JP2003024979A - Algae treatment method - Google Patents
Algae treatment methodInfo
- Publication number
- JP2003024979A JP2003024979A JP2001209504A JP2001209504A JP2003024979A JP 2003024979 A JP2003024979 A JP 2003024979A JP 2001209504 A JP2001209504 A JP 2001209504A JP 2001209504 A JP2001209504 A JP 2001209504A JP 2003024979 A JP2003024979 A JP 2003024979A
- Authority
- JP
- Japan
- Prior art keywords
- algae
- water
- microcystin
- brevibacillus
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、湖沼、池、ダム、
濠、内海等の閉鎖性水域に発生する浮遊性の藍藻類(ア
オコ)を殺藻、無害化する処理法に関するものである。TECHNICAL FIELD The present invention relates to lakes, ponds, dams,
The present invention relates to a treatment method for algae-killing and detoxifying floating cyanobacteria (blue-green algae) that occur in closed water areas such as moats and inland seas.
【0002】[0002]
【従来の技術】比較的水温の高い時期になると、富栄養
化した湖沼やダム等の閉鎖性水域にアオコと呼ばれる藍
藻類(シアノバクテリア)が多量に発生して、水域の自
然環境を破壊したり、生活用水や工業用水の利用を著し
く阻害する事態がしばしば起きている。また、湖岸など
に打寄せられたアオコは、腐敗して悪臭を発するので、
吸引ろ過等の方法で採集し、乾燥・焼却等の処分をして
いるが実効は少ないのが現状である。2. Description of the Related Art When the temperature of water is relatively high, a large amount of blue-green algae (cyanobacteria), called blue-green algae, are generated in closed water areas such as eutrophic lakes and dams, and destroy the natural environment of the water areas. In many cases, the use of domestic water and industrial water is significantly hindered. In addition, the water-bloom struck on the shore of the lake etc. rots and gives off a foul odor,
It is collected by a method such as suction filtration and disposed of such as drying and incineration, but it is currently ineffective.
【0003】ところで、アオコは多くの種類を含んだ藍
藻生物群の俗称であって、ミクロシステス属、アナベナ
属、オシラトリア属などのシアノバクテリアが含まれて
いる。ミクロシステス属は単細胞性の球状をした菌であ
り、国内でも頻繁に検出されている。この菌は、肝毒素
や発ガン促進物質として注目されるミクロシスチンの生
産菌としても知られている。なお、全ての藍藻類が同じ
毒性を持つものではなく、神経毒として作用するもの
や、無毒のものも多数あり、また、化学薬品に対する感
受性も異なる。ミクロシスチンは分子量約1,000の
環状ペプチドであり、これまでに構造の異なる約50種
類のものが報告されている。アオコの発生は湖沼の富栄
養化の結果であり、すなわち環境汚染を反映するもので
あって、地域住民の生活に密接に係るものであることか
ら、アオコの処理にあたっては、その種類並びに発生水
系に応じた適切な処理法を選択する必要がある。さらに
大切なのはその場所の生態系を乱さないために処理機材
や持ち込んだ菌体等が回収処分できるシステムであり、
処分に伴なって新たな環境汚染が発生しないことを確認
して決定しなければならない。By the way, blue-green alga is a common name for cyanobacteria including many species, and includes cyanobacteria of the genus Microsystemus, genus Anabaena, genus Osylatoria, and the like. The genus Microcystis is a unicellular sphere-shaped bacterium and is frequently detected in Japan. This bacterium is also known as a microcystin-producing bacterium, which is attracting attention as a liver toxin and a carcinogen promoting substance. Not all cyanobacteria have the same toxicity, but there are many that act as neurotoxins and non-toxic ones, and also have different sensitivities to chemicals. Microcystin is a cyclic peptide having a molecular weight of about 1,000, and about 50 kinds of microstructures having different structures have been reported so far. The occurrence of water-bloom is a result of eutrophication of lakes, that is, it reflects environmental pollution and is closely related to the lives of local residents. It is necessary to select an appropriate treatment method according to the above. What is more important is a system that can collect and dispose of processing equipment and fungi that have been brought in so as not to disturb the ecosystem of the place.
The decision must be made after confirming that no new environmental pollution will occur with the disposal.
【0004】アオコの従来の処理方法としては、硫酸
銅、塩素、オゾン、β−シアノ−L−アラニンなどの殺
藻剤によって死滅させたり(特開平11−71203号
公報、特開平11−70395号公報に記載)、紫外線
照射や高速流れで生じるキャビテーション作用によって
細胞の増殖作用を失活させるもの(特開平11−477
85号公報に記載)、水生ミミズ、ミジンコ、モナスグ
ットウラなどの生物の捕食作用で処理するもの(特開平
7−100489号公報、特開平8−126号公報、特
開平8−117790号公報等に記載)が提案されてい
る。また、特許第3050578号公報には、水面付近
に浮遊するアオコにバチルス属、サッカロミセス属また
はダクチロスポランジウム属に属する微生物の株を散布
し、アオコの浮力を失わせて池底に沈殿させ若しくは殺
藻する方法及び剤に関する技術が示されている。さらに
変異体バクテリアを利用する技術(特開昭62−499
99号公報に記載)なども提案されている。レイムらは
汚水処理場の酸化池から得られたバチルス ブレビス(B
acillus brevis)の培養液が溶藻性を示し、これはグラ
ミシヂン(Gramicidin)様物質による細胞膜の溶解であ
ることを指摘している。(Can.J.Microbiol.,20,981-98
6,1974 Reim,R.L., M.S.Shane,& R.E.Cannon)As a conventional method for treating water-bloom, it is killed by an algicidal agent such as copper sulfate, chlorine, ozone and β-cyano-L-alanine (JP-A-11-71203 and JP-A-11-70395). Disclosed in Japanese Patent Laid-Open No. 11-477, which inactivates the cell proliferation effect by cavitation effect caused by ultraviolet irradiation or high-speed flow (Japanese Patent Laid-Open No. 11-477)
No. 85), aquatic earthworms, Daphnia magna, Monas gutura and other organisms for predation (Japanese Patent Application Laid-Open Nos. 7-100489, 8-126, and 8-117790). (Described in) is proposed. Further, in Japanese Patent No. 3050578, Bacillus, Saccharomyces genus or dactylosporandium spp strains of microorganisms are sprayed on water-blooming water near the surface of the water, and the buoyancy of the water-bloom is lost to precipitate on the pond floor or Techniques for algicidal methods and agents are shown. Further, a technique utilizing mutant bacteria (Japanese Patent Laid-Open No. 62-499).
(Described in Japanese Patent Publication No. 99) is also proposed. Reim et al. Bacillus brevis (B
It has been pointed out that the culture solution of acillus brevis) is algae-soluble, which is the lysis of cell membranes by a substance such as Gramicidin. (Can.J.Microbiol., 20,981-98
6,1974 Reim, RL, MSShane, & RECannon)
【0005】前記の各種処理方法には、種々の欠点が指
摘されたり、研究段階のものもあって、大規模な水域を
対象とした実用技術はいまだ完成していない。実用化す
る上での課題は、使用する資材等による環境の二次汚染
がないこと、アオコの処分に伴ない溶出する毒性成分の
ミクロシスチンを確実に無毒化するシステムであるこ
と、そして処理システムが経済的であり、取り扱いが容
易であり、かつ必要に応じて回収可能であって環境の生
態系をかく乱しないものであることが挙げられる。Since various drawbacks have been pointed out in some of the above-mentioned various treatment methods and some of them are still in the research stage, practical techniques for large-scale water bodies have not been completed yet. The issues for practical use are that there is no secondary pollution of the environment due to the materials used, a system that reliably detoxifies the toxic component microcystin that elutes with the disposal of water-bloom, and a treatment system. Are economical, easy to handle, and can be recovered as needed without disturbing the ecological system of the environment.
