JP2003020258A - Method and device for processing fine cavity in transparent dielectric material by use of light - Google Patents
Method and device for processing fine cavity in transparent dielectric material by use of lightInfo
- Publication number
- JP2003020258A JP2003020258A JP2001204516A JP2001204516A JP2003020258A JP 2003020258 A JP2003020258 A JP 2003020258A JP 2001204516 A JP2001204516 A JP 2001204516A JP 2001204516 A JP2001204516 A JP 2001204516A JP 2003020258 A JP2003020258 A JP 2003020258A
- Authority
- JP
- Japan
- Prior art keywords
- transparent dielectric
- processing
- light
- cavity
- dielectric object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Surface Treatment Of Glass (AREA)
- Lasers (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超短光パルスを用
いてガラス等の透明誘電体に、直径が数十ミクロン(μ
m)からサブミクロンの径で、長い孔を製造する微細空
洞加工方法及びその装置に係り、特に、孔の深さと径の
アスペクト比が10を越える孔の製造方法に関し、非線
形光導波路やフォトニック結晶の製造、マイクロフルイ
ディクス(Microfluidics:微小流体制
御)等に用いられる。TECHNICAL FIELD The present invention relates to a transparent dielectric material such as glass, which has a diameter of several tens of microns (μ) by using an ultrashort optical pulse.
m) to a microcavity processing method and apparatus for manufacturing a long hole with a submicron diameter, and more particularly to a method for manufacturing a hole having an aspect ratio of the depth and the diameter of more than 10, a nonlinear optical waveguide or a photonic device. It is used for the production of crystals, microfluidics (microfluidics control) and the like.
【0002】[0002]
【従来の技術】現在、高強度フェムト秒レーザ加工技術
を用いて金属や誘電体に100μm以下の孔加工を行う
技術が様々な用途で用いられている。この技術は、レー
ザアブレーションによるため、孔の縁部分が綺麗な加工
ができる。しかし、孔の深さと径のアスペクト比は高々
5までであり深い孔は加工できない。2. Description of the Related Art At present, a technique for making a hole of 100 μm or less in a metal or a dielectric by using a high intensity femtosecond laser processing technique is used for various purposes. Since this technique is based on laser ablation, the edge portion of the hole can be machined cleanly. However, the depth and diameter aspect ratios of the holes are up to 5, and deep holes cannot be processed.
【0003】かかる従来の技術としては、以下のような
ものがあげられる。
(1)「応用物理 第67巻 第9号 pp1051−
1055(1998)」には、溶融ガラスにレーザを用
いて孔開け加工を行う技術が報告されている。
(2)「Varel 他 Applied Physi
cs A65 pp367−373(1997)」で
は、フェムト秒レーザ光で、真空中または窒素雰囲気中
で長尺の孔加工を行っている。その目的は、マイクロチ
ャンネリング作製にある。しかし、この方法は、レーザ
アブレーションでのドリリングであるため、多くのクラ
ックが発生し、孔の形成がスムーズでない。また、孔形
状が基本的に円錐状になってしまう。The following are examples of such conventional techniques. (1) "Applied Physics Vol. 67, No. 9, pp1051-
1055 (1998) ”, there is reported a technique for forming a hole in molten glass by using a laser. (2) "Varel et al. Applied Physi
cs A65 pp367-373 (1997) ”, long holes are formed by a femtosecond laser beam in a vacuum or a nitrogen atmosphere. Its purpose is to make microchanneling. However, since this method is drilling by laser ablation, many cracks occur and the formation of holes is not smooth. In addition, the hole shape is basically conical.
