4
9254号参照)。この変形ウォームホイールは図5
(B)に示される如く、凹部16の片側が直線部18と
されているので、ウォームホイール14の歯形に嵌まり
合う形状である成形金型の製作が容易であり、射出成形
時にはウォームホイール14を直線部18と反対方向
(矢印B方向)へ歯幅方向に沿って抜き出すことがで
き、射出成形も比較的容易になっている。 【0005】ところがこの変形ウォームホイールにおい
ても、ハスバ歯車よりは噛み合い面積S1が広いもの
の、一般的なウォームホイールとウォームギアとの組合
わせの接触面積S2よりは小さく、トルク伝達容量も小
さいので、高強度を要求される減速装置には適していな
い。 【0006】さらに射出成形用金型を電鋳型として製作
する場合もある。この電鋳型は厚い電気メッキ層で金型
を製作するものであり、ニッケルやニッケル合金などを
非鉄金属の模型に長時間かけて電解メッキを行った後
に、メッキ層から模型を溶かして除去し、このメッキ層
に裏打ちして金型とする。しかし、この電鋳型はメッキ
層を多数層に渡って形成するので長時間の作業となると
ともに完成した金型の硬度が焼き入れ鋼に比して低く耐
久性がない。また金型の表面がメッキ層である積層構造
のため耐薬品性に乏しく、剥離し易く、耐久性に劣る。 【0007】 【発明が解決しようとする課題】上記事実を考慮し本出
願の請求項1に係る発明は、歯先外周の歯幅方向中間部
に凹部を有し、かつ歯幅方向が軸回りにずれた捩じれ歯
を有するウォームホイールを合成樹脂により射出成形用
金型の製造方法を得ることが目的である。 【0008】 【課題を解決するための手段】本出願の請求項1に係る
ウォームホイール射出成形用金型の製造方法は、歯幅方
向中間部が小歯先外径で歯幅方向端部が大歯先外径とさ
れるウォームホイールの歯形面を射出成形するために用
いる、内周に歯形面を備えた射出成形用金型の製造方法
であってウォームホイールの歯先の歯幅方向中間部に凹
部を有する歯形面を外周に備え、かつ、金型に形成され
る突部と同じもしくは小さくなるように歯先円直径と歯
厚を転位させた柱状マスター電極を金型材料へ挿入し射
出成形用金型を溶解加工により製作することを特徴とし
ている。 【発明の実施の形態】図2(B)には本発明の適用によ
って製作された合成樹脂製ウォームホイール30が金型
本体(以下は単に「金型」と称する)34から矢印P方
向に取り出された状態で示されている(特許番号第29
25501号参照)。このウォームホイール30は軸心
Oの回りに必要歯数製作され、軸心部付近の円板部30
Aの外周部が幅広のリング部30Bとされている。この
リング部30Bの外周に凹歯形面36が形成されてい
る。この凹歯形面36は歯すじ方向又は歯幅方向(矢印
A方向)の中央部において歯先外径が最も小さい寸法D
1とされ、歯幅方向端部にかけて歯先外径が次第に大き
くなり、歯幅方向両端では歯先外径が最も大きな寸法D
2となっている。図面上では歯幅方向(矢印A方向)は
紙面とは平行に描いてあるが実際にはこのウォームホイ
ール30の歯幅方向Aは軸心Oに対して角度αの捩れを
有した矢印Cの如く、軸心O回りに旋回状態となった一
般的なウォームホイールである。なお、図中30Pはピ
ッチ円を示している。 【0009】従って、このウォームホイール30の外周
歯形部を成形するための金型34はウォームホイール3
0と同一寸法又は収縮を考慮したWを有した厚肉形状と
され、貫通孔34Aが形成される。この貫通穴34Aの
内周面には射出成形によってウォームホイール30の凹
歯形面36を形成するための凸歯形面37が内周全域に
渡って形成される。このため凸歯形面37も軸心Oに対
して角度αの捩じれ角を有して凹歯形面36と嵌り合う
形状となっており、凹歯形面36とは逆に歯幅方向の中
央部において軸心へ接近する方向に突出している。図1
に示されるが如くこの歯幅方向中央部の歯先円が両端よ
り小径であり最小歯先円直径D5で、歯幅方向中央部の
歯底面が両端よりも小径であり最小歯底円直径D3とな
っている。寸法D4はこの部分の最小ピッチ円直径であ
る。なお、この直径D5は金型34の歯形(内歯歯車)
としてみれば歯底であるが、製品であるウォームホイー
ル30の歯形に合わせて歯先と呼ぶ。(直径D3につい
ても同様)。 【0010】図1(B)にも示される如く溶融樹脂の射
出成形時に金型34の両側面へ合致されるコア型38、
40が閉じられるとコア型38、40は金型34の側面
へ当接し、ウォームホイール30の射出用キャビティQ
を形成する。この状態で小径突起44はコア型40の大
径突起42へ当接することにより、ウォームホイール円
板部30Aにおける軸孔30C部分(図2を参照)を形