【0006】藍藻類のミクロシステスが生産するミクロ
シスチンには、50を越える同族体や誘導体があること
が報告されており、日本産の藍藻類からはミクロシスチ
ンRR,LR,YRなど7種の同族体が確認されてい
る。さらに、本願発明者の調査で、国内湖沼において藍
藻の細胞から放出されたミクロシスチンLRの半減期は
約10週間であり、水中でかなり安定に存在している。
なお、塩素処理を行なうとアダ(Adda)の共役ジエンの
4,5位の二重結合に2個の水酸基が付加した化合物を
はじめとする数種のジハイドロオキシミクロシスチンと
称される化合物が生成して無害化できたが、塩素処理に
よる環境への影響が懸念されている。(有毒ラン藻が産
生するMicrocystin の生合成に関する研究(I)名城大
学総合研究所紀要第4号、pp127-140(1999.3)原田、藤
井、K.SIVONEN )オーストラリアのジョーンズらは河川
水から単離したスフィンゴモナス菌がミクロシスチンを
加水分解して直鎖状の化合物にすることを報告してい
る。(Enzymatic pathway for the bacterial degradati
on of the cyanobacterial cyclicpeptide toxin micro
cystin LR. Appl.Environ Microbiol, 62(11),4086-409
4,1996, Bourne DG, Jones GJ, Blakeley RL, Jones A,
Negri AP, Riddles P.)しかし 、加水分解処理による
環境への影響や実用化する上での問題解明はされていな
い。[0006] It has been reported that there are more than 50 homologues and derivatives of microcystin produced by the microalgae of Microcystis, and 7 types of homologues such as microcystin RR, LR and YR are derived from Japanese cyanobacteria. The body is confirmed. Furthermore, according to the investigation by the present inventor, the half-life of microcystin LR released from the cells of cyanobacteria in domestic lakes is about 10 weeks, and it exists fairly stably in water.
It should be noted that when chlorine treatment is performed, several compounds called dihydrooxymicrocystin, including compounds in which two hydroxyl groups are added to the double bond at the 4,5-position of the conjugated diene of Adda, Although it was generated and could be made harmless, there is concern about the environmental impact of chlorination. (Studies on biosynthesis of Microcystin produced by toxic cyanobacteria (I) Bulletin No. 4 of Meijo University Research Institute, pp127-140 (1999.3) Harada, Fujii, K.SIVONEN) Australian Jones et al. It has been reported that Sphingomonas spp. Hydrolyzes microcystin into a linear compound. (Enzymatic pathway for the bacterial degradati
on of the cyanobacterial cyclic peptide toxin micro
cystin LR.Appl.Environ Microbiol, 62 (11), 4086-409
4,1996, Bourne DG, Jones GJ, Blakeley RL, Jones A,
Negri AP, Riddles P.) However, the influence on the environment due to the hydrolysis treatment and the problems in practical application have not been clarified.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、アオ
コの発生する自然環境から採取した溶藻菌体を使ってア
オコを死滅させ、続いて同じ環境から単離・培養した菌
体の分泌する酵素によってアオコの放出したミクロシス
チンを分解することのできる、高性能で、長期間安定し
て操業でき、しかも経済的なシステムを構築することに
ある。他の課題は、アオコの分解に伴なって発生するB
OD成分を活用して、後段の酵素発生菌の消耗を減ら
し、かつBOD成分を低減する水処理プロセスを実現す
ることにある。The problem to be solved by the present invention is to kill a water-bloom by using a lysing fungus body collected from the natural environment in which the water-bloom is generated, and then secrete the fungus body isolated and cultured from the same environment. The purpose is to construct a high-performance, economically stable system capable of degrading microcystin released from water-bloom by the enzyme that is used, capable of stable operation for a long period of time. Another issue is B that occurs with the decomposition of blue-green algae.
It is to utilize the OD component to realize a water treatment process that reduces the consumption of the enzyme-producing bacteria in the latter stage and reduces the BOD component.
【0008】[0008]
【課題を解決するための手段】本発明は、藻類を含有す
る液を、ブレビバチルス系の溶藻性微生物と接触させて
殺藻または分解し、次いで前記藻類の分解によって放出
されたミクロシスチンをスフィンゴモナス菌と接触させ
て無害化することを特徴とする藻類の処理法である。ま
た、藻類を含有する液を、ブレビバチルス系の溶藻性微
生物と接触させて殺藻または分解し、次いで前記藻類の
分解によって放出されたミクロシスチンをスフィンゴモ
ナス菌と接触させて無害化した後、活性汚泥と好気条件
下で接触させBOD成分を除去することを特徴とする藻
類の処理法である。そして、前記ブレビバチルス系の溶
藻性微生物及び/又はスフィンゴモナス菌は、多孔性担
体にそれぞれ105個/cm3担体以上担持したものであ
ることを特徴とする前記の藻類の処理法である。Means for Solving the Problems According to the present invention, a liquid containing algae is brought into contact with a brevibacillus-type lytic microorganism to kill or decompose algae, and then microcystin released by the decomposition of the algae is removed. It is a method for treating algae, which is characterized by contacting with Sphingomonas bacterium to render it harmless. In addition, a liquid containing algae is contacted with a Brevibacillus-type algae to destroy or decompose algae, and then microcystin released by the decomposition of the algae is contacted with Sphingomonas and detoxified. , A method for treating algae, which comprises contacting with activated sludge under aerobic conditions to remove BOD components. The Brevibacillus-type lytic microorganism and / or Sphingomonas bacterium is a porous carrier in which 10 5 cells / cm 3 or more of the carrier are supported, respectively. .
【0009】本発明を実施する工程の1例を図1に示す
が、本発明はこれに限定されるものではない。アオコを
含む水を取水して除塵、流量調節などの必要な前処理を
施し、藍藻類の溶藻工程に導入する。溶藻工程には予め
ブレビバチルス菌を培養して担体に担持した担体が投入
してあり、ブレビバチルスによってアオコの細胞膜が破
壊される。次ぎに、アオコの細胞内から溶出したミクロ
シスチンを分解するための工程に移るが、この工程で
は、スフィンゴモナス菌を培養して担体に担持したもの
と接触させる。ミクロシスチン分解工程においても、B
ODは減少するが、後段にBOD分解工程を付設するこ
とによって、清浄度の高い処理水が放出される。Although one example of steps for carrying out the present invention is shown in FIG. 1, the present invention is not limited thereto. The water containing water-bloom is taken in, and necessary pretreatments such as dust removal and flow control are performed, and then introduced into the algae algae dissolving process. In the algae-dissolving step, a carrier in which Brevibacillus bacteria have been cultivated and carried on a carrier has been added in advance, and Brevibacillus destroys the cell membrane of water-bloom. Next, the process for decomposing the microcystin eluted from the inside of the water-bloom cell is proceeded. In this process, the Sphingomonas bacterium is cultured and brought into contact with the carrier-supported one. Even in the microcystin decomposition process, B
Although the OD is reduced, the treated water with high cleanliness is released by adding the BOD decomposition step in the latter stage.
