JP2003020560A - Method for processing regenerated cellulose fiber - Google Patents

Method for processing regenerated cellulose fiber

Info

Publication number
JP2003020560A
JP2003020560A JP2001205990A JP2001205990A JP2003020560A JP 2003020560 A JP2003020560 A JP 2003020560A JP 2001205990 A JP2001205990 A JP 2001205990A JP 2001205990 A JP2001205990 A JP 2001205990A JP 2003020560 A JP2003020560 A JP 2003020560A
Authority
JP
Japan
Prior art keywords
regenerated cellulose
hydrogen peroxide
fiber
acid
fibrils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001205990A
Other languages
Japanese (ja)
Other versions
JP3831837B2 (en
Inventor
Itsuo Kurahashi
五男 倉橋
Akiyoshi Kikuchi
昭好 菊地
Hiroaki Yabe
博昭 谷邊
Koji Ando
興司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Spinning Co Ltd
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP2001205990A priority Critical patent/JP3831837B2/en
Publication of JP2003020560A publication Critical patent/JP2003020560A/en
Application granted granted Critical
Publication of JP3831837B2 publication Critical patent/JP3831837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method, not impairing the appearance even when washing is repeated without impairing the strength and the touch feeling by controlling fibrillation which is a defect of a polynosic fiber or a regenerated cellulose fiber produced by a solvent-spinning method. SOLUTION: A regenerated cellulose fiber is treated with an aqueous solution containing three components composed of an acid, hydrogen peroxide and a metal compound having decomposition activity to hydrogen peroxide and then heat-treated to suppress fibrillation of the polynosic fiber or the regenerated cellulose fiber produced by the solvent-spinning method.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、再生セルロース繊
維、特にビスコース紡糸法で製造されるポリノジックあ
るいは溶剤紡糸法で製造される溶剤紡糸再生セルロース
繊維等のフィブリル化を抑制する加工方法に関するもの
である。 【0002】 【従来の技術】再生セルロース繊維は、ビスコース法で
製造される普通レーヨン、高重合度パルプを用いた高結
晶、高配向性を有するポリノジック繊維や、銅アンモニ
ア法で製造される銅アンモニアレーヨンが知られてい
る。 【0003】また、近年、セルロースの溶剤としてアミ
ンオキサイド系溶剤を用いて製造される溶剤紡糸再生セ
ルロース繊維が開発され、利用されている。しかしなが
ら、特に再生セルロース繊維のうち溶剤紡糸再生セルロ
ース繊維やポリノジック繊維は、高結晶、高配向性のた
めに摩擦等の物理的な要因によって容易にフィブリル化
する特徴がある。このフィブリル化しやすい特徴を利用
して、例えば、これら繊維からなる編織物に揉み、叩き
等の物理的な力を加えて著しくフィブリルを発生させた
後、セルロース分解酵素を用いて発生したフィブリルの
大半を除去し、微細なフィブリルのみを残存させた、所
謂、ピーチスキン調の製品も開発されている。 【0004】しかしながら、この方法は加工に長時間を
要すること、被染物の色相の再現性に問題があること、
強力低下が起こり薄物に適応することが困難であるこ
と、洗濯を繰り返すことによって、再びフィブリルが発
生して著しく品位を損なう等の問題があり、用途、使用
方法等が限られている。また、最近は繊維製品のニーズ
も多様化し、洗濯を繰り返してもフィブリルを発生しな
いクリアーで柔軟な製品の要望が高まっている。 【0005】この様な観点から、ポリノジック繊維や溶
剤紡糸再生セルロース繊維のフィブリル化を防止するた
めの方法が多数提案されている。例えば、特開平7−7
0930号公報にはホルマリン系処理剤を用いる方法
が、また特開平9−302584号公報や特開平10−
195765号公報にはエポキシ系処理剤を用いる方法
が開示されている。 【0006】しかしながら、これらの方法はいずれも多
官能試薬を用いて、セルロース間に架橋反応を生じさせ
ることによってフィブリル化を防止する方法であるため
に、繊維の柔軟性を損なう欠点がある。一方、特開平1
1−61642号公報には発生させたフィブリルを、再
生セルロース繊維を得るとき用いられる溶剤であるアミ
ンオキサイドと界面活性剤を用いて溶解除去する方法が
開示されているが、この方法はかかる溶剤を用いている
ために、繊維が粗硬となり柔軟な風合いを損なう欠点を
有している。 【0007】 【発明が解決しようとする課題】本発明は、ポリノジッ
ク繊維や溶剤紡糸再生セルロース繊維の欠点であるフィ
ブリル化を抑制して、繊維製品の強度や繊維の有する柔
軟な風合いを損なうことなく、洗濯を繰り返しても外観
を損なうことのない再生セルロース繊維の加工方法を提
供することを目的とする。 【0008】 【課題を解決するための手段】本発明者らは、上述した
欠点を解決するために鋭意検討を重ねた結果、再生セル
ロース繊維を、酸、過酸化水素、及び過酸化水素に対し
て分解活性を有する金属化合物よりなる3成分を含む水
溶液で処理した後、加熱処理をすることにより、ポリノ
ジック繊維や溶剤紡糸再生セルロース繊維のフィブリル
化を著しく抑制でき、しかも繊維強度、柔軟な風合いを
損なわずに、洗濯を繰り返しても外観を損なわないこと
を見出し、本発明を完成するに至った。 【0009】即ち、本発明は、繊維表面近傍のみを強く
酸化して、グリコシド結合の開裂を生起し、繊維表面近
傍のセルロース分子の重合度のみを低下せしめることに
よって、ポリノジック繊維あるいは溶剤紡糸再生セルロ
ース繊維の高重合度、高結晶性、高配向性によって引き
起こされるフィブリル化現象を抑制しようとする加工方
法である。 【0010】したがって、本発明による加工処理をした
被処理物は、重合度の低下が繊維表面近傍のみにとどま
っているため、強度低下が僅かで、しかも柔軟な風合い
を損なわずに、洗濯を繰り返してもフィブリルが発生し
にくく、外観を損なうことがない。 【0011】 【発明の実施の形態】本発明で用いられる再生セルロー
ス繊維とは、ポリノジック繊維と溶剤紡糸再生セルロー
ス繊維である。その形態は綿状、糸状、編物、織物、不
織布等が挙げられる。 【0012】本発明は、ポリノジック繊維と溶剤紡糸再
生セルロース繊維よりなる再生セルロース繊維の加工処
理に、酸、過酸化水素、及び過酸化水素に対して分解活
性を有する金属化合物の3成分を含む水処理液を用いる
ことを特徴とする。酸化反応に対する影響が大きい、過
酸化水素に対して分解活性を有する金属化合物の濃度を
金属元素に換算し、その値を100倍した値を用いる
と、水処理液中の3成分の濃度の合計は、2〜5%の範
囲で使用することが好ましい。3成分の濃度の合計が2
%に満たない場合はフィブリル化を抑制する効果が不十
分で好ましくない。3成分の濃度の合計が5%を超える
と繊維強力が低下するので好ましくない。 【0013】次に、3成分を構成する各成分について述
べると、酸は過酸化水素の安定剤としての機能と、グル
コシド結合を開裂させるための補助的な機能を有する鉱
酸、有機酸を使用することが出来るが、塩酸、硝酸、硫
酸、リン酸等の鉱酸は処理装置に用いる金属類を腐食さ
せるので好ましくなく、有機酸の使用が好ましい。この
ような有機酸としてはギ酸、酢酸、プロピオン酸、酒石
酸、リンゴ酸、クエン酸等を挙げることが出来るが、特
に不揮発性の酸である酒石酸、リンゴ酸、クエン酸等が
好適である。これらの有機酸を単独または二種以上を混
合し、濃度が0.5%以上となるように添加して使用す
るのが好ましい。添加量が0.5%よりも少ないと過酸
化水素の安定性が低下する。 【0014】過酸化水素は、本加工の中心的な処理剤で
あり、1%以上添加して使用するのが好ましい。添加量
が1%よりも少ないとフィブリルの抑制効果が不十分と
なり好ましくない。 【0015】過酸化水素に対して分解活性を有する金属
化合物は、過酸化水素に対して分解活性を有するチタ
ン、クロム、マンガン、鉄、コバルト、ニッケル、銅等
の重金属の内、水処理浴中に溶解する塩酸塩、硝酸塩、
硫酸塩、酢酸塩あるいはこれらの複塩やエチレンジアミ
ン四酢酸(以下、EDTAと略記する)、ジエチレント
リアミン五酢酸(以下、DTPAと略記する)等の錯化
合物が好適に用いられる。しかしながら、金属の毒性、
環境中へ放出された場合の影響を考えれば、鉄の塩酸
塩、硝酸塩、硫酸塩あるいは鉄のEDTAやDTPA等
の錯化合物が特に好ましい。本発明では、これらの金属