成する。ウォームホイール30の軸部は孔形状に限ら
ず、所定長さの中実又は中空の軸部材が一体的に形成さ
れたり、軸孔30Cのない円板部30Aのままとされる
等の他の形状とされる場合があり、これらの各種形状の
軸部加工のためにコア型38、40もこれらに対応した
各種形状とされる。 【0011】これらのコア型38、40には図示しない
適宜位置にウォームホイール30を成形するための溶融
樹脂射出用の貫通孔が形成されて溶融樹脂供給源へと連
通される。なお、コア型38、40の一方は金型40に
固定されたり、射出成形機へ固定される等により金型3
4と相対移動不能であってもよい。 【0012】図3はマスター電極50によって金型34
へ図2の凸歯形面37を放電加工する状態が示されてい
る。マスター電極50はグラファイトや銅によって製作
された柱状であり、その外周には軸心Oを中心として歯
形面50Aが刻設されている。この歯形面50Aはマス
ター電極50を図3の金型34の矢印F方向に挿入し、
金型中央平面A−Aまで図4に示すX、Y、Z、U軸同
時に放電加工を行いながら金型中央平面A−Aまで移動
させ、その状態で挿入を停止して、X、Y、U軸方向に
揺動運動を与えながら放電加工を行い揺動形状を徐々に
拡大させて、金型34へ凸歯形面37を形成するように
なっている。 【0013】このため、歯形面50Aは凸歯形面37と
等しい歯数、ねじれ角αになっているが、図中の電極の
最大歯先円直径M1は形成されるべき金型34の凸型歯
面37における設計上の最小歯先円直径D5よりも同じ
か小さく、又、金型の最大歯先円直径D6と最小歯先円
直径D5の差と電極の最大歯先円直径M1と最小歯先円
直径M2の差は同じである。 【0014】従ってマスター電極50の円弧部50Eを
金型34内へ挿入し揺動運動させながら溶解加工によ
り、図4に示されるが如く凸型歯形面37が形成される
ようになっている。 【0015】このように製作された金型34は図1
(A)に示されるが如くコア型38、40と共に、射出
成形機内に取付け配置する。ここで図1(B)に示され
るが如くコア型38、40を駆動手段により互いに接近
合致させて、キャビティQを形成する。ここへ図示しな
い供給部から溶融樹脂を圧入することによって、ウォー
ムホイール30が射出成形される。 【0016】コア型38、40は図2(A)に示される
が如く互いに離間させて開放し、冷却後にウォームホイ
ール30を金型34から離脱させる。この場合ウォーム
ホイール30はその外周部に凹部を有しているので、射
出した成形樹脂が完全に固化しない状態で一部を弾性変
形させながら(いわゆるムリ抜きにより)金型34から
抜き出す。またウォームホイール30は冷却するに従っ
てその外径が縮小されるため抜き出しが容易になる。 【0017】この抜き出し作業は、歯形面の捩じれ角α
のためにウォームホイール30と金型34とを軸回りに
角αだけ相対移動させて抜き出す必要がある。このため
には、図示しないノックアウトピンを軸方向へ(矢印P
方向)へ駆動しながら、ねじり角αのもとに旋回させな
がら進めることにより、ウォームホイール30を捩じれ
角αに沿って旋回させながら抜き出す方法や、ノックア
ウトピンは矢印P方向(軸心O方向)に直線的に駆動
し、金型34をこの捩じれ角αだけウォームホイール3
0と相対移動するべく軸回りに旋回させ、ウォームホイ
ール30は旋回せず直進させて金型34から抜き出す方
法等がある。 【0018】上記実施形態では、金型34の幅寸法Wの
1/2の寸法Hである幅方向中央部が凸歯形面37の最
小歯先円直径D5であり、図2(B)に示されるが如
く、成形後のウォームホイール30の凹歯形面36にお
ける最小歯先外形D1であったが、凹歯形面36又は凸
歯形面37の最小外形寸法部分は必ずしも金型34の幅
寸法中央部でなく他の部分であってもよい。また、図2
(B)に示されるが如く、成形後のウォームホイール3
0の凹歯形面36は必ずしも必要ではなく、最小歯先円
外径D1と最大歯先円外径D2が同寸法であってもよ
い。 【0019】 【発明の効果】請求項1に係る発明ではマスター電極を
金型へ挿入して、揺動運動させながら溶解加工により歯
先形状を製作するので、金型へ凸歯形面を容易に形成す
ることができる。特に溶解加工による製作であるため焼
き入れ鋼等の硬い材質を適用できる。このような硬い材
質を用いれば、成形時の耐磨耗性に優れ強化剤入りの樹
脂の成形であっても、成形後の樹脂との摩擦に強く(特
にムリ抜き時)、長期間に渡って使用できて寿命が長
い。また、揺動形状を拡大する際、主に電極の側面方向
での加工を行うことになり、電極の消耗を広い面積に分