【0004】また、下記の文献では、裏面に溶液を付着
させ、ガラスを通してレーザ光を照射し、孔加工を行っ
ている。光のエネルギーを熱に変えることによる、大き
な孔加工である。
(3)「池野他、精密加工学会誌55/2/1989」
には、三次元光導波路や三次元フォトニック結晶を作製
する方法として、一層毎に薄膜形成、リソグラフィー、
エッチングを行い二次元構造を作製し、それを繰り返し
て積層し、三次元構造を作る方法が記載されている。し
かし、この方法は手間がかかるうえ、高価な半導体プロ
セスを用いるためコスト高になる。Further, in the following document, a solution is attached to the back surface, laser light is irradiated through glass, and holes are formed. It is a large hole drilling by converting light energy into heat. (3) “Ikeno et al., Journal of Japan Society for Precision Machining 55/2/1989”
In order to fabricate a three-dimensional optical waveguide or a three-dimensional photonic crystal, thin film formation, lithography,
A method is described in which a two-dimensional structure is formed by etching, and the two-dimensional structure is repeatedly laminated to form a three-dimensional structure. However, this method is time-consuming and costly because an expensive semiconductor process is used.
【0005】このように、三次元光導波路や三次元フォ
トニック結晶を作製する従来の方法は、一層毎に薄膜形
成、リソグラフィー、エッチング等を行い二次元構造を
作製し、それを繰り返して積層する煩雑な工程である。
その他、高強度フェムト秒レーザによる透明誘電体の表
面改質や孔開け加工があるが、微小径の深い孔加工はで
きない。本発明者等は、これまでフェムト秒レーザによ
る誘起屈折率変化による導波路作製方法を提案してお
り、更なる研究の結果、本発明を得た。As described above, according to the conventional method for producing a three-dimensional optical waveguide or a three-dimensional photonic crystal, a two-dimensional structure is produced by forming a thin film for each layer, lithography, etching, etc., and repeating the lamination. This is a complicated process.
In addition, there are surface modification and drilling of the transparent dielectric with a high-intensity femtosecond laser, but it is not possible to drill holes with a small diameter. The present inventors have proposed a method for producing a waveguide by changing the induced refractive index with a femtosecond laser, and obtained the present invention as a result of further research.
【0006】また、当該分野の他の提案としては、特開
2000−314817、特開2001−83347な
どが挙げられる。[0006] Other proposals in this field include JP-A-2000-314817 and JP-A-2001-83347.
【0007】[0007]
【発明が解決しようとする課題】上記したように、従来
の技術では、極超短波レーザ光を用いてガラス等の透明
誘電体に、直径が数十ミクロンからサブミクロンの径
で、長い孔を製造する微細空洞加工方法は提案されてお
らず、特に、孔の深さと径のアスペクト比が10を越え
る孔の製造方法は開発されていない。As described above, according to the conventional technique, a long hole having a diameter of several tens of microns to a submicron is manufactured in a transparent dielectric such as glass by using an ultrashort laser beam. A method for processing fine cavities has not been proposed, and in particular, a method for manufacturing a hole having an aspect ratio of depth and diameter of more than 10 has not been developed.
【0008】本発明は、このような状況に鑑みて、直径
が数十ミクロンからサブミクロンの径で、長い孔を形成
することができる光を用いた透明誘電体物体への微細空
洞加工方法及びその装置を提供することを目的とする。In view of such a situation, the present invention provides a method for processing a fine cavity in a transparent dielectric object using light capable of forming a long hole with a diameter of several tens of microns to a submicron, and The purpose is to provide the device.
【0009】[0009]
【課題を解決するための手段】本発明は、上記の目的を
達成するために、
〔1〕光を用いた透明誘電体物体への微細空洞加工方法
において、透明誘電体物体の端面に液体を接触させ、前
記透明誘電体物体から前記端面に超短光パルスを反対の
端面より集光照射し、微細空洞加工を行うことを特徴と
する。In order to achieve the above object, the present invention provides: [1] In a method of processing a fine cavity in a transparent dielectric object using light, liquid is applied to an end surface of the transparent dielectric object. It is characterized in that they are brought into contact with each other, and an ultrashort light pulse is focused and irradiated from the opposite end face from the transparent dielectric object to the end face to perform fine cavity processing.
【0010】〔2〕上記〔1〕記載の光を用いた透明誘
電体物体への微細空洞加工方法において、前記空洞の全
体の長さは、形成された空洞の先端に超短光パルスを再
度集光照射し、複数回繰り返して達成することを特徴と
する。[2] In the method for processing a minute cavity in a transparent dielectric object using light as described in [1] above, the entire length of the cavity is determined by applying an ultrashort optical pulse to the tip of the formed cavity again. It is characterized in that the light is focused and irradiated, and it is repeated a plurality of times.
【0011】〔3〕上記〔1〕記載の光を用いた透明誘
電体物体への微細空洞加工方法において、前記空洞は、
直径が0.1μmから数10μm、長さが数10μmか
ら数mmであることを特徴とする。[3] In the method for processing a fine cavity in a transparent dielectric object using light as described in [1] above, the cavity is
The diameter is 0.1 μm to several tens of μm, and the length is several tens μm to several mm.
【0012】〔4〕上記〔1〕記載の光を用いた透明誘
電体物体への微細空洞加工方法において、前記透明誘電
体物体が石英ガラスであることを特徴とする。[4] In the method for processing fine cavities in a transparent dielectric body using light as described in [1] above, the transparent dielectric body is silica glass.
【0013】〔5〕上記〔1〕記載の光を用いた透明誘
電体物体への微細空洞加工方法において、前記液体が水
であることを特徴とする。[5] In the method for processing fine cavities in a transparent dielectric object using light as described in [1] above, the liquid is water.
【0014】〔6〕上記〔1〕記載の光を用いた透明誘
電体物体への微細空洞加工方法において、前記超短光パ
ルスは、チタンサファイアレーザで波長が800nmで
あることを特徴とする。[6] In the method for processing a fine cavity in a transparent dielectric body using light as described in [1] above, the ultrashort optical pulse is a titanium sapphire laser and has a wavelength of 800 nm.
【0015】〔7〕光を用いた透明誘電体物体への微細
空洞加工装置において、透明誘電体物体と、この透明誘
電体物体の端面に接触される液体と、前記透明誘電体物
体の前記端面と液体の境界面から始まって、前記端面の
反対の端面へとずらして照射する超短光パルス照射手段
と、この超短光パルスの照射により形成された微細空洞
の加工状態を画像化する画像化手段とを具備することを
特徴とする。[7] In a microcavity processing apparatus for a transparent dielectric object using light, a transparent dielectric object, a liquid that contacts an end surface of the transparent dielectric object, and the end surface of the transparent dielectric object. And an image for imaging the processing state of the microcavity formed by the irradiation of the ultrashort light pulse, starting from the boundary surface of the liquid and the liquid, and irradiating the end surface opposite to the end surface by shifting the irradiation. And a conversion means.
【0016】本発明によれば、上記したように、透明誘
電体物体の端面に液体を接触させ、この透明誘電体物体
から前記端面に超短光パルスを反対の端面より集光照射
し、直径が0.1μmから数10μm、長さが数10μ
mから数mmの空洞を形成する。アブレーションされた
屑が、液体があることで外に飛び出す。全体の長さは形
成された空洞の他端に超短光パルスを再度集光照射し、
複数回繰り返して達成する。According to the present invention, as described above, a liquid is brought into contact with the end surface of the transparent dielectric body, and an ultrashort light pulse is focused and irradiated from this transparent dielectric body to the end surface from the opposite end surface. Is from 0.1 μm to several tens of μm, and length is several tens of μ
A cavity of m to several mm is formed. The ablated debris pops out due to the liquid. The entire length is again focused by irradiating the other end of the formed cavity with an ultrashort light pulse,
Achieve multiple times.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0018】図1は本発明の実施例を示す光を用いた透
明誘電体物体への微細空洞加工装置の模式図である。FIG. 1 is a schematic view of an apparatus for processing a fine cavity in a transparent dielectric object using light, showing an embodiment of the present invention.
【0019】この図において、1はチタンサファイアレ
ーザ、2はシャッター、3は濃度フィルタ、4は第1の
対物レンズ、5は石英ガラス(試料)、6は水(蒸留
水)、7は照明光としてのハロゲンランプ、8は第2の
対物レンズ、9はCCDカメラである。In this figure, 1 is a titanium sapphire laser, 2 is a shutter, 3 is a density filter, 4 is a first objective lens, 5 is quartz glass (sample), 6 is water (distilled water), and 7 is illumination light. Is a halogen lamp, 8 is a second objective lens, and 9 is a CCD camera.
【0020】ここで、チタンサファイアレーザ1から出
射する120fs,800nm,1kHzのレーザーパ
ルスは、光軸(+z方向)に沿って伝搬する。石英ガラ
ス5は1mm厚で、その端面は水6に接している。その
場観察のため、石英ガラス5の両面を光学的に研磨し
た。そして、孔の光学画像を、半透過型光学顕微鏡を用
いて観察した。Here, the laser pulse of 120 fs, 800 nm, 1 kHz emitted from the titanium sapphire laser 1 propagates along the optical axis (+ z direction). The quartz glass 5 has a thickness of 1 mm, and its end face is in contact with the water 6. Both surfaces of the quartz glass 5 were optically polished for in-situ observation. Then, the optical image of the hole was observed using a semi-transmission optical microscope.
【0021】まず、最初に、開口数0.55の顕微鏡の
対物レンズ4により超短光パルスを石英ガラス5の端面
(第1ショットは水6と石英ガラス5の境界面)に集光
させた。次に、石英ガラス5を+z方向に変位させるこ
とにより、集光点をゆっくりと前記端面の反対の端面に
向かって移動させた。First, an ultrashort light pulse is focused on the end face of the quartz glass 5 (the first shot is the boundary face between the water 6 and the quartz glass 5) by the objective lens 4 of the microscope having a numerical aperture of 0.55. . Next, the quartz glass 5 was displaced in the + z direction to slowly move the condensing point toward the end face opposite to the end face.
【0022】シャッター2の露光時間は、1/63秒に
設定した。シャッター2は1集光点で3回開けたので、
パルスの合計数は3×(1/63)×1000〜48で
ある。アブレーションの生起が集光点の近傍領域に限ら
れていたので、石英ガラス5を少しずつ変位させること
により長い孔を作製した。さらに、49パルスごとに集
光点を次の集光点へ1μm移動させた。The exposure time of the shutter 2 was set to 1/63 seconds. Since the shutter 2 was opened 3 times at one focal point,
The total number of pulses is 3 x (1/63) x 1000-48. Since the occurrence of ablation was limited to the region near the converging point, the quartz glass 5 was gradually displaced to form a long hole. Further, the focal point was moved to the next focal point by 1 μm every 49 pulses.
【0023】〔実験結果〕石英ガラスの端面に水あり、
水なしの両方で孔開けを行った。パルスエネルギーの強
度が増すにつれて、孔の深さが長く、径が大きくなって
いった。[Experimental Results] There is water on the end surface of the quartz glass,
Drilling was done both without water. As the intensity of pulse energy increased, the hole depth increased and the diameter increased.
【0024】図2は石英ガラスの端面に水なしの状態で
開けた4μm径の3つの孔を示す。パルスエネルギーは
約1μJであった。この図から孔が深さ12μm付近で
ストップしているのが観察できる。主な原因として、空
気中では屑が小孔から完全に排出されるのは困難である
ために、アブレーションされた破片が孔の壁に再堆積し
たためと考えられる。その地点以降の加工状況は、石英
ガラス内におけるボイド(void)の移動と類似した
ものであった。FIG. 2 shows three holes having a diameter of 4 μm formed in the end surface of quartz glass without water. The pulse energy was about 1 μJ. From this figure, it can be observed that the holes stop near a depth of 12 μm. It is thought that the main cause is that it is difficult for the debris to be completely discharged from the small hole in the air, so that the ablated debris is redeposited on the wall of the hole. The processing condition after that point was similar to the movement of voids in the quartz glass.
【0025】上記したような、再堆積による影響を最小
限にするために本発明では水を用いた。これにより大部
分の屑が水中に分散したので、再堆積は大幅に減少し、
孔の深さが長くなった。図3に示すように、孔が前面に
向かって伸長する間、水が孔に流れ込み、アブレーショ
ンによる屑と混合しているのが観察できる。同時に、孔
の質も向上した。Water is used in the present invention in order to minimize the influence of redeposition as described above. This caused most of the debris to disperse in the water, greatly reducing redeposition,
The hole depth has increased. As shown in FIG. 3, water can be observed to flow into the holes and mix with the ablation debris while the holes extend toward the front surface. At the same time, the quality of the holes has improved.
【0026】しかし、孔の深さが長くなるにつれて、水
量は減り、孔の先端の屑量が増え、明らかに再堆積が認
められた。それにより、図4に示すように、深さ200
μm付近で、孔はストップした。しかし、より強いエネ
ルギーを用いれば、さらに深く、径も大きな孔を開ける
ことができる。However, as the depth of the hole became longer, the amount of water decreased, the amount of debris at the tip of the hole increased, and redeposition was clearly observed. As a result, as shown in FIG.
At around μm, the holes stopped. However, stronger energy can be used to create deeper, larger diameter holes.
【0027】図5は、約3μJのパルスを用いて開け
た、21μm径、750μm長の孔を示す。FIG. 5 shows a 21 μm diameter, 750 μm long hole opened using a pulse of about 3 μJ.
【0028】上記したように、アブレーションによる屑
を低減するために水を用いてフェムト秒赤外レーザパル
スで石英ガラスの端面から高精度の孔をあけた。本発明
を用いて形成した極小の径を有する長い孔は、輪郭のは
っきりした壁を有し、孔先端に明確な円錐形状は見られ
なかった。As described above, in order to reduce the dust caused by ablation, a highly accurate hole was made from the end face of the quartz glass by a femtosecond infrared laser pulse using water. The long holes with the smallest diameter formed using the present invention had well-defined walls and no clear conical shape was seen at the hole tips.
【0029】上記したように、本発明は、透明誘電体物
体の端面に液体を接触させ、その透明誘電体物体の端面
に超短光パルスを集光照射し、直径が0.1から数10
μm、長さが数10μmから数mmの空洞を形成する方
法である。詳述すると、石英ガラスの端面に水滴を付着
させ、反対側からチタンサファイアレーザを波長800
nm、120fs、0.2から0.4mWで集光照射す
ると、アブレートされたガラス屑が水の中に飛び出すの
で、屑の再堆積が減少し、高精度の孔が形成される。更
に、孔の他端にレーザを照射すると孔を長くすることが
できる。As described above, according to the present invention, a liquid is brought into contact with the end surface of the transparent dielectric body, and the end surface of the transparent dielectric body is focused and irradiated with an ultrashort light pulse.
This is a method of forming a cavity having a size of μm and a length of several tens of μm to several mm. More specifically, water droplets are attached to the end surface of the quartz glass, and a titanium sapphire laser with a wavelength of 800 is applied from the opposite side.
Concentrated irradiation at nm, 120 fs, 0.2 to 0.4 mW causes the ablated glass debris to jump out into the water, reducing redeposition of debris and forming highly accurate holes. Further, by irradiating the other end of the hole with a laser, the hole can be lengthened.
【0030】このようにして、3μJのエネルギーで孔
径21μm、長さ750μmの孔を造った。水なしでは
高々20μmまでの長さである。更に、途中から横方向
に曲げることも可能である。In this manner, a hole having a hole diameter of 21 μm and a length of 750 μm was formed with an energy of 3 μJ. Without water, the length is up to 20 μm. Furthermore, it is also possible to bend in the lateral direction from the middle.
【0031】本発明により、孔の中に屈折率の異なる物
質を封入して光導波路やフォトニック結晶、また、導電
性物質によるミクロな電気回路が形成できる。さらに、
近年数センチ四方のガラスチップの中に人間スケールの
1000万分の1のミクロな集積化学実験室を創る試み
が行われているが、ここでのマイクロフルイディクスに
応用することができる。According to the present invention, an optical waveguide, a photonic crystal, or a micro electric circuit made of a conductive substance can be formed by encapsulating substances having different refractive indexes in the holes. further,
In recent years, attempts have been made to create a micro-integrated chemistry laboratory that is 1 / 10,000,000 of the human scale in a glass chip of several centimeters square, but it can be applied to the microfluidics here.
【0032】本発明は、以下のようなものとして応用す
ることができる。The present invention can be applied as follows.
【0033】(1)内部に適当な屈折率を持つ物質(液
体)を充填することにより、光導波路として構成でき
る。(1) An optical waveguide can be constructed by filling a substance (liquid) having an appropriate refractive index inside.
【0034】(2)内部に適当な非線形屈折率を持つ物
質(液体)を充填することにより、非線形光導波路とし
て構成できる。(2) A non-linear optical waveguide can be constructed by filling the inside with a substance (liquid) having an appropriate non-linear refractive index.
【0035】(3)内部に導電性物質を充填することに
より、導電路を構成することができる。(3) A conductive path can be formed by filling the inside with a conductive substance.
【0036】(4)アレイ状に配置することにより、フ
ォトニック結晶を構成することができる。(4) A photonic crystal can be formed by arranging them in an array.
【0037】(5)三次元マイクロチャンネルとして、
例えば、キャピラリー電気泳動、、イクロフルイディク
ス(微小流体制御)、MEMS(Micro Elec
tro Mechanical System)、集積
化フローインジェクションなどが挙げられ、このような
ものに適用することができる。(5) As a three-dimensional microchannel,
For example, capillary electrophoresis, icrofluidics (microfluidic control), MEMS (Micro Elec)
Examples include a tro mechanical system) and an integrated flow injection, which can be applied to such a thing.
【0038】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.
【0039】[0039]
【発明の効果】以上、詳細に説明したように、本発明に
よれば、直径が数十ミクロンからサブミクロンの径で、
長い孔を形成することができる。As described above in detail, according to the present invention, the diameter is from several tens of microns to submicron,
Long holes can be formed.
【図1】本発明の実施例を示す光を用いた透明誘電体物
体への微細空洞加工装置の模式図である。FIG. 1 is a schematic view of an apparatus for processing a minute cavity in a transparent dielectric object using light, showing an embodiment of the present invention.
【図2】石英ガラスの端面に水なしで開けた透明誘電体
物体への微細空洞加工の状態を示す図面代用写真であ
る。FIG. 2 is a drawing-substituting photograph showing a state of processing a fine cavity in a transparent dielectric object which is opened on the end surface of quartz glass without water.
【図3】本発明にかかる端面に水を有する透明誘電体物
体への微細空洞加工の状態を示す図面代用写真である。FIG. 3 is a drawing-substituting photograph showing a state of microcavity processing on a transparent dielectric object having water on the end surface according to the present invention.
【図4】本発明にかかる微細空洞加工の方法により水に
よる再堆積で孔が200μmの長さで停止した状態を示
す図面代用写真である。FIG. 4 is a drawing-substituting photograph showing a state in which holes are stopped at a length of 200 μm due to redeposition with water by the method of microcavity processing according to the present invention.
【図5】本発明にかかる微細空洞加工の方法により開け
た孔を示す図面代用写真である。FIG. 5 is a drawing-substituting photograph showing holes formed by the method of microcavity processing according to the present invention.
1 チタンサファイアレーザ 2 シャッター 3 濃度フィルタ 4 第1の対物レンズ 5 石英ガラス(試料) 6 水(蒸留水) 7 照明光としてのハロゲンランプ 8 第2の対物レンズ 9 CCDカメラ 1 Titanium sapphire laser 2 shutter 3 Density filter 4 First objective lens 5 Quartz glass (sample) 6 Water (distilled water) 7 Halogen lamp as illumination light 8 Second objective lens 9 CCD camera
Claims (7)
せ、前記透明誘電体物体から前記端面に超短光パルスを
反対の端面より集光照射し、微細空洞加工を行うことを
特徴とする光を用いた透明誘電体物体への微細空洞加工
方法。1. A microcavity is formed by bringing a liquid into contact with an end surface of a transparent dielectric object, and irradiating the end surface of the transparent dielectric object with an ultrashort light pulse from the opposite end surface to collect and irradiate the liquid. A method for processing fine cavities in a transparent dielectric object using light.