化合物を単独または二種以上を混合して、金属元素に換
算した濃度が0.005%(100倍した値として0.
5%)以上となるように添加して使用するのが好まし
い。添加量が0.005%よりも少ないとフィブリルの
抑制効果が不十分となり好ましくない。 【0016】本発明においては、各成分がそれぞれ上記
のような範囲で添加され、しかも3成分の濃度の合計が
過酸化水素に対して分解活性を有する金属化合物の濃度
を金属元素に換算して100倍した値を用いると、3成
分の濃度の合計が、2〜5%の範囲となるような水処理
浴中でポリノジック繊維あるいは溶剤紡糸再生セルロー
ス繊維の処理を行う。3成分をポリノジック繊維あるい
は溶剤紡糸再生セルロース繊維に付与した後、熱処理を
行う。3成分の付与方法は、一般的に行われている方法
が用いられ、パディング法が好適に用いられる。即ち、
上記3成分を含む水処理浴を調製し、この液中に常温で
1〜10秒間浸漬し、その後絞って3成分を被処理物に
付与すればよい。このときの絞り率は通常の範囲内であ
ればよく、60〜100%の範囲で選択される。また熱
処理の方法は一般的に行われている方法を用いればよ
く、特にスチーミングが好ましく、スチーミングの条件
は95〜105℃で1〜5分間行えばよい。また、未精
練繊維等の浸透性を改善する目的で水処理液浴に界面活
性剤等を加えても差し支えない。 【0017】本加工処理をした後染色処理しても、フィ
ブリルが抑制されているため繊維製品の仕上り品位の向
上が計られる。さらに高度な風合いを追求するために、
本発明による加工を実施した後、例えば、公知の方法と
してのセルロース分解酵素で処理する方法等を施しても
よい。 【0018】本発明は、ポリノジック繊維あるいは溶剤
紡糸再生セルロース繊維とその他の繊維、例えば、木
綿、麻、ウール、シルク等の天然繊維、普通レーヨン、
銅アンモニアレーヨン、ハイウエットモジュラスレーヨ
ン等の再生セルロース繊維、ナイロン、アクリル、ポリ
エステル等の合成繊維等を混用した綿状、糸状、織物、
編物、不織布等にも適用することが出来る。本発明によ
れば、これらの繊維製品に対して、柔軟な風合いを損な
うことなく、フィブリルの発生を抑制して、洗濯を繰り
返してもフィブリルの発生がなく外観を損なうことがな
い加工方法を提供することが出来る。 【0019】 【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はこの範囲に限定されるものではない。な
お、外観、風合い、引裂強さ、破裂強さ、過酸化水素の
安定性は以下の方法により測定した。 【0020】〈外観〉フィブリルの状態を確認するため
に外観検査として染色して検査した。その方法は、試料
を3.0%(owf)の黒色染料(Sumifix Black B150
% 、住友化学(株)製)、5%硫酸ナトリウム、2%炭
酸ナトリウムを含む50Lの染色浴中で、70℃で60
分間染色した後、洗浄した。さらに0.2%のシリコー
ン系の仕上油剤(シリコーランAN−1700、一方社
油脂工業(株)製)を含む処理浴中で40℃で20分間
油剤処理し、脱水、乾燥した後JIS L−02171
03法(家庭洗濯)で30回洗濯後の試料を5人の検査
員で目視判定し、下記の基準で判定した。 ◎:フィブリルの発生が見られず外観が著しく優れてい
る。 ○:フィブリルの発生が見られず、外観に優れている。 △:フィブリルの発生は少ないが、外観がやや劣る。 ×:フィブリルの発生が多く、外観が劣る。 【0021】〈風合い〉JIS L−0127 103
法(家庭洗濯)で30回洗濯後の試料を、5人の検査員
によって官能検査で調べ、柔軟性を次の基準で判定し
た。 5人全員良い:◎ 3〜4人良い:○ 1〜2人良い:
△ 5人全員悪い:× 【0022】〈引裂強さ(N{kgf})〉JIS L
−1096 8−15D(ベンジュラム法)に準じて測
定した。 【0023】〈破裂強さ kPa〉JIS L−101
8 A法(ミューレン法)に準じて測定した。 【0024】〈過酸化水素の安定性(%)〉酸と金属化
合物と過酸化水素を混合した処理液について、調製直後
と25℃で2時間後の過酸化水素の濃度を求め、2時間
後の過酸化水素の濃度を調製直後の過酸化水素の濃度で
除した値を100倍し、分解率を求めて安定性の目安と
した。なお、過酸化水素の濃度の測定は、100mlの
コニカルビーカーに処理液約5gを正確に秤量し、20
%硫酸水溶液を2ml加えた後、N/2−過マンガン酸
カリウム溶液で滴定し、過マンガン酸カリウムの微紅色
が消えなくなる点を終点として、次式により求めた。 【数1】 但し、aは処理液の採取量(g) bはN/2−過マンガン酸カリウムの滴定量(cm3) fはN/2−過マンガン酸カリウムのファクター 【0025】〔実施例1〕晒処理されたポリノジック繊
維(フジボウ愛媛(株)製)を用いた50番手単糸使い
の平織物(経密度132本/吋、横密度80本/吋)を
通常の連続糊抜き精練して平織物(1)を得た。過酸化
水素、鉄(III)(EDTAを鉄元素に換算して100
倍した値)、リンゴ酸を含む表1に記載した濃度の10
種の水処理液を各50L調製し、各水処理液の過酸化水
素の安定性を測定した。それぞれの水処理液に115c
m×10mの大きさの平織物(1)の各1枚を2秒間浸
漬し、絞り率85%で絞り、直ちに102℃で1.5分
間スチーミング処理を行った後、水洗,乾燥して試料N
o.1〜No.10を得た。得られた試料について、外
観、風合い、引裂強さを測定した。その結果を表1に示
した。 【0026】 【表1】 【0027】表1から明らかなように、3成分の濃度の
合計が好ましい範囲の2〜5%であっても、1成分が好
ましい濃度に満たない場合は、試料No.1,2のよう
に外観よりフィブリルの抑制効果が不十分であったり、
試料No.3のようにフィブリルの抑制効果は充分であ
っても過酸化水素の安定性が著しく劣るので好ましくな
い。各成分の濃度が好ましい濃度以上であり、なおかつ
3成分の濃度の合計が好ましい範囲である試料No.4
〜9はフィブリルの発生が抑制され外観、風合い共に優
れていることが判る。試料No.7〜9は、引裂強さに
低下が見られるが、この程度の低下は実用上問題になる
ものではない。ちなみに引裂強さについては、7.8N
{kgf}以上が一般的に業界の基準値となっている。
試料No.7〜9はこれより明らかに高い数値を示して
おり、問題になるものではない。試料No.10はフィ
ブリルが抑制され外観、風合い共に優れているが、3成
分の濃度が好ましい範囲を超えているために、引裂強さ
が低下し、好ましくない。 【0028】〔実施例2〕溶剤紡糸再生セルロース繊維
であるレンチング・リヨセル(商品名、レンチング社
製)を用いた50番手単糸使いの平織物(経密度132
本/吋、緯密度80本/吋)を通常の連続糊抜き精練し
て平織物(2)を得た。過酸化水素を2%、塩化第二鉄
を鉄元素に換算して0.015%、クエン酸を1.5%
含む3成分の濃度の合計が5%(鉄の値は100倍し
た)である水処理液の各50L2つを準備し水処理液の
過酸化水素の安定性を測定した。次いで実施例1と同様
の方法でそれぞれの大きさが115cm×10mの平織
物(2)と実施例1で得た平織物(1)を水処理液で処
理し試料No.11と試料No.12を得た。また、未
加工の平織物(1)と(2)を準備し比較試料1,2と
した。得られた試料No.11,12および比較試料
1,2について、外観、風合い、引裂強さを測定した。
結果を表2に示す。 【0029】 【表2】 【0030】表2から明らかなように、酸をクエン酸に
変えても、また鉄化合物を塩化第二鉄に変えても、ある
いは試料を溶剤紡糸再生セルロース繊維に変えても実施
例1と同様に、各成分の濃度が好ましい濃度であり、3
成分の濃度の合計が好ましい範囲であれば、比較試料1
あるいは比較試料2と比較してフィブリルの発生もな
く、著しく外観、風合いが優れていることが明らかであ
る。 【0031】〔実施例3〕晒処理されたポリノジック繊
維(フジボウ愛媛(株)製)を用いた60番手双糸を小
型ビームに巻き整経した。過酸化水素を2%、塩化第二
鉄を鉄元素に換算して0.01%、リンゴ酸を0.5%
含む3成分の濃度の合計が3.5%(鉄の値は100倍
した)である水処理液を50L準備し処理液の過酸化水
素の安定性を測定した。該水処理液中を40m/min
の速度で前記ビームに巻取られた糸を解舒しながら通過
させ、絞り率85%で絞り、次いで直ちに102℃で
1.5分間スチーミング処理を行った後、洗浄して乾燥
した。得られた60番手の加工処理された双糸を用いて
天竺編機(18吋×24G×1392N)で天竺生機を
得、これを試料No.13とした。また、ポリノジック
繊維の60番手双糸を用いて、天竺生機を編成して、比
較試料3とした。得られた試料No.13および比較試
料3について、外観、風合い、破裂強さを測定した。そ
の結果を表3に示した。 【0032】 【表3】 【0033】表3から明らかなように、糸を本発明の方
法で処理して該処理糸を用いて編物にしても、処理液の
各成分の濃度が好ましい濃度であり、3成分の濃度の合
計が好ましい範囲であれば、比較試料3と比較してフィ
ブリルの発生もなく、著しく外観、風合いが優れている
ことが明らかである。 【0034】〔実施例4〕未晒のポリノジック繊維(フ
ジボウ愛媛(株)製)を用いた30番手単糸を用いて実
施例3と同様にして天竺生機を編成し、次いで通常の方
法で精練漂白して天竺生機を得た。過酸化水素を2%、
鉄(III)(EDTAを鉄元素に換算した値)0.01
%、リンゴ酸を0.5%、クエン酸を0.5%含む3成
分の濃度の合計が4%(鉄の値は100倍した)である
水処理液を50L準備し過酸化水素の安定性を測定し
た。続いて大きさ1m×10mの天竺生機を該処理液中
に2秒間浸漬し、絞り率85%で絞り、直ちに102℃
で1.5分間スチーミング処理し洗浄、乾燥して試料N
o.14を得た。また、水処理液で処理しない天竺生機
を比較試料4とした。得られた試料No.14および比
較試料4について、外観、風合い、引裂強さを測定し
た。結果を表4に示す。 【0035】 【表4】 【0036】表4から明らかなように、天竺生機編物を
本発明の方法で酸を1種でなく2種使用しても、比較試
料4と比較してフィブリルの発生もなく、著しく外観、
風合いが優れていることが明らかである。また、過酸化
水素の安定性に若干の低下は見られるが、実用上問題に
なるものではない。 【0037】〔実施例5〕晒処理されたポリノジック繊
維(フジボウ愛媛(株)製)70%と木綿繊維30%か
らなる50番単糸の紡績糸を使用して実施例1と同様の
