JP2003019546A - Method for preventing warpage of continuously casting slab - Google Patents

Method for preventing warpage of continuously casting slab

Info

Publication number
JP2003019546A
JP2003019546A JP2001205919A JP2001205919A JP2003019546A JP 2003019546 A JP2003019546 A JP 2003019546A JP 2001205919 A JP2001205919 A JP 2001205919A JP 2001205919 A JP2001205919 A JP 2001205919A JP 2003019546 A JP2003019546 A JP 2003019546A
Authority
JP
Japan
Prior art keywords
slab
warpage
δtdu
cast slab
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001205919A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Masamichi Abe
正道 阿部
Takayuki Kashiwa
孝幸 柏
Masanori Nishigori
正規 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001205919A priority Critical patent/JP2003019546A/en
Publication of JP2003019546A publication Critical patent/JP2003019546A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent generation of warpage in an actual caster by precisely predicting the warping amount of a cast slab regardless of an operational condition in a continuous casting. SOLUTION: ΔTdu=(ΔTd-ΔTu) of difference between ΔTd=(Td-Tdo) and ΔTu=(Tu-Tuo), is obtained with the calculation of a solidified heat- conductivity. Wherein, Tdo and Tuo are the respective average temperatures at the lower half part side and the upper half part side in the thickness of the cast slab before cutting off in the end part of a continuous caster, and Td and Tu are the respective average temperatures at the lower half part side and the upper half part side just after cutting off the cast slab carried out from the caster end part. At least one among the surface temperature, a casting speed, a cut-off length and the thickness of the cast slab before cutting off, is adjusted so that the warping amount of the cast slab assumed based on the ΔTdu, the cut-off length L and the thickness H of the cast slab, and a linear expansion coefficient α, is included in the preset permissible range.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、連続鋳造、特に鋼
の連続鋳造における鋳片の反り防止方法に関するもので
ある。 【0002】 【従来の技術】図1(b) に示すように、連鋳鋳片に反り
が発生すると、切断や搬出など、その後の処理に支障を
きたすので、同図(a) に示すように、反りの発生を抑制
すべく、従来から種々の対策が講じられている。例え
ば、特開平6−339761号公報では、連鋳鋳片の反りを防
止するために、連鋳鋳片の上面側および下面側の表面温
度の差がある値以内になるように二次冷却帯内での冷却
水量を制御する方法が提案されている。 【0003】しかしながら、上記の方法では連鋳鋳片の
反り量と鋳片上下面の表面温度差の関係が一義的に得ら
れるわけではない上に、鋳片の上面および下面に対する
冷却水量にわざと差をもうけて連続鋳造を行う場合に
は、その効果を発揮することができなかった。すなわ
ち、例えば特開平2−182347号公報や特開昭58−3704号
公報、特開平8−52555 号公報等に開示されているよう
に、線材や極厚鋼板材、シームレス管用の素材を連続鋳
