JP2003017483A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same

Info

Publication number
JP2003017483A
JP2003017483A JP2001198943A JP2001198943A JP2003017483A JP 2003017483 A JP2003017483 A JP 2003017483A JP 2001198943 A JP2001198943 A JP 2001198943A JP 2001198943 A JP2001198943 A JP 2001198943A JP 2003017483 A JP2003017483 A JP 2003017483A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
semiconductor device
precursor solution
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001198943A
Other languages
Japanese (ja)
Inventor
Norikazu Nishiyama
憲和 西山
Koreichi Kamiyama
惟一 上山
Yoshiaki Oku
良彰 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2001198943A priority Critical patent/JP2003017483A/en
Priority to EP20020743749 priority patent/EP1408539A1/en
Priority to US10/482,564 priority patent/US7075170B2/en
Priority to PCT/JP2002/006508 priority patent/WO2003003440A1/en
Priority to KR1020037016885A priority patent/KR100645654B1/en
Priority to TW091114279A priority patent/TWI233215B/en
Publication of JP2003017483A publication Critical patent/JP2003017483A/en
Priority to US11/399,724 priority patent/US7385276B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation film of a low dielectric constant and high mechanical strength. SOLUTION: This semiconductor device is provided with the insulation film, provided with a porus structure formed on the surface of a substrate and consisting of the holes of three-dimensional network structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置およびそ
の製造方法に係り、特に低誘電率の無機誘電体膜に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a low dielectric constant inorganic dielectric film.

【0002】[0002]

【従来の技術】半導体装置の高速化・低消費電力化に
は、層間絶縁膜の低誘電率化が重要な課題である。そし
て低誘電率化を目的として種々の工夫がなされている
が、従来の半導体装置では、 (1)無機絶縁膜であるシリカ膜にフッ素を添加する。 (2)母体材料として低誘電率である有機絶縁材料を形
成する。 (3)意図的にポーラスな膜を形成する。 などの方法が提案されている。
2. Description of the Related Art In order to speed up and reduce power consumption of semiconductor devices, it is important to reduce the dielectric constant of an interlayer insulating film. Although various efforts have been made to reduce the dielectric constant, in the conventional semiconductor device, (1) fluorine is added to the silica film which is the inorganic insulating film. (2) An organic insulating material having a low dielectric constant is formed as a base material. (3) A porous film is intentionally formed. And other methods have been proposed.

【0003】しかしながら、(1)の方法の場合、絶縁
膜の耐熱性が劣化するために、元素比でせいぜい数%し
か添加できないため、比誘電率は従来のシリカ系層間絶
縁膜よりも10%から15%しか低減することが出来な
いと言う問題がある。
However, in the case of the method (1), since the heat resistance of the insulating film is deteriorated, only a few percent of the element ratio can be added, so that the relative dielectric constant is 10% higher than that of the conventional silica-based interlayer insulating film. There is a problem that it can only be reduced by 15%.

【0004】また(2)の方法の場合、有機材料である
ために耐熱性が従来のシリカ系層間絶縁膜よりも格段に
劣化し、半導体素子の信頼性を低下させることにつなが
ると言う問題がある。また、有機材料の場合一般的に機
械的強度が劣化し易いという問題もあった。
Further, in the case of the method (2), since it is an organic material, the heat resistance is markedly deteriorated as compared with the conventional silica-based interlayer insulating film, and the reliability of the semiconductor element is deteriorated. is there. Further, in the case of an organic material, there is also a problem that mechanical strength is generally easily deteriorated.

【0005】さらにまた(3)の場合、ポーラスな構造
がランダムであるために層間絶縁膜の機械的強度が著し
く低下し、パッケージングに際し、破損しやすく、半導
体素子の信頼性低下の原因となっていた。
Further, in the case of (3), since the porous structure is random, the mechanical strength of the interlayer insulating film is remarkably reduced, and the interlayer insulating film is easily damaged during packaging, which causes a decrease in reliability of the semiconductor element. Was there.