体への微細空洞加工方法において、前記空洞の全体の長
さは、形成された空洞の先端に超短光パルスを再度集光
照射し、複数回繰り返して達成することを特徴とする光
を用いた透明誘電体物体への微細空洞加工方法。2. The method for processing a fine cavity in a transparent dielectric object using light according to claim 1, wherein the entire length of the cavity is such that an ultrashort light pulse is focused again at the tip of the formed cavity. A method of processing a fine cavity in a transparent dielectric object using light, which is characterized by irradiating and repeating it several times.
体への微細空洞加工方法において、前記空洞は、直径が
0.1μmから数10μm、長さが数10μmから数m
mであることを特徴とする光を用いた透明誘電体物体へ
の微細空洞加工方法。3. The method for processing a fine cavity in a transparent dielectric body using light according to claim 1, wherein the cavity has a diameter of 0.1 μm to several tens of μm and a length of several tens of μm to several m.
A method for processing fine cavities in a transparent dielectric object using light, characterized by being m.
体への微細空洞加工方法において、前記透明誘電体物体
が石英ガラスであることを特徴とする光を用いた透明誘
電体物体への微細空洞加工方法。4. A method for processing a fine cavity in a transparent dielectric object using light according to claim 1, wherein the transparent dielectric object is quartz glass. Micro cavity processing method.
体への微細空洞加工方法において、前記液体が水である
ことを特徴とする光を用いた透明誘電体物体への微細空
洞加工方法。5. The method for processing a fine cavity in a transparent dielectric object using light according to claim 1, wherein the liquid is water. Method.
体への微細空洞加工方法において、前記超短光パルス
は、チタンサファイアレーザで波長が800nmである
ことを特徴とする光を用いた透明誘電体物体への微細空
洞加工方法。6. The method for processing a fine cavity in a transparent dielectric object using light according to claim 1, wherein the ultrashort light pulse is a titanium sapphire laser and has a wavelength of 800 nm. A method for processing fine cavities in a transparent dielectric object.
電体物体の端面に接触される液体と、(c)前記透明誘
電体物体の端面と液体の境界面から始まって、前記透明
誘電体物体の端面の反対の端面へとずらして照射する超
短光パルス照射手段と、(d)該超短光パルスの照射に
より形成された微細空洞の加工状態を画像化する画像化
手段とを具備することを特徴とする光を用いた透明誘電
体物体への微細空洞加工装置。7. (a) a transparent dielectric body, (b) a liquid contacting the end face of the transparent dielectric body, and (c) starting from an interface between the end face of the transparent dielectric body and the liquid, Ultrashort light pulse irradiating means for irradiating the end surface opposite to the end surface of the transparent dielectric object with displacement, and (d) imaging for imaging the processing state of the microcavity formed by the irradiation of the ultrashort light pulse. An apparatus for processing fine cavities in a transparent dielectric object using light, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204516A JP2003020258A (en) | 2001-07-05 | 2001-07-05 | Method and device for processing fine cavity in transparent dielectric material by use of light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001204516A JP2003020258A (en) | 2001-07-05 | 2001-07-05 | Method and device for processing fine cavity in transparent dielectric material by use of light |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003020258A true JP2003020258A (en) | 2003-01-24 |
Family
ID=19040968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001204516A Withdrawn JP2003020258A (en) | 2001-07-05 | 2001-07-05 | Method and device for processing fine cavity in transparent dielectric material by use of light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003020258A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006212698A (en) * | 2005-02-07 | 2006-08-17 | Ricoh Co Ltd | Processing method, processing device, processing method for diffraction optical element, diffraction optical element, processing method for photonic crystal, photonic crystal, and ink jet printer head |
JP2007525652A (en) * | 2003-05-30 | 2007-09-06 | シーティーアイ ペット システムズ インコーポレイテッド | How to make detector components with laser technology |
JP2015003327A (en) * | 2013-06-19 | 2015-01-08 | キヤノン株式会社 | Laser processing device, substrate processing method, and method for production of substrate |
CN111112859A (en) * | 2019-12-20 | 2020-05-08 | 武汉华工激光工程有限责任公司 | Zero-taper through hole process method for transparent brittle material |