【0010】本発明者らは、ブレビバチルス菌、放線菌
ストレプトマイセスが生産する物質(抗生物質様低分子
化合物)によるミクロシステスの溶藻機構を検討し、溶
藻速度が菌体濃度を高くすることによって急激に増大す
ること。また、ミクロシスチンLRの分解がスフィンゴ
モナス菌が分泌する酵素によって起きること。濃度2m
g/LのミクロシスチンLRをスフィンゴモナス菌と2
4時間接触させることでWHOの基準である1μg/L
以下にすることが可能であること。さらに、ミクロシス
テスの分解によって生じたBOD成分をスフィンゴモナ
ス菌が摂取してその活性維持期間を実用上好ましい2ヶ
月以上にまで延長できること。ブレビバチルス菌及びス
フィンゴモナス菌は多孔性担体に105個/cm3担体
以上担持させるとその活性が高められ、しかも回収、再
生が容易であること等を新たに見い出して本発明を完成
した。The present inventors have examined the lysis mechanism of Microcystis by substances produced by Brevibacillus and Streptomyces actinomycetes (antibiotics-like low molecular weight compounds), and the lysis rate increases the microbial cell concentration. To increase rapidly. In addition, the degradation of microcystin LR is caused by an enzyme secreted by Sphingomonas. 2m concentration
g / L of microcystin LR was added to Sphingomonas and 2
1 μg / L which is the standard of WHO by contacting for 4 hours
Be able to: Further, the BOD component produced by the decomposition of microcystis is ingested by Sphingomonas bacterium, and the activity maintenance period can be extended to 2 months or more, which is practically preferable. Brevibacillus bacteria and Sphingomonas bacterium is 10 5 to a porous support / cm 3 when the carrying or support its activity is enhanced, yet the recovery was completed newly found by the present invention such that the reproduction is easy.
【0011】本発明で使用したブレビバチルス菌は、神
奈川県津久井郡所在の津久井湖の底泥を採取し、寒天培
地で培養・分離した後集積培養したものである。ブレビ
バチルス菌の産業技術総合研究所生命工学工業技術研究
所への寄託は、次ぎのとおりである。
微生物の表示:(寄託者が付した識別のための表示)
Brevibacillus sp.B1−A (受託番号)FERM
P−18213
受領及び受託:平成13年2月20日
寄託に際して使用した培地は、グルコース0.5g/
L、ポリペプトン2g/L、酵母エキス1g/L、寒天
15g/Lの桜井培地である。寄託菌体B1−Aについ
て16SrRNA遺伝子塩基配列を測定し、国立遺伝研
究所の相同性検索システムFASTAで検索した結果、
遺伝研アクション番号D78460 Brevibacillus for
mosus と98.512%の相同性を示したので、本菌体
は、ブレビバチルスと同定した。16SrRNA遺伝子
塩基配列を参考のために表1に示す。The Brevibacillus bacterium used in the present invention is obtained by collecting the bottom mud of Lake Tsukui, located in Tsukui-gun, Kanagawa Prefecture, culturing and separating it on an agar medium, and then performing integrated culture. Brevibacillus deposits at the National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology are as follows. Microorganism display: (Display for identification given by the depositor)
Brevibacillus sp. B1-A (consignment number) FERM
P-18213 Receipt and deposit: The medium used for depositing on February 20, 2001 was glucose 0.5 g /
L, polypeptone 2 g / L, yeast extract 1 g / L, agar 15 g / L Sakurai medium. The 16S rRNA gene nucleotide sequence of the deposited bacterial cell B1-A was measured, and the result was searched by the homology search system FASTA of the National Institute of Genetics,
NIG Action No. D78460 Brevibacillus for
This cell was identified as Brevibacillus because it showed 98.512% homology with mosus. The 16S rRNA gene nucleotide sequence is shown in Table 1 for reference.
【0012】[0012]
【表1】 [Table 1]
【0013】本菌はかん菌で、グラム陽性の好気性菌で
ある。運動は鞭毛による。性の胞子がふくれて胞子嚢を
形成する。10種のコロニーは平滑で、黄色みを帯びた
灰色で、栄養寒天培地上では可溶性の色素は生成しな
い。The present bacterium is a bacillus and is a gram-positive aerobic bacterium. Movement is by flagella. Sex spores swell and form sporangia. Ten colonies are smooth, yellowish gray and do not produce soluble pigment on nutrient agar.
【0014】溶藻反応に使用するブレビバチルスの培養
は、散気、撹拌装置を備えたタンクに培養液1L当たり
ペプトン2g、酵母エキス1g、ブドウ糖0.5gを溶
解し、これに予め単離、培養しておいた種培養液のブレ
ビバチルス菌を加えて27℃の温度で緩やかに曝気撹拌
しながら培養した。菌体濃度が106個/mL以上に達
したところで多孔質担体を浸漬し、12時間以上放置し
ておくと、菌体数が105個/cm3担体以上担持したブ
レビバチルス菌を担持した多孔質担体が得られる。培養
した高濃度の菌体含有液は、アオコを含む液に直接散布
しても良いが、発泡ポリエステルのごとき多孔質担体に
担持させておくと、担体表面に高菌体濃度の領域が形成
されるため、ここで溶藻反応が活発に行なわれる。担持
したブレビバチルスの菌体数が2×104個/cm3担
体〜1×107個/cm3担体の試験担体を、アオコの
含有量が107個/mLの溶液に12時間浸漬したとき
の溶藻率を図2に示す。ブレビバチルス菌の担持量が1
05個/cm3担体以上、好ましくは5×105個/cm3
担体以上維持すると溶藻率は平均70%以上を示した
が、菌体数が減ると溶藻率は急激に低下する。なお、菌
体数の少ない担体は再度培養タンクに投入して菌体数を
増やすことができる。Brevibacillus used for the algae-dissolving reaction is cultivated by dissolving 2 g of peptone, 1 g of yeast extract and 0.5 g of glucose per 1 L of the culture solution in a tank equipped with an air diffuser and agitator, and pre-isolating it. Brevibacillus of the seed culture solution that had been cultivated was added, and the mixture was cultured at a temperature of 27 ° C. with gentle aeration and stirring. When the cell concentration reached 10 6 cells / mL or more, the porous carrier was soaked and left for 12 hours or more to support Brevibacillus bacteria carrying 10 5 cells / cm 3 carrier or more. A porous carrier is obtained. The cultivated high-concentration cell-containing solution may be directly sprayed on the solution containing blue-green algae, but when it is supported on a porous carrier such as foamed polyester, a high cell-concentration region is formed on the carrier surface. Therefore, the algae reaction is actively performed here. The test carrier having 2 × 10 4 cells / cm 3 carrier to 1 × 10 7 cells / cm 3 carrier of Brevibacillus carried was immersed in a solution having a content of 10 7 cells / mL for 12 hours. The rate of algae is shown in FIG. The amount of Brevibacillus carried is 1
0 5 pieces / cm 3 or more, preferably 5 × 10 5 pieces / cm 3
When maintained above the carrier, the rate of algae was 70% or more on average, but when the number of bacterial cells decreased, the rate of algae decreased sharply. It should be noted that the carrier having a small number of cells can be added to the culture tank again to increase the number of cells.