【0006】また、ポーラスな構造が閉じていない場合
が多く、閉じていないと層間絶縁膜の耐湿性が著しく低
下し、半導体素子の信頼性低下の原因となっていた。
Further, the porous structure is often not closed, and if it is not closed, the moisture resistance of the interlayer insulating film is remarkably reduced, which causes the reliability of the semiconductor element to be lowered.

【0007】[0007]

【発明が解決しようとする課題】このように従来の絶縁
膜では、十分に誘電率を下げることができず、また、機
械的強度も充分でないという問題があった。
As described above, the conventional insulating film has a problem that the dielectric constant cannot be sufficiently lowered and the mechanical strength is not sufficient.

【0008】本発明は前記実情に鑑みてなされたもの
で、誘電率が低くかつ機械的強度の高い絶縁膜を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an insulating film having a low dielectric constant and a high mechanical strength.

【0009】[0009]

【課題を解決するための手段】そこで本発明では、基板
表面に形成され、3次元的なネットワークを構成する空
孔を有するポーラス構造を有する無機絶縁膜を含むこと
を特徴とする。
In view of the above, the present invention is characterized by including an inorganic insulating film having a porous structure formed on the surface of a substrate and having pores forming a three-dimensional network.

【0010】かかる構成によれば、空気の誘電率は低い
ためフッ素を添加したりするよりもさらに誘電率を低下
せしめることができ、絶縁膜の極限的な低誘電率化をは
かることが可能となる。また空孔が3次元ネットワーク
を構成するため、膜物性の均一化を図ることが可能であ
る上、電気的特性が等方的である。さらにまた、空孔の
パスが長くなり、直線方向では開口部を互いに閉じるこ
とが容易となり、緻密な膜の耐湿性と同程度の優れた耐
湿性を有することになる。そしてさらに、機械的強度に
も優れ、究極的に低い誘電率をもつ低誘電率薄膜を得る
ことが可能となる。
According to this structure, since the permittivity of air is low, it is possible to further lower the permittivity as compared with adding fluorine, and it is possible to achieve an extremely low permittivity of the insulating film. Become. Further, since the pores form a three-dimensional network, it is possible to make the physical properties of the film uniform, and the electrical characteristics are isotropic. Furthermore, the path of the pores becomes long, the openings can be easily closed together in the straight line direction, and the moisture resistance is as excellent as that of the dense film. Furthermore, it becomes possible to obtain a low dielectric constant thin film having excellent mechanical strength and ultimately having a low dielectric constant.

【0011】望ましくは、周期的な3次元ネットワーク
を構成する空孔を有するポーラス構造を有している特徴
とする。
Desirably, it is characterized by having a porous structure having holes forming a periodic three-dimensional network.

【0012】かかる構成によれば、空孔が、周期的な3
次元ネットワークを構成する空孔を有するポーラス構造
をもつため、機械的強度を高めることができ、信頼性の
高い絶縁膜を得ることが可能となる。
According to such a structure, the holes are periodic
Since it has a porous structure having pores forming a dimensional network, the mechanical strength can be increased and a highly reliable insulating film can be obtained.

【0013】また望ましくは、前記無機絶縁膜は、半導
体基板または半導体基板上に形成された下層配線導体
と、上層配線導体との間に介在せしめられる層間絶縁膜
であることを特徴とする。
Further, preferably, the inorganic insulating film is an interlayer insulating film interposed between a semiconductor substrate or a lower layer wiring conductor formed on the semiconductor substrate and an upper layer wiring conductor.

【0014】かかる構成によれば、層間絶縁膜の誘電率
の低減を図ることが可能となるため、層間容量の低減を
はかり、高速駆動の半導体装置を提供することが可能と
なる。
According to this structure, since it is possible to reduce the dielectric constant of the interlayer insulating film, it is possible to reduce the interlayer capacitance and provide a high-speed driving semiconductor device.

【0015】本発明の第2では、シリカ誘導体と界面活
性剤を含む前駆体溶液を生成する工程と、前記前駆体溶
液を基板表面に接触させる接触工程と、前記前駆体溶液
が接触せしめられた基板を焼成し、前記界面活性剤を分
解除去する工程とを含むことを特徴とする。
In the second aspect of the present invention, a step of producing a precursor solution containing a silica derivative and a surfactant, a step of contacting the precursor solution with a substrate surface, and a step of contacting the precursor solution Baking the substrate to decompose and remove the surfactant.