平織物を得、通常の連続糊抜き精練漂白した平織物を得
た。過酸化水素を2%,塩化第二鉄を鉄元素に換算して
0.015%、リンゴ酸を1.5%含む3成分の濃度の
合計が5%(鉄の値は100倍した)である水処理液を
50L準備し過酸化水素の安定性を測定した。実施例1
と同様の方法で大きさが115cm×10mの平織物を
上述の水処理液で処理し試料No.15を得た。また、
水処理液で処理しない平織物を比較試料5とした。得ら
れた試料No.15および比較試料5について、外観、
風合い、引裂強さを測定した。結果を表5に示す。 【0038】 【表5】 【0039】表5から明らかなように、ポリノジック繊
維に他の繊維を混紡した織物でも、比較試料5と比較し
てフィブリルの発生もなく、著しく外観、風合いが優れ
ていることが明らかである。引裂強さは比較試料5と比
較して若干低下しているが、事実上問題になるものでは
ない。 【0040】 【発明の効果】本発明の再生セルロース繊維の加工法に
よれば、ポリノジック繊維あるいは溶剤紡糸セルロース
繊維の欠点であった加工中あるいは洗濯を繰り返すこと
によるフィブリルの発生を抑制し、柔軟な風合いを損な
うことなく著しく品位を高める効果があり、また、強度
低下も少なく、これまでフィブリル化抑制処理に不向き
であった薄物等を含め、幅広い分野でのフィブリル化抑
制に利用することが可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to regenerated cellulose fibers, especially polynosic fibers produced by viscose spinning or solvent-spun regenerated cellulose fibers produced by solvent spinning. The present invention relates to a processing method for suppressing fibrillation. [0002] Regenerated cellulose fibers are produced from ordinary rayon produced by the viscose method, polynosic fibers having high crystallinity and orientation using pulp having a high degree of polymerization, and copper produced by the copper ammonia method. Ammonia rayon is known. [0003] In recent years, solvent-spun regenerated cellulose fibers produced using an amine oxide-based solvent as a cellulose solvent have been developed and used. However, among the regenerated cellulose fibers, solvent-spun regenerated cellulose fibers and polynosic fibers, in particular, have a feature of being easily fibrillated by physical factors such as friction due to high crystallinity and high orientation. Utilizing this easy-to-fibrillate characteristic, for example, after kneading a knitted fabric made of these fibers and applying a physical force such as tapping to generate significant fibrils, most of the fibrils generated using the cellulolytic enzyme So-called peach-skin-like products have been developed in which only fine fibrils are left behind. However, this method requires a long processing time, has a problem in the reproducibility of the hue of the object,
There is a problem that the strength is lowered and it is difficult to adapt to thin objects, and fibrils are generated again due to repeated washing and the quality is remarkably impaired. The applications and usage methods are limited. Also, recently, the needs for textile products have diversified, and there is a growing demand for clear and flexible products that do not generate fibrils even after repeated washing. [0005] From such a viewpoint, many methods for preventing fibrillation of polynosic fiber and solvent-spun regenerated cellulose fiber have been proposed. For example, JP-A-7-7
No. 0930 discloses a method using a formalin-based treating agent, and JP-A-9-302584 and
195765 discloses a method using an epoxy-based treating agent. However, all of these methods use a polyfunctional reagent to cause a cross-linking reaction between celluloses to prevent fibrillation, and thus have a drawback of impairing the flexibility of fibers. On the other hand,
No. 1-61642 discloses a method of dissolving and removing generated fibrils using an amine oxide and a surfactant which are solvents used when obtaining regenerated cellulose fibers. Due to the use, the fiber has a drawback that the fiber becomes coarse and hard and the soft feel is impaired. SUMMARY OF THE INVENTION The present invention suppresses fibrillation, which is a drawback of polynosic fiber and solvent-spun regenerated cellulose fiber, without impairing the strength of the fiber product and the soft feel of the fiber. It is another object of the present invention to provide a method for processing regenerated cellulose fibers which does not impair the appearance even after repeated washing. Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned disadvantages, and as a result, have found that regenerated cellulose fibers can be treated with acid, hydrogen peroxide, and hydrogen peroxide. After treatment with an aqueous solution containing three components consisting of a metal compound having decomposition activity, by heat treatment, the fibrillation of polynosic fibers and solvent-spun regenerated cellulose fibers can be significantly suppressed, and the fiber strength and soft texture are improved. The inventors have found that the appearance is not impaired even after repeated washing without impairment, and the present invention has been completed. That is, the present invention provides a method for producing polynosic fibers or solvent-spun regenerated cellulose by strongly oxidizing only the vicinity of the fiber surface to cause cleavage of glycosidic bonds and reducing only