【0015】アオコ(藍藻)の濃度はクロロフィルa濃
度から測定することができる。津久井湖での現地試験
(フィールドデータ)及び実験室で測定した藍藻濃度と
クロロフィルa濃度の関係は図3に示すとおり、ほぼ直
線的に変化しており、クロロフィルaの測定値から藍藻
濃度を決定することができる。ブレビバチルス菌の担体
としては、発泡ポリエチレンの他にも発泡ポリプロピレ
ン、ポリエステル、ウレタン、活性炭、竹炭、木材チッ
プ、セルロース、珪酸バルーン、ウレタンゴムなどの水
処理で使用する材料をそれらの使用法に従い採用するこ
とができる。形状は粒状体の他に、板状、網状、紐状、
棒状、筒状等、使用しやすい形状のものを適宜選ぶこと
ができる。菌体の担持は付着型が簡便であるが、含水ゲ
ルに培養成分を添加して菌体を包括固定したものは、付
着型よりも有効期間を長く維持することができる。ブレ
ビバチルス菌の培養液に、凝集剤を添加して得られた含
水水和酸化物等は、水和物とアオコとの結合が強く溶藻
反応としては好ましいが、再生して使うことができな
い。The concentration of water-bloom (blue algae) can be measured from the concentration of chlorophyll a. The relationship between the concentration of cyanobacteria and the concentration of chlorophyll a measured in the field test (field data) at Lake Tsukui and in the laboratory is almost linear as shown in Fig. 3, and the concentration of cyanobacteria is determined from the measured value of chlorophyll a. can do. As a carrier for Brevibacillus, in addition to expanded polyethylene, materials used in water treatment such as expanded polypropylene, polyester, urethane, activated carbon, bamboo charcoal, wood chips, cellulose, silicate balloons, urethane rubber, etc. are adopted according to their usage. can do. The shape is not only granular but also plate-like, net-like, string-like,
A shape that is easy to use, such as a rod shape or a cylindrical shape, can be appropriately selected. The bacterial cells are easily supported by the adhesive type, but the bacterial cells are entrapped and immobilized by adding a culture component to the hydrogel, and the effective period can be maintained longer than that of the adhesive type. A hydrous hydrate, etc. obtained by adding a flocculant to a culture solution of Brevibacillus is strongly preferable as an algae reaction due to a strong bond between a hydrate and water-bloom, but cannot be regenerated and used. .
【0016】アオコを含む原水は、通常塵芥が混じって
いるので、スクリーンなどで共雑物を除き、必要に応じ
て高速で撹拌し、多糖類の膜で覆われたアオコの集合体
を破壊して、次ぎの段階で行なう溶藻反応において、溶
藻物質であるブレビバチルスが直接アオコ細胞と接触し
易くすることが好ましい。アオコの発生初期段階では濃
度が薄かったり、アオコの種類によっては水面に浮上せ
ずに水中に浮遊しているものがある。この場合はデカン
ターや遠心分離機を用いてアオコを濃縮することで、反
応槽の容量を小さくすることができる。溶藻段階は、撹
拌処理した藻類を含有する液をブレビバチルス菌と接触
させるものであれば、反応槽の形式や方式にとくに拘束
されるものではない。好ましくは比重がほぼ1である担
体を液中に浮遊させ、槽の底部から空気を吹きこみ、緩
やかに撹拌するものである。別の方式としては、担体を
堆積させ、液を堆積層にポンプ循環で接触させるもの、
格子状または板状の担体を使用するもの、特に軽比重の
担体と接触させ、MFやROなどの膜を処理水側の出口
に設けた膜型リアクターは上水用の水源施設としても好
適である。Since the raw water containing water-bloom is usually mixed with dust, contaminants are removed by a screen or the like, and the water is agitated at high speed if necessary to destroy the water-bloom aggregate covered with the polysaccharide film. Then, in the algae reaction performed in the next step, it is preferable to facilitate the direct contact of Brevibacillus as the algae substance with the water-bloom cells. The concentration is low in the early stages of water-blooming, and some water-blooms do not float to the surface of the water but float in the water. In this case, the capacity of the reaction tank can be reduced by concentrating the water-bloom using a decanter or a centrifuge. The algae-dissolving step is not particularly limited by the type and system of the reaction tank, as long as the solution containing agitation-treated algae is brought into contact with Brevibacillus bacteria. Preferably, a carrier having a specific gravity of about 1 is suspended in the liquid, air is blown from the bottom of the tank, and the mixture is gently stirred. Another method is to deposit the carrier and bring the liquid into pump contact with the deposited layer,
Those that use a lattice-shaped or plate-shaped carrier, especially a membrane reactor in which a membrane such as MF or RO is provided at the outlet on the treated water side by contacting it with a carrier of light specific gravity is also suitable as a water source facility for tap water. is there.
【0017】ミクロシスチンの分解段階は、アオコの細
胞膜を破壊した溶液をスフィンゴモナス菌を担持した担
体と接触させることによって行なわれる。日本産のアオ
コからは約6種類のミクロシスチンが検出されており、
その構造は化学構造式(1)に示すものを基本単位と
し、表2に示すように分類される。なお、記号の略号は
表2の下に併記する。The step of degrading microcystin is carried out by contacting the solution in which the cell membrane of water-bloom is destroyed with a carrier carrying Sphingomonas bacterium. About 6 types of microcystin have been detected in Japanese watermelon,
The structure is classified as shown in Table 2 with the basic unit shown in the chemical structural formula (1). The symbol abbreviations are also shown below Table 2.
【0018】[0018]
【化1】 [Chemical 1]
【0019】[0019]
【表2】
Ala:D-アラニン
β-MeAsp:D-β-メチルアスパラギン酸
Adda:3-amino-9-methoxy-2,6,8-trimethyl-10-phe
nyldeca-4,6-dienoic acid
Glu:D-グルタミン酸
Mdha:N-メチルデヒドロアラニン
Arg:L-アルギニン
Leu:L-ロイシン[Table 2] Ala: D-alanine β-MeAsp: D-β-methylaspartic acid Adda: 3-amino-9-methoxy-2,6,8-trimethyl-10-phe
nyldeca-4,6-dienoic acid Glu: D-glutamic acid Mdha: N-methyldehydroalanine Arg: L-arginine Leu: L-leucine
【0020】本発明で使用したスフィンゴモナス菌は、
神奈川県津久井郡所在の津久井湖の湖水を採取し、寒天
培地で培養・分離し、集積培養したものであり、前記表
2のミクロシスチンのいずれにも有効に働くものであ
る。スフィンゴモナス菌の産業技術総合研究所生命工学
工業技術研究所への寄託は次ぎのとおりである。
微生物の表示:(寄託者が付した識別のための表示)ス
フィンゴモナス エスピー ビー9(Sphingomonas sp.
B9)(受託番号)FERM P-18212
受領及び受託:平成13年2月20日
培地の組成はグルコース0.5g/L、ポリペプトン2
g/L、酵母エキス1g/L、寒天15g/Lからなる
桜井培地である。スフィンゴモナス エスピー ビー9
(Sphingomonas sp.B9)菌の16SrRNA遺伝子塩
基配列を表3に示す。The Sphingomonas bacterium used in the present invention is
Lake water of Lake Tsukui, located in Tsukui District, Kanagawa Prefecture, was collected, cultivated / separated on an agar medium, and concentrated and cultivated, and it works effectively for any of the microcystins in Table 2 above. The deposits of Sphingomonas sp. To the National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology are as follows. Labeling of microorganisms: (Display for identification by the depositor) Sphingomonas sp.