造で製造するに際しては、最終凝固位置を厚み中央部か
ら変移させて中心部の成分偏析や収縮孔に起因した欠陥
を防止するために、意図的に鋳片の上下面の冷却に差を
付けて鋳造する場合があるが、かような場合には、鋳片
の反り量を正しく予測することができないため、その工
程化が困難であったり、ある限られた範囲内でしか操業
できなかったり、実施しても欠陥を完全に防止するほど
の効果を得るまでには至らない、という問題があった。 【0004】 【発明が解決しようとする課題】連続鋳造の操業条件の
如何にかかわらず、連鋳鋳片の反り量を正確に予測する
ことができれば、操業上あるいは品質改善の観点から、
特殊な冷却を実施しても、連鋳機の機端を出た後の鋳片
の反りを防止することができる。本発明は、上記の要請
に有利に応えるもので、連鋳鋳片の反り量を正確に予測
する手法を確立し、この手法に基づいて、鋳片の反りを
効果的に防止することができる方法を提案することは目
的とする。 【0005】 【課題を解決するための手段】すなわち、本発明は、連
鋳機の機端における切断前の鋳片厚みの上半分側および
下半分側それぞれの平均温度Tuo,Tdoと、該機端から
搬出される鋳片の切断直後の上半分側および下半分側そ
れぞれの平均温度Tu , Td との差ΔTu , ΔTd (Δ
Tu =Tu −Tuo, ΔTd =Td −Tdo)の差Tdu(Δ
Td −ΔTu )を凝固伝熱計算により求め、このΔTdu
と、鋳片切断長さL、鋳片厚みHおよび線膨張率αに基
づいて推定される鋳片の反り量が、予め定めた許容範囲
内に収まるように、切断前における鋳片の表面温度、鋳
造速度、切断長さおよび鋳片厚みのうちいずれか少なく
とも一つを調整することを特徴とする連鋳鋳片の反り防
止方法である。本発明において、鋳片の上半分側および
下半分側とは、鋳片の板厚中央部を境として、その上半
分および下半分を意味する。 【0006】 【発明の実施の形態】以下、本発明の解明経緯について
説明する。一般に、物体の反りは表裏面の温度差によっ
て発生するが、反り量も温度の絶対差に比例するという
のが一般的な考え方である。しかしながら、連鋳鋳片の
場合、連鋳機内では鋳片は上下のロールでサポートされ
ているため、表裏面に温度差が生じても反り現象は発生
せず、連鋳機の機端を出た後に反りが発生し始める。し
かも、連鋳鋳片は、肉厚が厚いことから、鋳片の厚み方
向に温度分布が生じている。従って、連鋳鋳片の反り現
象は一般に考えられているよりも複雑である。 【0007】そこで、発明者らは、スラブ連鋳の場合に
おける鋳片の反り挙動例を多数観察、解析した。その結
果、反りの発生は、鋳片の上下部の温度の絶対差ではな
く、連鋳機の機端における鋳片温度を基準にした鋳片切
断後の温度と大きく関わっていることを見出した。しか
も、鋳片表面温度ではなく、鋳片の上半分側と下半分側
の温度を基準にした相対的温度差が反り量と強い相関が
あることを見出した。 【0008】すなわち、反り量は、下記 (1)式で表され
ることの知見を得た。 記 y=(1+α|ΔTdu|)H〔1−cos(Lα|ΔTdu|/(2H))〕/ (αΔTdu) --- (1) ここで、 y :反り量(0>y:上反り(上に凹)、
0<y:下反り(下に凹)) α :鋼の線膨張率 ΔTdu:鋳片上下部の温度差(|ΔTdu|:ΔTduの絶
対値) H :鋳片厚み L :切断後の鋳片長さ 【0009】上記 (1)式中の鋳片上下部温度差ΔTdu
は、切断前の長さLの鋳片の長さ方向中央部が機端に位
置したときの鋳片全長の上半分側と下半分例の平均温度
(Tuo、Tdo)と、機端から搬出された鋳片の切断直後
の上半分側と下半分側の平均温度(Tu ,Td )との差
ΔTu ,ΔTd (ΔTu =Tu −Tuo、ΔTd =Td −
Tdo)の上下部の差ΔTdu(ΔTd −ΔTu )であり、
この値は凝固伝熱計算により求めることができる。な
お、この凝固伝熱計算としては、一般的に実施されてい
る鋳型内冷却、二次冷却体内のスプレーノズルやロール
の配置とそれによる冷却、さらに輻射・対流伝熱冷却を
考慮した二次元凝固伝熱解析法で十分である。このよう
な二次元凝固伝熱解析法として種々の方法が提案されて
いるが、本出願人が先に特願2000−387609号明細書にお
いて提案した方法が、計算負荷も少なく、オンライン・
リアルタイムでの計算に有利に適合する。 【0010】従って、操業上、鋳片の切断や搬出が不可
能あるいは困難にならない鋳片反り量範囲が設備能力の
面から設定されると、その範囲内に収まるようにΔTdu
を調整してやれば良いわけである。すなわち、凝固解析
から得られるΔTduが予め設定した許容範囲外となった
場合には、機端前に設けた鋳片冷却用スプレー水量を増
減して、ΔTduが予め設定した範囲内になるように調整
してやればよい。なお、この冷却処理については、設備
上許されれば、機端外で行っても問題ない。また、鋳造
速度を変更してΔTduを制御してもよい。さらに、設備
上、冷却処理や鋳造速度の変更によるΔTduの調整が困
難な場合、製品サイズに余裕があれば、鋳片長さを短く
したり、鋳片厚みを薄くしたりして、鋳片の反り量を調
整することもできる。 【0011】つまり、操業上許容される鋳片反り量yの
上限値(上反り量)と下限値(下反り量)が決定される
と、 (1)式から、ΔTduの制御範囲を決定することがで
きるのである。ここに、ΔTduは、先に示した計算方法
で鋳造中に操業条件を考慮してオンラインでスラブ単位
で求め、その値が上限値を上回ったならば、鋳片上面側
の強冷却化あるいは鋳片下面側の弱冷却化、またはそれ
らの組み合わせを行う。逆に、下限値を下回ったなら