the degree of polymerization of cellulose molecules near the fiber surface. This is a processing method for suppressing the fibrillation phenomenon caused by the high degree of polymerization, high crystallinity, and high orientation of the fiber. [0010] Therefore, in the object to be treated which has been processed according to the present invention, since the degree of polymerization is reduced only in the vicinity of the fiber surface, the strength is slightly reduced and the washing is repeated without impairing the soft texture. However, fibrils hardly occur and the appearance is not impaired. DETAILED DESCRIPTION OF THE INVENTION The regenerated cellulose fibers used in the present invention are polynosic fibers and solvent-spun regenerated cellulose fibers. Examples of the form include cotton, thread, knit, woven and non-woven fabric. The present invention relates to a process for processing a regenerated cellulose fiber comprising a polynosic fiber and a solvent-spun regenerated cellulose fiber, wherein water containing three components of acid, hydrogen peroxide, and a metal compound having a decomposition activity for hydrogen peroxide is used. It is characterized by using a processing liquid. When the concentration of a metal compound having a large effect on the oxidation reaction and having a decomposition activity for hydrogen peroxide is converted into a metal element, and the value obtained by multiplying the value by 100 is used, the total concentration of the three components in the water treatment solution is calculated. Is preferably used in the range of 2 to 5%. The sum of the concentrations of the three components is 2
%, The effect of suppressing fibrillation is insufficient, which is not preferable. If the total concentration of the three components exceeds 5%, the fiber strength is undesirably reduced. Next, the components constituting the three components will be described. As the acid, a mineral acid or an organic acid having a function as a stabilizer for hydrogen peroxide and an auxiliary function for cleaving a glucoside bond is used. However, mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are not preferred because they corrode metals used in the treatment apparatus, and the use of organic acids is preferred. Examples of such organic acids include formic acid, acetic acid, propionic acid, tartaric acid, malic acid, citric acid, and the like, and non-volatile acids such as tartaric acid, malic acid, and citric acid are particularly preferable. It is preferable to use these organic acids singly or as a mixture of two or more, and add them so that the concentration becomes 0.5% or more. If the amount added is less than 0.5%, the stability of hydrogen peroxide will decrease. [0014] Hydrogen peroxide is a central treating agent in the present processing, and it is preferable to use it by adding 1% or more. If the addition amount is less than 1%, the effect of suppressing fibrils becomes insufficient, which is not preferable. The metal compound having decomposition activity for hydrogen peroxide is selected from heavy metals such as titanium, chromium, manganese, iron, cobalt, nickel and copper which have decomposition activity for hydrogen peroxide in a water treatment bath. Hydrochloride, nitrate,
Sulfates, acetates, double salts thereof, and complex compounds such as ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA) and diethylenetriaminepentaacetic acid (hereinafter abbreviated as DTPA) are preferably used. However, the toxicity of metals,
Considering the effect of release into the environment, iron hydrochloride, nitrate, sulfate or complex compounds of iron such as EDTA and DTPA are particularly preferable. In the present invention, these metal compounds may be used alone or in combination of two or more, and the concentration calculated as the metal element is 0.005% (100 times the value of 0.1%).
5%) or more. If the addition amount is less than 0.005%, the effect of suppressing fibrils becomes insufficient, which is not preferable. In the present invention, each of the components is added in the above-mentioned range, and the total of the concentrations of the three components is calculated by converting the concentration of the metal compound having decomposition activity to hydrogen peroxide into a metal element. When a value multiplied by 100 is used, the polynosic fiber or the solvent-spun regenerated cellulose fiber is treated in a water treatment bath such that the total concentration of the three components is in the range of 2 to 5%. After applying the three components to the polynosic fiber or the solvent-spun regenerated cellulose fiber, heat treatment is performed. As a method for applying the three components, a commonly used method is used, and a padding method is preferably used. That is,