B9) (Consignment number) FERM P-18212 Receipt and consignment: February 20, 2001 Medium composition is glucose 0.5 g / L, polypeptone 2
It is a Sakurai medium consisting of g / L, yeast extract 1 g / L, and agar 15 g / L. Sphingomonas SP B 9
Table 3 shows the nucleotide sequence of 16S rRNA gene of (Sphingomonas sp. B9).
【0021】[0021]
【表3】 [Table 3]
【0022】塩基配列に基づいて、スフィンゴモナス属
菌種、関連アルファ−プロトバクテリア(α−Proteoba
cteria)菌種との近隣結合法による系統樹から、当該菌
種はスフィンゴモナス属のクラスターに入った。なお、
この属はグラム陰性菌で、胞子は形成せず直線状のかん
菌で、運動するための単一の極性鞭毛を有しており、真
性の好気性菌である。コロニーはそれが出現したときか
らレモンイエローをしており、消滅すると色も消えるの
で簡便に存在を識別することができる。Based on the nucleotide sequence, Sphingomonas spp., Related alpha-proteobacteria (α-Proteoba
From the phylogenetic tree by the neighbor-joining method with the bacterial species, the bacterial species entered the Sphingomonas cluster. In addition,
This genus is a gram-negative bacterium, a linear bacillus that does not form spores, has a single polar flagella for movement, and is a true aerobic bacterium. A colony has a lemon yellow color when it appears, and when it disappears, the color also disappears, so the presence can be easily identified.
【0023】スフィンゴモナスは黄色を帯びた菌であ
り、ミクロシスチン分解酵素を消費してしまうと無色に
なる。スフィンゴモナス菌は一般の湖沼水中では繁殖し
にくく、反応タンクからの流出分を考慮すると20日間
程度で新しい菌体を担持した担体を追加する必要があ
る。しかし、前段で藍藻類を殺藻すると、藻類の体内か
ら放出されるBOD成分をスフィンゴモナス菌が摂取し
て活性維持期間が延びることが分かった。すなわち、一
定濃度のミクロシスチン溶液中のBOD濃度を変えて、
スフィンゴモナス菌の活性維持期間を測定した結果を図
4に示す。BOD成分濃度が2mg/L以上あると、ス
フィンゴモナス菌の活性がやや高まりかつ寿命が大幅に
延びるので、ミクロシスチン分解工程はBOD濃度2m
g/L以上の条件下で行なうことが好ましい。なお、処
理水中に最初から含まれていたり、殺藻段階で放出され
たBOD成分の除去が必要な場合は、ミクロシスチン分
解工程の後で行なうのが好ましい。Sphingomonas is a yellowish fungus and becomes colorless when the microcystin-degrading enzyme is consumed. Sphingomonas bacterium does not easily propagate in general lake water, and considering the outflow from the reaction tank, it is necessary to add a carrier carrying new cells in about 20 days. However, it was found that, when algae were killed in the previous stage, the activity of Sphingomonas ingested BOD components released from the body of the algae and the activity maintenance period was extended. That is, by changing the BOD concentration in a constant concentration microcystin solution,
The result of having measured the activity maintenance period of Sphingomonas is shown in FIG. When the BOD component concentration is 2 mg / L or more, the activity of Sphingomonas bacterium is slightly increased and the life span is significantly extended.
It is preferable to carry out under conditions of g / L or more. In addition, when it is necessary to remove the BOD component contained in the treated water from the beginning or released in the algicidal stage, it is preferably performed after the microcystin decomposition step.
【0024】スフィンゴモナス菌の培養は、散気、撹拌
装置を備えたタンクに培養液1L当たりペプトン2g、
酵母エキス1g、ブドウ糖0.5gを溶解し、これに予
め単離、培養しておいた種培養液のスフィンゴモナス菌
を加えて27℃の温度で緩やかに曝気撹拌しながら培養
した。菌体濃度が106個/mL以上に達したところで
多孔質担体を浸漬し、12時間以上放置しておくと、菌
体数が105個/cm3担体以上担持したスフィンゴモナ
ス菌を担持した多孔質担体が得られる。ブレビバチルス
やスフィンゴモナスの培養には、廃糖蜜、コンスティー
プリカなどの天然培地が安価に利用できるが、天然培地
と合成培地を組み合わせた半合成培地でもよく、単なる
合成培地でも良い。とくに培養初期は立ち上げが難しい
ため合成培地を用い、その後、天然培地を用いるのがよ
い。Cultivation of Sphingomonas bacterium was carried out in a tank equipped with an aeration and stirring device, 2 g of peptone per liter of culture solution,
1 g of yeast extract and 0.5 g of glucose were dissolved, to which Sphingomonas bacterium, which was a seed culture solution that had been isolated and cultured in advance, was added, and the mixture was cultured at a temperature of 27 ° C. with gentle aeration and stirring. When the porous carrier was soaked when the cell concentration reached 10 6 cells / mL or more and left for 12 hours or more, the Sphingomonas bacteria carrying 10 5 cells / cm 3 or more of the cells were carried. A porous carrier is obtained. For culturing Brevibacillus or Sphingomonas, natural media such as molasses and constiplica can be inexpensively used, but a semi-synthetic medium in which a natural medium and a synthetic medium are combined may be used, or a simple synthetic medium may be used. In particular, it is preferable to use a synthetic medium and then use a natural medium since it is difficult to set up at the initial stage of culture.
【0025】培養した高濃度の菌体含有液に発泡ポリエ
チレンのごとき多孔質担体を浸漬しておくと、担体表面
に高菌体濃度の領域が形成されるため、ここでミクロシ
スチンの分解反応が活発に行なわれる。菌体濃度が2×
104個/cm3担体〜5×106個/cm3担体の試験
担体を、ミクロシスチン濃度が200μg/Lの溶液に
12時間浸漬したときの分解率を図5に示す。スフィン
ゴモナス菌の担持量が1×105個/cm3担体以上でミ
クロシスチンの分解率は80%以上を示したが、菌体数
が減ると溶藻率が低下するので、担体を高濃度培養タン
クに戻して再担持させることで性能が回復する。担体及
び担持方法並びに反応槽については、ブレビバチルス菌
の処理方法を準用することができる。When a porous carrier such as foamed polyethylene is immersed in the cultured high-concentration cell-containing liquid, a region of high cell concentration is formed on the surface of the carrier, so that the decomposition reaction of microcystin occurs here. Actively performed. 2 × cell concentration
FIG. 5 shows the decomposition rate when the test carriers of 10 4 / cm 3 carrier to 5 × 10 6 / cm 3 carrier were immersed in a solution having a microcystin concentration of 200 μg / L for 12 hours. The decomposition rate of microcystin was 80% or more when the amount of Sphingomonas bacterium carried was 1 × 10 5 cells / cm 3 or more, but the lysis rate decreased when the number of cells decreased, so the carrier concentration was high. The performance is restored by returning it to the culture tank and reloading it. Regarding the carrier, the supporting method and the reaction tank, the treatment method of Brevibacillus can be applied correspondingly.
