JP2003021724A - Optical circuit element - Google Patents

Optical circuit element

Info

Publication number
JP2003021724A
JP2003021724A JP2001209390A JP2001209390A JP2003021724A JP 2003021724 A JP2003021724 A JP 2003021724A JP 2001209390 A JP2001209390 A JP 2001209390A JP 2001209390 A JP2001209390 A JP 2001209390A JP 2003021724 A JP2003021724 A JP 2003021724A
Authority
JP
Japan
Prior art keywords
light
optical
circuit element
grating
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001209390A
Other languages
Japanese (ja)
Inventor
Hisashi Murata
久 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001209390A priority Critical patent/JP2003021724A/en
Publication of JP2003021724A publication Critical patent/JP2003021724A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical circuit element with which an excellent attenuated light is available, the wavelength characteristic can be arbitrarily set further, a nonreciprocity characteristic can be given. SOLUTION: A diffraction member (20) having a diffraction grating is arranged between the input/output faces of a pair of optical waveguide members (11 and 12) arranged with a space, light emitted from the optical waveguide member (11) is diffracted with the diffraction grating (20), non-diffracted light (0-order diffracted light) only or a combination of non-diffracted light and prescribed diffracted light only is coupling made incident in the other optical waveguide member (12) as a waveguide mode and the light form the optical waveguide member is attenuated and outputted to the other optical waveguide member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光回路素子に係り、
特に一方の光導波部材からの光を減衰させて他の光導波
部材へ出力する光回路素子に関する。
TECHNICAL FIELD The present invention relates to an optical circuit element,
In particular, it relates to an optical circuit element that attenuates light from one optical waveguide member and outputs it to another optical waveguide member.

【0002】[0002]

【従来の技術】光通信システムにおいて、光導波部材例
えば光ケーブル中を伝送される伝送光の強度は、所定強
度の範囲であることが望ましい。このため、伝送光の強
度を適宜減衰させる光回路素子が光伝送路中に配置され
て、入射側光伝送路からの強い伝送光を減衰して適正な
強度の伝送光を射出側光伝送路に送出するようにしてい
る。
2. Description of the Related Art In an optical communication system, the intensity of transmitted light transmitted through an optical waveguide member such as an optical cable is preferably within a predetermined intensity range. Therefore, an optical circuit element that appropriately attenuates the intensity of the transmitted light is arranged in the optical transmission line to attenuate the strong transmitted light from the incident side optical transmission line and to transmit the transmitted light of an appropriate intensity to the emission side optical transmission line. I am sending it to.

【0003】従来このような光回路素子として、図12
に示す光ファイバコネクタ型の光回路素子70がある。
この光回路素子70は2本の光ファイバ71,72をフ
ェルール73,74で覆い、各光ファイバのコア75,
76が間隔77を開けたり、傾きをもって配置されるよ
う、前記フェルール73,74をスリーブ78で固定し
て構成したものである。このような光回路素子によれ
ば、一方の光ファイバ71のコア75から射出された光
は、コア75端面から拡散して射出され、その一部が他
方の光ファイバ72のコア76の端面に入射され、入射
された光は減衰されて射出されることとなる。他の光
は、フェルール73,74の端面やスリーブ78の内周
面に吸収されることとなる。
A conventional optical circuit device of this kind is shown in FIG.
There is an optical fiber connector type optical circuit element 70 shown in FIG.
In this optical circuit element 70, two optical fibers 71 and 72 are covered with ferrules 73 and 74, and a core 75 of each optical fiber,
The ferrules 73 and 74 are fixed by a sleeve 78 so that the space 76 can be arranged with an interval 77 or can be inclined. According to such an optical circuit element, the light emitted from the core 75 of the one optical fiber 71 is diffused and emitted from the end surface of the core 75, and a part of the light is emitted to the end surface of the core 76 of the other optical fiber 72. The incident light is attenuated and then emitted. Other light is absorbed by the end faces of the ferrules 73 and 74 and the inner peripheral surface of the sleeve 78.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述光
回路素子では、光ファイバ伝送モードの連続的な界分布
(例えばガウス分布)を有する伝送波の一部のみを取り
出して伝送波として射出側のコアに入射することとなる
ため、除去された界がクラッドモードとなり易く、ま
た、クラッドモードの再結合によって減衰量リプルが生
じることがある。
However, in the above-mentioned optical circuit element, only a part of the transmission wave having a continuous field distribution (for example, Gaussian distribution) of the optical fiber transmission mode is extracted and the core on the emission side is taken out as the transmission wave. Therefore, the removed field is likely to become a cladding mode, and an attenuation ripple may occur due to the recombination of the cladding mode.

【0005】また、このような光回路素子にあっては、
伝送方向によって減衰量を変える非相反減衰器とするこ
とや、その伝送光の波長によって減衰を所望の値に設定
することは難しかった。
Further, in such an optical circuit element,
It has been difficult to use a non-reciprocal attenuator that changes the attenuation amount depending on the transmission direction and to set the attenuation to a desired value depending on the wavelength of the transmitted light.