【0016】かかる構成によれば、極めて制御性よく機
械的強度に優れ究極的に低い誘電率をもつ絶縁膜を提供
することが可能となる。また低温下での形成が可能であ
るため、集積回路の層間絶縁膜として用いる場合にも下
地に影響を与えることなく信頼性の高い絶縁膜を形成す
ることが可能となる。
According to such a constitution, it becomes possible to provide an insulating film having excellent controllability, excellent mechanical strength and an extremely low dielectric constant. Further, since it can be formed at a low temperature, an insulating film having high reliability can be formed without affecting the base even when used as an interlayer insulating film of an integrated circuit.

【0017】望ましくは、前記接触工程に先立ち、前記
前駆体溶液を昇温し、架橋反応を開始する予備架橋工程
を含むようにしてもよい。
Desirably, prior to the contacting step, a pre-crosslinking step of raising the temperature of the precursor solution to start a crosslinking reaction may be included.

【0018】かかる構成によれば、生産性を高めること
ができる。
With this structure, productivity can be improved.

【0019】また、前駆体液の濃度を調製することによ
り空孔度は適宜変更可能であり、極めて作業性よく所望
の誘電率の絶縁体薄膜を形成することが可能となる。
Further, by adjusting the concentration of the precursor liquid, the porosity can be appropriately changed, and it becomes possible to form an insulating thin film having a desired dielectric constant with extremely good workability.

【0020】望ましくは、前記接触工程は、基板を前駆
体溶液に浸せきする工程であることを特徴とする。
Preferably, the contacting step is a step of immersing the substrate in the precursor solution.

【0021】かかる構成によれば、生産性よく低誘電率
絶縁膜を形成することが可能となる。
According to this structure, the low dielectric constant insulating film can be formed with high productivity.

【0022】また望ましくは、前記接触工程は、基板を
前駆体溶液に浸せきし、所望の速度で引き上げる工程で
あることを特徴とする。
Further preferably, the contacting step is a step of immersing the substrate in the precursor solution and pulling it up at a desired speed.

【0023】かかる構成によれば、生産性よく低誘電率
絶縁膜を形成することが可能となる。
According to this structure, the low dielectric constant insulating film can be formed with high productivity.

【0024】望ましくは、前記接触工程は、前駆体溶液
に基板上に塗布する工程であることを特徴とする。
Preferably, the contacting step is a step of applying the precursor solution onto the substrate.

【0025】かかる構成によれば、生産性よく低誘電率
絶縁膜を形成することが可能となる。
According to this structure, it is possible to form the low dielectric constant insulating film with high productivity.

【0026】望ましくは、前記接触工程は、前駆体溶液
に基板上に滴下し、前記基板を回転させる回転塗布工程
であることを特徴とする。
Preferably, the contacting step is a spin coating step in which the precursor solution is dropped on the substrate and the substrate is rotated.

【0027】かかる構成によれば、膜厚や空孔率を容易
に調整可能であり、生産性よく低誘電率絶縁膜を形成す
ることが可能となる。
According to this structure, the film thickness and the porosity can be easily adjusted, and the low dielectric constant insulating film can be formed with high productivity.

【0028】[0028]

【発明の実施の形態】本発明に係る半導体装置およびそ
の製造方法の一実施形態を図面を参照しつつ詳細に説明
する。 実施形態1 本発明の第1の実施形態として、この低誘電率薄膜を層
間絶縁膜として用いたFRAMについて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A semiconductor device and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the drawings. First Embodiment As a first embodiment of the present invention, an FRAM using this low dielectric constant thin film as an interlayer insulating film will be described.