【0026】[0026]
【発明の実施の形態】以下、本発明を図面によって具体
的に詳細に説明する。図6は、本発明の処理システムの
一例を説明する図である。アオコを含む原水は、原水配
管(12)を通って撹拌槽(10)に送られる。なお、
流入口にはスクリーン(14)があって木片等の異物を
除去する。撹拌槽(10)の中には複数の撹拌機(1
7)があって連続的又は間欠的に回転して被処理液を均
質化する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 6 is a diagram illustrating an example of the processing system of the present invention. Raw water containing water-bloom is sent to the stirring tank (10) through the raw water pipe (12). In addition,
A screen (14) is provided at the inlet to remove foreign matter such as wood chips. A plurality of agitators (1
7) There is a continuous or intermittent rotation to homogenize the liquid to be treated.
【0027】被処理液は配管(19)、送液ポンプ(2
1)によって、第1の溶藻槽(30−1)に送られる。
溶藻槽(30−1)、(30−2)及び(30−3)は
ほぼ同じ形状(100L×3槽)をしているが、被処理
液の流れの方向は最初の槽が上方向で、次が下向き流
れ、再び上向きとし、液と担体との接触性を高めてい
る。各溶藻槽の内部には、下部に散気配管(34)が、
その上部にブレビバチルス菌を担持した発泡ポリエチレ
ン担体30Lを格納したかご(32)が収納されてい
る。なお、ブレビバチルスを担持した担体を格納したか
ご(32)は、予め100L容量のバチルス培養タンク
(40)に入れられ、ブレビバチルスの培養に適した条
件下で担体の表面に充分な量のブレビバチルス菌を付着
させておく。担体を格納したかご(32)は、各溶藻槽
(30−1)、(30−2)及び(30−3)とバチル
ス培養タンク(40)との間を往復させても良く、ま
た、図6の矢印に示すように逐次循環使用することもで
きる。アオコを含む藍藻類の濃度は、図3に示すよう
に、クロロフィルの濃度の測定から知ることができる。The liquid to be treated is a pipe (19) and a liquid feed pump (2).
1), it is sent to the first algae bath (30-1).
The algae baths (30-1), (30-2) and (30-3) have almost the same shape (100 L x 3 baths), but the flow direction of the liquid to be treated is that the first bath is upward. Then, the next flows downward and then upward again to enhance the contact between the liquid and the carrier. Inside each algae tank, there is an air diffusion pipe (34) at the bottom.
A cage (32) accommodating a foamed polyethylene carrier 30L carrying Brevibacillus bacteria is stored in the upper part thereof. The cage (32) containing the carrier carrying Brevibacillus was placed in a Bacillus culture tank (40) having a capacity of 100 L in advance, and a sufficient amount of Brevibacillus was formed on the surface of the carrier under conditions suitable for culture of Brevibacillus. Bacillus is attached. The cage (32) storing the carrier may be reciprocated between each of the algae baths (30-1), (30-2) and (30-3) and the Bacillus culture tank (40). It is also possible to use the circuit sequentially in sequence as shown by the arrow in FIG. The concentration of cyanobacteria including water-bloom can be known from the measurement of the concentration of chlorophyll as shown in FIG.
【0028】溶藻槽(30−3)から流出した被処理水
は配管(23)を経由して、次に容量100Lのミクロ
シスチン分解槽(54)に流入する。ミクロシスチン分
解槽(54)の中には、散気管(34)と30Lのスフ
ィンゴモナス担持担体収納かご(52)があり、被処理
水に含まれるミクロシスチンを分解して無害化する。ス
フィンゴモナス担体収納かご(52)も予めスフィンゴ
モナス培養タンク(50)に入れて、担体の表面に菌体
を付着又は吸着させておく。ミクロシスチンを処理した
処理水は配管(56)から後処理槽(60)に入れ、こ
こで曝気処理した後放流配管(62)から排出される。The water to be treated that has flowed out of the algae bath (30-3) passes through the pipe (23) and then flows into the microcystin decomposition bath (54) of 100 L capacity. The microcystin decomposition tank (54) has an air diffuser (34) and a 30 L sphingomonas-supporting carrier storage basket (52), which decomposes microcystin contained in the water to be treated to render it harmless. The sphingomonas carrier storage basket (52) is also placed in the sphingomonas culture tank (50) in advance so that bacterial cells are attached or adsorbed to the surface of the carrier. The treated water treated with microcystin is put into the post-treatment tank (60) from the pipe (56), aerated there, and then discharged from the discharge pipe (62).
【0029】各溶藻槽及びミクロシスチン分解槽におけ
る反応条件は次の通りである。担体の見掛け充填率は1
5%であり、空気の吹き込み量は被処理水100L当り
3L/minで、平均水温27℃、溶存酸素量は平均
4.5mg/Lであった。なお、空気の吹き込みだけで
は液の撹拌が不充分であるので、機械的撹拌機によっ
て、液の上下方向の流れを形成した。The reaction conditions in each of the algae bath and the microcystin decomposition bath are as follows. Apparent packing rate of carrier is 1
The amount of air blown was 3 L / min per 100 L of water to be treated, the average water temperature was 27 ° C., and the amount of dissolved oxygen was 4.5 mg / L on average. In addition, since the liquid was not sufficiently stirred only by blowing air, a vertical flow of the liquid was formed by a mechanical stirrer.
【0030】また、バチルス培養タンクにおける培養条
件は、培養液1L当たりペプトン2g、酵母エキス1
g、ブドウ糖0.5gを溶解し、これに予め単離、培養
しておいた種培養液のバチルス菌を加えて27℃の温度
で緩やかに曝気攪拌しながら培養した。菌体濃度が10
6個/mL以上にまで達したところで発泡ポリエチレン
担体を浸漬し、24時間放置して多孔質担体にバチルス
菌を担持した。The culture conditions in the Bacillus culture tank are as follows: 2 g of peptone / L of culture medium and 1 yeast extract.
g and glucose 0.5 g were dissolved, and Bacillus bacteria of a seed culture solution that had been isolated and cultured in advance were added thereto, and the mixture was incubated at a temperature of 27 ° C. with gentle aeration and stirring. Cell concentration is 10
When the number reached 6 cells / mL or more, the expanded polyethylene carrier was immersed and left standing for 24 hours to support Bacillus bacteria on the porous carrier.
【0031】スフィンゴモナス培養タンク(50)にお
ける培養条件並びに培養の確認は次のとおりである。培
養液1L当たりペプトン2g、酵母エキス1gを加え、
湖水から分離したスフィンゴモナス菌を散布して27℃
の温度で緩やかに曝気撹拌しながら培養した。菌体濃度
が107個/mLにまで達したところで多孔質の発泡ポ
リエチレン担体を浸漬し、数日間放置して多孔質担体に
スフィンゴモナス菌を担持した。スフィンゴモナスはオ
レンジイエロー色を帯びているので、色度からも大凡の
濃度を判断できるが、波長660nmにおける吸光度か
ら正確に分析できる。The culture conditions and confirmation of the culture in the Sphingomonas culture tank (50) are as follows. Add 2 g of peptone and 1 g of yeast extract per liter of culture solution,
Spray Sphingomonas spp. Isolated from lake water at 27 ℃
Culturing was carried out at a temperature of, with gentle aeration and stirring. When the cell concentration reached 10 7 cells / mL, the porous foamed polyethylene carrier was immersed and left for several days to support Sphingomonas bacterium on the porous carrier. Since Sphingomonas has an orange-yellow color, it is possible to determine the approximate concentration also from the chromaticity, but it is possible to accurately analyze it from the absorbance at a wavelength of 660 nm.