【0006】本発明は、良好な減衰光を得ることがで
き、波長特性を任意に設定でき、さらには、非相反を与
えることができる光回路素子を提供しようとするもので
ある。
An object of the present invention is to provide an optical circuit element capable of obtaining good attenuated light, arbitrarily setting wavelength characteristics, and imparting non-reciprocity.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の手段は、間隔を開けて配置した一対の光導波
部材の出入力端面間に回折格子を有する回折部材を配置
し、一方の光導波部材から射出された光を回折格子によ
り回折させ、非回折光(0次回折光)のみ、または非回
折光及び所定の回折光のみを他方の光導波部材に導波モ
ードとして結合入射させ、一方の光導波部材からの光を
減衰させて他の光導波部材へ出力する光回路素子であ
る。
Means for Solving the Problems The means of the present invention for solving the above-mentioned problems is to dispose a diffractive member having a diffraction grating between the input and output end faces of a pair of optical waveguide members which are arranged at a distance. The light emitted from the optical waveguide member is diffracted by the diffraction grating, and only the non-diffracted light (0th-order diffracted light) or only the non-diffracted light and the predetermined diffracted light is incident on the other optical waveguide member as a guided mode. An optical circuit element that attenuates light from one optical waveguide member and outputs the attenuated light to another optical waveguide member.

【0008】また、本発明に係る光回路素子は、回折部
材を一対の光導波部材の出入力端面の一方の光導波部材
に近接した位置に配置し、光の一方向の伝送による減衰
量と、他方向の伝送による減衰量を異ならせたものであ
る。
Further, in the optical circuit element according to the present invention, the diffractive member is arranged at a position close to one of the optical input / output end faces of the pair of optical waveguide members, and the attenuation amount due to one-way transmission of light is provided. , The amount of attenuation due to transmission in the other direction is different.

【0009】さらに、本発明に係る光回路素子は、格子
形状を矩形とし、異なる複数の波長の入射光に対して所
望の減衰を与える所定の波長特性を備えるように格子高
さを設定した回折格子を備えたものである。
Further, in the optical circuit element according to the present invention, the grating shape is rectangular, and the grating height is set so as to have a predetermined wavelength characteristic that gives desired attenuation to incident lights of different wavelengths. It has a grid.

【0010】また、本発明に係る光回路素子は、回折部
材が入出射両面に回折格子を備えており、両面の回折格
子の方向は互いに直交するよう形成したものである。
Further, in the optical circuit element according to the present invention, the diffractive member is provided with diffraction gratings on both the input and output surfaces, and the diffraction gratings on both surfaces are formed so as to be orthogonal to each other.

【0011】さらにまた、本発明に係る光回路素子は、
一対の光導波部材を光ファイバとしたものである。
Furthermore, the optical circuit element according to the present invention is
An optical fiber is used as the pair of optical waveguide members.

【0012】本発明によれば、必要とする非回折光、あ
るいは非回折光及び所定の回折光のみを取り出すことに
より、不要とする回折光と空間的に分離し、クラッドモ
ードの発生や減衰量リプルの発生を防止することがで
き、これにより光減衰率を所望の値に設定することがで
きる。
According to the present invention, the necessary non-diffracted light, or only the non-diffracted light and the predetermined diffracted light are taken out to spatially separate them from the unnecessary diffracted light, and the generation and attenuation of the cladding mode. It is possible to prevent the occurrence of ripples, whereby the optical attenuation factor can be set to a desired value.

【0013】また、回折部材を一対の光導波部材の出入
力端面の一方の光導波部材に近接した位置に配置した本
発明にあっては、光を回折部材を挟んで一方向(上り)
及び逆方向(下り)の両方向で光を透過させるとき、各
方向で光の減衰量を異なるように設定することができ、
非相反減衰器を構成することができる。
Further, in the present invention in which the diffractive member is arranged at a position close to one of the optical input / output end faces of the pair of optical waveguide members, the light is directed in one direction (upward) with the diffractive member interposed therebetween.
When transmitting light in both the reverse direction (downward) and the reverse direction (downward), the attenuation amount of the light can be set to be different in each direction,
A non-reciprocal attenuator can be constructed.

【0014】光通信のアクセス系では加入者ごとに上り
と下りで光信号の強度が異なるため、両者の信号光のレ
ベルを均一化することが必要となる。このような場合、
本発明に係る光回路素子は加入者ごとに基地局との間の
光信号を適正化するために有効である。
In the access system of optical communication, the optical signal intensity is different between the upstream and the downstream for each subscriber, so that it is necessary to make the levels of both signal lights uniform. In such cases,
The optical circuit element according to the present invention is effective for optimizing the optical signal with the base station for each subscriber.

【0015】また、格子形状を矩形とし、異なる複数の
波長の入射光に対して所望の減衰を与える所定の波長特
性を備えるように格子高さを設定した回折格子を備えた
本発明は、入射光の波長による特性を所望の特性にする
とき、本例の場合設定できる要素を格子高さのみとして
いるから、波長特性の設定は格子高さの設定のみであ
り、容易なものとなる。
Further, according to the present invention, which has a diffraction grating having a rectangular grating shape and a grating height set so as to have a predetermined wavelength characteristic which gives desired attenuation to incident lights of different wavelengths, When the characteristic according to the wavelength of light is set to a desired characteristic, in this example, the only element that can be set is the grating height, and therefore the wavelength characteristic is set only by the grating height, which is easy.

