JP2003020612A - Vibration control device, vibration control support structure, and bridge fall preventing device - Google Patents

Vibration control device, vibration control support structure, and bridge fall preventing device

Info

Publication number
JP2003020612A
JP2003020612A JP2001203369A JP2001203369A JP2003020612A JP 2003020612 A JP2003020612 A JP 2003020612A JP 2001203369 A JP2001203369 A JP 2001203369A JP 2001203369 A JP2001203369 A JP 2001203369A JP 2003020612 A JP2003020612 A JP 2003020612A
Authority
JP
Japan
Prior art keywords
outer member
bridge
vibration control
inner member
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001203369A
Other languages
Japanese (ja)
Inventor
Chiaki Sudo
千秋 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2001203369A priority Critical patent/JP2003020612A/en
Publication of JP2003020612A publication Critical patent/JP2003020612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact vibration control device with the simple structure and easy to be fitted to an existing structure and capable of absorbing the energy regardless of the direction of a relative movement. SOLUTION: A cylindrical rubber body 64 is arranged between a cylindrical outer tube 46 to be fitted to a girder 16 and a cylindrical inner tube 56 to be fitted to a pier 12, and adhered to the outer tube 46 and the inner tube 56 by vulcanization. The outer tube 46 and the inner tube 56 are relatively displaced in the horizontal direction by the vibration transmitted from the girder 16 to the pier 12, and the rubber body 64 is deformed to absorb the energy and prevent a fall of the girder 16 from the pier 12. Fitting is facilitated by only fitting the outer tube 46 and the inner tube 56 to the girder 16 or the pier 12, and fitting to an existing bridge is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、制震装置、制震支
持構造及び落橋防止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration control device, a vibration control support structure, and a bridge collapse prevention device.

【0002】[0002]

【従来の技術】橋桁等の上部構造物を、支承を介して橋
脚や橋台等の下部構造物で支持すると共に、地震等の発
生時に上部構造物が下部構造物から落下することを防止
する落橋防止装置が、従来から種々提案されている。
2. Description of the Related Art A bridge bridge that supports upper structures such as bridge girders with lower structures such as piers and abutments via bearings and prevents the upper structures from falling from the lower structures when an earthquake occurs. Various prevention devices have been conventionally proposed.

【0003】例えば、図8に示す落橋防止装置では、橋
桁112の間に2枚の連結板114を掛け渡し、これら
の連結板114をボルト状の結合ピン116でつないで
いる。橋桁112の相対移動により、連結板114と結
合ピン116とが衝突してこの相対移動を一定範囲内に
制限し、橋桁112の落下を防止する。
For example, in the bridge fall prevention device shown in FIG. 8, two connecting plates 114 are bridged between the bridge girders 112, and these connecting plates 114 are connected by bolt-like connecting pins 116. Due to the relative movement of the bridge girder 112, the connecting plate 114 and the coupling pin 116 collide with each other to limit this relative movement within a certain range, and prevent the bridge girder 112 from falling.

【0004】しかし、結合ピン116は、衝撃的な力が
作用した場合等でも破損しないようにするために、所定
の剛性が求められ、落橋防止装置の構造が大掛かりにな
るおそれがある。
However, the connecting pin 116 is required to have a predetermined rigidity so as not to be damaged even when an impact force is applied, and the structure of the bridge prevention device may be large.

【0005】これに対し、図9に示す連結具120が提
案されている(特開平9−88010号参照)。この連
結具120では、湾曲したゴム体122に鎖124が埋
設されており、鎖124の露出部分を利用して、桁12
6のブラケット128へピン130で連結するようにな
っている。この連結具120を使用した落橋防止装置で
は、ゴム体122や鎖124の破損のおそれがなく、確
実に相対移動のエネルギーをゴム体122の弾性変形で
吸収して、桁126の落下を防止できる。
On the other hand, a connector 120 shown in FIG. 9 has been proposed (see Japanese Patent Laid-Open No. 9-88010). In this connecting tool 120, a chain 124 is embedded in a curved rubber body 122, and the exposed portion of the chain 124 is used to make the girder 12
The bracket 130 of 6 is connected by a pin 130. In the bridge prevention device using this connecting tool 120, there is no risk of damage to the rubber body 122 and the chains 124, and the energy of relative movement can be reliably absorbed by the elastic deformation of the rubber body 122 to prevent the girder 126 from falling. .

【0006】しかし、この落橋防止装置では、地震等に
よって支承が破壊された場合には、桁126の移動量が
大きくなることがある。一般に、桁126の上面は道路
や線路等として使用されていることが多いため、桁12
6どうしの相対的なずれが大きくなると、交通に支障が
でるおそれがある。
However, in this fall prevention device, the movement amount of the girder 126 may increase when the bearing is destroyed due to an earthquake or the like. Generally, since the upper surface of the girder 126 is often used as a road or railroad track, the girder 12
If the relative displacement between the six becomes large, traffic may be hindered.

【0007】また、連結具120はその構造上、桁12
6どうしが接近する方向(矢印Aと反対の方向)へのエ
ネルギー吸収能力が比較的低いため、この方向でも確実
にエネルギー吸収できるようにするためには、連結具1
20を大型にするか、若しくは別の装置を併置しなけれ
ばならない。
Further, because of the structure of the connecting tool 120, the girder 12 is used.
6 Since the energy absorption ability in the direction in which the six come close to each other (the direction opposite to the arrow A) is relatively low, in order to ensure that the energy can be absorbed also in this direction, the connector 1
20 must be oversized or another device must be juxtaposed.

【0008】上記したものとは異なる落橋防止装置とし
て、さらに、図10に示すものも提案されている。
Further, as a bridge prevention device different from the one described above, a device shown in FIG. 10 has also been proposed.

【0009】この落橋防止装置では、橋桁142の対向
部分に形成した収容凹部144に、ダンパー146を収
容している。ダンパー146の中央に配置されたアンカ
ーバー148が橋脚150に埋設され、アンカーバー1
48の両側に積層された弾性パッド152が橋桁142
の側面から押されるようになっている。橋桁142に対
して相対移動すると、弾性パッド152が圧縮され(図
10(B)左側の弾性パッド152を参照)、エネルギ
ーが吸収される。
In this bridge fall prevention device, a damper 146 is housed in a housing recess 144 formed in a portion facing the bridge girder 142. An anchor bar 148 arranged in the center of the damper 146 is embedded in the pier 150,
Elastic pads 152 laminated on both sides of the bridge 48
It is designed to be pushed from the side. When the elastic pad 152 is moved relative to the bridge girder 142, the elastic pad 152 is compressed (see the elastic pad 152 on the left side of FIG. 10B), and energy is absorbed.