CN113960893A (en) * | 2021-10-28 | 2022-01-21 | 之江实验室 | Method for directly writing 'photon-like lattice waveguide' in glass material by femtosecond laser |
-
2001
- 2001-07-05 JP JP2001204516A patent/JP2003020258A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007525652A (en) * | 2003-05-30 | 2007-09-06 | シーティーアイ ペット システムズ インコーポレイテッド | How to make detector components with laser technology |
JP2006212698A (en) * | 2005-02-07 | 2006-08-17 | Ricoh Co Ltd | Processing method, processing device, processing method for diffraction optical element, diffraction optical element, processing method for photonic crystal, photonic crystal, and ink jet printer head |
JP4690066B2 (en) * | 2005-02-07 | 2011-06-01 | 株式会社リコー | Processing method, processing apparatus, processing method of diffractive optical element, and processing method of photonic crystal |
JP2015003327A (en) * | 2013-06-19 | 2015-01-08 | キヤノン株式会社 | Laser processing device, substrate processing method, and method for production of substrate |
CN111112859A (en) * | 2019-12-20 | 2020-05-08 | 武汉华工激光工程有限责任公司 | Zero-taper through hole process method for transparent brittle material |
CN113960893A (en) * | 2021-10-28 | 2022-01-21 | 之江实验室 | Method for directly writing 'photon-like lattice waveguide' in glass material by femtosecond laser |
CN113960893B (en) * | 2021-10-28 | 2023-12-05 | 之江实验室 | Method for directly writing femtosecond laser in glass material by using photon-like lattice waveguide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining | |
CA2428187C (en) | Method of fabricating sub-micron structures in transparent dielectric materials | |
US5919607A (en) | Photo-encoded selective etching for glass based microtechnology applications | |
JP5537081B2 (en) | Processing object cutting method | |
JP5476063B2 (en) | Processing object cutting method | |
CN111014963B (en) | Three-dimensional micromachining method for hard and brittle material | |
TW201945313A (en) | Method for producing fine structures in the volume of a substrate composed of hard brittle material | |
CN102351406B (en) | Method for directly writing micro mechanical parts inside glass by femto-second laser | |
WO1997015533A9 (en) | Photo-encoded selective etching for glass based microtechnology applications | |
JP2004223586A (en) | Method for processing transparent material inside | |
CN109132998A (en) | The method of pulse nanosecond laser induction transparent dielectric material surface periodic structure | |
Bhuyan et al. | Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass | |
KR101942110B1 (en) | Laser processing method | |
JP2003020258A (en) | Method and device for processing fine cavity in transparent dielectric material by use of light | |
Luo et al. | Fabrication of diffractive microlens array by femtosecond laser-assisted etching process | |
Sohn et al. | Microstructuring of optical fibers using a femtosecond laser | |
Alexeev et al. | Direct waveguide writing with high energy high repetition rate picosecond laser pulses | |
JP4128368B2 (en) | Manufacturing method of optical waveguide component | |
Schaffer et al. | Micromachining and material change characterization using femtosecond laser oscillators | |
JPWO2013002339A1 (en) | SUBSTRATE FOR FORMING LIPID MEMBRANE AND METHOD FOR PRODUCING THE SUBSTRATE | |
KR102265037B1 (en) | Manufacturing method of microlens array and microlens array manufacturing system | |
JP2019116395A (en) | Formation method of recess or open hole, formation method of electrode | |
Zhang et al. | Nanoprocessing of glass and PMMA by means of near-infrared sub-15 femtosecond laser pulses | |
JP2002059282A (en) | Method for forming bent hole in liquid | |
Cheng et al. | Three-dimensional micro-optical components embedded in Foturan glass by a femtosecond laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061023 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061219 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070209 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090206 |