【0029】このFRAMは、図1(a)および(b)
に示すように、シリコン基板1表面に形成された素子分
離絶縁膜2で囲まれた素子領域に形成されたスイッチン
グトランジスタと、強誘電体キャパシタとからなるもの
で、本発明ではスイッチングトランジスタと強誘電体キ
ャパシタの下部電極9との間に層間絶縁膜として本発明
の低誘電率薄膜7を用いたことを特徴とするものであ
る。この低誘電率薄膜は、図1(b)に要部拡大斜視図
を示すように、基板表面に形成され3次元ネットワーク
構造を有する空孔hを具備してなるポーラス構造をもつ
ように形成されたメゾポーラスシリカ薄膜からなるもの
である。
This FRAM is shown in FIGS. 1 (a) and 1 (b).
As shown in FIG. 2, the switching transistor formed in the element region surrounded by the element isolation insulating film 2 formed on the surface of the silicon substrate 1 and the ferroelectric capacitor are used in the present invention. The low dielectric constant thin film 7 of the present invention is used as an interlayer insulating film between the lower electrode 9 and the lower electrode 9 of the body capacitor. This low dielectric constant thin film is formed to have a porous structure having pores h formed on the substrate surface and having a three-dimensional network structure, as shown in the enlarged perspective view of the main part in FIG. 1 (b). It is composed of a mesoporous silica thin film.

【0030】他は通常の方法で形成される。このスイッ
チングトランジスタはシリコン基板1表面にゲート絶縁
膜3を介して形成されたゲート電極4と、このゲート電
極4を挟むように形成されたソース領域5およびドレイ
ン領域6と、このドレイン領域6にコンタクト8を介し
て下部電極9が接続されており、一方ソースドレイン領
域はビット線BLに接続されている。
Others are formed by a usual method. This switching transistor has a gate electrode 4 formed on the surface of a silicon substrate 1 via a gate insulating film 3, a source region 5 and a drain region 6 formed so as to sandwich the gate electrode 4, and a contact to the drain region 6. The lower electrode 9 is connected via 8 while the source / drain region is connected to the bit line BL.

【0031】一方強誘電体キャパシタは下部電極9と上
部電極11との間にPZTからなる強誘電体薄膜10を
挟んでなるものである。
On the other hand, the ferroelectric capacitor has a ferroelectric thin film 10 made of PZT sandwiched between a lower electrode 9 and an upper electrode 11.

【0032】図2(a)乃至(d)にこのFRAMの製
造工程について説明する。
The manufacturing process of this FRAM will be described with reference to FIGS.

【0033】まず、通常の方法で、シリコン基板1表面
にゲート絶縁膜3を介して形成されたゲート電極4を形
成するとともに、このゲート電極4をマスクとして不純
物拡散を行いソース領域5およびドレイン領域6を形成
する(図2(a))。
First, the gate electrode 4 is formed on the surface of the silicon substrate 1 with the gate insulating film 3 interposed therebetween, and impurities are diffused by using the gate electrode 4 as a mask by a usual method. 6 is formed (FIG. 2A).

【0034】続いて、本発明の方法で、3次元ネットワ
ーク構造を有する空孔を具備してなるポーラス構造をも
つようにメゾポーラスシリカ薄膜を形成する(図2
(b))。
Then, by the method of the present invention, a mesoporous silica thin film is formed so as to have a porous structure having pores having a three-dimensional network structure (FIG. 2).
(B)).

【0035】すなわち、図3(a)に示すように、まず
界面活性剤として陽イオン型のセチルトリメチルアンモ
ニウムブロマイド(CTAB:C1633+(CH33
Br-)と、シリカ誘導体としてテトラメトキシシラン
(TMOS:Tetramethoxy Silane)と、酸触媒として
の塩酸(HCl)とを、H2O/アルコール混合溶媒に溶解
し、混合容器内で、前駆体(プレカーサー)溶液を調製
する。この前駆体溶液の仕込みのモル比は、溶媒を10
0として、界面活性剤0.02、シリカ誘導体0.4、
酸触媒2として混合し、この混合溶液内に前記MOSFETの
形成された基板を浸せきし図3(b)に示すように、混
合容器を密閉したのち、30から150℃で1時間乃至
120時間保持することによりシリカ誘導体を加水分解
重縮合反応で重合させて(予備架橋工程)、界面活性剤
の周期的な自己凝集体を鋳型とする、メゾポーラスシリ
カ薄膜を形成する。
That is, as shown in FIG. 3 (a), first, a cationic cetyltrimethylammonium bromide (CTAB: C 16 H 33 N + (CH 3 ) 3 as a surfactant is used.
Br ), tetramethoxysilane (TMOS: Tetramethoxy Silane) as a silica derivative, and hydrochloric acid (HCl) as an acid catalyst are dissolved in a H 2 O / alcohol mixed solvent, and the precursor (precursor) is dissolved in a mixing container. ) Prepare the solution. The molar ratio of the precursor solution charged was 10% solvent.
0, surfactant 0.02, silica derivative 0.4,
The acid catalyst 2 is mixed, the substrate on which the MOSFET is formed is dipped in the mixed solution, and the mixing container is sealed as shown in FIG. 3 (b), and then kept at 30 to 150 ° C. for 1 to 120 hours. By doing so, the silica derivative is polymerized by a hydrolysis polycondensation reaction (pre-crosslinking step) to form a mesoporous silica thin film using the periodic self-aggregate of the surfactant as a template.

