JP2003021136A - Preload setting method for double row tapered roller bearing - Google Patents

Preload setting method for double row tapered roller bearing

Info

Publication number
JP2003021136A
JP2003021136A JP2001209325A JP2001209325A JP2003021136A JP 2003021136 A JP2003021136 A JP 2003021136A JP 2001209325 A JP2001209325 A JP 2001209325A JP 2001209325 A JP2001209325 A JP 2001209325A JP 2003021136 A JP2003021136 A JP 2003021136A
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
row tapered
double
preload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001209325A
Other languages
Japanese (ja)
Inventor
Kunihiko Yokota
邦彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2001209325A priority Critical patent/JP2003021136A/en
Publication of JP2003021136A publication Critical patent/JP2003021136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preload setting method for a double row tapered roller bearing capable of suppressing preload dispersion after incorporation. SOLUTION: In the preload setting method for the double row tapered roller bearing, inner diameters d1 and d2 of inner rings 2 and 3 and an outer diameter d3 of an outer ring 5 of the double row tapered roller bearing 10 are measured in a measuring process. In a calculating process, a decrease on of an axial internal clearance of the bearing 10 by incorporation is calculated from the inner diameters d1 and d2 and the outer diameter d3 of the bearing 10 measured in the measuring process, a tolerance median of an outer diameter of a rotary shaft 1 to which the bearing is incorporated, and a tolerance median of an inner diameter of a differential carrier 4. A thickness T of a shim 13 is set on the basis of the calculated decrease of the axial internal clearance so that a preload applied when the double row tapered roller bearing 10 is incorporated with the rotary shaft 1 and the differential carrier 4 is a predetermined value.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、例えば、ピニオ
ンユニットを構成する複列円すいころ軸受の予圧設定方
法に関する。 【0002】 【従来の技術】従来、例えば、ピニオンユニットに組み
込まれる複列円すいころ軸受は、組み込み後の予圧荷重
ばらつきがやや大きく、寿命,機械的損失,耐焼付き性の
面で問題となっていた。 【0003】 【発明が解決しようとする課題】上記予圧荷重のばらつ
きの軸受側の要因としては、初期アキシャルすきま,内
径寸法,外径寸法が挙げられる。 【0004】そこで、この発明は、組み込み後の予圧荷
重ばらつきを抑えることができる複列円すいころ軸受の
予圧設定方法を提供することにある。 【0005】 【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の複列円すいころ軸受の予圧設定方
法は、複列円すいころ軸受の内輪の内径と外輪の外径を
測定する測定工程と、上記複列円すいころ軸受で支承す
る回転軸の外径の公差中央値と、上記複列円すいころ軸
受が嵌合する固定部の内径の公差中央値と、上記測定し
た上記内輪の内径と、上記外輪の外径とから、上記複列
円すいころ軸受を上記回転軸と上記固定部とに組み付け
たときに、上記組み付け前の状態から上記複列円すいこ
ろ軸受のアキシャルすきまが減少する減少値を算出する
算出工程と、上記算出したアキシャルすきまの減少値に
基いて、上記組み付けたときに、上記複列円すいころ軸
受に付与される予圧が所定値になるように、軸方向に隣
接する複数の内輪間,もしくは軸方向に隣接する複数の
外輪間に配置するシムの厚さを設定するシム厚さ設定工
程とを備えたことを特徴としている。 【0006】この請求項1の発明の予圧設定方法では、
測定工程で、複列円すいころ軸受の内輪の内径と外輪の
外径を測定する。そして、算出工程で、上記測定工程で
測定した軸受の内径,外径と、この軸受が組み付けられ
る回転軸の外径の公差中央値と固定部の内径の公差中央
値とから、組み付けによる軸受のアキシャルすきまの減
少値を算出する。そして、この算出したアキシャルすき
まの減少値に基いて、上記シムの厚さを設定し、複列円
すいころ軸受を回転軸と固定部に組み付けたときに、付
与される予圧が所定値になるようにする。 【0007】したがって、この発明の予圧設定方法によ
れば、組み込み後の予圧荷重ばらつきの要因を、相手部
品精度ばらつき(固定部の内径公差,回転軸の軸径公差)
のみとすることができるので、組み込み後の予圧荷重ば
らつきを半減できる。 【0008】 【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。 【0009】図1に、この発明の実施形態で、予圧を設
定する複列円すいころ軸受1の構造を示す。この複列円
すいころ軸受10は、回転軸1(一点鎖線で図示)に嵌合
される第1内輪2と第2内輪3と、この第1,第2内輪
2,3に径方向に対向する外輪5を有する。この外輪5
は、固定部としてのデフキャリア4(一点鎖線で図示)の
内周面4Aに嵌合される。 【0010】また、この複列円すいころ軸受10は、周
方向に所定間隔を隔てて複数個配列された円すいころ6
と円すいころ7を有している。この円すいころ6は、外
輪5と第1内輪2との間に配置され、円すいころ7は、
第2内輪3と外輪5との間に配置されている。また、こ
の円すいころ6,7は、環状保持器11,12に嵌め込ま
れて保持されている。 【0011】そして、この第1内輪2の軸方向端面2A
と第2内輪3の軸方向端面3Aとが軸方向に対向してお
り、この軸方向端面2Aと軸方向端面3Aとの間にシム
13が挟まれている。 【0012】この実施形態の予圧設定方法では、まず、
上記第1内輪2の内径d1と第2内輪3の内径d2を測
定する。また、外輪5の外径d3を測定する。 【0013】次に、上記内輪2,3の内径d1,d2と回
転軸1の外径の公差中央値d5、および、上記外輪5の
外径d3とデフキャリア4の内径の公差中央値d6とか
ら、組み付けによる軸受10のアキシャル隙間δの減少
値Δδを算出する。 【0014】この軸受10のアキシャル隙間δとは、組
み付け前(初期状態)の軸受10単体において、外輪5を
矢印Xで示す軸方向に押して付けて、外輪5の軌道面5
Aを円すいころ6の外周面に密接させたときに、外輪5
の軌道面5Bと円すいころ7の外周面との間にできる隙
間の軸方向距離である。このとき、第1内輪2の端面2
Aと第2内輪3の端面3Aとの間の距離は所定の標準値
に固定しておく。この標準値は零であってもよい。ま
た、この初期状態でのアキシャル隙間δは、実測しても
よく、設計による計算値を採用してもよい。 【0015】そして、上記減少値Δδとは、上記複列円
すいころ軸受10を回転軸1とデフキャリア4に組み付
ける前の状態(初期状態)でのアキシャル隙間δ1から、
組み付け後の状態の複列円すいころ軸受1のアキシャル
隙間δ2を減算した値である。この組み付け後のアキシ
ャル隙間δ2は、上記測定した内輪2,3の内径d1,d
2と外輪5の外径d3と回転軸1の外径の公差中央値d
5およびデフキャリア4の内径の公差中央値d6とから
算出する。 【0016】次に、上記算出したアキシャル隙間δの減
少値Δδに基いて、軸方向に隣接する内輪2と内輪3の
間に配置するシム13の厚さTを設定して、回転軸1と
デフキャリア4に組み付けたときに、複列円すいころ軸
受10に付与される予圧荷重が所定値になるようにす
る。 【0017】このアキシャル隙間δの減少値Δδが大き
いほど、予圧荷重が大きくなり、減少値Δδが小さいほ
ど、予圧荷重が小さくなる。また、上記シム13の厚さ
Tが厚いほど、上記予圧荷重が減少し、厚さTが薄いほ
ど、上記予圧荷重が増加する。したがって、上記減少値
Δδが大きいほど、シム13の厚さTを厚く設定し、上
記減少値Δδが小さいほど、シム13の厚さTを薄く設
定することで、回転軸1とデフキャリア4に組み付けた
ときに、複列円すいころ軸受10に付与される予圧荷重
が所定値になるようにする。 【0018】そして、この決定された厚さTのシム13
を使用して、複列円すいころ軸受10を完成させる。 【0019】したがって、この実施形態の予圧設定方法
によれば、複列円すいころ軸受10をデフキャリア4,
回転軸1に組み込んだ後の予圧荷重ばらつきの要因を、
相手部品精度ばらつき、つまり、デフキャリア4の内周
面4Aの内径公差,回転軸1の軸径公差のみとすること
ができ、組み込み後の予圧荷重ばらつきを半減できる。
なお、上記シム13に替えて、図2に示すように、筒形
状部17Aを有し、断面L字形に屈曲した環状シム17
とすれば、内輪2への位置合わせが容易になり、複列円
すいころ軸受10自体の組立て性を向上できる。 【0020】また、上記実施形態では、内輪2と3の間
にシム13を挟む場合について説明したが、内輪2,3
間にシムを介在させずに、外輪5に替えた複数の外輪間
にシムを介在させる場合にも、本発明を適用できる。 【0021】 【発明の効果】以上より明らかなように、請求項1の発
明の複列円すいころ軸受の予圧設定方法は、測定工程
で、複列円すいころ軸受の内輪の内径と外輪の外径を測
定する。そして、算出工程で、上記測定工程で測定した
軸受の内径,外径と、この軸受が組み付けられる回転軸
の外径の公差中央値と固定部の内径の公差中央値とか
ら、組み付けによる軸受のアキシャルすきまの減少値を
算出する。そして、この算出したアキシャルすきまの減
少値に基いて、上記シムの厚さを設定し、複列円すいこ
ろ軸受を回転軸と固定部に組み付けたときに、付与され
る予圧が所定値になるようにする。したがって、この発
明の予圧設定方法によれば、組み込み後の予圧荷重ばら
つきの要因を、相手部品精度ばらつき(固定部の内径公
差,回転軸の軸径公差)のみとすることができるので、組
み込み後の予圧荷重ばらつきを半減できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preload setting method for a double-row tapered roller bearing constituting a pinion unit, for example. 2. Description of the Related Art Conventionally, for example, double-row tapered roller bearings incorporated in a pinion unit have a somewhat large variation in preload after being incorporated, and have been problematic in terms of life, mechanical loss, and seizure resistance. Was. [0003] Factors on the bearing side of the variation of the preload load include initial axial clearance, inner diameter, and outer diameter. Accordingly, an object of the present invention is to provide a method for setting a preload of a double-row tapered roller bearing that can suppress variations in the preload load after assembly. [0005] In order to achieve the above object, a preload setting method for a double-row tapered roller bearing according to the first aspect of the present invention comprises an inner diameter of an inner ring and an outer diameter of an outer ring of the double-row tapered roller bearing. Measuring step, the median tolerance of the outer diameter of the rotating shaft supported by the double-row tapered roller bearing, and the median tolerance of the inner diameter of the fixed portion to which the double-row tapered roller bearing fits, From the inner diameter of the inner ring and the outer diameter of the outer ring, when the double-row tapered roller bearing is assembled to the rotating shaft and the fixed portion, the axial clearance of the double-row tapered roller bearing from the state before the assembly is obtained. A calculating step of calculating a decrease value in which the axial clearance is reduced, based on the calculated decrease value of the axial clearance, so that the preload applied to the double-row tapered roller bearing at the time of the assembling is set to a predetermined value. Adjacent in direction A shim thickness setting step of setting the thickness of the shim disposed between the plurality of inner rings or between the plurality of outer rings adjacent in the axial direction. In the preload setting method according to the present invention,
In the measuring step, the inner diameter of the inner ring and the outer diameter of the outer ring of the double row tapered roller bearing are measured. In the calculation step, the inner diameter and outer diameter of the bearing measured in the above measurement step, the median tolerance of the outer diameter of the rotating shaft to which this bearing is assembled, and the median tolerance of the inner diameter of the fixed part are used to determine the bearing by assembly. The axial clearance decrease value is calculated. Then, based on the calculated reduction value of the axial clearance, the thickness of the shim is set, and when the double-row tapered roller bearing is assembled to the rotating shaft and the fixed portion, the preload applied is set to a predetermined value. To Therefore, according to the preload setting method of the present invention, the factor of the preload load variation after assembling is determined by the variation in accuracy of the mating part (tolerance of inner diameter of fixed portion, tolerance of shaft diameter of rotary shaft).
Since it is possible to reduce the preload load variation after assembly, it can be reduced by half. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 shows the structure of a double-row tapered roller bearing 1 for setting a preload according to an embodiment of the present invention. The double-row tapered roller bearing 10 radially opposes a first inner ring 2 and a second inner ring 3 fitted to a rotating shaft 1 (shown by a dashed line) and the first and second inner rings 2 and 3. It has an outer ring 5. This outer ring 5
Is fitted to the inner peripheral surface 4A of the differential carrier 4 (shown by a dashed line) as a fixing portion. The double-row tapered roller bearing 10 has a plurality of tapered rollers 6 arranged at predetermined intervals in the circumferential direction.
And tapered rollers 7. This tapered roller 6 is disposed between the outer ring 5 and the first inner ring 2, and the tapered roller 7 is
It is arranged between the second inner ring 3 and the outer ring 5. The tapered rollers 6, 7 are fitted and held in the annular retainers 11, 12. An axial end face 2A of the first inner ring 2 is provided.
And the axial end face 3A of the second inner race 3 are axially opposed, and a shim 13 is sandwiched between the axial end face 2A and the axial end face 3A. In the preload setting method of this embodiment, first,
The inner diameter d1 of the first inner ring 2 and the inner diameter d2 of the second inner ring 3 are measured. Further, the outer diameter d3 of the outer ring 5 is measured. Next, the median tolerance d5 between the inner diameters d1, d2 of the inner races 2, 3 and the outer diameter of the rotary shaft 1, and the median tolerance d6 between the outer diameter d3 of the outer race 5 and the inner diameter of the differential carrier 4 are shown. Then, the reduction value Δδ of the axial gap δ of the bearing 10 due to the assembly is calculated. The axial clearance δ of the bearing 10 is defined as the bearing surface 10 of the outer ring 5 by pressing the outer ring 5 in the axial direction indicated by the arrow X in the bearing 10 alone before assembly (initial state).
When A is brought into close contact with the outer peripheral surface of the tapered roller 6, the outer ring 5
Is the axial distance of the gap formed between the raceway surface 5B of the tapered roller 7 and the outer peripheral surface of the tapered roller 7. At this time, the end surface 2 of the first inner ring 2
The distance between A and the end face 3A of the second inner ring 3 is fixed to a predetermined standard value. This standard value may be zero. Further, the axial gap δ in the initial state may be measured or a calculated value by design may be adopted. The reduced value Δδ is obtained from the axial gap δ1 before the double-row tapered roller bearing 10 is assembled to the rotating shaft 1 and the differential carrier 4 (initial state).