ば、鋳片上面側の弱冷却化あるいは鋳片下面側の強冷却
化、またはそれらの組み合わせを行えばよい。また、ど
の程度に冷却水量を変化させるかは、ΔTduの値に応じ
て決定すればよく、その程度は、予めオフラインで解析
したΔTduと冷却水量、鋳造速度、鋳片長さ、鋳片厚み
および鋳造温度との関係から決定される。従って、オン
ラインで制御しなくてもオフラインで予め決定した水量
で冷却することによって、鋳片反り量を調整することが
できるのである。 【0012】なお、反り防止のために冷却水量を変化さ
せる位置は、その効果が発揮できる位置でかつ最終凝固
位置への影響が少ない位置であればよいが、好適位置と
しては機端から5〜10m以内であり、より好適には機端
から5m以内である。 【0013】 【実施例】実施例1 13%Cr(TKS13CR )シームレス鋼管用の厚み:260 mm、
幅:750 mmの鋼スラブを、垂直曲げ型連続鋳造機(機
長:25.6m、スラブ切断後のスラブの機端からの位置:
17.5m)を用いて鋳造するに際し、スラブの上面側と下
面側の冷却水総水量比(=上面側総水量/下面側総水
量)を 0.1〜1.1 の範囲で変化(二次冷却帯全長にわた
って一律に増減)させつつ、長さ:6000〜6900mmのスラ
ブを製造した。なお、鋳片の冷却は機端手前5mまでと
した。この時の水比は 0.8〜1.0 リットル/kg-steel とし、
また鋳造速度は 0.8〜1.15 m/minとした。 【0014】その際、スラブ反り量の実測値(切断直後
の鋳片を横から写真撮影し、それからスラブ反り量を求
めた)と前掲 (1)式で推定した値とを比較して図2中に
●印で示す。なお、線膨張率αは23×10-6(1/℃)を
採用した。また、参考のため、比較例として、鋳片の表
面温度の絶対値の上下面の差ΔTdus (下面温度平均値
−上面温度平均値)を (1)式のΔTduに置き換えた場合
の推定値を図2中に○印で示した。なお、ΔTdu、ΔT
dus いずれも、本文中で示した手法により計算した。図
2に示したとおり、本発明に従い、ΔTduをパラメータ
として推定した反り量は、実測値とよく対応している。
一方、従来の考え方に従って、ΔTdus をパラメータと
して推定した反り量、実測値と大きな食い違いを呈し
た。このことから、従来の考え方では、反り量を所期し
た範囲に調整することは困難であることが判明した。 【0015】実施例2 鋳造前に予め計算して求めたΔTduを可能な限りゼロに
近づけ、スラブ反りを防止すべく、連鋳機の機端手前
2.5〜3m位置の上下位置にスプレーノズルによる追加
冷却を施しつつ鋳造を実施した。すなわち、鋳片の反り
量が+10mm〜0mmの範囲(すなわち僅かに上反り)にな
るように設定した。この時の追加冷却水量は、具体的に
はΔTduが0〜13℃であった。なお、この時の鋳造速度
は 0.9 m/min、鋳片長さは6900mmとした。追加冷却を行
っていない状態で約+20mmの反り(上反り)が発生して
いるケースa(この時のΔTduは二次元凝固伝熱計算で
35℃と見積もられた)に対して、ΔTduを13℃とするよ
うに追加冷却を施したところ、図3中にケースAで示す
ように、反り量を5mm程度に低減できた。また、他の鋳
造タイミングで追加冷却を行っていない状態で約−5mm
の反り(下反り)が発生しているケースb(この時のΔ
Tduは二次元凝固伝熱計算で−12℃と見積もられた)に
対して、ΔTduを0℃とするように追加冷却を施したと
ころ、図3中にケースBで示すように、反り量を2mm程
度に低減できた。その結果を、図3に示す。同図に示し
たように、ケースaではケースAに、またケースbでは
ケースBに、それぞれ鋳片反り量が改善され、本発明法
により、スラブ反りが効果的に防止できることが判る。 【0016】 【発明の効果】かくして、本発明によれば、連続鋳造に
おいて、操業条件の如何に係わらず、鋳片の反り量を正
確に予測することにより、実機における反りの発生を効
果的に防止することができる。従って、本発明を用いれ
ば、上下冷却差を大きく設定して、最終凝固位置を厚み
中央部から変移させて中心部の成分偏析や収縮孔に起因
する欠陥を防止した、線材や極厚鋼板材、シームレス管
用の連鋳素材を、操業トラブルなく製造できるので、最
終製品の欠陥発生率を大幅に低減することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing warpage of a slab in continuous casting, particularly in continuous casting of steel. 2. Description of the Related Art As shown in FIG. 1 (b), if warpage occurs in a continuous cast slab, the subsequent processing such as cutting and unloading is hindered. In order to suppress the occurrence of warpage, various measures have conventionally been taken. For example, in Japanese Patent Application Laid-Open No. Hei 6-339761, in order to prevent warpage of the continuous cast slab, the secondary cooling zone is set so that the