A water treatment bath containing the above three components is prepared, immersed in this solution at room temperature for 1 to 10 seconds, and then squeezed to apply the three components to the object. The aperture ratio at this time may be within a normal range, and is selected within a range of 60 to 100%. The heat treatment may be performed by a commonly used method, particularly preferably steaming. The steaming may be performed at 95 to 105 ° C. for 1 to 5 minutes. Further, a surfactant or the like may be added to the water treatment liquid bath for the purpose of improving the permeability of the unrefined fibers and the like. [0017] Even if the dyeing treatment is carried out after the main processing, the fibril is suppressed, so that the finished quality of the fiber product can be improved. In order to pursue a more advanced texture,
After performing the processing according to the present invention, for example, a method of treating with a cellulolytic enzyme as a known method may be performed. The present invention relates to polynosic fibers or solvent-spun regenerated cellulose fibers and other fibers, for example, natural fibers such as cotton, hemp, wool and silk, ordinary rayon,
Cotton-like, thread-like, woven, etc. mixed with regenerated cellulose fibers such as copper ammonia rayon and high wet modulus rayon, and synthetic fibers such as nylon, acrylic and polyester
It can also be applied to knits, non-woven fabrics and the like. According to the present invention, a processing method is provided for these fiber products, in which the generation of fibrils is suppressed without impairing the soft texture and the appearance is not impaired even after repeated washing without generating fibrils. You can do it. The present invention will now be described in detail with reference to examples, but the present invention is not limited to these ranges. The appearance, texture, tear strength, burst strength, and stability of hydrogen peroxide were measured by the following methods. <Appearance> In order to confirm the state of the fibrils, they were stained and inspected as an appearance inspection. The method uses a 3.0% (owf) black dye (Sumifix Black B150).
%, Manufactured by Sumitomo Chemical Co., Ltd.) in a 50 L dye bath containing 5% sodium sulfate and 2% sodium carbonate at 70 ° C. for 60 hours.
After staining for minutes, it was washed. Furthermore, in a treatment bath containing 0.2% of a silicone finishing oil (Silicoran AN-1700, manufactured by YAS & Co., Ltd.), the oil is treated at 40 ° C. for 20 minutes, dehydrated, dried, and then JIS L-02171.
Samples washed 30 times by the 03 method (home washing) were visually judged by five inspectors, and judged according to the following criteria. :: Fibrils were not generated and the appearance was remarkably excellent. :: No fibrils were generated and the appearance was excellent. Δ: Fibril generation is small, but appearance is slightly inferior. ×: Fibrils are frequently generated and the appearance is poor. <Hand feeling> JIS L-0127 103
The sample after 30 washings by the method (home washing) was examined by a sensory test by five inspectors, and the flexibility was determined according to the following criteria. All five good: ◎ Three or four good: ○ One or two good:
△ All five bad: × [Tear strength (N kgf})] JIS L
It was measured according to -10968-8-15D (Benduram method). <Burst strength kPa> JIS L-101
It measured according to the 8A method (Mullen method). <Stability of Hydrogen Peroxide (%)> With respect to the treatment liquid obtained by mixing the acid, the metal compound and the hydrogen peroxide, the concentrations of the hydrogen peroxide immediately after preparation and after 2 hours at 25 ° C. were determined. The value obtained by dividing the concentration of hydrogen peroxide by the concentration of hydrogen peroxide immediately after preparation was multiplied by 100, and the decomposition rate was determined as a measure of stability. The concentration of hydrogen peroxide was measured by accurately weighing about 5 g of the treatment solution in a 100 ml conical beaker,
After adding 2 ml of a 2% aqueous sulfuric acid solution, titration was performed with an N / 2-potassium permanganate solution, and the point at which the faint red color of potassium permanganate did not disappear was determined by the following equation. (Equation 1) Where a is the amount of the processing solution collected (g) b is the titer of N / 2-potassium permanganate (cm 3 ) f is the factor of N / 2-potassium permanganate [Example 1] A plain woven fabric using a treated polynosic fiber (manufactured by Fujibo Ehime Co., Ltd.) using a 50th single yarn and having a continuous density of 132 yarns / inch and a horizontal density of 80 yarns / inch is subjected to ordinary continuous desizing and scouring. (1) was obtained. Hydrogen peroxide, iron (III) (EDTA is 100
Multiplied value), 10% of the concentration shown in Table 1 containing malic acid.
50 L of each kind of water treatment liquid was prepared, and the stability of hydrogen peroxide of each water treatment liquid was measured. 115c for each water treatment solution
Each piece of the plain woven fabric (1) having a size of mx 10 m was immersed for 2 seconds, squeezed at a squeezing ratio of 85%, immediately subjected to a steaming treatment at 102 ° C for 1.5 minutes, washed with water and dried. Sample N
o. 1 to No. 10 was obtained. The appearance, hand, and tear strength of the obtained sample were measured. The results are shown in Table 1. [Table 1] As is clear from Table 1, even when the total concentration of the three components is within the preferred range of 2 to 5%, when one component is less than the preferred concentration, Sample No. As shown in 1 and 2, the effect of suppressing fibrils is insufficient from the appearance,
Sample No. Although the effect of suppressing fibrils is sufficient as in No. 3, the stability of hydrogen peroxide is extremely poor, which is not preferable. Sample No. 1 in which the concentration of each component is equal to or higher than the preferred concentration and the sum of the concentrations of the three components is within the preferred range 4
Nos. 9 to 9 show that the generation of fibrils is suppressed and the appearance and texture are both excellent. Sample No. In Nos. 7 to 9, a decrease in tear strength is observed, but such a decrease does not pose a practical problem. By the way, about tear strength, 7.8N
{Kgf} or more is a standard value in the industry in general.
Sample No. 7 to 9 show clearly higher numerical values, and are not problematic. Sample No. In No. 10, fibrils are suppressed and the appearance and texture are excellent, but since the concentrations of the three components are beyond the preferred ranges, the tear strength is undesirably reduced. [Example 2] A plain woven fabric with a yarn count of 50 (single density 132) using lentining lyocell (trade name, manufactured by Lentining Co., Ltd.) which is a solvent-spun regenerated cellulose fiber.
This fabric was subjected to ordinary continuous desizing and scouring to obtain a plain fabric (2). 2% hydrogen peroxide, 0.015% ferric chloride converted to iron, 1.5% citric acid
Two 50 L each of a water treatment liquid having a total concentration of the three components contained of 5% (the value of iron was multiplied by 100) was prepared, and the stability of hydrogen peroxide in the water treatment liquid was measured. Next, in the same manner as in Example 1, the plain fabric (2) having a size of 115 cm × 10 m and the plain fabric (1) obtained in Example 1 were treated with a water treatment solution. 11 and sample no. 12 was obtained. In addition, unprocessed plain fabrics (1) and (2) were prepared as Comparative Samples 1 and 2. The obtained sample No. Appearance, texture, and tear strength of 11, 12 and Comparative Samples 1 and 2 were measured.
Table 2 shows the results. [Table 2] [0030] As is clear from Table 2, the same as in Example 1 regardless of whether the acid was changed to citric acid, the iron compound was changed to ferric chloride, or the sample was changed to solvent-spun regenerated cellulose fiber. In addition, the concentration of each component is a preferable concentration,
If the total concentration of the components is within the preferred range, Comparative Sample 1
Alternatively, it is apparent that there is no generation of fibrils as compared with Comparative Sample 2, and the appearance and texture are remarkably excellent. Example 3 A 60-count double yarn using bleached polynosic fiber (manufactured by Fujibo Ehime Co., Ltd.) was wound around a small beam and warped. Hydrogen peroxide 2%, ferric chloride converted to iron element 0.01%, malic acid 0.5%
Fifty liters of a water treatment liquid having a total concentration of the three components contained of 3.5% (the value of iron was multiplied by 100) was prepared, and the stability of hydrogen peroxide in the treatment liquid was measured. 40 m / min in the water treatment liquid
The yarn wound on the beam was passed while unwinding at a speed of 絞 り, squeezed at a squeezing ratio of 85%, and immediately subjected to a steaming treatment at 102 ° C. for 1.5 minutes, followed by washing and drying. Using the double yarn processed and processed at the 60th count, a sheet knitting machine (18 inches × 24G × 1392N) was used to obtain a sheet knitting machine. 13. In addition, a sheet laying machine was knitted using a polynosic fiber 60th twin yarn to obtain Comparative Sample 3. The obtained sample No. 13 and Comparative Sample 3 were measured for appearance, texture, and burst strength. Table 3 shows the results. [Table 3] As is clear from Table 3, even when the yarn is treated by the method of the present invention and knitted using the treated yarn, the concentration of each component of the treatment liquid is a preferable concentration, and the concentration of the three components is When the total is in the preferable range, it is apparent that there is no generation of fibrils as compared with Comparative Sample 3, and the appearance and texture are remarkably excellent. Example 4 Using the 30th single yarn made of unbleached polynosic fiber (manufactured by Fujibo Ehime Co., Ltd.), a knitted fabric was knitted in the same manner as in Example 3, and then scoured by a usual method. The bleached sheet was obtained. 2% hydrogen peroxide,
Iron (III) (EDTA converted to iron element) 0.01
%, Malic acid 0.5%, citric acid 0.5%, the total concentration of the three components is 4% (iron value is 100 times). The properties were measured. Subsequently, a sheet laying machine having a size of 1 mx 10 m was immersed in the treatment solution for 2 seconds, squeezed at a squeezing ratio of 85%, and immediately heated to 102 ° C.
, Steaming for 1.5 minutes, washing and drying
o. 14 was obtained. In addition, a sheet laying machine not treated with the water treatment liquid was used as Comparative Sample 4. The obtained sample No. 14 and Comparative Sample 4 were measured for appearance, texture, and tear strength. Table 4 shows the results. [Table 4] As is clear from Table 4, even if two types of acids were used in the method of the present invention, not fibrils, there was no generation of fibrils, and the appearance and the appearance were remarkably improved.
It is clear that the texture is excellent. Although a slight decrease in the stability of hydrogen peroxide is observed, this does not pose a practical problem. Example 5 Plain fabric similar to that of Example 1 using a spun yarn of No. 50 single yarn consisting of 70% bleached polynosic fiber (Fujibo Ehime Co., Ltd.) and 30% cotton fiber To obtain a normal continuous desizing scouring bleached plain fabric. The total concentration of the three components containing 2% hydrogen peroxide, 0.015% ferric chloride in terms of iron, and 1.5% malic acid is 5% (iron value multiplied by 100). 50 L of a certain water treatment solution was prepared, and the stability of hydrogen peroxide was measured. Example 1
A plain fabric having a size of 115 cm × 10 m was treated with the above-mentioned water treatment liquid in the same manner as in 15 was obtained. Also,
The plain fabric not treated with the water treatment liquid was used as Comparative Sample 5. The obtained sample No. 15 and Comparative Sample 5,
The hand and the tear strength were measured. Table 5 shows the results. [Table 5] As is evident from Table 5, the woven fabric obtained by blending the polynosic fiber with other fibers has no fibrils and has a remarkably excellent appearance and texture as compared with Comparative Sample 5. Although the tear strength is slightly lower than that of the comparative sample 5, it does not actually cause a problem. According to the method for processing regenerated cellulose fibers of the present invention, the generation of fibrils due to repeated processing or washing, which is a drawback of polynosic fibers or solvent-spun cellulose fibers, is suppressed, and flexible fibers are obtained. It has the effect of significantly improving the quality without impairing the texture, and has a small decrease in strength.It can be used to control fibrillation in a wide range of fields, including thin materials that were previously unsuitable for fibrillation suppression processing. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 興司 埼玉県越谷市越ケ谷5−3−16ヴューラー 越谷203 Fターム(参考) 4L031 AA02 AB01 AB32 BA33 CA02 4L033 AA02 AB01 AB05 AC08 AC15 BA17 BA18    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Koji Ando             5-3-16 Viewer, Koshigaya, Koshigaya City, Saitama Prefecture             203 Koshigaya F term (reference) 4L031 AA02 AB01 AB32 BA33 CA02                 4L033 AA02 AB01 AB05 AC08 AC15                       BA17 BA18

Claims (1)

【特許請求の範囲】 【請求項1】 再生セルロース繊維を、酸、過酸化水
素、及び過酸化水素に対して分解活性を有する金属化合
物よりなる3成分を含む水溶液で処理した後、熱処理す
ることを特徴とする再生セルロース繊維の加工方法。
Claims 1. A regenerated cellulose fiber is treated with an aqueous solution containing three components consisting of an acid, hydrogen peroxide, and a metal compound having a decomposition activity for hydrogen peroxide, followed by heat treatment. A method for processing a regenerated cellulose fiber.
JP2001205990A 2001-07-06 2001-07-06 Processing method of regenerated cellulose fiber Expired - Fee Related JP3831837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205990A JP3831837B2 (en) 2001-07-06 2001-07-06 Processing method of regenerated cellulose fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205990A JP3831837B2 (en) 2001-07-06 2001-07-06 Processing method of regenerated cellulose fiber

Publications (2)

Publication Number Publication Date
JP2003020560A true JP2003020560A (en) 2003-01-24
JP3831837B2 JP3831837B2 (en) 2006-10-11

Family

ID=19042203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205990A Expired - Fee Related JP3831837B2 (en) 2001-07-06 2001-07-06 Processing method of regenerated cellulose fiber

Country Status (1)

Country Link
JP (1) JP3831837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084240A (en) * 2008-09-29 2010-04-15 Unitika Trading Co Ltd Weft knitted fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084240A (en) * 2008-09-29 2010-04-15 Unitika Trading Co Ltd Weft knitted fabric

Also Published As

Publication number Publication date
JP3831837B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US5759210A (en) Lyocell fabric treatment to reduce fibrillation tendency
EP0749505B2 (en) Fibre treatment
JPH06505060A (en) Manufacturing method of elongated material
JPH08505441A (en) Fiber processing
JP5554172B2 (en) Processing method of fiber material
AT513426A1 (en) Spun-dyed modal fiber, its use and process for its preparation
JP2011219898A (en) Deodorant cellulose fiber structure and manufacturing method thereof as well as deodorant cellulose fiber product using the deodorant cellulose fiber structure
JP5912761B2 (en) Deodorized regenerated cellulose fiber, fiber structure using the same, and production method thereof
TWI250238B (en) Process for producing a dyed and finished lyocell fabric
JP2003020560A (en) Method for processing regenerated cellulose fiber
JP3445865B2 (en) Cellulosic fiber modification method
EP4092185A1 (en) Fibrillated regenerated cellulose fiber, and fabric using same
JP3831838B2 (en) Processing method of regenerated cellulose fiber
JP4195689B2 (en) Method for producing composite fiber product comprising cotton and regenerated cellulose fiber
JP2009221635A (en) Sewing thread, and sewn product using the same
JPH05230742A (en) Knit fabric containing cotton and its production
JP2009235645A (en) Core yarn conjugate fiber yarn, sewing yarn, and sewn product using the same
JP2020007655A (en) Fibrillated regenerated cellulose fiber, fabric using the same
JPH08209538A (en) Crease-resistant finishing of cellulose fiber cloth
JPH08246278A (en) Hemp composite yarn, cloth made of same and its production
JPH09157988A (en) Solvent-spun cellulosic fiber/wool mixed yarn fabric
JPH1077570A (en) Production of fibrous structure comprising cellulose multifilament and cotton
JPH11189955A (en) Knitted fabric for underwear
JPH09137384A (en) Solvent-spun cellulose fiber excellent in pill resistance and peach-skin processability, its fiber structure and its production
JPH11315474A (en) Fibrillation of fabric comprising solvent-spun cellulose fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Effective date: 20060529

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060607

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120728

LAPS Cancellation because of no payment of annual fees