This is a value obtained by subtracting the axial gap δ2 of the double-row tapered roller bearing 1 in the assembled state. The axial clearance δ2 after the assembling is the inner diameters d1, d of the inner rings 2, 3 measured as described above.
2, the outer diameter d3 of the outer ring 5 and the median tolerance d of the outer diameter of the rotating shaft 1
5 and the median tolerance d6 of the inner diameter of the differential carrier 4. Next, based on the calculated reduction value Δδ of the axial gap δ, the thickness T of the shim 13 disposed between the inner ring 2 and the inner ring 3 adjacent in the axial direction is set, and The preload applied to the double row tapered roller bearing 10 when assembled to the differential carrier 4 is set to a predetermined value. As the decrease value Δδ of the axial gap δ increases, the preload increases, and as the decrease value Δδ decreases, the preload decreases. In addition, as the thickness T of the shim 13 increases, the preload decreases, and as the thickness T decreases, the preload increases. Therefore, the thickness T of the shim 13 is set thicker as the decrease value Δδ is larger, and the thickness T of the shim 13 is set thinner as the decrease value Δδ is smaller. When assembled, the preload applied to the double row tapered roller bearing 10 is set to a predetermined value. The shim 13 having the determined thickness T is used.
To complete the double-row tapered roller bearing 10. Therefore, according to the preload setting method of this embodiment, the double row tapered roller bearing 10 is
Factors of the preload variation after incorporating into the rotating shaft 1
Variations in the precision of the mating component, that is, only the tolerance of the inner diameter of the inner peripheral surface 4A of the differential carrier 4 and the tolerance of the shaft diameter of the rotary shaft 1 can be obtained, and the variation in the preload after assembly can be reduced by half.
As shown in FIG. 2, an annular shim 17 having a cylindrical portion 17A and bent into an L-shaped cross section is used instead of the shim 13.
If so, the positioning with respect to the inner ring 2 is facilitated, and the assemblability of the double-row tapered roller bearing 10 itself can be improved. In the above embodiment, the case where the shim 13 is interposed between the inner rings 2 and 3 has been described.
The present invention can also be applied to a case where a shim is interposed between a plurality of outer rings replaced with the outer ring 5 without an interposed shim. As is apparent from the above description, the preload setting method for a double-row tapered roller bearing according to the first aspect of the present invention includes, in the measuring step, the inner diameter of the inner ring and the outer diameter of the outer ring of the double-row tapered roller bearing. Is measured. In the calculation step, the inner diameter and outer diameter of the bearing measured in the above measurement step, the median tolerance of the outer diameter of the rotating shaft to which this bearing is assembled, and the median tolerance of the inner diameter of the fixed part are used to determine the bearing by assembly. The axial clearance decrease value is calculated. Then, based on the calculated reduction value of the axial clearance, the thickness of the shim is set, and when the double-row tapered roller bearing is assembled to the rotating shaft and the fixed portion, the preload applied is set to a predetermined value. To Therefore, according to the preload setting method of the present invention, the cause of the preload load variation after assembly can be only the variation in accuracy of the mating component (tolerance of the inner diameter of the fixed portion, tolerance of the shaft diameter of the rotating shaft). Can reduce the variation of the preload load by half.