difference in surface temperature between the upper surface side and the lower surface side of the continuous cast slab falls within a certain value. A method for controlling the amount of cooling water in the inside has been proposed. However, in the above method, the relationship between the warpage of the continuous cast slab and the surface temperature difference between the upper and lower surfaces of the slab cannot be uniquely obtained, and the amount of cooling water with respect to the upper and lower surfaces of the slab is intentionally different. In the case where continuous casting is performed with the above-described method, the effect cannot be exhibited. That is, as disclosed in, for example, JP-A-2-182347, JP-A-58-3704, JP-A-8-52555, etc., a continuous casting of a wire, an extremely thick steel plate, or a material for a seamless pipe is performed. In manufacturing, in order to shift the final solidification position from the center of the thickness and prevent defects caused by component segregation and shrinkage holes in the center, intentionally differentiating the cooling of the upper and lower surfaces of the slab There is a case where casting, but in such a case, since the warpage of the slab can not be accurately predicted, it is difficult to make the process, or it can be operated only within a limited range, There is a problem that even if it is carried out, it does not reach the effect of completely preventing defects. [0004] Regardless of the operating conditions of continuous casting, if the amount of warpage of a continuous cast slab can be accurately predicted, from the viewpoint of operation or quality improvement,
Even if special cooling is performed, warpage of the slab after exiting the machine end of the continuous casting machine can be prevented. The present invention advantageously satisfies the above-mentioned demands, and establishes a technique for accurately predicting the warpage of a continuous cast slab, and based on this technique, can effectively prevent the slab warpage. The aim is to propose a method. [0005] That is, the present invention provides an average temperature Tuo, Tdo of the upper half side and the lower half side of the slab thickness before cutting at the machine end of the continuous casting machine, respectively. Differences ΔTu, ΔTd (ΔT) from the average temperatures Tu, Td of the upper half side and the lower half side immediately after cutting the slab taken out from the end.