【0016】特にWDM(光多重通信)方式システムで
は受発光素子や光増幅器の波長に依存する特性を補正し
て、広い波長帯域の信号光レベルをほぼ同一のエネルギ
ーレベルに均一化する光等化器としての光回路素子が数
多く使用されることとなる。
Particularly, in a WDM (optical multiplex communication) system, optical equalization for correcting the wavelength-dependent characteristics of a light emitting / receiving element and an optical amplifier to make the signal light level in a wide wavelength band uniform to almost the same energy level. Many optical circuit elements as a container will be used.

【0017】また、回折部材が入出射両面に回折格子を
備え両面の回折格子の方向は互いに直交するように構成
したものにあっては、入射光の偏光方向の状態にかかわ
らず、結果的に同じ回折結果を与え安定した減衰特性を
えることができる。
Further, in the case where the diffractive member is provided with diffraction gratings on both the input and output sides and the directions of the diffraction gratings on both sides are orthogonal to each other, the result is that regardless of the state of the polarization direction of the incident light. Stable attenuation characteristics can be obtained by giving the same diffraction result.

【0018】さらに、両面の回折格子の格子幅や格子高
さを変えることにより様々な波長特性を備えた光回路素
子とすることができる。
Furthermore, an optical circuit element having various wavelength characteristics can be obtained by changing the grating width and grating height of the diffraction grating on both sides.

【0019】さらにまた、一対の光導波部材を光ファイ
バとした本発明にあっては、一般の光通信システムに使
用される光ファイバを対象として、汎用性に富むもので
ある。
Furthermore, the present invention in which the pair of optical waveguide members are optical fibers is highly versatile for optical fibers used in general optical communication systems.

【0020】[0020]

【発明の実施の形態】(第一の実施の形態例)以下、本発
明の実施の形態を添付図面を参照して説明する。図1は
本発明に係る光回路素子10の形態の一例を模式的に示
している。この例では光回路素子10は、同軸に距離を
離して配置された2本の光ファイバ11、12を備えて
いる。各光ファイバ11,12の中央部にコア(図示し
ていない)が形成されており、その周囲にはクラッド
(図示していない)が形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows an example of the form of an optical circuit element 10 according to the present invention. In this example, the optical circuit element 10 includes two optical fibers 11 and 12 coaxially arranged at a distance. A core (not shown) is formed at the center of each of the optical fibers 11 and 12, and a clad (not shown) is formed around the core.

【0021】また、光回路素子10は、上記両光ファイ
バ11,12の軸部に格子部材20を備えている。この
格子部材20は集光レンズ21と回折格子部材22とを
接続して形成して構成されている。
Further, the optical circuit element 10 is provided with a lattice member 20 on the shaft portions of the both optical fibers 11 and 12. The grating member 20 is formed by connecting a condenser lens 21 and a diffraction grating member 22.

【0022】集光レンズ21は、一方の光ファイバ(例
えば光ファイバ11)のコアから発散された伝送光を、
相手方の光ファイバ(例えば光ファイバ12)のコアに
集束させる凸レンズをなす。この例では集光レンズ21
と回折格子部材22とは一体として形成されている。
The condenser lens 21 transmits the transmitted light diverged from the core of one optical fiber (for example, the optical fiber 11).
A convex lens for focusing on the core of the optical fiber of the other party (for example, the optical fiber 12) is formed. In this example, the condenser lens 21
And the diffraction grating member 22 are integrally formed.

【0023】回折格子部材22は、図2に示すように、
基板30の一面に矩形状の格子面31を形成したもので
ある。本例では、回折格子部材22からの反射光が光フ
ァイバ11に戻らないように、回折格子部材22は光軸
に対してわずかな傾きを持って設けるようにしている。
格子面31は、入射光を透過光(非回折光:0次光)、
回折光(±1次、±2次、…±n次(nは正の整数))
に回折する。そして、本例では、この回折格子部材22
の回折特性は、その格子面の格子高さHを変化させるこ
とにより、図3のように変化する。本例では、横軸にH
/λ(λ入射光の波長)をとり、縦軸には回折効率をと
っている。
The diffraction grating member 22, as shown in FIG.
A rectangular lattice surface 31 is formed on one surface of the substrate 30. In this example, the diffraction grating member 22 is provided with a slight inclination with respect to the optical axis so that the reflected light from the diffraction grating member 22 does not return to the optical fiber 11.
The grating surface 31 converts incident light into transmitted light (non-diffracted light: 0th-order light),
Diffracted light (± 1st order, ± 2nd order, ... ± nth order (n is a positive integer))
Diffract to. In this example, the diffraction grating member 22
The diffractive characteristic of changes with the grating height H of the grating surface as shown in FIG. In this example, the horizontal axis is H
/ Λ (wavelength of λ incident light), and the vertical axis represents diffraction efficiency.

【0024】図3によれば、0次光(透過光)は、矩形
格子の高さ0(格子なし)のとき0.95以上から、高
さ1.0のとき0.0まで連続して変化していることが
分かる。
According to FIG. 3, the 0th order light (transmitted light) is continuously from 0.95 or more when the height of the rectangular lattice is 0 (no lattice) to 0.0 when the height is 1.0. You can see that it is changing.