【図面の簡単な説明】 【図1】 この発明の実施形態で予圧を設定する複列円
すいころ軸受の構造を示す断面図である。 【図2】 上記複列円すいころ軸受のアキシャル隙間を
説明する模式図である。 【符号の説明】 1…回転軸、2…第1内輪2、3…第2内輪、4…デフ
キャリア、5…外輪、6,7…円すいころ、10…複列
円すいころ軸受、11,12…環状保持器、13…シ
ム、31…隙間。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a structure of a double-row tapered roller bearing for setting a preload according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating an axial gap of the double row tapered roller bearing. [Description of Signs] 1 ... rotating shaft, 2 ... first inner ring 2, 3 ... second inner ring, 4 ... differential carrier, 5 ... outer ring, 6, 7 ... tapered roller, 10 ... double row tapered roller bearing, 11, 12 ... annular retainer, 13 ... shim, 31 ... gap.

Claims (1)

【特許請求の範囲】 【請求項1】 複列円すいころ軸受の内輪の内径と外輪
の外径を測定する測定工程と、 上記複列円すいころ軸受で支承する回転軸の外径の公差
中央値と、上記複列円すいころ軸受が嵌合する固定部の
内径の公差中央値と、上記測定した上記内輪の内径と、
上記外輪の外径とから、上記複列円すいころ軸受を上記
回転軸と上記固定部とに組み付けたときに、上記組み付
け前の状態から上記複列円すいころ軸受のアキシャルす
きまが減少する減少値を算出する算出工程と、 上記算出したアキシャルすきまの減少値に基いて、上記
回転軸と固定部に組み付けたときに、上記複列円すいこ
ろ軸受に付与される予圧が所定値になるように、軸方向
に隣接する複数の内輪間,もしくは軸方向に隣接する複
数の外輪間に配置するシムの厚さを設定するシム厚さ設
定工程とを備えたことを特徴とする複列円すいころ軸受
の予圧設定方法。
Claims: 1. A measuring step of measuring the inner diameter of the inner ring and the outer diameter of the outer ring of a double-row tapered roller bearing, and the median tolerance of the outer diameter of a rotating shaft supported by the double-row tapered roller bearing. And the median tolerance of the inner diameter of the fixed portion to which the double row tapered roller bearing fits, and the measured inner diameter of the inner ring,
From the outer diameter of the outer ring, when the double-row tapered roller bearing is assembled to the rotating shaft and the fixed portion, the reduced value at which the axial clearance of the double-row tapered roller bearing is reduced from the state before the assembly. A calculating step of calculating, based on the reduced value of the calculated axial clearance, when assembling to the rotating shaft and the fixed part, the shaft so that the preload applied to the double row tapered roller bearing becomes a predetermined value. A shim thickness setting step for setting a shim thickness between a plurality of inner rings adjacent in the direction or between a plurality of outer rings adjacent in the axial direction, the preloading of the double-row tapered roller bearing. Setting method.
JP2001209325A 2001-07-10 2001-07-10 Preload setting method for double row tapered roller bearing Pending JP2003021136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209325A JP2003021136A (en) 2001-07-10 2001-07-10 Preload setting method for double row tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209325A JP2003021136A (en) 2001-07-10 2001-07-10 Preload setting method for double row tapered roller bearing