【0036】この自己凝集体は図4(a)に示すように
C16H33N+(CH3)Br-を1分子とする複数の分子が凝集
してなる球状のミセル構造体(図4(b))を形成し、
高濃度化により(図4(c))、界面活性剤が配向して
なる円筒体(図4(d))が形成され、さらにこれが、
3次元ネットワーク状の円筒体へと相変化する。
This self-aggregate is as shown in FIG.
C 16 H 33 N + (CH 3 ) Br forms a spherical micelle structure (FIG. 4 (b)) formed by aggregating a plurality of molecules, each of which is a molecule,
By increasing the concentration (FIG. 4 (c)), a cylindrical body (FIG. 4 (d)) in which the surfactant is oriented is formed.
It changes into a three-dimensional network cylinder.

【0037】そして基板を引き上げ、水洗、乾燥を行っ
た後、400℃の酸素雰囲気中で3時間加熱・焼成し、
鋳型の界面活性剤を完全に熱分解除去して3次元ネット
ワーク状のポーラス構造体純粋なメゾポーラスシリカ薄
膜を形成する。なお、この焼成雰囲気は配慮が必要であ
る。
Then, the substrate was pulled up, washed with water and dried, and then heated and baked in an oxygen atmosphere at 400 ° C. for 3 hours,
The surface-active agent in the template is completely removed by thermal decomposition to form a pure mesoporous silica thin film having a three-dimensional network-like porous structure. Note that this firing atmosphere requires consideration.

【0038】このようにして、図2(b)に示すように
本発明実施形態の低誘電率薄膜7が形成されるが、実際
にはビット線BLを形成するため、この低誘電率薄膜は
2回に分けて形成しなければならない。
In this way, the low dielectric constant thin film 7 of the embodiment of the present invention is formed as shown in FIG. 2B. However, since the bit line BL is actually formed, this low dielectric constant thin film is formed.
It must be formed in two steps.

【0039】この後、通常の方法で、この低誘電率薄膜
7にコンタクトホール8を形成する。そして、このコン
タクトホール内に高濃度にドープされた多結晶シリコン
層を埋め込みプラグを形成した後、イリジウムをターゲ
ットとし、アルゴンと酸素との混合ガスを用いて、酸化
イリジウム層を形成する。そして更にこの上層にプラチ
ナをターゲットとして用いてプラチナ層を形成する。こ
のようにして図2(c)に示すように、膜厚50nm程
度の酸化イリジウム層、および膜厚200nm程度のプ
ラチナ層を形成し、これをフォトリソグラフィによりパ
ターニングし、下部電極9を形成する。
Thereafter, a contact hole 8 is formed in the low dielectric constant thin film 7 by a usual method. Then, a highly doped polycrystalline silicon layer is buried in the contact hole to form a plug, and then an iridium oxide layer is formed by using iridium as a target and using a mixed gas of argon and oxygen. Then, a platinum layer is formed on the upper layer by using platinum as a target. Thus, as shown in FIG. 2C, an iridium oxide layer having a film thickness of about 50 nm and a platinum layer having a film thickness of about 200 nm are formed and patterned by photolithography to form the lower electrode 9.