Tu = Tu−Tuo, ΔTd = Td−Tdo) The difference Tdu (Δ
Td−ΔTu) is obtained by solidification heat transfer calculation.
And the surface temperature of the slab before cutting so that the amount of warpage of the slab estimated based on the slab cut length L, the slab thickness H and the linear expansion coefficient α falls within a predetermined allowable range. , A casting speed, a cutting length, and a slab thickness are adjusted. In the present invention, the upper half side and the lower half side of the slab mean the upper half and the lower half of the slab from the center of the thickness of the slab. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. In general, the warpage of an object occurs due to the temperature difference between the front and back surfaces, and the general idea is that the amount of warpage is proportional to the absolute difference in temperature. However, in the case of a continuous cast slab, the slab is supported by upper and lower rolls in the continuous caster, so that even if a temperature difference occurs between the front and back surfaces, the warpage phenomenon does not occur, and the end of the continuous caster exits. After that, warping starts to occur. Moreover, since the continuous cast slab has a large wall thickness, a temperature distribution occurs in the thickness direction of the cast slab. Therefore, the warpage phenomenon of the continuous cast slab is more complicated than generally thought. Therefore, the inventors have observed and analyzed many examples of warpage behavior of a slab in the case of continuous slab casting. As a result, it was found that the occurrence of warpage was not significantly related to the absolute difference between the upper and lower temperatures of the slab, but to the temperature after slab cutting based on the slab temperature at the machine end of the continuous caster. . Moreover, it has been found that the relative temperature difference based on the temperature of the upper half side and the lower half side of the slab, not the slab surface temperature, has a strong correlation with the amount of warpage. That is, the inventors have found that the amount of warpage is represented by the following equation (1). Note: y = (1 + α | ΔTdu |) H [1-cos (Lα | ΔTdu | / (2H))] / (αΔTdu) --- (1) where, y: warpage amount (0> y: upward warpage ( Concave above),
0 <y: Warpage (concave downward)) α: Coefficient of linear expansion of steel ΔTdu: Temperature difference between upper and lower portions of slab (| ΔTdu |: absolute value of ΔTdu) H: Slab thickness L: Slab length after cutting The temperature difference ΔTdu in the upper and lower portions of the slab in the above equation (1)
Is the average temperature (Tuo, Tdo) of the upper half side and lower half example of the slab length when the slab of the length L before cutting is positioned at the machine end, and the unloading from the machine end. Difference ΔTu, ΔTd (ΔTu = Tu−Tuo, ΔTd = Td−) between the average temperature (Tu, Td) of the upper half side and the lower half side immediately after cutting the cast slab.
Tdo) is the difference ΔTdu (ΔTd−ΔTu) between the upper and lower parts,
This value can be determined by solidification heat transfer calculation. The calculation of solidification heat transfer includes two-dimensional solidification taking into account the cooling in the mold, the arrangement of spray nozzles and rolls in the secondary cooling body and cooling by the cooling, and the radiation / convection heat transfer cooling, which are generally performed. A heat transfer analysis method is sufficient. Various methods have been proposed as such a two-dimensional solidification heat transfer analysis method. However, the method proposed by the present applicant in Japanese Patent Application No. 2000-387609 has a small calculation load, and has a low computational load.
Advantageously adapted for calculations in real time. Therefore, when the range of the slab warpage amount is set from the viewpoint of the equipment capacity, at which the cutting and unloading of the slab becomes impossible or difficult in operation, ΔTdu is set to fall within the range.