【0010】しかし、この落橋防止装置では、アンカー
バー148を橋脚150に深く埋設しなければならない
ため、既設の橋脚に適用することは困難である。また、
ダンパー146の構造上、橋桁142が互いに離間する
方向へ移動した場合には、エネルギー吸収できない。
However, in this fall prevention device, it is difficult to apply the anchor bar 148 to the existing pier because the anchor bar 148 must be deeply embedded in the pier 150. Also,
Due to the structure of the damper 146, energy cannot be absorbed when the bridge girders 142 move in the direction in which they are separated from each other.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記事実を考
慮し、小型かつ簡易な構造で、既設の構造物にも容易に
取り付けでき、相対移動の方向に関わらずエネルギー吸
収可能な制震装置と、この制震装置を用いた制震支持構
造及び落橋防止装置を得ることを課題とする。
In consideration of the above facts, the present invention has a small and simple structure, can be easily attached to an existing structure, and can absorb energy regardless of the direction of relative movement. And, it is an object to obtain a vibration control support structure and a bridge prevention device using this vibration control device.

【0012】[0012]

【課題を解決するための手段】請求項1に記載の発明で
は、略筒状に形成され上部構造物と下部構造物のいずれ
か一方に固定される外側部材と、上部構造物と下部構造
物の他方に固定され、前記外側部材の内側において、水
平方向に見たときに外側部材と重なるように配置される
内側部材と、前記内側部材と前記外側部材との間で外側
部材の全周にわたって内側部材と外側部材とに接触配置
され、内側部材と外側部材との水平方向の相対変位によ
って弾性変形する弾性体と、を有することを特徴とす
る。
According to a first aspect of the present invention, an outer member formed in a substantially tubular shape and fixed to either one of an upper structure and a lower structure, an upper structure and a lower structure. Of the inner member fixed to the other of the outer member, the inner member being arranged so as to overlap the outer member when viewed in the horizontal direction, and the entire circumference of the outer member between the inner member and the outer member. An elastic body that is disposed in contact with the inner member and the outer member and that elastically deforms due to relative displacement of the inner member and the outer member in the horizontal direction.

【0013】すなわち、この制震装置では、上部構造物
と下部構造物とが相対移動すると、外側部材の内側にお
いて、内側部材も外側部材に対し相対移動する。ここ
で、内側部材は外側部材に対して水平方向に見たときに
重なるように配置されており、内側部材と外側部材との
間に弾性体が配置されている。弾性体は、内側部材と外
側部材とに接触しており、内側部材と外側部材との水平
方向の相対変位によって弾性変形するので、上部構造物
と下部構造物との相対移動のエネルギーを吸収する。し
かも、弾性体は、外側部材の全周にわたって内側部材と
外側部材とに接触しているので、上部構造物と下部構造
物との相対移動の方向が水平方向の成分をもっていれ
ば、その全方位に対してエネルギー吸収できる。
That is, in this vibration control device, when the upper structure and the lower structure move relative to each other, the inner member also moves relative to the outer member inside the outer member. Here, the inner member is arranged so as to overlap the outer member when viewed in the horizontal direction, and the elastic body is arranged between the inner member and the outer member. The elastic body is in contact with the inner member and the outer member, and is elastically deformed by the relative displacement of the inner member and the outer member in the horizontal direction, so that the energy of the relative movement between the upper structure and the lower structure is absorbed. . Moreover, since the elastic body is in contact with the inner member and the outer member over the entire circumference of the outer member, if the direction of relative movement between the upper structure and the lower structure has a horizontal component, the omnidirectional Can absorb energy.

【0014】しかも、制震装置としては、外側部材と内
側部材との間に弾性体を配置するだけなので、小型且つ
簡易な構造とすることができる。外側部材及び内側部材
は、構造物(上部構造物又は下部構造物)に対し固定
(例えばボルトによる固定や溶接による固定を採用でき
る)すればよく、従来のように構造物に深く埋設する必
要はない。従って、既設の構造物に対しても本発明の制
震装置を適用できる。
Moreover, as the vibration control device, only the elastic body is arranged between the outer member and the inner member, so that the structure can be made small and simple. The outer member and the inner member may be fixed to the structure (upper structure or lower structure) (for example, fixing by bolts or fixing by welding can be adopted), and it is not necessary to deeply bury them in the structure as in the past. Absent. Therefore, the damping device of the present invention can be applied to an existing structure.

【0015】なお、上記の「上部構造物」及び「下部構
造物」は特に限定されないが、例えば、「上部構造物」
としては、橋桁等が含まれ、「下部構造物」としては、
橋脚や橋台が含まれる。
The above "upper structure" and "lower structure" are not particularly limited, but for example, "upper structure".
Includes bridge girders, etc., and as the "substructure",
Includes piers and abutments.

【0016】弾性体は、内側部材及び外側部材に単に接
触しているだけでも圧縮変形によりエネルギー吸収可能
であるが、請求項2に記載のように、前記弾性体が前記
内側部材及び前記外側部材に対し全周にわたって固着さ
れている構成では、さらに弾性体が引張変形及、せん断
変形及びこれらが複合された変形をするので、より効果
的にエネルギー吸収できる。
The elastic body can absorb energy by compressive deformation by merely contacting the inner member and the outer member. However, as described in claim 2, the elastic body can absorb the energy. On the other hand, in the configuration in which the elastic body is fixed over the entire circumference, the elastic body further undergoes tensile deformation, shear deformation, and combined deformation thereof, so that energy can be absorbed more effectively.

【0017】また、外側部材及び内側部材の形状として
は、請求項3に記載のように、前記外側部材が円筒状に
形成され、前記内側部材が円筒状又は円柱状に形成され
ているようにすると、簡単な形状で、且つ、外側部材が
内側部材の外側で全方位にわたって配置された構成とす
ることができる。
With respect to the shapes of the outer member and the inner member, as described in claim 3, the outer member is formed in a cylindrical shape, and the inner member is formed in a cylindrical shape or a cylindrical shape. Then, the outer member can be arranged in all directions in a simple shape and outside the inner member.

【0018】さらに、請求項3に記載の発明において、
請求項4に記載のように、前記外側部材と前記内側部材
とが同芯に配置されているようにすると、外側部材の内
面と内側部材の外面との距離が全方位で一定になるの
で、弾性体の厚みも全方位で一定とすることができる。
これにより、全方位で均等にエネルギー吸収可能とな
る。
Further, in the invention described in claim 3,
When the outer member and the inner member are arranged concentrically as described in claim 4, the distance between the inner surface of the outer member and the outer surface of the inner member becomes constant in all directions, The thickness of the elastic body can be constant in all directions.
This makes it possible to absorb energy evenly in all directions.

【0019】請求項5に記載の発明では、請求項3又は
請求項4に記載の発明において、前記外側部材の軸方向
長さと前記内側部材の軸方向長さとが略同一とされ、そ
れぞれの軸方向長さの略全域にわたって水平方向に見て
重なるように外側部材及び内側部材が配置されているこ
とを特徴とする。
According to a fifth aspect of the present invention, in the invention according to the third or fourth aspect, the axial length of the outer member and the axial length of the inner member are substantially the same, and the respective axes are the same. The outer member and the inner member are arranged so as to overlap each other when viewed in the horizontal direction over substantially the entire length of the direction.

【0020】従って、軸方向に無駄な空間を生じさせる
ことなく、弾性体を軸方向の略全域にわたって変形させ
ることが可能になる。
Therefore, the elastic body can be deformed over substantially the entire axial direction without producing a useless space in the axial direction.

【0021】請求項6に記載の発明では、請求項5に記
載の発明において、前記弾性体が円筒状に形成され、式 K=π(Eap+G)H/loge(r2/r1) (但し、見かけのヤング率Eap、は、形状率Sを用い
て、 Eap=(4+3.29S2)G 形状率Sは、 S=H/(r1+r2)/loge(r2/r1)) により求められる軸直角ばね定数Kが所定の範囲となる
ように、その内径r1、外径r2、軸方向長さH、見かけ
のヤング率Eap、横弾性係数Gがそれぞれ設定されてい
ることを特徴とする。
According to a sixth aspect of the invention, in the fifth aspect of the invention, the elastic body is formed in a cylindrical shape, and the formula K = π (E ap + G) H / log e (r 2 / r 1 (However, the apparent Young's modulus E ap is the shape ratio S, E ap = (4 + 3.29S 2 ) G The shape ratio S is S = H / (r1 + r2) / log e (r 2 / r 1 )) The inner diameter r 1 , outer diameter r 2 , axial length H, apparent Young's modulus E ap , and lateral elastic modulus G are set so that the axial right angle spring constant K is within a predetermined range. It is characterized by being.

【0022】これにより、上部構造物と下部構造物との
相対変位量を一定範囲内に確実に留めることが可能にな
る。
As a result, the relative displacement amount between the upper structure and the lower structure can be surely kept within a certain range.

【0023】請求項7に記載の発明では、請求項1〜請
求項6のいずれかに記載の発明において、前記外側部材
と前記内側部材の少なくとも一方が、構造物への取り付
け用とされる取付フランジを有していることを特徴とす
る。
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, at least one of the outer member and the inner member is attached to a structure. It is characterized by having a flange.

【0024】取付フランジを介して、外側部材及び/又
は内側部材を構造物(上部構造物及び下部構造物)に容
易に取り付け可能となる。
The outer member and / or the inner member can be easily attached to a structure (upper structure and lower structure) through the mounting flange.

【0025】請求項8に記載の発明では、上部構造物と
下部構造物との間に配置されて上部構造物の荷重を支持
する支承と、前記上部構造物と前記下部構造物との間に
配置された請求項1〜請求項7のいずれかに記載の制震
装置と、を有することを特徴とする。
According to the invention described in claim 8, between the upper structure and the lower structure, a bearing for supporting the load of the upper structure and between the upper structure and the lower structure are supported. The vibration damping device according to any one of claims 1 to 7, which is arranged.

【0026】すなわち、上部構造物は、支承を介して、
下部構造物に支持されている。上部構造物と下部構造物
との間には請求項1〜請求項7のいずれかに記載の制震
装置が配置されているので、上部構造物と下部構造物と
の相対移動の方向が水平方向の成分をもっていれば、そ
の全方位に対してエネルギー吸収できる。
That is, the upper structure is
It is supported by the substructure. Since the damping device according to any one of claims 1 to 7 is arranged between the upper structure and the lower structure, the direction of relative movement between the upper structure and the lower structure is horizontal. If it has a directional component, energy can be absorbed in all directions.

【0027】請求項9に記載の発明では、上部構造物が
橋桁とされると共に下部構造物が橋脚又は橋台とされ、
これらの橋梁又は橋桁と橋脚又は橋台の間に請求項8に
記載の制震支持構造を設けたことを特徴とする。
In the invention according to claim 9, the upper structure is a bridge girder and the lower structure is a bridge pier or abutment,
The damping support structure according to claim 8 is provided between the bridge or bridge girder and the pier or abutment.

【0028】すなわち、橋桁と橋脚又は橋台との間に、
請求項8に記載の制震支持装置が設けられており、橋桁
は、請求項8に記載の支承を介して、橋脚又は橋台に支
持されている。
That is, between the bridge girder and the pier or abutment,
The vibration control support device according to claim 8 is provided, and the bridge girder is supported by the pier or abutment via the support according to claim 8.

【0029】橋桁を橋脚又は橋台との間には、請求項1
〜請求項7のいずれかに記載の制震装置が配置されてい
るので、上部構造物と下部構造物との相対移動の方向が
水平方向の成分をもっていれば、その全方位に対してエ
ネルギー吸収できる。
According to claim 1, between the bridge girder and the pier or abutment.
Since the vibration control device according to any one of claims 7 to 8 is arranged, if the direction of relative movement between the upper structure and the lower structure has a horizontal component, energy absorption in all directions. it can.

【0030】[0030]

【発明の実施の形態】図1及び図2には、本発明の一実
施形態の落橋防止装置68が適用された橋梁10が示さ
れている。
1 and 2 show a bridge 10 to which a fall prevention device 68 according to an embodiment of the present invention is applied.

【0031】この橋梁10は、地面から立設された複数
の橋脚(又は橋台)12を有している。橋脚12の上面
には、所定の位置に固定支承14又は可動支承15が固
定されており、これら支承14、15が橋桁16を支持
している。なお、固定支承14と可動支承15の数や配
設位置等は、従来と同様に、橋梁10の全体的構成や立
地条件等を考慮して決定されている。また、図1では図
示の便宜上1つの橋桁16のみで構成された橋梁10を
示しているが、複数の橋桁16が長手方向に並べられ、
全体として橋梁10を構成するようになっていてもよ
い。
The bridge 10 has a plurality of bridge piers (or abutments) 12 erected from the ground. A fixed bearing 14 or a movable bearing 15 is fixed at a predetermined position on the upper surface of the bridge pier 12, and these bearings 14 and 15 support a bridge girder 16. Note that the number of fixed bearings 14 and movable bearings 15, the arrangement positions, and the like are determined in consideration of the overall configuration of the bridge 10, site conditions, and the like, as in the conventional case. Further, in FIG. 1, for convenience of illustration, the bridge 10 configured by only one bridge girder 16 is shown, but a plurality of bridge girders 16 are arranged in the longitudinal direction,
The bridge 10 may be configured as a whole.

【0032】図2に示すように、橋桁16は幅方向左右
に配置された一対の主桁18と、これら主桁18の間に
配置された横桁20とで構成されている。
As shown in FIG. 2, the bridge girder 16 is composed of a pair of main girders 18 arranged on the left and right in the width direction and a transverse girder 20 arranged between the main girders 18.

【0033】可動支承15は、図3に示すように、略方
形状の上沓24及び下沓26と、この上沓24及び下沓
26との間に位置する側面等脚台形状の中間部28で構
成されている。また、中間部28は、弾性変形可能な材
料により構成されており、中間部28を変形させること
で、上沓24と下沓26とが相対移動可能となってい
る。
The movable bearing 15 is, as shown in FIG. 3, an intermediate part of a side isosceles trapezoidal shape located between the upper shoe 24 and the lower shoe 26 having a substantially rectangular shape and the upper shoe 24 and the lower shoe 26. 28. The intermediate portion 28 is made of an elastically deformable material, and by deforming the intermediate portion 28, the upper shoe 24 and the lower shoe 26 are relatively movable.

【0034】上沓24からは、突起30が左右にそれぞ
れ一対づつ突設されており、これら一対の突起30の間
に収容部32が構成されている。この収容部32内に、
下沓26から上方に立設されたサイドリブ34が収容さ
れている。収容部32とサイドリブ34との間には所定
の間隔があいており、上沓24と下沓26との相対移動
は、収容部32の内面にサイドリブ34が当たって所定
の範囲に制限される。従って、支承14に支持された橋
桁16の橋脚12に対する振動の振幅も所定の範囲に制
限される。
From the upper shoe 24, a pair of protrusions 30 is provided on the left and right sides, respectively, and an accommodating portion 32 is formed between the pair of protrusions 30. In this accommodation part 32,
Side ribs 34 are provided upright from the lower shoe 26. There is a predetermined space between the housing portion 32 and the side ribs 34, and the relative movement between the upper shoe 24 and the lower shoe 26 is limited to a predetermined range by the side ribs 34 hitting the inner surface of the housing portion 32. . Therefore, the amplitude of vibration of the bridge girder 16 supported by the bearing 14 with respect to the bridge pier 12 is also limited to a predetermined range.

【0035】下沓26からは、側方に向けて取付板部3
6が突設されており、橋脚12の上面から突設されたア
ンカーボルト(図示省略)が、この取付板部36に形成
された取付孔38に挿通され、支承14が橋脚12に固
定されている。
From the lower shoe 26, the mounting plate portion 3 is directed laterally.
6 is projected, an anchor bolt (not shown) projected from the upper surface of the pier 12 is inserted into a mounting hole 38 formed in the mounting plate portion 36, and the support 14 is fixed to the pier 12. There is.

【0036】上沓24の中央は両端よりも厚肉の厚肉部
40とされて補強されており、さらに厚肉部40の中心
からは、円柱状の係合突部42が上方に突設されてい
る。橋脚12に固定された支承14に橋桁16が載置さ
れると、係合突部42が主桁18の底面に形成された係
合孔(図示省略)に係合して、橋桁16の支承14に対
する水平方向へのズレが制限される。
The center of the upper shoe 24 is reinforced by forming a thick portion 40 thicker than both ends, and a cylindrical engaging projection 42 is projected upward from the center of the thick portion 40. Has been done. When the bridge girder 16 is placed on the bearing 14 fixed to the bridge pier 12, the engagement protrusions 42 engage with the engagement holes (not shown) formed in the bottom surface of the main girder 18 to support the bridge girder 16. The horizontal shift with respect to 14 is limited.

【0037】これに対し、固定支承14は、上沓と下沓
とが一体的に連結されており、水平方向へ相対移動しな
いようになっている。
On the other hand, in the fixed bearing 14, the upper shoe and the lower shoe are integrally connected so that they do not move relative to each other in the horizontal direction.

【0038】図4に示すように、可動支承15が固定さ
れた橋脚12の上面には、正面視にて中央に、制震装置
44が固定されている。
As shown in FIG. 4, on the upper surface of the pier 12 to which the movable bearing 15 is fixed, a vibration control device 44 is fixed at the center in a front view.

【0039】図5にも示すように、制震装置44は、円
筒状に形成された外筒46を有している。外筒46の上
端からは、径方向外側に向かって取付フランジ48が形
成され、さらに取付フランジ48に、周方向に沿って一
定間隔をあけて、複数の取付孔50が形成されている。
図4に示すように、外筒46は、取付フランジ48と橋
桁16との間にソールプレート52を介在させた上で、
さらに取付孔50に取付ボルト54を挿通させて、橋桁
16に固定されている。なお、図4では図示の便宜上、
一部の取付ボルト54の図示を省略している。
As shown in FIG. 5, the vibration control device 44 has an outer cylinder 46 formed in a cylindrical shape. A mounting flange 48 is formed radially outward from the upper end of the outer cylinder 46, and a plurality of mounting holes 50 are formed in the mounting flange 48 at regular intervals along the circumferential direction.
As shown in FIG. 4, in the outer cylinder 46, after the sole plate 52 is interposed between the mounting flange 48 and the bridge girder 16,
Further, a mounting bolt 54 is inserted through the mounting hole 50 and fixed to the bridge girder 16. In FIG. 4, for convenience of illustration,
Illustration of some of the mounting bolts 54 is omitted.

【0040】外筒46内には、外筒46の内径よりも小
さな外径を有する内筒56が、外筒46と同芯に配置さ
れている。内筒56の下端からは、径方向内側に向かっ
て取付フランジ58が形成されている。取付フランジ5
8の中央には取付孔60が形成されている。内筒56
は、取付孔60に図示しない取付ボルトを挿通して、取
付プレート62に取り付けられている。取付プレート6
2は、溶接によって橋脚12に固定されており、内筒5
6は取付プレート62を介して橋脚12に固定されてい
ることになる。
Inside the outer cylinder 46, an inner cylinder 56 having an outer diameter smaller than the inner diameter of the outer cylinder 46 is arranged concentrically with the outer cylinder 46. A mounting flange 58 is formed from the lower end of the inner cylinder 56 toward the inside in the radial direction. Mounting flange 5
A mounting hole 60 is formed in the center of the plate 8. Inner cylinder 56
Is attached to a mounting plate 62 by inserting a mounting bolt (not shown) into the mounting hole 60. Mounting plate 6
2 is fixed to the pier 12 by welding, and the inner cylinder 5
6 is fixed to the pier 12 via a mounting plate 62.

【0041】図5(B)から分かるように、外筒46と
内筒56とは、軸方向(上下方向)に略同一の長さに形
成されており、水平方向に見たときに、軸方向の略全域
にわたって外筒46と内筒56とが重なっている。
As can be seen from FIG. 5B, the outer cylinder 46 and the inner cylinder 56 are formed to have substantially the same length in the axial direction (vertical direction), and when viewed in the horizontal direction, The outer cylinder 46 and the inner cylinder 56 overlap each other over substantially the entire area in the direction.

【0042】外筒46と内筒56との間には、略円筒状
のゴム体64が配置され、外筒46及び内筒56に加硫
接着されている。図7にも詳細に示すように、ゴム体6
4の長さLは、外筒46及び内筒56を水平方向に見た
ときの重なり部分の軸方向長さに略等しくされている。
また、ゴム体64の内径r1、外径r2はそれぞれ、内
筒56の外径、外筒46の内径と略等しくなっており、
ゴム体64の厚みは全方位で一定になっている。
A substantially cylindrical rubber body 64 is arranged between the outer cylinder 46 and the inner cylinder 56, and is vulcanized and bonded to the outer cylinder 46 and the inner cylinder 56. As shown in detail in FIG. 7, the rubber body 6
The length L of 4 is substantially equal to the axial length of the overlapping portion when the outer cylinder 46 and the inner cylinder 56 are viewed in the horizontal direction.
The inner diameter r1 and the outer diameter r2 of the rubber body 64 are substantially equal to the outer diameter of the inner cylinder 56 and the inner diameter of the outer cylinder 46, respectively.
The thickness of the rubber body 64 is constant in all directions.

【0043】図6に示すように、外筒46と内筒56と
が水平方向(軸方向と直交する方向)に相対移動する
と、ゴム体64には、その部位に応じて、圧縮変形、引
張変形、せん断変形又はこれらが複合された変形が生じ
る(例えば、外筒46の内面と内筒56の外面とが互い
に接近する部位64Aでは、ゴム体64は主に圧縮変形
し、外筒46の内面と内筒56の外面とが互いに離間す
る部位64Bでは、ゴム体64は主に引張変形する。ま
た、外筒46の内面と内筒56の外面とが互いに水平方
向にずれた部位64Cでは、ゴム体64は主にせん断変
形する)。また、外筒46、内筒56及びゴム体64
は、中心軸線Cに対して対称に配置されているので、水
平面内でのいずれの方位に関しても、方位に関わらずゴ
ム体64が同じように変形する。
As shown in FIG. 6, when the outer cylinder 46 and the inner cylinder 56 relatively move in the horizontal direction (direction orthogonal to the axial direction), the rubber body 64 is compressed, deformed, and pulled in accordance with its position. Deformation, shear deformation, or a combination of these occurs (for example, at a portion 64A where the inner surface of the outer cylinder 46 and the outer surface of the inner cylinder 56 approach each other, the rubber body 64 is mainly compressed and deformed, and the rubber body 64 is deformed. The rubber body 64 mainly undergoes tensile deformation at a portion 64B where the inner surface and the outer surface of the inner cylinder 56 are separated from each other, and at a portion 64C where the inner surface of the outer cylinder 46 and the outer surface of the inner cylinder 56 are horizontally displaced from each other. , The rubber body 64 mainly undergoes shear deformation). Further, the outer cylinder 46, the inner cylinder 56 and the rubber body 64.
Are symmetrically arranged with respect to the central axis C, the rubber body 64 is similarly deformed regardless of the azimuth in any horizontal plane.

【0044】なお、上記した支承(固定支承14及び可
動支承15と、制震装置44とによって、本実施形態に
係る制震支持構造66が構成されている。また、この制
震支持構造66を、橋桁16と橋脚12(又は橋台)と
の間に設けることで、本実施形態に係る落橋防止装置6
8が構成されている。
The above-mentioned bearings (fixed bearing 14 and movable bearing 15) and the vibration control device 44 constitute a vibration control support structure 66 according to the present embodiment. The bridge prevention device 6 according to the present embodiment is provided between the bridge girder 16 and the bridge pier 12 (or abutment).
8 are configured.

【0045】次に、本実施形態の制震装置44、制震支
持構造66及び落橋防止装置68の作用を説明する。
Next, the operation of the vibration control device 44, the vibration control support structure 66 and the bridge prevention device 68 of this embodiment will be described.

【0046】図1及び図2に示すように、橋桁16は、
橋脚12に固定された支承14、15によって支持され
ており、通常の状態では、橋桁16が橋脚12に対して
不用意に水平方向に移動してしまうことはない。また、
このとき、図5(A)及び(B)に示すように、制震装
置44の外筒46と内筒56とは同芯になっており、ゴ
ム体64は変形していない。
As shown in FIGS. 1 and 2, the bridge girder 16 is
The bridge girder 16 is supported by bearings 14 and 15 fixed to the pier 12, and in the normal state, the bridge girder 16 does not inadvertently move in the horizontal direction with respect to the pier 12. Also,
At this time, as shown in FIGS. 5A and 5B, the outer cylinder 46 and the inner cylinder 56 of the vibration control device 44 are concentric, and the rubber body 64 is not deformed.

【0047】地震等によって橋脚12に横揺れ(水平方
向の成分を含む揺れ)が生じると、橋桁16には慣性力
が作用するため、橋桁16と橋脚12とは水平方向に相
対的に振動しようとする。支承15の上沓24も下沓2
6に対して水平方向に振動し、橋桁16が橋脚12に対
して水平方向に振動する。
When the bridge pier 12 rolls (sways including a horizontal component) due to an earthquake or the like, an inertial force acts on the bridge girder 16, so that the bridge girder 16 and the pier 12 will vibrate relatively in the horizontal direction. And Upper shoe 24 of bearing 15 and lower shoe 2
6 vibrates horizontally, and the bridge girder 16 vibrates horizontally with respect to the pier 12.

【0048】橋桁16の橋脚12に対する振動によっ
て、図6(A)及び(B)に示すように、外筒46も内
筒56に対して水平方向に相対的に変位するため、ゴム
体64が変形する。このとき、ゴム体64には、部位に
よって圧縮変形、引張変形、せん断変形又はこれらが複
合された変形が生じ、振動のエネルギーを吸収する。ま
た、ゴム体64の弾性変形の弾性反力が外筒46及び内
筒56に復元力として水平方向に作用するため、外筒4
6及び内筒56の相対位置が、振動発生前の位置(同芯
の位置)へ戻ろうとし、相対移動の移動量が一定範囲に
制限される。このように、外筒46と内筒56との相対
移動の移動量が一定範囲に制限されることで、橋桁16
と橋脚12との相対移動の移動量も一定範囲に制限され
るので、橋桁16の橋脚12からの落下(いわゆる落
橋)が防止される。
Due to the vibration of the bridge girder 16 with respect to the bridge pier 12, the outer cylinder 46 is also displaced relative to the inner cylinder 56 in the horizontal direction as shown in FIGS. Deform. At this time, the rubber body 64 undergoes compression deformation, tensile deformation, shear deformation, or a combination of these, depending on the site, and absorbs the energy of vibration. Further, since the elastic reaction force of the elastic deformation of the rubber body 64 acts on the outer cylinder 46 and the inner cylinder 56 in the horizontal direction as a restoring force, the outer cylinder 4
The relative position of 6 and the inner cylinder 56 tries to return to the position (concentric position) before the vibration occurs, and the movement amount of the relative movement is limited to a certain range. In this way, the amount of relative movement between the outer cylinder 46 and the inner cylinder 56 is limited to a certain range, so that the bridge girder 16
Since the amount of relative movement between the bridge pier 12 and the bridge pier 12 is also limited to a certain range, the bridge girder 16 is prevented from falling from the pier 12 (so-called bridge collapse).

【0049】しかも、外筒46、内筒56及びゴム体6
4は、中心軸線Cに対して対称に配置されており、水平
面内でのいずれの方位に関しても、方位に関わらずゴム
体64が同じように変形するので、相対移動、すなわち
振動の方向に関わらず、全方位にわたって振動のエネル
ギーを吸収すると共に、橋桁16の橋脚12からの落下
を防止できる。
Moreover, the outer cylinder 46, the inner cylinder 56 and the rubber body 6
No. 4 is arranged symmetrically with respect to the central axis C, and the rubber body 64 is deformed in the same manner regardless of the azimuth in any horizontal direction, so that the relative movement, that is, the direction of vibration, is prevented. Instead, the vibration energy can be absorbed in all directions, and the bridge girder 16 can be prevented from falling from the pier 12.

【0050】ゴム体64の具体的形状や特性について
は、上記したように、橋桁16の橋脚12からの落下を
防止可能であれば特に限定されるものではないが、あら
かじめ、内径r1、外径r2、軸方向長さH、見かけのヤ
ング率Eap、横弾性係数Gを適切な値とすることで、軸
方向ばね定数Kを所定の範囲とし、地震時等に想定され
る水平力に対応して、確実に落橋防止可能とすることが
できる。
The specific shape and properties of the rubber body 64, as described above, is not particularly limited as long as it can prevent the falling of the piers 12 of the bridge beam 16, in advance, the inner diameter r 1, an outer By setting the diameter r 2 , the axial length H, the apparent Young's modulus E ap , and the lateral elastic modulus G to appropriate values, the axial spring constant K is set within a predetermined range, and the horizontal force expected during an earthquake etc. Corresponding to, it is possible to surely prevent the bridge from falling.

【0051】すなわち、一般に、筒型の防振ゴムに関
し、横方向ばね定数Kは、見かけのヤング率Eap、横弾
性係数G、防振ゴムの内径r1、外径r2、軸方向長さH
を用いて、 K=π(Eap+G)H/loge(r2/r1) 算出できる。また、見かけのヤング率Eap、は、形状率
Sを用いて、 Eap=(4+3.29S2)G 形状率Sは、 S=H/(r1+r2)/loge(r2/r1) とそれぞれ算出できる。
That is, in general, for a cylindrical vibration-proof rubber, the lateral spring constant K is calculated by the apparent Young's modulus E ap , lateral elastic modulus G, inner diameter r 1 , outer diameter r 2 , and axial length of the vibration-proof rubber. Sa H
Can be used to calculate K = π (E ap + G) H / log e (r 2 / r 1 ). The apparent Young's modulus E ap is the shape ratio S, and E ap = (4 + 3.29S 2 ) G The shape ratio S is S = H / (r1 + r2) / log e (r 2 / r 1 ). Can be calculated respectively.

【0052】例えば、地震時に水平力が1000kN作
用した場合であっても、水平方向の変位量を20mm以
下に抑えたい場合には、内径r1をr1=400mm、外
径r 2をr2=500mm、軸方向長さHをH=300m
m、横弾性係数GをG=0.98N/mm2とすれば、 S=300/(400+500)/loge(500/400) =1.494 Eap=(4+3.29×1.4942)×0.98 =11.34N/mm2 K=π(11.34+0.98)×300/loge(500/400) =52.1kN/mm 従って、水平方向の変位量は、 変位量=水平力/K =1000/52.1 =19.2mm となり、20mm以下に抑えられることが分かる。
For example, a horizontal force of 1000 kN is produced during an earthquake.
Even when used, the horizontal displacement is 20 mm or less.
Inner diameter r1R1= 400 mm, outside
Diameter r 2R2= 500 mm, axial length H is H = 300 m
m, lateral elastic modulus G is G = 0.98 N / mm2given that,   S = 300 / (400 + 500) / loge(500/400)     = 1.494   Eap= (4 + 3.29 × 1.4942) × 0.98         = 11.34 N / mm2   K = π (11.34 + 0.98) × 300 / loge(500/400)     = 52.1 kN / mm Therefore, the horizontal displacement is Displacement amount = horizontal force / K = 1000 / 52.1 = 19.2 mm Therefore, it can be seen that it can be suppressed to 20 mm or less.

【0053】もちろん、上記の数値計算はあくまで例で
ある。すなわち、本発明に係る上部構造物及び下部構造
物の規模や求められる耐震特性等を考慮し、制震装置4
4を構成するゴム体64や内筒56及び外筒46の形状
及び材料として適切なものを組み合わせて所望の横方向
ばね定数とすることで、水平方向の移動量を所定範囲に
制限することが可能である。
Of course, the above numerical calculation is just an example. That is, in consideration of the scale of the upper structure and the lower structure according to the present invention, the required seismic resistance, etc.
The amount of movement in the horizontal direction can be limited to a predetermined range by combining the rubber body 64, the inner cylinder 56, and the outer cylinder 46 that form part 4 with appropriate shapes and materials to obtain a desired lateral spring constant. It is possible.

【0054】また、本実施形態の制震装置44は、外筒
46と内筒56との間にゴム体64を配設するだけで構
成できるので、簡単な構造で、且つ重量増を招くことな
く構成できる。
Further, the vibration control device 44 of the present embodiment can be constructed only by disposing the rubber body 64 between the outer cylinder 46 and the inner cylinder 56, so that the structure is simple and the weight is increased. Can be configured without.

【0055】しかも、外筒46及び内筒56を、それぞ
れ橋桁16又は橋脚12に取り付けるだけでよいので、
取り付けも容易であり、例えば、既設の橋梁に対して後
付けすることもできる。
Moreover, since the outer cylinder 46 and the inner cylinder 56 need only be attached to the bridge girder 16 or the pier 12, respectively,
Installation is easy, and it can be retrofitted to an existing bridge, for example.

【0056】上記説明では、外筒46を上部構造物であ
る橋桁16に、内筒56を下部構造物である橋脚12に
それぞれ固定した例を示したが、逆に、外筒46が橋脚
12に、内筒56が橋桁16にそれぞれ固定されるよう
になっていてもよい。また、これらの取付方法も特に限
定されない。特に、上記したボルトによる固定や溶接に
よる固定では、既設の構造物へ容易に後付けすることが
できるので、好ましい。
In the above description, the outer cylinder 46 is fixed to the bridge girder 16 which is the upper structure, and the inner cylinder 56 is fixed to the bridge pier 12 which is the lower structure. However, conversely, the outer cylinder 46 is fixed to the bridge pier 12. In addition, the inner cylinders 56 may be fixed to the bridge girders 16, respectively. Also, the method of attaching these is not particularly limited. In particular, fixing with the above-mentioned bolts or fixing by welding is preferable because it can be easily retrofitted to an existing structure.

【0057】また、上部構造物及び下部構造物として
も、それぞれ上記した橋桁16及び橋脚(又は橋台)1
2に限定されない。すなわち、振動等によって上部構造
物が下部構造物から落下することが想定されるようなも
のに、本発明の制震支持構造66を適用すれば、上部構
造物の落下を防止できる。
Also, as the upper structure and the lower structure, the bridge girder 16 and the bridge pier (or abutment) 1 described above, respectively.
It is not limited to 2. That is, if the vibration control support structure 66 of the present invention is applied to a structure in which the upper structure is supposed to fall from the lower structure due to vibration or the like, the upper structure can be prevented from falling.

【0058】内側部材及び外側部材の形状としても、上
記した円筒状の内筒56及び外筒46に限定されない。
例えば、内筒56としては、円柱状であってもよく、軽
量化を図る観点からは円筒状、強度を高める観点からは
円柱状とすることが好ましい。外筒としても、筒状であ
る必要はなく、例えば中空の円錐状とされているものな
ど、要するに内側部材を全周にわたって取り囲むような
形状であればよい。さらに、内側部材及び外側部材とし
て、例えば多角形の筒状に形成されたものでもよい。い
ずれの形状であっても、水平方向に見て内側部材と外側
部材とが部分的に重なるようになっていれば、この重な
った部分に対応して、内側部材と外側部材との間にゴム
体64を配置する(好ましくは接着する)ことで、水平
力をゴム体64で吸収して上部構造物の移動量を制限
し、下部構造物からの上部構造物の落下を防止すること
ができる。
The shapes of the inner member and the outer member are not limited to the cylindrical inner cylinder 56 and outer cylinder 46 described above.
For example, the inner cylinder 56 may be cylindrical, and is preferably cylindrical from the viewpoint of weight reduction and cylindrical from the viewpoint of increasing strength. The outer cylinder does not have to be cylindrical, and may have any shape such as a hollow conical shape so long as it surrounds the inner member over the entire circumference. Further, the inner member and the outer member may be formed into a polygonal tubular shape, for example. Regardless of the shape, if the inner member and the outer member partially overlap with each other when viewed in the horizontal direction, the rubber between the inner member and the outer member corresponds to the overlapped portion. By arranging (preferably adhering) the body 64, the horizontal force can be absorbed by the rubber body 64 to limit the amount of movement of the upper structure and prevent the upper structure from falling from the lower structure. .

【0059】[0059]

【発明の効果】本発明は上記の構成としたので、小型か
つ簡易な構造で、既設の構造物にも容易に取り付けで
き、相対移動の方向に関わらずエネルギー吸収可能とな
る。
Since the present invention has the above-described structure, it has a small and simple structure, can be easily attached to an existing structure, and can absorb energy regardless of the direction of relative movement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る制震装置を備えた落
橋防止装置が適用された橋梁の側面図である。
FIG. 1 is a side view of a bridge to which a fall prevention device including a vibration control device according to an embodiment of the present invention is applied.

【図2】本発明の一実施形態に係る制震装置を備えた落
橋防止装置が適用された橋梁の正面図である。
FIG. 2 is a front view of a bridge to which a fall prevention device including a vibration control device according to an embodiment of the present invention is applied.

【図3】本発明の一実施形態に係る落橋防止装置を構成
する可動支承を示す斜視図である。
FIG. 3 is a perspective view showing a movable bearing which constitutes a fall prevention device according to an embodiment of the present invention.

【図4】本発明の一実施形態に係る制震装置を橋梁への
取付状態で示す正面図である。
FIG. 4 is a front view showing the vibration control device according to the embodiment of the present invention in a state of being attached to a bridge.

【図5】本発明の一実施形態に係る制震装置を示し、
(A)は平面図、(B)は一部破断正面図である。
FIG. 5 shows a vibration control device according to an embodiment of the present invention,
(A) is a plan view and (B) is a partially cutaway front view.

【図6】本発明の一実施形態に係る制震装置を変形状態
で示し、(A)は平面図、(B)は一部破断正面図であ
る。
FIG. 6 shows a vibration control device according to an embodiment of the present invention in a deformed state, (A) is a plan view, and (B) is a partially cutaway front view.

【図7】本発明の一実施形態に係る制震装置を示す断面
図である。
FIG. 7 is a cross-sectional view showing a vibration control device according to an embodiment of the present invention.

【図8】従来の落橋防止装置を示し、(A)は平面図、
(B)は正面図である。
FIG. 8 shows a conventional bridge prevention device, (A) is a plan view,
(B) is a front view.

【図9】従来の連結具によって連結された橋梁を示し、
(A)は正面図、(B)は平面図である。
FIG. 9 shows a bridge connected by a conventional connector,
(A) is a front view and (B) is a plan view.

【図10】従来の落橋防止装置を示す正面図であり、
(A)は変形前、(B)は変形後である。
FIG. 10 is a front view showing a conventional bridge prevention device,
(A) is before deformation, (B) is after deformation.

【符号の説明】[Explanation of symbols]

10 橋梁 12 橋脚(下部構造物) 14 固定支承 15 可動支承 16 橋桁(上部構造物) 44 制震装置 46 外筒(外側部材) 56 内筒(内側部材) 64 ゴム体(弾性体) 66 制震支持構造 68 落橋防止装置 10 bridges 12 Piers (substructure) 14 fixed bearing 15 Movable bearing 16 Bridge girder (superstructure) 44 Vibration control device 46 Outer cylinder (outer member) 56 Inner cylinder (inner member) 64 Rubber body (elastic body) 66 Vibration control support structure 68 Falling bridge prevention device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 略筒状に形成され上部構造物と下部構造
物のいずれか一方に固定される外側部材と、 上部構造物と下部構造物の他方に固定され、前記外側部
材の内側において、水平方向に見たときに外側部材と重
なるように配置される内側部材と、 前記内側部材と前記外側部材との間で外側部材の全周に
わたって内側部材と外側部材とに接触配置され、内側部
材と外側部材との水平方向の相対変位によって弾性変形
する弾性体と、 を有することを特徴とする制震装置。
1. An outer member formed in a substantially tubular shape and fixed to one of an upper structure and a lower structure; and an outer member fixed to the other of the upper structure and the lower structure, inside the outer member, An inner member arranged so as to overlap the outer member when viewed in the horizontal direction; and an inner member that is arranged in contact with the inner member and the outer member over the entire circumference of the outer member between the inner member and the outer member. And an elastic body that elastically deforms due to relative horizontal displacement between the outer member and the outer member.
【請求項2】 前記弾性体が前記内側部材及び前記外側
部材に対し全周にわたって固着されていることを特徴と
する請求項1に記載の制震装置。
2. The vibration control device according to claim 1, wherein the elastic body is fixed to the inner member and the outer member over the entire circumference.
【請求項3】 前記外側部材が円筒状に形成され、前記
内側部材が円筒状又は円柱状に形成されていることを特
徴とする請求項1又は請求項2に記載の制震装置。
3. The vibration control device according to claim 1, wherein the outer member is formed in a cylindrical shape, and the inner member is formed in a cylindrical shape or a cylindrical shape.
【請求項4】 前記外側部材と前記内側部材とが同芯に
配置されていることを特徴とする請求項3に記載の制振
装置。
4. The vibration damping device according to claim 3, wherein the outer member and the inner member are arranged concentrically.
【請求項5】 前記外側部材の軸方向長さと前記内側部
材の軸方向長さとが略同一とされ、それぞれの軸方向長
さの略全域にわたって水平方向に見て重なるように外側
部材及び内側部材が配置されていることを特徴とする請
求項3又は請求項4に記載の制震装置。
5. The outer member and the inner member are arranged such that the axial length of the outer member and the axial length of the inner member are substantially the same, and are overlapped when viewed in the horizontal direction over substantially the entire axial lengths of the respective outer members. The vibration damping device according to claim 3 or 4, wherein the vibration damping device is arranged.
【請求項6】 前記弾性体が円筒状に形成され、式 K=π(Eap+G)H/loge(r2/r1) (但し、見かけのヤング率Eap、は、形状率Sを用い
て、 Eap=(4+3.29S2)G 形状率Sは、 S=H/(r1+r2)/loge(r2/r1)) により求められる軸直角ばね定数Kが所定の範囲となる
ように、その内径r1、外径r2、軸方向長さH、見かけ
のヤング率Eap、横弾性係数Gがそれぞれ設定されてい
ることを特徴とする請求項5に記載の制震装置。
6. The elastic body is formed into a cylindrical shape, and the equation K = π (E ap + G) H / log e (r 2 / r 1 ) (where the apparent Young's modulus E ap is the shape ratio S E ap = (4 + 3.29S 2 ) G The shape ratio S is given by: S = H / (r 1 + r 2 ) / log e (r 2 / r 1 )) The inner diameter r 1 , the outer diameter r 2 , the axial length H, the apparent Young's modulus E ap , and the lateral elastic modulus G are set so as to be in the range of respectively. Seismic control device.
【請求項7】 前記外側部材と前記内側部材の少なくと
も一方が、構造物への取り付け用とされる取付フランジ
を有していることを特徴とする請求項1〜請求項6のい
ずれかに記載の制震装置。
7. The method according to claim 1, wherein at least one of the outer member and the inner member has a mounting flange for mounting on a structure. Seismic control device.
【請求項8】 上部構造物と下部構造物との間に配置さ
れて上部構造物の荷重を支持する支承と、 前記上部構造物と前記下部構造物との間に配置された請
求項1〜請求項7のいずれかに記載の制震装置と、 を有することを特徴とする制震支持構造。
8. A bearing which is arranged between the upper structure and the lower structure to support a load of the upper structure, and is arranged between the upper structure and the lower structure. A vibration control device according to claim 7, and a vibration control support structure.
【請求項9】 上部構造物が橋桁とされると共に下部構
造物が橋脚又は橋台とされ、これらの橋梁又は橋桁と橋
脚又は橋台の間に請求項8に記載の制震支持構造を設け
たことを特徴とする落橋防止装置。
9. The upper structure is a bridge girder and the lower structure is a pier or abutment, and the vibration control support structure according to claim 8 is provided between the bridge or bridge girder and the pier or abutment. Fall prevention device characterized by.
JP2001203369A 2001-07-04 2001-07-04 Vibration control device, vibration control support structure, and bridge fall preventing device Pending JP2003020612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001203369A JP2003020612A (en) 2001-07-04 2001-07-04 Vibration control device, vibration control support structure, and bridge fall preventing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001203369A JP2003020612A (en) 2001-07-04 2001-07-04 Vibration control device, vibration control support structure, and bridge fall preventing device

Publications (1)

Publication Number Publication Date
JP2003020612A true JP2003020612A (en) 2003-01-24

Family

ID=19040019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001203369A Pending JP2003020612A (en) 2001-07-04 2001-07-04 Vibration control device, vibration control support structure, and bridge fall preventing device

Country Status (1)

Country Link
JP (1) JP2003020612A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031639A (en) * 1973-07-23 1975-03-28
JPS5466421U (en) * 1977-10-20 1979-05-11
JPS55131312U (en) * 1979-03-07 1980-09-17
JPS5669087A (en) * 1979-11-07 1981-06-10 Hitachi Koki Kk Electric hammer
JPS61125515U (en) * 1985-01-25 1986-08-07
JPS62146371A (en) * 1985-12-19 1987-06-30 株式会社 新井組 Earthquakeproof device
JPS6460046A (en) * 1987-08-29 1989-03-07 Fujitsu Ltd Fsk demodulating circuit
JPH0549818U (en) * 1991-12-11 1993-07-02 大成建設株式会社 Structure seismic isolation device
JPH083927A (en) * 1994-06-15 1996-01-09 Bridgestone Corp Anchor bar position holding method
JPH1136233A (en) * 1997-07-22 1999-02-09 Yokohama Rubber Co Ltd:The Omnidirectional displacement limiting device for structure
JP2001115419A (en) * 1999-10-14 2001-04-24 Bridgestone Corp Anchor bar

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031639A (en) * 1973-07-23 1975-03-28
JPS5466421U (en) * 1977-10-20 1979-05-11
JPS55131312U (en) * 1979-03-07 1980-09-17
JPS5669087A (en) * 1979-11-07 1981-06-10 Hitachi Koki Kk Electric hammer
JPS61125515U (en) * 1985-01-25 1986-08-07
JPS62146371A (en) * 1985-12-19 1987-06-30 株式会社 新井組 Earthquakeproof device
JPS6460046A (en) * 1987-08-29 1989-03-07 Fujitsu Ltd Fsk demodulating circuit
JPH0549818U (en) * 1991-12-11 1993-07-02 大成建設株式会社 Structure seismic isolation device
JPH083927A (en) * 1994-06-15 1996-01-09 Bridgestone Corp Anchor bar position holding method
JPH1136233A (en) * 1997-07-22 1999-02-09 Yokohama Rubber Co Ltd:The Omnidirectional displacement limiting device for structure
JP2001115419A (en) * 1999-10-14 2001-04-24 Bridgestone Corp Anchor bar

Similar Documents

Publication Publication Date Title
US20110239551A1 (en) Self-centering compact damper unit applicable to structures for seismic energy dissipation
KR20200090524A (en) Suitable joint structure of steel column and beam on seismic design
JP4545920B2 (en) Seismic isolation system for bridges
JP2017096007A (en) Pedestal structure
JP3550574B2 (en) Sliding bearing seismic isolation device
KR101781544B1 (en) Rahmem bridge of seismic performanceusing prestressed using crossbeam
KR102122028B1 (en) Column type vibration isolation apparatus
WO2013051702A1 (en) Seismic isolation support device for traveling crane
JP2007315523A (en) Base-isolation material
JP2003020612A (en) Vibration control device, vibration control support structure, and bridge fall preventing device
KR100517893B1 (en) Damper with slit plate for building structure
JP7081745B2 (en) Seismic isolation structure
JP3549183B2 (en) Underpass structure of viaduct
JP4242673B2 (en) Damping device and damping structure using the same
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP4858848B2 (en) Interdigit connection device
JP4870483B2 (en) Member holding device and member holding method
JP3744267B2 (en) Building vibration control device
JP3210739U (en) Vehicle overturn prevention device
JP5214371B2 (en) Structure
JP4282199B2 (en) Damping damper device
JP3869235B2 (en) Vibration control and vibration control structure of reinforced concrete viaduct
JP2019108657A (en) Connection structure
JP2003013404A (en) Shock absorber for expansion joint for road and bridge
JP4039136B2 (en) Structure and vibration energy absorbing device used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100921

Free format text: JAPANESE INTERMEDIATE CODE: A02