【0032】本発明の例では、図6の装置を使って、関
東地方の湖水から採取したアオコの分解処理テストを約
80日間行なった。アオコを含んだ原水は、平日は1日
に1回投入し、溶藻槽で3日、ミクロシスチン分解槽で
1日滞留して排出する。この結果を図7及び図8に示
す。溶藻槽(30−1)に入る被処理水中の藍藻類の平
均濃度は107個/mLであり、3槽目(30−3)の
出口濃度は約250個/mLにまで減少した。ミクロシ
スチン分解槽(54)に流入する被処理水中のミクロシ
スチン濃度は、80〜100μg/Lであり、処理後の
出口濃度は、50日間にわたって1μg/L以下を記録
した。このミクロシスチン濃度は放流先で希釈され、ま
た自然界で徐々に分解するために、環境水として問題の
ないレベルであった。原水配管(12)で採取した原水
のTOCは約1mg/Lであり、BODとして0.5m
g/L程度と推定された。溶藻反応の終了した被処理水
配管(23)の処理水はBODが4.5〜5.5mg/L
含まれていたが、後曝気槽(60)の出口放流配管(6
2)の放流水ではBODが2mg/L以下であり、放流
する上で全く問題のないレベルであった。In the example of the present invention, using the apparatus shown in FIG. 6, a decomposition treatment test of water-bloom taken from lake water in the Kanto region was carried out for about 80 days. Raw water containing water-bloom is fed once a day on weekdays, retained in the algae bath for 3 days, and retained in the microcystin decomposition bath for 1 day and discharged. The results are shown in FIGS. 7 and 8. The average concentration of cyanobacteria in the water to be treated entering the algae bath (30-1) was 10 7 cells / mL, and the outlet concentration of the third tank (30-3) was reduced to about 250 cells / mL. The microcystin concentration in the water to be treated flowing into the microcystin decomposition tank (54) was 80 to 100 μg / L, and the outlet concentration after treatment was 1 μg / L or less over 50 days. Since this microcystin concentration was diluted at the discharge destination and gradually decomposed in the natural environment, it was at a level at which there was no problem as environmental water. The TOC of the raw water collected in the raw water pipe (12) is about 1 mg / L, and the BOD is 0.5 m.
It was estimated to be about g / L. The BOD of the treated water in the treated water pipe (23) after the algae reaction is 4.5 to 5.5 mg / L
Although included, the outlet discharge pipe (6) of the rear aeration tank (60)
The discharged water of 2) had a BOD of 2 mg / L or less, which was a level with no problem in discharging.
【0033】[0033]
【発明の効果】以上、詳細且つ具体的な説明より明らか
なように、本発明のアオコの処理システムは、アオコの
繁殖した水域から採取したブレビバチルス菌及びスフィ
ンゴモナス菌を培養して担体に担持したものを使用して
いるため、使用する資材による環境の二次汚染の心配が
なく、アオコの殺藻とこれに伴い生じる有毒成分を無害
化することができる。また、溶藻槽やミクロシスチン分
解槽に発生する活性汚泥の働きによって、窒素、りんの
除去もでき、水質の向上も期待できる。EFFECTS OF THE INVENTION As is clear from the detailed and specific description above, the treatment system for blue-green alga of the present invention cultivates Brevibacillus spp. Since it is used, there is no concern about secondary pollution of the environment due to the materials used, and it is possible to detoxify algal killing of water-bloom and toxic components that accompany it. In addition, nitrogen and phosphorus can be removed by the action of activated sludge generated in the algae bath and the microcystin decomposition bath, and improvement in water quality can be expected.
【図1】本発明の工程の一例を示した説明図である。FIG. 1 is an explanatory diagram showing an example of a process of the present invention.
【図2】溶藻率に及ぼすブレビバチルスの担持量に関す
る実験データーである。FIG. 2 is experimental data relating to the loading amount of Brevibacillus on the rate of algae.
【図3】藍藻類の個数とクロロフィル濃度を示す関係図
である。FIG. 3 is a relationship diagram showing the number of cyanobacteria and chlorophyll concentration.
【図4】BOD成分の濃度レベルによるスフィンゴモナ
スの活性維持期間の変化を示す図である。FIG. 4 is a diagram showing changes in the activity maintenance period of Sphingomonas depending on the concentration level of BOD components.
【図5】ミクロシスチン分解率に及ぼす担体に担持した
菌体数の関係図である。FIG. 5 is a relational diagram of the number of bacterial cells carried on a carrier, which affects the decomposition rate of microcystin.
【図6】本発明のシステム構成の1例を説明する装置配
置図である。FIG. 6 is a device layout diagram illustrating an example of a system configuration of the present invention.
【図7】本発明の実施例で使用した溶藻槽の入口、出口
水中の藍藻類の個数を測定した図である。FIG. 7 is a diagram in which the numbers of cyanobacteria in the inlet and outlet waters of the algae bath used in the examples of the present invention are measured.
【図8】本発明の例で使用したミクロシスチン分解槽の
入口、出口水中のミクロシスチン濃度を測定した図であ
る。FIG. 8 is a diagram showing the measured microcystin concentrations in the inlet and outlet waters of the microcystin decomposition tank used in the examples of the present invention.
10 撹拌槽 12 原水配管 14 スクリーン 17 撹拌機 19 配管 21 送液ポンプ 23 配管 30−1 溶藻槽 30−2 溶藻槽 30−3 溶藻槽 32 ブレビバチルス担持担体収納かご 34 散気配管 40 ブレビバチルス培養タンク 50 スフィンゴモナス培養タンク 52 スフィンゴモナス担持担体かご 54 ミクロシスチン分解槽 56 配管 60 後処理槽 62 放流配管 10 stirring tanks 12 Raw water piping 14 screen 17 Stirrer 19 plumbing 21 Liquid transfer pump 23 Piping 30-1 Algae tank 30-2 Algae tank 30-3 Algae bath 32 Brevibacillus carrying carrier storage basket 34 Air diffuser 40 Brevibacillus culture tank 50 Sphingomonas culture tank 52 Sphingomonas carrier basket 54 Microcystin Degradation Tank 56 piping 60 post-treatment tank 62 Discharge pipe
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C12N 1/20 C12R 1:01 C12R 1:01) (72)発明者 辻 清美 東京都新宿区原町3−18 Fターム(参考) 4B065 AA01X BA22 BC42 CA56 4D003 AA01 AB02 BA04 EA06 EA14 EA17 EA19 EA21 EA25 EA28 EA30 FA02 FA06 4D040 DD03 DD31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // (C12N 1/20 C12R 1:01 C12R 1:01) (72) Inventor Kiyomi Tsuji Shinjuku-ku, Tokyo Haramachi 3-18 F term (reference) 4B065 AA01X BA22 BC42 CA56 4D003 AA01 AB02 BA04 EA06 EA14 EA17 EA19 EA21 EA25 EA28 EA30 FA02 FA06 4D040 DD03 DD31
Claims (3)
の溶藻性微生物と接触させて分解し、次いで前記藻類の
分解によって放出されたミクロシスチンをスフィンゴモ
ナス菌と接触させて無害化することを特徴とする藻類の
処理法。1. A liquid containing algae is brought into contact with a Brevibacillus-type algae to decompose it, and then microcystin released by the decomposition of the algae is brought into contact with Sphingomonas bacterium to render it harmless. A method for treating algae characterized by:
の溶藻性微生物と接触させて分解し、次いで前記藻類の
分解によって放出されたミクロシスチンをスフィンゴモ
ナス菌と接触させて無害化した後、活性汚泥と好気条件
下で接触させBOD成分を除去することを特徴とする藻
類の処理法。2. A liquid containing algae is contacted with a Brevibacillus-type algae to be decomposed, and then microcystin released by the decomposition of the algae is contacted with Sphingomonas bacterium to be harmless. , A method for treating algae, which comprises contacting with activated sludge under aerobic conditions to remove BOD components.