Publications (1)

Publication Number Publication Date
JP2003021136A true JP2003021136A (en) 2003-01-24

Family

ID=19044997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209325A Pending JP2003021136A (en) 2001-07-10 2001-07-10 Preload setting method for double row tapered roller bearing

Country Status (1)

Country Link
JP (1) JP2003021136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459873B2 (en) * 2009-11-23 2013-06-11 Newcara Technology Co., Ltd. Self-lubricating composite bearing
CN113742858A (en) * 2021-08-13 2021-12-03 钱潮轴承有限公司 Method for quickly searching borrowed roller for tapered roller bearing design
CN114462167A (en) * 2022-03-02 2022-05-10 中车大连机车研究所有限公司 Method for evaluating axial clearance fit of double-row tapered roller bearing for railway

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459873B2 (en) * 2009-11-23 2013-06-11 Newcara Technology Co., Ltd. Self-lubricating composite bearing
CN113742858A (en) * 2021-08-13 2021-12-03 钱潮轴承有限公司 Method for quickly searching borrowed roller for tapered roller bearing design
CN113742858B (en) * 2021-08-13 2024-04-19 钱潮轴承有限公司 Method for quickly searching borrowed roller for tapered roller bearing design
CN114462167A (en) * 2022-03-02 2022-05-10 中车大连机车研究所有限公司 Method for evaluating axial clearance fit of double-row tapered roller bearing for railway

Similar Documents

Publication Publication Date Title
JP3178328B2 (en) Measuring method and assembling method of double row angular contact ball bearing
JPWO2020203982A5 (en)
GB2169041A (en) A bearing assembly
JP2008265361A (en) Bearing device for wheel
JP4525476B2 (en) Preloading method for double row tapered roller bearing unit
JP2003021136A (en) Preload setting method for double row tapered roller bearing
JP2006064082A (en) Rolling bearing unit
JPH01312221A (en) Shaft support method
JP3757309B2 (en) Pinion shaft support bearing unit
JP2008196578A (en) Bearing unit
JP2019100505A (en) Hub unit bearing and manufacturing method of hub unit bearing
JPH0234498Y2 (en)
JP2001336537A (en) Tapered roller bearing
JP3572710B2 (en) Radial ball bearing preloading method and radial ball bearing device with preload
JP2006307886A (en) Roller bearing
JP4356611B2 (en) Bearing device
JP2006183847A (en) Bearing device
JPH0725849Y2 (en) Spindle head spindle support device
JP3159582B2 (en) Double row ball bearing
JP7327103B2 (en) Cages for angular contact ball bearings and angular contact ball bearings
JP7290086B2 (en) HUB UNIT BEARING AND MANUFACTURING METHOD THEREOF
JP2007146936A (en) Rolling bearing applied with pre-load
JP2007100921A (en) Rolling bearing
JP2002039169A (en) Tapered roller bearing device
JP2002181058A (en) Double row ball bearing device