It is only necessary to adjust. That is, when ΔTdu obtained from the solidification analysis falls outside the preset allowable range, the amount of spray water for cooling the slab provided in front of the machine is increased or decreased so that ΔTdu falls within the preset range. Adjust it. It should be noted that there is no problem if this cooling process is performed outside the machine if the equipment permits. Further, ΔTdu may be controlled by changing the casting speed. Furthermore, if it is difficult to adjust ΔTdu by cooling treatment or changing the casting speed due to equipment, if there is enough product size, the length of the slab or the thickness of the slab is reduced. The amount of warpage can be adjusted. That is, when the upper limit value (upward warpage amount) and the lower limit value (downward warpage amount) of the slab warpage amount y allowable in operation are determined, the control range of ΔTdu is determined from the equation (1). You can do it. Here, ΔTdu is obtained online in units of slabs in consideration of operating conditions during casting by the above-described calculation method. If the value exceeds the upper limit, the cooling of the upper surface side of the slab or the casting is performed. Weak cooling of one lower surface side or a combination thereof is performed. Conversely, if the value falls below the lower limit, the upper surface of the slab may be weakly cooled, the lower surface of the slab may be strongly cooled, or a combination thereof. The extent to which the amount of cooling water is changed may be determined according to the value of ΔTdu, and the degree is determined by ΔTdu analyzed in advance offline, the amount of cooling water, casting speed, slab length, slab thickness, and casting temperature. Determined from the relationship with temperature. Therefore, it is possible to adjust the slab warpage amount by cooling with a predetermined amount of water offline without controlling online. The position where the amount of cooling water is changed in order to prevent warpage may be a position where the effect can be exerted and a position which has little influence on the final solidification position. It is within 10 m, more preferably within 5 m from the nose. EXAMPLE 1 13% Cr (TKS13CR) thickness for seamless steel pipe: 260 mm,
A vertical bending type continuous casting machine (length: 25.6m, slab cutting after slab cutting: 750 mm width:
17.5m), the ratio of the total amount of cooling water on the upper surface side and the lower surface side of the slab (= total water amount on the upper surface / total water amount on the lower surface) changes in the range of 0.1 to 1.1 (over the entire length of the secondary cooling zone) A slab with a length of 6000 to 6900 mm was manufactured while uniformly increasing and decreasing. The cooling of the slab was performed up to 5 m before the machine end. The water ratio at this time is 0.8-1.0 liter / kg-steel,
The casting speed was 0.8-1.15 m / min. At this time, the measured value of the slab warpage (a slab warpage was obtained from a photograph of the cast slab immediately after cutting from the side) was compared with the value estimated by the above equation (1). Indicated by ● inside. The coefficient of linear expansion α was 23 × 10 −6 (1 / ° C.). For reference, as a comparative example, an estimated value obtained when the difference ΔTdus (average value of lower surface temperature−average value of upper surface temperature) of the absolute value of the absolute value of the surface temperature of the slab was replaced with ΔTdu in Expression (1). In FIG. 2, it is indicated by a mark. Note that ΔTdu, ΔT
dus Both were calculated by the method shown in the text. As shown in FIG. 2, according to the present invention, the amount of warpage estimated using ΔTdu as a parameter well corresponds to the actually measured value.
On the other hand, according to the conventional concept, the amount of warpage estimated using ΔTdus as a parameter and a large difference from the measured value were exhibited. From this, it has been found that it is difficult to adjust the amount of warpage to a desired range with the conventional concept. Embodiment 2 In order to make ΔTdu calculated and calculated before casting close to zero as much as possible, and to prevent slab warpage, a caster is provided just before the end of the continuous casting machine.
Casting was performed while performing additional cooling by a spray nozzle at the upper and lower positions of 2.5 to 3 m. That is, the warpage of the slab was set so as to be in the range of +10 mm to 0 mm (that is, slightly upward warpage). The additional cooling water amount at this time was, specifically, ΔTdu was 0 to 13 ° C. The casting speed at this time was 0.9 m / min, and the slab length was 6900 mm. Case a (approximately +20 mm) warpage (upward warpage) occurs without additional cooling (ΔTdu at this time is calculated by two-dimensional solidification heat transfer calculation)
(It was estimated to be 35 ° C.), and additional cooling was performed so that ΔTdu was 13 ° C., and as shown by case A in FIG. 3, the amount of warpage could be reduced to about 5 mm. Approximately -5mm without additional cooling at other casting timings
B (downward warpage) occurs in case b (Δ
Tdu was estimated to be −12 ° C. in the two-dimensional solidification heat transfer calculation). When additional cooling was performed so that ΔTdu was set to 0 ° C., the amount of warpage was increased as shown by case B in FIG. Was reduced to about 2 mm. The result is shown in FIG. As shown in the figure, the case slab warpage is improved in case A and the case B in case b, and it can be seen that the slab warpage can be effectively prevented by the method of the present invention. Thus, according to the present invention, in continuous casting, warpage of an actual machine can be effectively reduced by accurately predicting the warpage of a slab regardless of operating conditions. Can be prevented. Therefore, according to the present invention, the vertical cooling difference is set large, the final solidification position is shifted from the center of the thickness to prevent defects caused by component segregation and shrinkage holes in the center, a wire or an extremely thick steel sheet. Since a continuous casting material for seamless pipes can be manufactured without any operational troubles, the incidence of defects in final products can be greatly reduced.

【図面の簡単な説明】 【図1】 鋳片の反り現象の概念図である。 【図2】 本発明により推定した反り量と実測値との関
係を示したグラフである。 【図3】 本発明により推定したΔTduと反り量の実測
値との関係を示したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a warpage phenomenon of a slab. FIG. 2 is a graph showing a relationship between an amount of warpage estimated according to the present invention and an actually measured value. FIG. 3 is a graph showing a relationship between ΔTdu estimated according to the present invention and a measured value of a warpage amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏 孝幸 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 錦織 正規 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4E004 MC01 MC09 NC01    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takayuki Kashiwa             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Inside the Iron Corporation Chiba Works (72) Inventor Nishikori regular             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Inside the Iron Corporation Chiba Works F-term (reference) 4E004 MC01 MC09 NC01

Claims (1)

【特許請求の範囲】 【請求項1】 連鋳機の機端における切断前の鋳片厚み
の上半分側および下半分側それぞれの平均温度Tuo,T
doと、該機端から搬出される鋳片の切断直後の上半分側
および下半分側それぞれの平均温度Tu , Td との差Δ
Tu , ΔTd (ΔTu =Tu −Tuo, ΔTd =Td −T
do)の差Tdu(ΔTd −ΔTu )を凝固伝熱計算により
求め、このΔTduと、鋳片切断長さL、鋳片厚みHおよ
び線膨張率αに基づいて推定される鋳片の反り量が、予
め定めた許容範囲内に収まるように、切断前における鋳
片の表面温度、鋳造速度、切断長さおよび鋳片厚みのう
ちいずれか少なくとも一つを調整することを特徴とする
連鋳鋳片の反り防止方法。
Claims 1. An average temperature Tuo, T of upper and lower halves of a slab thickness before cutting at an end of a continuous casting machine.
and the difference Δ between the average temperatures Tu and Td of the upper and lower halves immediately after cutting of the slab discharged from the machine end.
Tu, ΔTd (ΔTu = Tu−Tuo, ΔTd = Td−T
do), the difference Tdu (ΔTd−ΔTu) is obtained by solidification heat transfer calculation, and the ΔTdu and the amount of warpage of the slab estimated based on the slab cut length L, the slab thickness H and the linear expansion coefficient α are calculated as follows. A continuous cast slab characterized by adjusting at least one of the surface temperature of the slab before casting, the casting speed, the cutting length and the slab thickness so as to fall within a predetermined allowable range. Warp prevention method.
JP2001205919A 2001-07-06 2001-07-06 Method for preventing warpage of continuously casting slab Pending JP2003019546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001205919A JP2003019546A (en) 2001-07-06 2001-07-06 Method for preventing warpage of continuously casting slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001205919A JP2003019546A (en) 2001-07-06 2001-07-06 Method for preventing warpage of continuously casting slab

Publications (1)

Publication Number Publication Date
JP2003019546A true JP2003019546A (en) 2003-01-21

Family

ID=19042140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001205919A Pending JP2003019546A (en) 2001-07-06 2001-07-06 Method for preventing warpage of continuously casting slab

Country Status (1)

Country Link
JP (1) JP2003019546A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135390A1 (en) 2016-02-02 2017-08-10 新日鐵住金株式会社 Slab warping detection device and slab warping detection method
US10628028B2 (en) 2008-01-06 2020-04-21 Apple Inc. Replacing display of icons in response to a gesture
CN115446123A (en) * 2022-09-14 2022-12-09 北京科技大学 Slab warping buckle head control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10628028B2 (en) 2008-01-06 2020-04-21 Apple Inc. Replacing display of icons in response to a gesture
WO2017135390A1 (en) 2016-02-02 2017-08-10 新日鐵住金株式会社 Slab warping detection device and slab warping detection method
KR20180099833A (en) 2016-02-02 2018-09-05 신닛테츠스미킨 카부시키카이샤 Bending Detection Apparatus and Casting Bending Detection Method
US11666965B2 (en) 2016-02-02 2023-06-06 Nippon Steel Corporation Slab warpage detection apparatus and method of detecting warpage of slab
CN115446123A (en) * 2022-09-14 2022-12-09 北京科技大学 Slab warping buckle head control method

Similar Documents

Publication Publication Date Title
JP5537037B2 (en) Method and plant for comprehensive monitoring and control of strip flatness and strip profile
JP5755438B2 (en) Control device and method for metal casting machine
EP2937162B1 (en) Hybrid cooling nozzle apparatus, and method for controlling cooling nozzle of continuous casting equipment using same
JP2009183977A (en) Light rolling reduction method for slab in continuous casting
JP5082683B2 (en) Method for predicting surface cracks in continuous cast slabs
EP1261440A1 (en) Rolling strip material
JP5682205B2 (en) Defect detection method and defect detection system for continuous cast slab
JP2008525200A (en) Robust control method of molten metal level in twin roll type thin plate casting process.
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JPH04187345A (en) Method and instrument for detecting strip thickness in continuous casting
KR100663916B1 (en) Method for continuous casting
JP2003019546A (en) Method for preventing warpage of continuously casting slab
JP5825084B2 (en) Continuous casting method of high carbon steel slab
JPH06264B2 (en) Level control method in continuous casting
JP3103498B2 (en) Predicting and preventing breakouts in continuous casting.
JP2010207820A (en) Method for continuously casting slab
JP5476959B2 (en) Continuous casting method under light pressure
JP2016215236A (en) Method for predicting breakout in continuous casting, breakout prevention method, method for measuring thickness of solidifying shell, breakout prediction device, and breakout prevention device
JP2019018247A (en) Detection method and detection equipment for slab surface defect and equipment abnormality in continuous casting machine
JP7248049B2 (en) Flow control method and device, cooling method and device for steel material, and method for manufacturing continuous cast slab
JP3687547B2 (en) Secondary cooling method in continuous casting
JPH0722812B2 (en) Method and apparatus for controlling molten metal level in continuous casting
KR20120132954A (en) Device for predicting surface crack of products in continuous casting process and method therefor
JPH07178525A (en) Method for controlling pouring quantity of molten steel for surface layer in continuous casting of double layered steel plate
JPH05305408A (en) Casting method at the time of lacking in continuous casting