【0025】また、回折格子部材22は、図4に示すよ
うに、基板40の一面に鋸歯状の格子面41を形成して
構成することができる。この場合、格子面41は、入射
光を透過光(非回折光:0次光)と回折光に分離する
が、回折光は図5に示すように、+1次がほとんどの成
分を占め、−1次の成分は少ない。そして、本例では、
回折格子部材22の回折特性は、その格子面の格子高さ
Hを変化させることにより、図5のように変化する。本
例では、図3と同様に、横軸にH/λ(λ入射光の波
長)をとり、縦軸には回折効率をとっている。
Further, the diffraction grating member 22 can be constructed by forming a sawtooth grating surface 41 on one surface of the substrate 40, as shown in FIG. In this case, the grating surface 41 separates the incident light into transmitted light (non-diffracted light: 0th-order light) and diffracted light, but the diffracted light has a + 1st-order most component as shown in FIG. There are few primary components. And in this example,
The diffraction characteristic of the diffraction grating member 22 changes as shown in FIG. 5 by changing the grating height H of the grating surface. In this example, as in FIG. 3, the horizontal axis represents H / λ (wavelength of λ incident light) and the vertical axis represents diffraction efficiency.

【0026】図5によれば、0次光(透過光)は、矩形
格子の高さ0(格子なし)のとき0.95以上から、高
さ2.0のとき0.0まで連続して変化していることが
分かる。
According to FIG. 5, the 0th-order light (transmitted light) continues from 0.95 or more when the height of the rectangular lattice is 0 (no lattice) to 0.0 when the height is 2.0. You can see that it is changing.

【0027】従って、光ファイバ11から伝送光をこの
回折格子部材22に入射し、その透過光だけを光ファイ
バ12に射出するように配置すれば、入射光に対する射
出光の減衰率を自由に制御できることとなる。
Therefore, if the transmission light from the optical fiber 11 is made incident on the diffraction grating member 22 and only the transmitted light is emitted to the optical fiber 12, the attenuation rate of the emitted light with respect to the incident light can be freely controlled. It will be possible.

【0028】本例に係る光回路素子によれば、必要とす
る非回折光、あるいは非回折光及び所定の回折光取り出
すことにより、不要とする回折光と空間的に分離し、ク
ラッドモードの発生や減衰量リプルの発生を防止するこ
とができ、これにより光減衰率を所望の値に設定するこ
とができる。
According to the optical circuit element of this example, the necessary non-diffracted light, or the non-diffracted light and the predetermined diffracted light are extracted to spatially separate the unnecessary diffracted light and generate the cladding mode. It is possible to prevent the occurrence of a ripple and an attenuation amount ripple, and thereby to set the light attenuation rate to a desired value.

【0029】また、本例にかかる光回路素子では、光フ
ァイバ伝送モードの連続的な界分布(例えばガウス分
布)した伝送波を一様に取り出し減衰波としているか
ら、クラッドモードが生じる事が無くなり、また減衰量
リプルが生じることがない。
Further, in the optical circuit element according to the present example, since the transmission wave having the continuous field distribution (for example, Gaussian distribution) of the optical fiber transmission mode is uniformly taken out as the attenuation wave, the clad mode does not occur. In addition, the attenuation ripple does not occur.

【0030】また、上記各例では、回折部材が射出面側
だけに回折格子を設けた場合について説明したが、入出
射両面に回折格子を備え、両面の回折格子の方向を互い
に直交するよう形成するようにしても良い(入射面の格
子面を図4に符号42で示した)。この場合、入射光の
偏光方向の状態にかかわらず、結果的に同じ回折結果を
与え安定した減衰特性をえることができる。さらに、両
面の回折格子の格子幅や格子高さを変えることにより様
々な波長特性を備えた光回路素子とすることができる。
また、入射面の鋸歯状格子により、光ファイバ11への
反射戻り光が低減できるので、回折格子部材を光軸に直
交して配置することができる。
In each of the above examples, the case where the diffraction member is provided with the diffraction grating only on the exit surface side has been described. However, the diffraction grating is provided on both the input and output surfaces, and the directions of the diffraction gratings on both surfaces are orthogonal to each other. (The lattice plane of the incident surface is shown by reference numeral 42 in FIG. 4). In this case, regardless of the state of the polarization direction of the incident light, the same diffraction result is eventually given and a stable attenuation characteristic can be obtained. Further, by changing the grating width and grating height of the diffraction grating on both sides, it is possible to obtain an optical circuit element having various wavelength characteristics.
Further, the saw-toothed grating on the incident surface can reduce the reflected return light to the optical fiber 11, so that the diffraction grating member can be arranged orthogonal to the optical axis.

【0031】(第二の実施の形態例)次に本発明に係る
第2の実施の形態に係る光回路素子の実施の形態を説明
する。図6は本発明に係る光回路素子50の形態の一例
を模式的に示している。この例では光回路素子50は、
同軸に距離を離して配置された2本の光ファイバ51、
52を備えている。各光ファイバ51,52はコア及び
クラッドで形成されている。
(Second Embodiment) Next, an embodiment of an optical circuit element according to the second embodiment of the present invention will be described. FIG. 6 schematically shows an example of the form of the optical circuit element 50 according to the present invention. In this example, the optical circuit element 50 is
Two optical fibers 51 arranged coaxially at a distance,
52 is provided. Each optical fiber 51, 52 is formed of a core and a clad.

【0032】また、光回路素子50は、上記両光ファイ
バ51,52の入射出面の中央部に集光レンズ60を備
える他、光ファイバ52に近接して格子部材65を備え
ている。この光ファイバ52と格子部材65との距離
は、後述する条件による。
The optical circuit element 50 is provided with a condenser lens 60 at the center of the entrance / exit surfaces of both the optical fibers 51 and 52, and is also provided with a grating member 65 close to the optical fiber 52. The distance between the optical fiber 52 and the grating member 65 depends on the conditions described later.

【0033】集光レンズ60は、一方の光ファイバ51
(52)のコアから発散された伝送光を、他方の光ファ
イバ52(51)のコアに集束させる凸レンズをなす。
The condenser lens 60 has one optical fiber 51.
It forms a convex lens that focuses the transmission light diverged from the core of (52) on the core of the other optical fiber 52 (51).

【0034】格子部材65の構成は、上述した第1の実
施の形態例の格子部材と同一である。即ち、図2に示す
ように、基板30の一面に矩形状の格子面31を形成し
たものや、図4に示すように、基板40の一面に鋸歯状
の格子面41を形成したものである。
The structure of the grid member 65 is the same as that of the grid member of the first embodiment described above. That is, as shown in FIG. 2, a rectangular lattice surface 31 is formed on one surface of the substrate 30, or as shown in FIG. 4, a sawtooth lattice surface 41 is formed on one surface of the substrate 40. .

【0035】本例に係る光回路素子によれば、光ファイ
バ51から入射した光は、格子部材65で回折され透過
光(0次光)及び回折光(±1次光)に分岐するが、光
ファイバ52に近接して配置しているため、透過光及び
回折光の両光は、光ファイバ52のコアに照射され、光
の減衰量は少ないものとなる。
According to the optical circuit element of this example, the light incident from the optical fiber 51 is diffracted by the grating member 65 and split into transmitted light (0th order light) and diffracted light (± 1st order light). Since it is arranged close to the optical fiber 52, both the transmitted light and the diffracted light are applied to the core of the optical fiber 52, and the amount of light attenuation is small.

【0036】一方光ファイバ52から入射した光は、格
子部材65で回折され透過光(0次光)及び回折光(±
1次光)に分岐し、光ファイバ51に対して十分距離が
設けられているため、透過光は光ファイバ51のコアに
照射されるが、回折光は、光ファイバ51のコアに照射
されず、結局光ファイバ51に入射される光は透過光の
みとなり光の減衰量は大きなものとなる。
On the other hand, the light incident from the optical fiber 52 is diffracted by the grating member 65 and transmitted light (0th order light) and diffracted light (±
(1st order light) and a sufficient distance is provided with respect to the optical fiber 51, the transmitted light is applied to the core of the optical fiber 51, but the diffracted light is not applied to the core of the optical fiber 51. After all, the light incident on the optical fiber 51 becomes only the transmitted light, and the light attenuation amount becomes large.

【0037】従って本例によれば、、各方向で光の減衰
量を異なるように設定することができ、非相反減衰器を
構成することができる。
Therefore, according to this example, the attenuation amount of light can be set differently in each direction, and a non-reciprocal attenuator can be constructed.

【0038】(第三の実施の形態例)本発明に係る光回
路素子の第3の実施の形態例は、格子形状を矩形とし、
異なる複数の波長の入射光に対して所望の減衰を与える
所定の波長特性を備えるように格子高さを設定した回折
格子を備えた光回路素子である。
(Third Embodiment) In the third embodiment of the optical circuit element according to the present invention, the lattice shape is rectangular,
The optical circuit element includes a diffraction grating whose grating height is set so as to have a predetermined wavelength characteristic that gives desired attenuation to incident lights of different wavelengths.

【0039】即ち、本例にかかる光回路素子はその光学
素子の配置を、図1に示した例と同様にするものであ
り、格子部材20の格子高さを、例えば2つの波長の光
に対して異なる回折効率を与えるように設定したもので
ある。
That is, the optical circuit element according to this example has the same optical element arrangement as that of the example shown in FIG. 1, and the grating height of the grating member 20 is set to, for example, light of two wavelengths. It is set so as to give different diffraction efficiencies.

【0040】ここで、格子部材の格子高さHに対する波
長1.3μmの光の透過光(0次光)及び回折光(±1
次、±3次)の回折効率を図7に示す。同条件における
波長1.55μmの光の透過光(0次光)及び回折光
(±1次、±3次)の回折効率を図8に示す。また、格
子部材の3種の格子高さH(0.5μm、2.5μm及
び3.0μm)に対する波長1.2μmから1.7μm
の光の透過光(0次光)及び回折光(±1次、±3次)
の回折効率を図9乃至図11に示す。
Here, transmitted light (0th order light) and diffracted light (± 1) of light having a wavelength of 1.3 μm with respect to the grating height H of the grating member.
FIG. 7 shows the diffraction efficiencies of (next and ± 3rd) orders. FIG. 8 shows diffraction efficiencies of transmitted light (0th order light) and diffracted light (± 1st order, ± 3rd order) of light having a wavelength of 1.55 μm under the same conditions. In addition, wavelengths of 1.2 μm to 1.7 μm for three types of grating heights H (0.5 μm, 2.5 μm and 3.0 μm) of the grating member.
Transmitted light (0th order light) and diffracted light (± 1st order, ± 3rd order)
The diffraction efficiency of is shown in FIGS. 9 to 11.

【0041】各図によれば、例えば、伝送光として、波
長1.3μmの光と、波長1.55μmの光を使用する
場合、格子高さHを0.5μmとすれば、本例に係る光
回路素子の各光の透過率は、波長1.3μmに対して約
0.65、波長1.55μmに対して約0.73とする
ことができる。同様に格子高さHを2.5μmとすれ
ば、本例に係る光回路素子の各光の透過率は、波長1.
3μmに対して約0.84、波長1.55μmに対して
約0.55とでき、さらに格子高さHを3.0μmとす
れば、波長1.3μmに対して約0.67、波長1.5
5μmに対して約0.82とできる。
According to each drawing, for example, when the light having the wavelength of 1.3 μm and the light having the wavelength of 1.55 μm are used as the transmission light, and the grating height H is 0.5 μm, the present embodiment is concerned. The transmittance of each light of the optical circuit element can be about 0.65 for a wavelength of 1.3 μm and about 0.73 for a wavelength of 1.55 μm. Similarly, if the grating height H is 2.5 μm, the transmittance of each light of the optical circuit element according to the present example is 1.
About 0.84 for 3 μm and about 0.55 for wavelength 1.55 μm. Further, if the grating height H is 3.0 μm, about 0.67 for wavelength 1.3 μm, wavelength 1 .5
It can be about 0.82 for 5 μm.

【0042】従って、格子部材の格子高さを選択するこ
とにより、異なる波長の光に対して所望の減衰量を与え
ることができ、複数の波長の入射光に対する射出光の減
衰率を自由に制御できることとなる。
Therefore, by selecting the grating height of the grating member, a desired amount of attenuation can be given to lights of different wavelengths, and the attenuation rate of the emitted light with respect to the incident lights of a plurality of wavelengths can be freely controlled. It will be possible.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
必要とする非回折光、あるいは非回折光及び所定の回折
光を取り出すことにより、不要とする回折光と空間的に
分離し、クラッドモードの発生や減衰量リプルの発生を
防止することができ、これにより光減衰率を所望の値に
設定することができる。
As described above, according to the present invention,
By extracting the required non-diffracted light, or the non-diffracted light and the predetermined diffracted light, it is possible to spatially separate the unnecessary diffracted light and prevent the generation of the cladding mode and the amount of attenuation ripple. Thereby, the light attenuation rate can be set to a desired value.

【0044】また、回折部材を一対の光導波部材の出入
力端面の一方の光導波部材に近接した位置に配置した本
発明にあっては、光を回折部材を挟んで一方向(上り)
及び逆方向(下り)の両方向で光を通過させるとき、各
方向で光の減衰量を異なるように設定することができ、
非相反減衰器を構成することができる。
Further, in the present invention in which the diffractive member is arranged at a position close to one of the optical input / output end faces of the pair of optical waveguide members, the light is directed in one direction (upward) with the diffractive member interposed therebetween.
When passing light in both the reverse direction (downward) and the reverse direction (downward), the light attenuation amount can be set to be different in each direction.
A non-reciprocal attenuator can be constructed.

【0045】光通信のアクセス系では加入者ごとに上り
と下りで光信号の強度が異なるため、両者の信号光のレ
ベルを均一化することが必要となる。このような場合、
本発明に係る光回路素子は加入者ごとに基地局との間の
光信号を適正化するために有効である。
In the access system of optical communication, the optical signal intensity is different between the upstream and the downstream for each subscriber, so it is necessary to make the levels of the signal light of both subscribers uniform. In such cases,
The optical circuit element according to the present invention is effective for optimizing the optical signal with the base station for each subscriber.

【0046】また、格子形状を矩形とし、異なる複数の
波長の入射光に対して所望の減衰を与える所定の波長特
性を備えるように格子高さを設定した回折格子を備えた
本発明は、入射光の波長による特性を所望の特性にする
とき、本例の場合設定できる要素を格子高さのみとして
いるから、波長特性の設定は格子高さの設定のみであ
り、容易なものとなる。
Further, the present invention is provided with a diffraction grating in which the grating shape is rectangular and the grating height is set so as to have a predetermined wavelength characteristic which gives desired attenuation to incident lights of different wavelengths. When the characteristic according to the wavelength of light is set to a desired characteristic, in this example, the only element that can be set is the grating height, and therefore the wavelength characteristic is set only by the grating height, which is easy.

【0047】特にWDM(光多重通信)方式システムで
は受発光素子や光増幅器の波長に依存する特性を補正し
て、広い波長帯域の信号光レベルをほぼ同一のエネルギ
ーレベルに均一化する光等化器としての光回路素子が数
多く使用されることとなる。
Particularly, in the WDM (optical multiplex communication) system, optical equalization for correcting the wavelength-dependent characteristics of the light emitting / receiving element and the optical amplifier to make the signal light level in a wide wavelength band uniform to almost the same energy level. Many optical circuit elements as a container will be used.

【0048】また、回折部材が入出射両面に回折格子を
備え両面の回折格子の方向は互いに直交するように構成
したものにあっては、入射光の偏光方向の状態にかかわ
らず、結果的に同じ回折結果を与え安定した減衰特性を
えることができる。
Further, in the case where the diffractive member is provided with the diffraction gratings on both the input and output sides and the directions of the diffraction gratings on both sides are orthogonal to each other, the result is regardless of the state of the polarization direction of the incident light. Stable attenuation characteristics can be obtained by giving the same diffraction result.

【0049】さらに、両面の回折格子の格子幅や格子高
さを変えることにより様々な波長特性を備えた光回路素
子とすることができる。
Further, by changing the grating width or grating height of the diffraction grating on both sides, it is possible to obtain an optical circuit element having various wavelength characteristics.

【0050】さらにまた、一対の光導波部材を光ファイ
バとした本発明にあっては、一般の光通信システムに使
用される光ファイバを対象として、汎用性に富むもので
ある。
Furthermore, the present invention in which the pair of optical waveguide members are optical fibers is highly versatile for optical fibers used in general optical communication systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光回路素子の第1の実施の形態例
を示す図である。
FIG. 1 is a diagram showing a first embodiment of an optical circuit element according to the present invention.

【図2】図1に示した光回路素子の格子部材の構成を示
す図である。
FIG. 2 is a diagram showing a configuration of a lattice member of the optical circuit element shown in FIG.

【図3】図2に示した格子部材の格子高さに対する回折
効率を示すグラフである。
FIG. 3 is a graph showing diffraction efficiency with respect to the grating height of the grating member shown in FIG.

【図4】図1に示した光回路素子の格子部材の他の構成
を示す図である。
FIG. 4 is a diagram showing another configuration of the lattice member of the optical circuit element shown in FIG.

【図5】図4に示した格子部材の格子高さに対する回折
効率を示すグラフである。
5 is a graph showing diffraction efficiency with respect to the grating height of the grating member shown in FIG.

【図6】本発明に係る光回路素子の第2の実施の形態例
を示す図である。
FIG. 6 is a diagram showing a second embodiment of an optical circuit element according to the present invention.

【図7】格子部材の格子高さHに対する波長1.3μm
の光の透過光(0次光)及び回折光(1次、3次)の回
折効率を示すグラフである
FIG. 7 shows a wavelength of 1.3 μm with respect to a grating height H of a grating member.
5 is a graph showing the diffraction efficiency of transmitted light (0th order light) and diffracted light (1st order and 3rd order) of light of FIG.

【図8】格子部材の格子高さHに対する波長1.55μ
mの光の透過光(0次光)及び回折光(1次、3次)の
回折効率示すグラフである。
FIG. 8 shows a wavelength of 1.55 μ with respect to a grating height H of a grating member.
It is a graph which shows the diffraction efficiency of the transmitted light (0th-order light) and the diffracted light (1st-order and 3rd-order) of the light of m.

【図9】格子部材の格子高さH:0.5μmに対する波
長1.2μmから1.7μmの光の透過光(0次光)及
び回折光(1次、3次)の回折効率を示すグラフであ
る。
FIG. 9 is a graph showing the diffraction efficiency of transmitted light (0th order light) and diffracted light (1st order and 3rd order) of light having a wavelength of 1.2 μm to 1.7 μm with respect to the grating height H of the grating member: 0.5 μm. Is.

【図10】格子部材の格子高さH:2.5μmに対する
波長1.2μmから1.7μmの光の透過光(0次光)
及び回折光(1次、3次)の回折効率を示すグラフであ
る。
FIG. 10: Transmitted light (0th order light) of light having a wavelength of 1.2 μm to 1.7 μm with respect to the grating height H of the grating member: 2.5 μm
3 is a graph showing diffraction efficiency of diffracted light (first-order and third-order).

【図11】格子部材の格子高さH:3.0μmに対する
波長1.2μmから1.7μmの光の透過光(0次光)
及び回折光(1次、3次)の回折効率を示すグラフであ
る。
FIG. 11: Transmitted light (0th-order light) of light having a wavelength of 1.2 μm to 1.7 μm with respect to the grating height H of the grating member: 3.0 μm
3 is a graph showing diffraction efficiency of diffracted light (first-order and third-order).

【図12】従来の光学素子を示す図である。FIG. 12 is a diagram showing a conventional optical element.

【符号の説明】[Explanation of symbols]

10 光回路素子 11 光ファイバ 12 光ファイバ 20 格子部材 21 集光レンズ 22 回折格子部材 30 基板 31 格子面 32 光ファイバ 40 基板 41 格子面 42 格子面 50 光回路素子 51 光ファイバ 52 光ファイバ 60 集光レンズ 65 格子部材 70 光回路素子 71 光ファイバ 72 光ファイバ 73 フェルール 74 前記フェルール 75 コア 76 コア 77 間隔 78 スリーブ 10 Optical circuit element 11 optical fiber 12 optical fiber 20 Lattice member 21 Condensing lens 22 Diffraction grating member 30 substrates 31 lattice plane 32 optical fiber 40 substrates 41 lattice plane 42 lattice plane 50 Optical circuit element 51 optical fiber 52 optical fiber 60 condenser lens 65 Lattice member 70 Optical circuit element 71 optical fiber 72 optical fiber 73 Ferrule 74 The ferrule 75 core 76 core 77 intervals 78 Sleeve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 間隔を開けて配置した一対の光導波部材
の出入力端面間に回折格子を有する回折部材を配置し、
一方の光導波部材から射出された光を回折格子により回
折させ、非回折光(0次回折光)のみまたは非回折光及
び所定の回折光のみを他方の光導波部材に導波モードと
して結合入射させ、一方の光導波部材からの光を減衰さ
せて他の光導波部材へ出力する光回路素子。
1. A diffractive member having a diffractive grating is arranged between the input and output end faces of a pair of optical waveguide members arranged at intervals.
The light emitted from one optical waveguide member is diffracted by the diffraction grating, and only the non-diffracted light (0th order diffracted light) or the non-diffracted light and a predetermined diffracted light are combined and incident on the other optical waveguide member as a guided mode. , An optical circuit element that attenuates light from one optical waveguide member and outputs the attenuated light to another optical waveguide member.
【請求項2】 回折部材を一対の光導波部材の出入力端
面の一方の光導波部材に近接した位置に配置し、光の一
方向の伝送による減衰量と、他方向の伝送による減衰量
を異ならせたことを特徴とする請求項1に記載の光回路
素子。
2. A diffractive member is arranged at a position on one of the input / output end faces of a pair of optical waveguide members in the vicinity of one optical waveguide member, and an attenuation amount due to transmission of light in one direction and an attenuation amount due to transmission of light in the other direction are provided. The optical circuit element according to claim 1, wherein the optical circuit element is different.
【請求項3】 格子形状を矩形とし、異なる複数の波長
の入射光に対して所望の減衰を与える所定の波長特性を
備えるように格子高さを設定した回折格子を備えた請求
項1または請求項2に記載の光回路素子。
3. A diffraction grating having a rectangular grating shape and having a grating height set so as to have a predetermined wavelength characteristic that gives desired attenuation to incident lights having a plurality of different wavelengths. Item 2. The optical circuit element according to Item 2.
【請求項4】 回折部材が、入出射両面に回折格子を備
えており、両面の回折格子の方向は互いに直交するよう
形成されている請求項1、請求項2、または請求項3に
記載の光回路素子。
4. The diffractive member according to claim 1, 2 or 3, wherein the diffractive member has diffractive gratings on both the input and output sides, and the diffractive gratings on both sides are formed so as to be orthogonal to each other. Optical circuit element.
【請求項5】 一対の光導波部材を光ファイバとした請
求項1、請求項2、請求項3または請求項4に記載の光
回路素子。
5. The optical circuit element according to claim 1, claim 2, claim 3 or claim 4, wherein the pair of optical waveguide members are optical fibers.
JP2001209390A 2001-07-10 2001-07-10 Optical circuit element Withdrawn JP2003021724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209390A JP2003021724A (en) 2001-07-10 2001-07-10 Optical circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209390A JP2003021724A (en) 2001-07-10 2001-07-10 Optical circuit element

Publications (1)

Publication Number Publication Date
JP2003021724A true JP2003021724A (en) 2003-01-24

Family

ID=19045048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209390A Withdrawn JP2003021724A (en) 2001-07-10 2001-07-10 Optical circuit element

Country Status (1)

Country Link
JP (1) JP2003021724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221444A (en) * 2010-04-14 2011-11-04 Ricoh Opt Ind Co Ltd Optical attenuator and optical attenuator module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221444A (en) * 2010-04-14 2011-11-04 Ricoh Opt Ind Co Ltd Optical attenuator and optical attenuator module

Similar Documents

Publication Publication Date Title
US5521733A (en) Optical switching device for wavelength-multiplexing optical communication
US7792401B2 (en) Optical waveguide device and optical communication module
JP2010091863A (en) Transmission and reception module
JP2017044781A (en) Waveguide type optical diffraction grating and optical wavelength filter
JPH02261236A (en) Straight receiver for light of plnral wave light
JPH0333805A (en) Optical device with focusing bragg reflector, optical multiplexing instrument, optical feedback multi- plexing instrument and optical filter
JPS61113009A (en) Optical multiplexer/demultiplexer
US6389201B1 (en) Arrayed waveguide grating having arrayed waveguide employing taper structure
JP6688442B1 (en) Tunable filter and optical system
WO2001095540A2 (en) Device and method for optical performance monitoring in an optical communications network
US6724533B2 (en) Lamellar grating structure with polarization-independent diffraction efficiency
JP2003021724A (en) Optical circuit element
Mahlein Fiber-optic communication in the wavelength-division multiplex mode
JP2004361660A (en) Array waveguide type wavelength demultiplexer
US7142749B2 (en) System and method for controlling spectral passband profile
US6859317B1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
US6909822B2 (en) Wavelength separation elements for dense wavelength division multiplexing systems
JPH09145928A (en) Optical attenuator
JPS56126806A (en) Diffraction grating type light branching filter
CN100487508C (en) Double diffraction grating planar lightwave circuit
JPH0815582A (en) Optical bidirectional module
US6621959B2 (en) Planar waveguide diffractive beam splitter/coupler
JP3607534B2 (en) Optical wavelength division multiplexer
JPS61205906A (en) Optical multiplexing and demultiplexing module
US6295150B1 (en) Wavelength division multiplexing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060213