び/又はスフィンゴモナス菌は、多孔性担体にそれぞれ
105個/cm3担体以上担持したものであることを特徴
とする請求項1又は2に記載の藻類の処理法。3. The Brevibacillus-type algae-producing microorganism and / or Sphingomonas bacterium are each carried on a porous carrier in an amount of 10 5 cells / cm 3 or more, respectively. The method for treating algae according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001209504A JP3432214B2 (en) | 2001-07-10 | 2001-07-10 | Algae treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001209504A JP3432214B2 (en) | 2001-07-10 | 2001-07-10 | Algae treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003024979A true JP2003024979A (en) | 2003-01-28 |
JP3432214B2 JP3432214B2 (en) | 2003-08-04 |
Family
ID=19045147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001209504A Expired - Fee Related JP3432214B2 (en) | 2001-07-10 | 2001-07-10 | Algae treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3432214B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006051871A1 (en) * | 2004-11-11 | 2006-05-18 | Hitachi Plant Engineering & Construction Co., Ltd. | Method of treating water containing microcystin and apparatus therefor |
JP2006230332A (en) * | 2005-02-28 | 2006-09-07 | Kyushu Institute Of Technology | New microorganism and method for treating organic sludge therewith |
CN1295324C (en) * | 2003-12-03 | 2007-01-17 | 北京大学 | Saprospira sp. and its application |
JP2007007569A (en) * | 2005-06-30 | 2007-01-18 | Ebara Corp | Apparatus for treating estrogen |
CN100349808C (en) * | 2005-09-14 | 2007-11-21 | 广东绿百多生物科技有限公司 | Method of removing microcystin using microbial degradation |
JP2013540443A (en) * | 2010-10-15 | 2013-11-07 | ソウル大学校産学協力団 | Biofilm formation-inhibiting microorganism immobilization container and separation membrane water treatment apparatus using the same |
CN107459138A (en) * | 2017-08-15 | 2017-12-12 | 广东筑奥生态环境股份有限公司 | A kind of method of impaired seashore wetland restoration of the ecosystem |
WO2021153130A1 (en) * | 2020-01-28 | 2021-08-05 | 聡 安斎 | Water purification device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102442727B (en) * | 2011-11-08 | 2013-09-04 | 江苏商达水务有限公司 | Method for removing microcystin |
CN108314195A (en) * | 2018-03-23 | 2018-07-24 | 福建省微生物研究所 | Application of the Brevibacillus panacihumi bacterium in sewage purification |
-
2001
- 2001-07-10 JP JP2001209504A patent/JP3432214B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1295324C (en) * | 2003-12-03 | 2007-01-17 | 北京大学 | Saprospira sp. and its application |
WO2006051871A1 (en) * | 2004-11-11 | 2006-05-18 | Hitachi Plant Engineering & Construction Co., Ltd. | Method of treating water containing microcystin and apparatus therefor |
JP2006230332A (en) * | 2005-02-28 | 2006-09-07 | Kyushu Institute Of Technology | New microorganism and method for treating organic sludge therewith |
JP4654437B2 (en) * | 2005-02-28 | 2011-03-23 | 国立大学法人九州工業大学 | Novel microorganism and method for treating organic sludge using the same |
JP2007007569A (en) * | 2005-06-30 | 2007-01-18 | Ebara Corp | Apparatus for treating estrogen |
CN100349808C (en) * | 2005-09-14 | 2007-11-21 | 广东绿百多生物科技有限公司 | Method of removing microcystin using microbial degradation |
JP2013540443A (en) * | 2010-10-15 | 2013-11-07 | ソウル大学校産学協力団 | Biofilm formation-inhibiting microorganism immobilization container and separation membrane water treatment apparatus using the same |
CN107459138A (en) * | 2017-08-15 | 2017-12-12 | 广东筑奥生态环境股份有限公司 | A kind of method of impaired seashore wetland restoration of the ecosystem |
WO2021153130A1 (en) * | 2020-01-28 | 2021-08-05 | 聡 安斎 | Water purification device |
JP2021115541A (en) * | 2020-01-28 | 2021-08-10 | 聡 安斎 | Water purification device |
JP7398286B2 (en) | 2020-01-28 | 2023-12-14 | 聡 安斎 | water purification equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3432214B2 (en) | 2003-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7425267B2 (en) | Method and equipment for treating microcystin-containing water | |
Khalid et al. | Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains | |
JP5027649B2 (en) | Female hormone substance-degrading microorganism and use thereof | |
JP4215467B2 (en) | Algae and microcystin treatment agent and treatment method | |
CN103382049B (en) | Sequencing batch activated sludge reactor for sewage treatment and treatment process | |
Abdel-Razek et al. | Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: safe approach | |
CN115386520B (en) | Rhodococcus pyridine-philic RL-GZ01 strain and application thereof | |
JP3432214B2 (en) | Algae treatment | |
CN112011486B (en) | Synchronous nitrification and denitrification bacillus subtilis K8 and application thereof | |
EP0396648B1 (en) | A process for the microbiological purification of water | |
CN108486013A (en) | Application of the adhesion sword bacterium in sewage purification | |
EP1210407B1 (en) | Bacterial consortium ebc1000 and a method using the bacterial consortium ebc1000 for remedying biologically recalcitrant toxic chemicals contained in industrial wastewater, waste materials and soils | |
Roets-Dlamini et al. | Development of Bacillus spp. consortium for one-step “Aerobic Nitrification-Denitrification” in a fluidized-bed reactor | |
RU2272793C2 (en) | Waste water treatment process, means and mixed bacterial population (options) for implementation of the process | |
JP3836338B2 (en) | Novel microorganisms and oil-containing wastewater treatment equipment using the same | |
CN107176678A (en) | A kind of method by functional microorganism intensive treatment livestock breeding wastewater | |
CN111471611A (en) | Rhodococcus ruber HDRR1 for purifying inorganic nitrogen and phosphorus in tail water of seawater pond culture and application thereof | |
CN110938567B (en) | Bacillus subtilis, microbial agent and application thereof | |
JP3398760B2 (en) | Water treatment method, water treatment agent and aerobic denitrifying bacteria | |
KR102652220B1 (en) | Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same | |
CN108455734A (en) | Application of the Amur microbacterium in sewage purification | |
WO1997014658A1 (en) | Cyanide containing effluent purification process | |
JP2003053320A (en) | Biological cleaning method for polluted environment | |
WO2023286593A1 (en) | Aromatic polyester decomposing bacteria | |
JP3996415B2 (en) | Microorganisms for decomposing hardly decomposable substances including coloring components and sewage treatment methods using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |