JP2003020298A - Method for manufacturing metal oxide - Google Patents

Method for manufacturing metal oxide

Info

Publication number
JP2003020298A
JP2003020298A JP2001201080A JP2001201080A JP2003020298A JP 2003020298 A JP2003020298 A JP 2003020298A JP 2001201080 A JP2001201080 A JP 2001201080A JP 2001201080 A JP2001201080 A JP 2001201080A JP 2003020298 A JP2003020298 A JP 2003020298A
Authority
JP
Japan
Prior art keywords
metal
oxide
oxides
smoke
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201080A
Other languages
Japanese (ja)
Inventor
Eihei To
衛平 湯
Giyoushiyo Yo
暁晶 楊
Kenta Oi
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2001201080A priority Critical patent/JP2003020298A/en
Publication of JP2003020298A publication Critical patent/JP2003020298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing single crystals of metal oxides by using vaporizable metal salts. SOLUTION: In the method for manufacturing the metal oxides, smoke produced in the vaporizing process of metal salts which vaporize at high temperature is introduced into a reaction field with a controlled atmosphere so as to allow an oxidation reaction to proceed to produce crystal grains of oxides. The metal salt which vaporizes at high temperature is lithium chloride, manganese chloride or cobalt chloride. The oxidation reaction is controlled by the pressure of oxygen to produce the crystal grains of oxides of required oxidation numbers. Compound oxides can be produced by introducing two or more kinds of smoke into the reaction field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業の属する技術分野】本発明は、電池工学上有用な
材料として利用できるマンガン酸化物単結晶の調製法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for preparing a manganese oxide single crystal which can be used as a material useful in battery engineering.

【0002】[0002]

【従来の技術】小形携帯電子機器、電気自動車の電源等
には、高エネルギー密度化かつ高出力密度化が望まれ
る。現在、金属酸化物を電極材料として用いた電気化学
キャパシタと呼ばれる新しいタイプのエネルギーデバイ
スが注目されている。金属酸化物系材料には一連の貴金
属・弁金属・遷移金属・リチウム遷移金属の酸化物がエ
ネルギー貯蔵材料として用いられている。これらのうち
で弁金属は電解キャパシタ材料として使用され、その他
の金属は電気化学キャパシタや種々の電池の電極材料と
して使用されている。
2. Description of the Related Art High energy density and high power density are desired for small portable electronic devices, power sources for electric vehicles and the like. At present, a new type of energy device called an electrochemical capacitor using a metal oxide as an electrode material is drawing attention. A series of oxides of noble metals, valve metals, transition metals, and lithium transition metals are used as energy storage materials for metal oxide materials. Among these, valve metals are used as electrolytic capacitor materials, and other metals are used as electrode materials for electrochemical capacitors and various batteries.

【0003】金属酸化物の単結晶の育成は、高温で酸化
物を溶解した後徐冷する方法が一般的である。しかし遷
移金属酸化物、例えばLiMO2(M=Mn,Co,
V,Ni)やLiMn24は、遷移金属イオンの原子価
状態が温度に依存し、その溶解度が極めて低いために、
通常の冷却法で単結晶を成長させるのは困難である。現
在までに溶融塩法でLi2MnO3の単結晶を育成した試
みは報告されているが、それ以外の遷移金属酸化物に関
する単結晶育成例は見当たらない。本発明者らは、二次
電池用材料などの電池工学上有用な材料として利用でき
るマンガン酸化物(LiMn24、Li2MnO3など)
単結晶の提供を目的とし、高温溶融塩法によりマンガン
酸化物単結晶を育成するマンガン酸化物単結晶の製造方
法をすでに特許出願した(特願2000−13460
2)。
The growth of a single crystal of a metal oxide is generally carried out by dissolving the oxide at a high temperature and then gradually cooling it. However, transition metal oxides such as LiMO 2 (M = Mn, Co,
V, Ni) and LiMn 2 O 4 have a very low solubility in the valence state of transition metal ions, and their solubility is extremely low.
It is difficult to grow a single crystal by an ordinary cooling method. Up to now, an attempt to grow a single crystal of Li 2 MnO 3 by the molten salt method has been reported, but no single crystal growth example regarding other transition metal oxides is found. The present inventors have made use of manganese oxides (LiMn 2 O 4 , Li 2 MnO 3, etc.) that can be used as materials useful for battery engineering such as secondary battery materials.
For the purpose of providing a single crystal, a patent has already been filed for a method for producing a manganese oxide single crystal by growing a manganese oxide single crystal by a high temperature molten salt method (Japanese Patent Application No. 2000-13460).
2).

【0004】[0004]

【発明が解決しようとする課題】本発明は、蒸発性の金
属塩を利用した金属酸化物単結晶の調製法の提供を目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for preparing a metal oxide single crystal using an evaporative metal salt.

【0005】[0005]

【課題を解決するための手段】本発明は、高温で蒸発す
る金属塩の蒸発過程に発生したスモークを雰囲気制御し
た反応場に導入して酸化反応を進行させて酸化物結晶粒
子を生成させる金属酸化物の製造法である。
[MEANS FOR SOLVING THE PROBLEMS] The present invention is a metal for introducing smoke generated in the evaporation process of a metal salt that evaporates at a high temperature into a reaction field whose atmosphere is controlled to promote an oxidation reaction to generate oxide crystal particles. It is a method for producing an oxide.

【0006】高温で蒸発する金属塩が塩化リチウム、塩
化マンガンまたは塩化コバルトであり、その場合、本発
明は、塩化リチウム、塩化マンガンまたは塩化コバルト
よりなる高温で蒸発する金属塩の蒸発過程に発生したス
モークを雰囲気制御した反応場に導入して酸化反応を進
行させて酸化物結晶粒子を生成させる金属酸化物の製造
法である。
The high temperature evaporating metal salt is lithium chloride, manganese chloride or cobalt chloride, in which case the present invention occurs in the evaporation process of the high temperature evaporating metal salt consisting of lithium chloride, manganese chloride or cobalt chloride. This is a method for producing a metal oxide in which smoke is introduced into a reaction field whose atmosphere is controlled to promote an oxidation reaction to generate oxide crystal particles.

【0007】酸素圧力によって酸化反応を制御し必要な
酸化数の酸化物結晶粒子を生成させており、その場合、
本発明は、高温で蒸発する金属塩、より具体的には塩化
リチウム、塩化マンガンまたは塩化コバルトの蒸発過程
に発生したスモークを雰囲気制御した反応場に導入して
酸化反応を進行させ、その際、酸素圧力によって酸化反
応を制御し必要な酸化数の酸化物結晶粒子を生成させる
金属酸化物の製造法である。
Oxidation pressure is controlled by oxygen pressure to generate oxide crystal particles having a required oxidation number. In that case,
The present invention, a metal salt that evaporates at a high temperature, more specifically, lithium chloride, manganese chloride or cobalt chloride is introduced into the reaction field controlled atmosphere atmosphere smoke to proceed the oxidation reaction, at that time, This is a method for producing a metal oxide in which an oxidation reaction is controlled by oxygen pressure to generate oxide crystal particles having a required oxidation number.

【0008】二種類以上のスモークを反応場に導入する
ことによって複合酸化物を生成させており、その場合、
本発明は、高温で蒸発する金属塩、より具体的には塩化
リチウム、塩化マンガンまたは塩化コバルトの蒸発過程
に発生したスモーク二種類以上を雰囲気制御した反応場
に導入して酸化反応を進行させて複合酸化物を生成さ
せ、その際、必要に応じ、酸素圧力によって酸化反応を
制御し必要な酸化数の酸化物結晶粒子を生成させる金属
酸化物の製造法である。
A complex oxide is produced by introducing two or more kinds of smoke into the reaction field. In that case,
The present invention introduces a metal salt that evaporates at a high temperature, more specifically, two or more kinds of smoke generated in the evaporation process of lithium chloride, manganese chloride or cobalt chloride into an atmosphere-controlled reaction field to promote an oxidation reaction. This is a method for producing a metal oxide in which a composite oxide is produced and, when necessary, an oxidation reaction is controlled by oxygen pressure to produce oxide crystal particles having a required oxidation number.

【0009】[0009]

【発明の実施の形態】〔原料化合物〕原料化合物として
の金属化合物は、いずれも公知のものが使用できるが、
高温で蒸発する塩でなければならない。例えば、リチウ
ム、マンガン、コバルトなどの塩化物塩やフッ化物塩な
どが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION [Raw Material Compound] As the metal compound as a raw material compound, known compounds can be used.
It must be a salt that evaporates at high temperatures. For example, chloride salts and fluoride salts of lithium, manganese, cobalt and the like can be mentioned.

【0010】〔生成物の組成や形態制御〕生成物の組成
は原料化合物の種類を選択することによって制御できる
他、加熱温度や雰囲気などのコントロールで制御でき
る。たとえば、MnCl2を用いてMnO2を調製する場
合には、強い酸化雰囲気で650℃以下の比較的に低温
が好ましいことに対して、Mn23を調整する場合には
高温が好ましい。反応場によって微細のナノサイズ粒子
からミリオーダサイズの単結晶までの調製が可能にな
る。この場合には、反応場の設計が重要である。単結晶
粒子の成長は、結晶核の形成と成長の観点から、固定し
た反応場にスモークの連続な供給ができるようなシステ
ムが望ましい。一方、微細なナノサイズ粒子を調製する
ためには、粒子成長を抑える立場から、スモークが反応
場を流しながら反応することが望ましい。
[Composition of Product and Morphology Control] The composition of the product can be controlled by selecting the kind of the raw material compound, as well as by controlling the heating temperature and atmosphere. For example, when MnO 2 is prepared using MnCl 2 , a relatively low temperature of 650 ° C. or lower is preferable in a strong oxidizing atmosphere, whereas when adjusting Mn 2 O 3 , a high temperature is preferable. The reaction field allows the preparation of fine nano-sized particles to milli-sized single crystals. In this case, the design of the reaction field is important. From the viewpoint of the formation and growth of crystal nuclei, the growth of single crystal particles is preferably a system capable of continuously supplying smoke to a fixed reaction field. On the other hand, in order to prepare fine nano-sized particles, it is desirable that the smoke reacts while flowing in the reaction field from the viewpoint of suppressing particle growth.

【0011】〔加熱温度〕酸化物を得るためには、金属
塩あるいは十分に混合したそれらの混合物を加熱すれば
よい。加熱温度は用いる金属塩の融点以上にすればよい
が、マンガン、鉄などの遷移金属酸化物の場合には、金
属の原子価が温度に大きく影響されるために温度の設定
が重要である。
[Heating Temperature] To obtain an oxide, a metal salt or a sufficiently mixed mixture thereof may be heated. The heating temperature may be higher than the melting point of the metal salt used, but in the case of transition metal oxides such as manganese and iron, the temperature is important because the valence of the metal is greatly influenced by the temperature.

【0012】〔雰囲気〕酸化物を得るためには、空気中
における反応も可能であるが、特定の酸化物を得るため
には酸素分圧を制御するのが重要である。雰囲気を制御
するには、酸素ガス、窒素ガス、あるいはその混合ガス
などの導入で制御できるが、溶融塩に酸化−還元性の試
薬を添加することによって制御することも可能になる。
[Atmosphere] In order to obtain an oxide, a reaction in air is possible, but in order to obtain a specific oxide, it is important to control the oxygen partial pressure. The atmosphere can be controlled by introducing oxygen gas, nitrogen gas, or a mixed gas thereof, but it can also be controlled by adding an oxidizing-reducing reagent to the molten salt.

【0013】[0013]

【作用】酸化物単結晶粒子の育成は、高温で酸化物を溶
解した後徐冷する方法が一般的である。しかし遷移金属
酸化物、例えばLiMO2(M=Mn,Co,V,N
i)やLiMn2は、遷移金属イオンの原子価状態
が温度に依存し、その溶解度が極めて低いために、通常
の冷却法で単結晶を生成させるのは困難である。本発明
は、蒸発性の金属塩を利用して金属酸化物単結晶を調製
する。
[Function] The oxide single crystal particles are generally grown by dissolving the oxide at a high temperature and then gradually cooling. However, transition metal oxides such as LiMO2 (M = Mn, Co, V, N
In the case of i) and LiMn 2 O 4 , the valence state of the transition metal ion depends on the temperature and the solubility thereof is extremely low, so that it is difficult to form a single crystal by a usual cooling method. The present invention utilizes evaporative metal salts to prepare metal oxide single crystals.

【0014】塩化リチウムや塩化マンガン、塩化コバル
トなどの金属塩は高温で蒸発することが知られている。
蒸発過程に発生したスモークを雰囲気制御した反応場に
導入して反応させると酸化物結晶粒子が生成できる。例
えば、塩化マンガンを融点650℃以上加熱すると蒸発
してMnCl2スモークが生成する。そのスモークを反
応場に導入して酸化反応を進行させると、酸素圧力によ
ってMn23、Mn34やMnO2が得られる。また、
二種類以上のスモークを反応場に導入することによって
複合酸化物が生成できる。例えば、LiClとMnCl
2の混合溶融塩を蒸発すると、LiMn24が得られ
る。
It is known that metal salts such as lithium chloride, manganese chloride and cobalt chloride evaporate at high temperatures.
When the smoke generated in the evaporation process is introduced into a reaction field where the atmosphere is controlled and reacted, oxide crystal particles can be generated. For example, when manganese chloride is heated at a melting point of 650 ° C. or higher, it vaporizes and produces MnCl 2 smoke. When the smoke is introduced into the reaction field to promote the oxidation reaction, Mn 2 O 3 , Mn 3 O 4 and MnO 2 are obtained by the oxygen pressure. Also,
A complex oxide can be produced by introducing two or more kinds of smoke into the reaction field. For example, LiCl and MnCl
Evaporation of the 2 mixed molten salt, LiMn 2 O 4 is obtained.

【0015】[0015]

【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。
The details of the present invention will be described with reference to Examples. The present invention is not limited to these examples.

【0016】実施例1 5mlの蒸留水の中にMnCl2・4H2Oを溶解し、
50gのLiClを添加した。十分混合した後、180
℃で5時間乾燥した。その後、混合物を乳鉢で細かく砕
き、アルミナ坩堝に移した。LiCl−MnCl2溶融
塩の急激な蒸発と酸化反応を防止するために混合物上を
さらに20gLiClで覆い、電気炉内にセットした。
750で五日間加熱した。加熱終了後、溶解洗浄で目的
の単結晶が得られる。得られる単結晶は、混合物中のM
nの含量は4mmolの場合には、0.1mm程度の単
結晶粒子(図1)であるが、18mmolの場合には、
1mm程度の大きな結晶体(図2)である。
Example 1 MnCl2.4H2O was dissolved in 5 ml of distilled water,
50 g of LiCl was added. After mixing well, 180
It dried at 5 degreeC for 5 hours. After that, the mixture was finely crushed in a mortar and transferred to an alumina crucible. The mixture was further covered with 20 g LiCl in order to prevent rapid evaporation and oxidation reaction of the LiCl-MnCl2 molten salt, and the mixture was set in an electric furnace.
Heat at 750 for 5 days. After completion of heating, the single crystal of interest is obtained by dissolution and washing. The obtained single crystal is M in the mixture.
When the content of n is 4 mmol, it is a single crystal particle of about 0.1 mm (FIG. 1), but when it is 18 mmol,
It is a large crystal body of about 1 mm (FIG. 2).

【0017】実施例2 MnCl2・4H2O 20gをアルミナ坩堝にいれ、
650℃で12時間加熱する。坩堝の壁に針状のMn2
3結晶(図3)が生成した。この針状の結晶を拡大す
ると、単結晶粒子は連結して形成した(図4)ことが分
かった。
Example 2 20 g of MnCl2.4H2O was placed in an alumina crucible,
Heat at 650 ° C. for 12 hours. Needle-shaped Mn 2 on the crucible wall
O 3 crystals (FIG. 3) formed. When this needle-like crystal was enlarged, it was found that the single crystal particles were connected and formed (FIG. 4).

【0018】実施例3 5mlの蒸留水の中にCoCl2 2gを溶解し、50
gのLiClを添加した。十分混合した後、180℃で
5時間乾燥した。その後、混合物を乳鉢で細かく砕き、
アルミナ坩堝に移した。更に混合物上を20gLiCl
で覆い、電気炉内にセットした。650で五日間加熱し
た。加熱終了後、溶解洗浄で目的の単結晶が得られる。
得られた結晶はCo23であり、0.1mm程度の大き
さ(図5)であった。
Example 3 2 g of CoCl 2 was dissolved in 5 ml of distilled water,
g of LiCl was added. After mixing well, it was dried at 180 ° C. for 5 hours. Then crush the mixture in a mortar,
It was transferred to an alumina crucible. 20 g LiCl on top of the mixture
It was covered with and set in an electric furnace. Heat at 650 for 5 days. After completion of heating, the single crystal of interest is obtained by dissolution and washing.
The obtained crystal was Co 2 O 3 and had a size of about 0.1 mm (FIG. 5).

【0019】[0019]

【発明の効果】電池工学上有用な材料として利用できる
マンガン酸化物(LiMn24、Li 2MnO3など)単
結晶を提供することができる。
EFFECT OF THE INVENTION It can be used as a useful material in battery engineering.
Manganese oxide (LiMn2OFour, Li 2MnO3Etc.)
Crystals can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で生成したMn酸化物(Mn含量:4
mmolの場合)の単結晶粒子の図面に代わる電子顕微
鏡写真である。
FIG. 1 is an Mn oxide produced in Example 1 (Mn content: 4
2 is an electron micrograph replacing a drawing of a single crystal particle (in the case of mmol).

【図2】実施例1で生成したMn酸化物(Mn含量:1
8mmolの場合)の単結晶粒子の図面に代わる電子顕
微鏡写真である。
2 is an Mn oxide produced in Example 1 (Mn content: 1
It is an electron microscope photograph replacing a drawing of a single crystal particle (in the case of 8 mmol).

【図3】実施例2で生成した針状Mn23結晶の図面に
代わる電子顕微鏡写真である。
FIG. 3 is an electron micrograph as a drawing substitute for a needle-like Mn 2 O 3 crystal produced in Example 2.

【図4】単結晶粒子が連結して形成されていることがわ
かる図3を拡大した図面に代わる電子顕微鏡写真であ
る。
FIG. 4 is an electron micrograph taken in lieu of the enlarged view of FIG. 3 showing that single crystal particles are formed to be connected.

【図5】Co23単結晶の図面に代わる電子顕微鏡写真
である。
FIG. 5 is an electron micrograph replacing a drawing of a Co 2 O 3 single crystal.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年7月4日(2001.7.4)[Submission date] July 4, 2001 (2001.7.4)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/50 H01M 4/50 4/52 4/52 4/58 4/58 (72)発明者 大井 健太 香川県高松市林町2217−14 産業技術総合 研究所四国センター内 Fターム(参考) 4G077 AA01 AA04 BB10 BC60 DA17 EA07 SA02 SA08 5H050 CA05 CA09 FA19 GA02 GA15 GA27 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01M 4/50 H01M 4/50 4/52 4/52 4/58 4/58 (72) Inventor Kenta Oi 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa F-term in Shikoku Center, National Institute of Advanced Industrial Science and Technology (reference) 4G077 AA01 AA04 BB10 BC60 DA17 EA07 SA02 SA08 5H050 CA05 CA09 FA19 GA02 GA15 GA27

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温で蒸発する金属塩の蒸発過程に発生
したスモークを雰囲気制御した反応場に導入して酸化反
応を進行させて酸化物結晶粒子を生成させる金属酸化物
の製造法。
1. A method for producing a metal oxide, wherein smoke produced in the evaporation process of a metal salt that evaporates at a high temperature is introduced into a reaction field whose atmosphere is controlled to promote an oxidation reaction to generate oxide crystal particles.
【請求項2】 高温で蒸発する金属塩が塩化リチウム、
塩化マンガンまたは塩化コバルトである請求項1の金属
酸化物の製造法。
2. The metal salt which evaporates at high temperature is lithium chloride,
The method for producing a metal oxide according to claim 1, which is manganese chloride or cobalt chloride.
【請求項3】 酸素圧力によって酸化反応を制御し必要
な酸化数の酸化物結晶粒子を生成させる請求項1または
2の金属酸化物の製造法。
3. The method for producing a metal oxide according to claim 1, wherein the oxidation reaction is controlled by oxygen pressure to generate oxide crystal particles having a required oxidation number.
【請求項4】 二種類以上のスモークを反応場に導入す
ることによって複合酸化物を生成させる請求項1、2ま
たは3の金属酸化物の製造法。
4. The method for producing a metal oxide according to claim 1, 2 or 3, wherein a complex oxide is produced by introducing two or more kinds of smoke into the reaction field.
JP2001201080A 2001-07-02 2001-07-02 Method for manufacturing metal oxide Pending JP2003020298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201080A JP2003020298A (en) 2001-07-02 2001-07-02 Method for manufacturing metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201080A JP2003020298A (en) 2001-07-02 2001-07-02 Method for manufacturing metal oxide

Publications (1)

Publication Number Publication Date
JP2003020298A true JP2003020298A (en) 2003-01-24

Family

ID=19038100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201080A Pending JP2003020298A (en) 2001-07-02 2001-07-02 Method for manufacturing metal oxide

Country Status (1)

Country Link
JP (1) JP2003020298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154209A (en) * 2003-11-26 2005-06-16 Nippon Light Metal Co Ltd Method for manufacturing metal oxide nanostructure and gallium oxide nanostructure manufactured by the method
JP2010080376A (en) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd Electrochemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154209A (en) * 2003-11-26 2005-06-16 Nippon Light Metal Co Ltd Method for manufacturing metal oxide nanostructure and gallium oxide nanostructure manufactured by the method
JP4581381B2 (en) * 2003-11-26 2010-11-17 日本軽金属株式会社 Method for producing gallium oxide nanostructure
JP2010080376A (en) * 2008-09-29 2010-04-08 Nissan Motor Co Ltd Electrochemical device

Similar Documents

Publication Publication Date Title
Zhao et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries
EP1855334B1 (en) Cathode material for manufacturing a rechargeable battery
KR100578447B1 (en) Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method
Thirunakaran et al. Cr3+ modified LiMn2O4 spinel intercalation cathodes through oxalic acid assisted sol–gel method for lithium rechargeable batteries
JP2011001242A (en) Method for producing lithium iron phosphate particle and lithium iron phosphate particle
CA2510880A1 (en) Process for the preparation of a composite
CN106816587A (en) The manufacture method of nickel lithium-metal composite oxides, nickel lithium-metal composite oxides powder and its application
KR100500699B1 (en) Synthesis Method of Cathode Powder for Lithium Secondary Battery by Microwave Heating
JP3101709B2 (en) Method for producing lithium manganese oxide thin film
WO2014163124A1 (en) Method for producing lithium iron phosphate
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
WO2003084874A1 (en) Manganese oxide producing method
CN111785959B (en) Spinel type lithium ion battery positive electrode active material and preparation method thereof
JP2003020298A (en) Method for manufacturing metal oxide
Takada et al. Novel synthesis process and structural characterization of Li–Mn–O spinels
JP2001316200A (en) Manganese oxide single crystal particle and its production method
JP4365071B2 (en) Nanocomposite compound of oxide and carbon, and battery using the same
JP2002151142A (en) Lithium ion conductor and method of manufacture
JPH1067519A (en) Production of laminar rock salt type lithium ferrite by solvothermal ion exchange method
JP3101708B2 (en) Method for producing lithium manganate thin film
JP2004186145A (en) Manufacturing method of lithium-chromium-manganese oxide of layered structure for lithium secondary battery
KR20150071728A (en) Fe Powders of Heat source in Thermal Batteries and Method for Fabricating thereof
RU2794175C1 (en) Method for producing dilithium orthophosphate and transition metal
CN108365206A (en) A method of preparing NiO cladding lithium titanate composite anode materials
KR20190078296A (en) Method for producing LLZO oxide solid electrolyte powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061207