【0040】次に、この下部電極9の上に、ゾルゲル法
によって、強誘電体膜10としてPZT膜を形成する。
出発原料として、Pb(CH3COO)2・3H2O,Zr(t-OC4H9)4,Ti(i
-OC3H7)4の混合溶液を用いた。この混合溶液をスピンコ
ートした後、150℃で乾燥させ、ドライエアー雰囲気
において400℃で30分の仮焼成を行った。これを5
回繰り返した後、O2の雰囲気中で、700℃以上の熱
処理を施した。このようにして、250nmの強誘電体膜
10を形成した。なお、ここでは、PbZrxTi1-xO3におい
て、xを0.52として(以下PZT(52/48)と
表す)、PZT膜を形成している(図2(d))。
Next, a PZT film is formed as the ferroelectric film 10 on the lower electrode 9 by the sol-gel method.
As starting materials, Pb (CH 3 COO) 2 · 3H 2 O, Zr (t-OC 4 H 9) 4, Ti (i
Using a mixed solution of -OC 3 H 7) 4. This mixed solution was spin-coated, dried at 150 ° C., and pre-baked at 400 ° C. for 30 minutes in a dry air atmosphere. This 5
After repeating the process twice, heat treatment was performed at 700 ° C. or higher in an O 2 atmosphere. Thus, the ferroelectric film 10 having a thickness of 250 nm was formed. Here, in PbZr x Ti 1-x O 3 , x was set to 0.52 (hereinafter referred to as PZT (52/48)) to form a PZT film (FIG. 2D).

【0041】さらに、強誘電体膜10の上に、スパッタ
リングにより酸化イリジウムとイリジウムとの積層膜1
1を形成する。この酸化イリジウム層とイリジウム層と
の積層膜を、上部電極11する。ここでは、イリジウム
層と酸化イリジウム層とをあわせて200nmの厚さとな
るように形成した。このようにして、強誘電体キャパシ
タを得ることができ、図1に示したFRAMが形成され
る。
Further, a laminated film 1 of iridium oxide and iridium is formed on the ferroelectric film 10 by sputtering.
1 is formed. The laminated film of the iridium oxide layer and the iridium layer is used as the upper electrode 11. Here, the iridium layer and the iridium oxide layer were formed so as to have a total thickness of 200 nm. In this way, the ferroelectric capacitor can be obtained, and the FRAM shown in FIG. 1 is formed.

【0042】かかる構成によれば、層間絶縁膜が3次元
ネットワーク構造をもつメゾポーラスシリカ薄膜からな
る低誘電率薄膜で構成されているため、層間絶縁膜に起
因する容量が低減され、スイッチング特性が良好で、高
速動作の可能なFRAMを形成することが可能となる。
According to this structure, since the interlayer insulating film is composed of a low dielectric constant thin film made of a mesoporous silica thin film having a three-dimensional network structure, the capacitance due to the interlayer insulating film is reduced and the switching characteristics are improved. It is possible to form a good FRAM that can operate at high speed.

【0043】また、基板表面に3次元ネットワーク構造
をもつように空孔が形成されているため、基板表面全体
にわたって均一に低誘電率をもつことになり、特に上層
の下部電極および配線、下地基板に対して開口部を持た
ない閉じた構造をとることができ、耐湿性に優れ信頼性
の高い有効な低誘電率薄膜となる。従ってリーク電流も
なく、長寿命の層間絶縁膜となる。
Further, since the holes are formed on the surface of the substrate so as to have a three-dimensional network structure, it has a low dielectric constant uniformly over the entire surface of the substrate. On the other hand, it is possible to take a closed structure having no opening, and it becomes an effective low dielectric constant thin film having excellent moisture resistance and high reliability. Therefore, there is no leak current and the interlayer insulating film has a long life.

【0044】なお、前駆体溶液の組成については、前記
実施形態の組成に限定されることなく、溶媒を100と
して、界面活性剤0.05から0.5、シリカ誘導体
0.1から1、酸触媒0から5とするのが望ましい。か
かる構成の前駆体溶液を用いることにより、3次元ネッ
トワーク構造の空孔を有する低誘電率絶縁膜を形成する
ことが可能となる。
The composition of the precursor solution is not limited to the composition of the above embodiment, the solvent is 100, the surfactant is 0.05 to 0.5, the silica derivative is 0.1 to 1, and the acid is Catalysts 0 to 5 are desirable. By using the precursor solution having such a constitution, it becomes possible to form a low dielectric constant insulating film having pores of a three-dimensional network structure.