散させ、実質的に電極の消耗を低減することができ、か
つ、全工程を1つの電極により加工することが可能とな
るため、電極を交換する必要がなく経済性が高くなり精
度が向上する。 【0020】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a worm wheel injection molding die applied to a case where a worm wheel is manufactured by injection molding using a synthetic resin. 2. Description of the Related Art A combination of a worm gear and a worm wheel meshing with the worm gear can generate a strong rotational force with a large reduction ratio. Widely used for the output part of the driving device. This worm wheel is required to be made of synthetic resin (in some cases, a reinforcing agent such as glass fiber is mixed) for weight reduction and mass production, and for low friction due to the self-lubricating action of the internal impregnating oil. Is big. However, as shown in FIG. 5A, such a worm wheel 14 has a concave portion 16 at an intermediate portion in the tooth width direction (direction of arrow A) of the tooth tip meshing with the worm gear 12. In order to manufacture by injection molding of a synthetic resin, it is necessary that a mold for molding a tooth tip portion has a projection having a shape that fits into the recess 16. The worm wheel 14 has a face width direction of the worm wheel 1.
5, the tooth width direction is not parallel to the plane of FIG. 5 but twisted. That is, the tooth width direction (the direction of the arrow A) in FIG. 5 is not parallel to the paper surface but twists around the axis O with a twist. For this reason, it is difficult to manufacture such an injection mold, and as an alternative, a helical gear in which the tooth recess 16 of the worm wheel is straight is often used. However, the helical gear has a recess 1
Since the contact area with the worm gear is small unlike the worm wheel having the gear 6, the smoothness at the time of gear engagement is lacking, and a large transmission load cannot be obtained. For this reason, there has been proposed a modified worm wheel in which one side of the recess 16 is linear. (4-4
9254). This modified worm wheel is shown in FIG.
As shown in (B), since one side of the concave portion 16 is a straight portion 18, it is easy to manufacture a molding die having a shape that fits into the tooth shape of the worm wheel 14, and the worm wheel 14 is used for injection molding. Can be extracted in the direction opposite to the straight line portion 18 (the direction of arrow B) along the face width direction, and injection molding is relatively easy. [0005] In this modified worm wheel, however, although the meshing area S1 is larger than that of the helical gear, it is smaller than the contact area S2 of a general combination of the worm wheel and the worm gear, and the torque transmission capacity is also small. It is not suitable for reduction gears that require In some cases, the injection mold is manufactured as an electroforming mold. This electroforming mold is to make a mold with a thick electroplating layer, and after performing electroplating for a long time on a non-ferrous metal model such as nickel or nickel alloy, dissolve the model from the plating layer and remove it. A metal mold is formed by backing this plating layer. However, since the electroforming mold has a multi-layered plating layer, it takes a long time, and the hardness of the completed mold is lower than that of quenched steel and has no durability. In addition, the mold has a laminated structure in which the surface of the mold is a plating layer, so that it has poor chemical resistance, easily peels off, and has poor durability. [0007] In view of the above facts, the invention according to claim 1 of the present application has a concave portion at the outer periphery of the tooth tip in the width direction of the tooth tip, and the tooth width direction is around the axis. It is an object of the present invention to provide a method for manufacturing a mold for injection molding of a worm wheel having twisted teeth displaced from a synthetic resin. According to a first aspect of the present invention, there is provided a method for manufacturing a worm wheel injection molding die, wherein a middle portion in a tooth width direction has a small tooth tip outer diameter and an end portion in a tooth width direction. A method for producing an injection molding die having a tooth profile on an inner periphery, which is used for injection molding a tooth profile of a worm wheel having a large tooth tip outer diameter, the method comprising: A columnar master electrode having a tooth profile having a concave portion in the outer periphery and having a tip diameter and tooth thickness displaced so as to be the same as or smaller than the protrusion formed on the mold is inserted into the mold material. It is characterized in that the injection mold is manufactured by melt processing. FIG. 2B shows a synthetic resin worm wheel 30 manufactured according to the present invention taken out of a mold body (hereinafter, simply referred to as a "mold") 34 in the direction of arrow P. (No. 29
25501). The worm wheel 30 is manufactured with a required number of teeth around the axis O, and the disc 30 near the axis is formed.
The outer peripheral portion of A is a wide ring portion 30B. A concave tooth surface 36 is formed on the outer periphery of the ring portion 30B. The concave tooth surface 36 has a dimension D having the smallest tooth tip outer diameter at the center in the tooth trace direction or the tooth width direction (the direction of arrow A).
1, the tip outer diameter gradually increases toward the end in the width direction, and the dimension D at which the tip outer diameter is the largest at both ends in the width direction.
It is 2. In the drawing, the tooth width direction (direction of arrow A) is drawn parallel to the paper surface, but actually, the tooth width direction A of the worm wheel 30 is indicated by an arrow C having a twist of an angle α with respect to the axis O. As described above, this is a general worm wheel that is turned around the axis O. In the figure, 30P indicates a pitch circle. Therefore, the mold 34 for molding the outer tooth profile of the worm wheel 30 is provided by the worm wheel 3.
The through-hole 34A is formed in the same thickness as 0 or in a thick shape having W in consideration of shrinkage. On the inner peripheral surface of the through hole 34A, a convex tooth surface 37 for forming the concave tooth surface 36 of the worm wheel 30 is formed over the entire inner periphery by injection molding. For this reason, the convex tooth surface 37 also has a torsion angle of an angle α with respect to the axis O and has a shape that fits with the concave tooth surface 36, and is opposite to the concave tooth surface 36 at the central portion in the tooth width direction. It protrudes in the direction approaching the axis. FIG.
As shown in the figure, the tooth tip circle at the central portion in the tooth width direction has a smaller diameter than both ends and a minimum tooth tip diameter D5, and the tooth root at the central portion in the tooth width direction has a smaller diameter than both ends and the minimum root diameter D3. It has become. Dimension D4 is the minimum pitch circle diameter of this part. The diameter D5 is the tooth profile of the mold 34 (internal gear).
Although it is a tooth bottom, it is called a tooth tip according to the tooth shape of the worm wheel 30 as a product. (The same applies to the diameter D3). As shown in FIG. 1B, a core mold 38 is fitted to both sides of a mold 34 during injection molding of a molten resin.
When the mold 40 is closed, the core molds 38 and 40 abut against the side surface of the mold 34, and the injection cavity Q of the worm wheel 30 is formed.
To form In this state, the small-diameter projection 44 abuts on the large-diameter projection 42 of the core mold 40, thereby forming a shaft hole 30C portion (see FIG. 2) in the worm wheel disc portion 30A. The shaft portion of the worm wheel 30 is not limited to the hole shape, and may be a solid or hollow shaft member of a predetermined length integrally formed, or a disk portion 30A having no shaft hole 30C. In some cases, the core dies 38 and 40 have various shapes corresponding to these for shaping the shaft portions of these various shapes. In these core dies 38 and 40, through holes for injecting a molten resin for molding the worm wheel 30 are formed at appropriate positions (not shown) and communicate with a molten resin supply source. One of the core molds 38 and 40 is fixed to the mold 40 or is fixed to an injection molding machine.
4 and may not be relatively movable. FIG. 3 shows a mold 34 using a master electrode 50.
2 shows a state in which the convex tooth surface 37 of FIG. 2 is subjected to electric discharge machining. The master electrode 50 has a columnar shape made of graphite or copper, and has a toothed surface 50A engraved on the outer periphery thereof around an axis O. This tooth profile surface 50A inserts the master electrode 50 in the direction of arrow F of the mold 34 in FIG.
The X, Y, Z, and U axes shown in FIG. 4 are simultaneously moved to the mold center plane AA while performing the electric discharge machining to the mold center plane AA, and the insertion is stopped in that state. Electric discharge machining is performed while giving a swinging motion in the U-axis direction to gradually expand the swinging shape, so that a convex tooth surface 37 is formed on the mold 34. For this reason, the tooth profile surface 50A has the same number of teeth and the torsion angle α as the convex tooth profile surface 37, but the maximum tooth tip circle diameter M1 of the electrode in the figure is the convex shape of the mold 34 to be formed. It is the same as or smaller than the designed minimum tip diameter D5 on the tooth surface 37, the difference between the maximum tip diameter D6 and the minimum tip diameter D5 of the mold, the maximum tip diameter M1 of the electrode, and the minimum. The difference in the tooth tip circle diameter M2 is the same. Therefore, as shown in FIG. 4, a convex tooth surface 37 is formed by melting while inserting the arc portion 50E of the master electrode 50 into the mold 34 and oscillating. The mold 34 thus manufactured is shown in FIG.
As shown in (A), the core molds 38 and 40 are attached and arranged in an injection molding machine. Here, as shown in FIG. 1B, the core molds 38 and 40 are brought close to each other by driving means to form a cavity Q. The worm wheel 30 is injection-molded by press-fitting a molten resin from a supply unit (not shown). As shown in FIG. 2A, the core molds 38 and 40 are separated from each other and opened, and the worm wheel 30 is separated from the mold 34 after cooling. In this case, since the worm wheel 30 has a concave portion on its outer peripheral portion, the worm wheel 30 is extracted from the mold 34 while partially elastically deforming (by so-called burring) the injected molding resin is not completely solidified. Further, since the outer diameter of the worm wheel 30 is reduced as it cools, the worm wheel 30 is easily extracted. This extraction operation is performed by adjusting the torsion angle α of the tooth profile surface.
Therefore, it is necessary to relatively move the worm wheel 30 and the mold 34 around the axis by the angle α and extract the worm wheel 30 and the mold 34. To this end, a knockout pin (not shown) is moved in the axial direction (arrow P
The worm wheel 30 is turned along the torsion angle α while being driven while the worm wheel 30 is turned along the torsion angle α, or the knockout pin is moved in the direction of the arrow P (the direction of the axis O). And the mold 34 is moved by the worm wheel 3 by this torsion angle α.
For example, there is a method in which the worm wheel 30 is turned around the axis so as to relatively move with respect to 0, and the worm wheel 30 is moved straight without being turned, and is extracted from the mold 34. In the above embodiment, the central portion in the width direction, which is a half H of the width W of the mold 34, is the minimum tip circle diameter D5 of the convex tooth surface 37, as shown in FIG. As described above, the minimum outer shape D1 of the concave tooth surface 36 of the worm wheel 30 after molding is the minimum external shape portion of the concave tooth surface 36 or the convex tooth surface 37 is not necessarily the center of the width dimension of the mold 34. However, other parts may be used. FIG.
As shown in (B), the formed worm wheel 3
The concave tooth surface 36 of 0 is not always necessary, and the minimum tip circle outer diameter D1 and the maximum tip circle outer diameter D2 may be the same. According to the first aspect of the present invention, the shape of the tooth tip is manufactured by melting the master electrode while inserting the master electrode into the metal mold and oscillating, so that the convex tooth surface can be easily formed on the metal mold. Can be formed. In particular, since it is manufactured by melt processing, a hard material such as hardened steel can be applied. If such a hard material is used, it is excellent in abrasion resistance at the time of molding, and is resistant to friction with the resin after molding (especially at the time of removing the burrs) even when molding a resin containing a reinforcing agent, and can be used for a long time. It can be used and has a long life. In addition, when the swing shape is enlarged, processing is mainly performed in the side surface direction of the electrode, and the consumption of the electrode is dispersed over a wide area, and the consumption of the electrode can be substantially reduced, and Since the entire process can be processed with one electrode, there is no need to replace the electrode, which increases the economic efficiency and improves the accuracy. [0020]

【図面の簡単な説明】 【図1】本発明の適用による射出成形手順を示し、
(A)はコア部が離間開放された状態を示す。 【図2】(A)は射出後にコアを開放した状態を示す、
断面図。(B)はウォームホイールを矢印P方向に取り
出した状態を示す断面図である。 【図3】本発明の実施の形態に用いるマスター電極を示
す、放電加工開始前の断面図である。(マスター電極は
上部のみを断面図として断面として示してある)。 【図4】マスター電極が金型内へ送られ凸歯形面を刻設
した状態を示す断面図である。 【図5】ウォームギヤとウォームホイールとの噛み合い
関係を示し、(A)は一般的なウォームギヤとウォーム
ホイールとの噛み合い関係でウォームホイールの外周に
凹部を有する断面図、(B)は凹部片側が直線状とされ
た変形ウォームホイールを示す断面図である。 【符号の簡単な説明】 30 ウォームホイール 34 金型本体 36 凹歯形面 37 凸歯形面 38 コア型 40 コア型 50 マスター電極 50E 円弧部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an injection molding procedure according to an application of the present invention;
(A) shows a state where the core portion is separated and opened. FIG. 2A shows a state in which a core is opened after injection.
Sectional view. (B) is a sectional view showing a state where the worm wheel is taken out in the direction of arrow P. FIG. 3 is a cross-sectional view showing a master electrode used in the embodiment of the present invention before electric discharge machining is started. (Only the upper part of the master electrode is shown as a cross-sectional view in cross section.) FIG. 4 is a sectional view showing a state in which a master electrode is fed into a mold and a convex tooth surface is engraved. 5A and 5B show a meshing relationship between a worm gear and a worm wheel. FIG. 5A is a cross-sectional view showing a general meshing relationship between a worm gear and a worm wheel and having a concave portion on the outer periphery of the worm wheel. It is sectional drawing which shows the deformation | transformation worm wheel made into the shape. [Brief Description of Symbols] 30 Worm wheel 34 Mold main body 36 Concave tooth surface 37 Convex tooth surface 38 Core type 40 Core type 50 Master electrode 50E Arc part

Claims (1)

【特許請求の範囲】 【請求項1】歯幅方向中間部が小歯先外径で歯幅方向端
部が大歯先外径とされるウォームホイールの歯形面を射
出成形するために用いる、内周に歯形面を備えた射出成
形用金型の製造方法であって、ウォームホイールの歯先
の歯幅方向中間部に凹部を有する歯形面を外周に備え、
かつ、金型に形成される突部と同じもしくは小さくなる
ように歯先円直径と歯厚を転位させた柱状マスター電極
を金型材料へ挿入し射出成形用金型を溶解加工により製
作するウォームホイール射出成形用金型の製造方法。
Claims: 1. An injection molding method for a tooth profile surface of a worm wheel having a small tooth tip outer diameter at a tooth width direction middle part and a large tooth tip outer diameter at a tooth width direction end part. A method for manufacturing an injection molding mold having a tooth profile on an inner periphery, comprising a tooth profile having a concave portion in a width direction intermediate portion of a tooth tip of a worm wheel on an outer periphery,
A worm that inserts a columnar master electrode in which a tip diameter and a tooth thickness are displaced so as to be equal to or smaller than a protrusion formed in a mold into a mold material, and manufactures an injection mold by melting. A method for manufacturing a wheel injection molding die.
JP2001248402A 2001-07-13 2001-07-13 Manufacturing method of die for injection molding of worm wheel Pending JP2003025157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001248402A JP2003025157A (en) 2001-07-13 2001-07-13 Manufacturing method of die for injection molding of worm wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248402A JP2003025157A (en) 2001-07-13 2001-07-13 Manufacturing method of die for injection molding of worm wheel

Publications (1)

Publication Number Publication Date
JP2003025157A true JP2003025157A (en) 2003-01-29

Family

ID=19077565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248402A Pending JP2003025157A (en) 2001-07-13 2001-07-13 Manufacturing method of die for injection molding of worm wheel

Country Status (1)

Country Link
JP (1) JP2003025157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352116B2 (en) 2004-04-20 2008-04-01 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for manufacturing the same, and piezoelectric resonator component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352116B2 (en) 2004-04-20 2008-04-01 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for manufacturing the same, and piezoelectric resonator component

Similar Documents

Publication Publication Date Title
US4825932A (en) Method of making diecast inserts
JPS62502278A (en) Screw-type rotating machine with at least one rotor made of plastic material
JP2009236151A (en) Worm gear
JP2003048236A (en) Method for manufacturing mold for injection-molding worm wheel
JP2003025157A (en) Manufacturing method of die for injection molding of worm wheel
JP2925501B2 (en) Method for manufacturing mold for worm wheel injection molding
JP3014686B2 (en) Worm wheel injection molding apparatus, worm wheel injection molding method, and worm wheel
JP5004050B2 (en) Worm and worm manufacturing mold
CN103727207B (en) A kind of worm screw and its mould and manufacture method
JP4423815B2 (en) Manufacturing method of resin worm wheel, body for resin worm wheel
US20210293317A1 (en) Gear wheel mechanism and manufacturing method for a gear wheel mechanism
CN114506099B (en) Carbon fiber reinforced composite gear production system and process
WO2005085604A1 (en) Method of manufacturing exterior part for assembly type camshaft
JP3839287B2 (en) Injection molded plastic worm
JP2006192657A (en) Gear mold and gear manufacturing method
CN214499745U (en) Output shaft assembly with injection molding bearing and motor applying output shaft assembly
JP3552513B2 (en) Method of manufacturing mold for helical gear
JP5282931B2 (en) Mold manufacturing method for worm wheel gear molding and mold for worm wheel gear molding
CN214465940U (en) Output shaft assembly and motor using same
CN101178010A (en) Twin-screw motive power machine
US20210283810A1 (en) Resin molding mold
JP4229427B2 (en) Helical gear
KR100429946B1 (en) Method for Manufacturing Double Spur Gear in One Body by Cold Forging
JP2004066563A (en) Product thread generation-preventing sprue bush
JP3789242B2 (en) Spiral manufacturing type