【0045】特に、界面活性剤としてCATBを用いる
とともにシリカ誘導体としてTEOSを用いる場合、こ
れらの比率により、得られる構造体の構造が変化するこ
とがわかっている。
In particular, when CATB is used as the surfactant and TEOS is used as the silica derivative, it is known that the ratio of these changes the structure of the resulting structure.

【0046】例えばCATB/TEOSなど界面活性剤
とシリカ誘導体の分子比が0.3から0.8であるとき
はネットワーク構造(キュービック)となることがわか
っている。この分子比よりも小さいときは円柱状の空孔
が配向してなる低誘電率絶縁膜となり、一方この分子比
よりも大きいときは層状の空孔が配向してなる低誘電率
絶縁膜となる。
It is known that a network structure (cubic) is formed when the molecular ratio of the surfactant such as CATB / TEOS and the silica derivative is 0.3 to 0.8. When it is smaller than this molecular ratio, it becomes a low dielectric constant insulating film in which columnar holes are oriented, while when it is larger than this molecular ratio, it becomes a low dielectric constant insulating film in which layered holes are oriented. .

【0047】また、前記実施形態では、界面活性剤とし
て陽イオン型のセチルトリメチルアンモニウムブロマイ
ド(CTAB:C1633+(CH33Br-)を用いた
が、これに限定されることなく、他の界面活性剤を用い
てもよいことは言うまでもない。
In the above embodiment, the cationic type cetyltrimethylammonium bromide (CTAB: C 16 H 33 N + (CH 3 ) 3 Br ) is used as the surfactant, but the surfactant is not limited thereto. Needless to say, other surfactants may be used.

【0048】ただし、触媒としてNaイオンなどのアル
カリイオンを用いると半導体材料としては、劣化の原因
となるため、陽イオン型の界面活性剤を用い、触媒とし
ては酸触媒を用いるのが望ましい。酸触媒としては、H
Clの他、硝酸(HNO3)、硫酸(H2SO4)、燐酸
(H3PO4)、H4SO4等を用いてもよい。
However, when alkali ions such as Na ions are used as the catalyst, it causes deterioration of the semiconductor material. Therefore, it is desirable to use a cationic surfactant and use an acid catalyst as the catalyst. As an acid catalyst, H
In addition to Cl, nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), H 4 SO 4 and the like may be used.

【0049】またシリカ誘導体としては、TMOSに限
定されることなく、テトラエトキシシラン(TEOS:
Tetraethoxy Silane)などのシリコンアルコキシド材料
を用いるのが望ましい。
The silica derivative is not limited to TMOS, but tetraethoxysilane (TEOS:
It is desirable to use a silicon alkoxide material such as Tetraethoxy Silane).

【0050】また溶媒としては水H2O/アルコール混合溶
媒を用いたが、水のみでもよい。
Although a water H 2 O / alcohol mixed solvent was used as the solvent, only water may be used.

【0051】さらにまた、焼成雰囲気としては酸素雰囲
気を用いたが、大気中でも、減圧下でも、窒素雰囲気中
でもよい。望ましくは窒素と水素の混合ガスからなるフ
ォーミングガスを用いた焼成を追加することにより、耐
湿性が向上し、リーク電流の低減を図ることが可能とな
る。
Furthermore, although an oxygen atmosphere was used as the firing atmosphere, it may be in the air, under reduced pressure, or in a nitrogen atmosphere. Desirably, by adding firing using a forming gas composed of a mixed gas of nitrogen and hydrogen, the moisture resistance is improved and the leak current can be reduced.

【0052】また、界面活性剤、シリカ誘導体、酸触
媒、溶媒の混合比については適宜変更可能である。
The mixing ratio of the surfactant, the silica derivative, the acid catalyst and the solvent can be changed appropriately.

【0053】さらに、予備重合工程は、30から150
℃で1時間乃至120時間保持するようにしたが、望ま
しくは、60から120℃、更に望ましくは90℃とす
る。
Further, the prepolymerization step is carried out in the range of 30 to 150.
The temperature is kept at 1 ° C. for 1 to 120 hours, preferably 60 to 120 ° C., more preferably 90 ° C.

【0054】また、焼成工程は、400℃1時間とした
が、300℃から500℃で1乃至5時間程度としても
よい。望ましくは350℃から450℃とする。
Although the firing process is performed at 400 ° C. for 1 hour, it may be performed at 300 ° C. to 500 ° C. for about 1 to 5 hours. Desirably, the temperature is set to 350 ° C to 450 ° C.

【0055】また図1(c)に示すように、周期的な3
次元ネットワーク構造の空孔hをもつ無機絶縁膜を構成
するようにすれば、さらに誘電率の均一化を図ることが
可能となる。 実施形態2 なお、前記第1の実施形態では、メゾポーラスシリカ薄
膜の形成は、前駆体溶液に浸せきすることによって行っ
たが、浸せきに限定されることなく、図5に示すよう
に、ディップコート法を用いてもよい。
Further, as shown in FIG.
If the inorganic insulating film having the pores h of the dimensional network structure is formed, it becomes possible to further homogenize the dielectric constant. Embodiment 2 In the first embodiment, the mesoporous silica thin film was formed by immersion in a precursor solution. However, it is not limited to immersion, and as shown in FIG. The method may be used.

【0056】すなわち、調製された前駆体溶液の液面に
対して基板を垂直に1mm/s乃至10m/sの速度で
下降させて溶液中に沈め、0秒間乃至1時間静置する。
That is, the substrate is vertically lowered with respect to the liquid surface of the prepared precursor solution at a speed of 1 mm / s to 10 m / s to be submerged in the solution, and then allowed to stand for 0 seconds to 1 hour.

【0057】そして所望の時間経過後再び、基板を垂直
に1mm/s乃至10m/sの速度で上昇させて溶液か
ら取り出す。
After a desired time has passed, the substrate is again lifted vertically at a speed of 1 mm / s to 10 m / s and taken out from the solution.

【0058】そして最後に、前記第1の実施形態と同様
に、焼成することにより、界面活性剤を完全に熱分解、
除去して3次元ネットワーク構造の空孔からなる純粋な
メゾポーラスシリカ薄膜を形成する。 実施形態3 なお、前記第1の実施形態では、メゾポーラスシリカ薄
膜の形成は、前駆体溶液に浸せきすることによって行っ
たが、浸せきに限定されることなく、図6に示すよう
に、スピンコート法によってもよい。
Finally, as in the case of the first embodiment, the surface-active agent is completely pyrolyzed by firing.
By removing it, a pure mesoporous silica thin film composed of pores with a three-dimensional network structure is formed. Embodiment 3 In the first embodiment, the mesoporous silica thin film was formed by immersion in a precursor solution. However, it is not limited to immersion, and spin coating may be performed as shown in FIG. It may be by law.

【0059】前記実施形態と同様にして形成された前駆
体溶液をスピナー上に載置された被処理基板表面に滴下
し、500乃至5000rpmで回転し、メゾポーラス
シリカ薄膜を得る。
The precursor solution formed in the same manner as in the above embodiment is dropped onto the surface of the substrate to be processed placed on the spinner and rotated at 500 to 5000 rpm to obtain a mesoporous silica thin film.

【0060】そして最後に、前記第1の実施形態と同様
に、焼成することにより、界面活性剤を完全に熱分解、
除去して3次元ネットワーク構造の空孔からなる純粋な
メゾポーラスシリカ薄膜を形成する。
Finally, as in the case of the first embodiment, the surface-active agent is completely pyrolyzed by firing.
By removing it, a pure mesoporous silica thin film composed of pores with a three-dimensional network structure is formed.

【0061】かかる構成によれば、3次元ネットワーク
構造の空孔からなるポーラス構造をもつため、機械的強
度を高めることができ、信頼性の高い絶縁膜を得ること
が可能となる。また、、層間絶縁膜として用いる場合に
は、上層配線および下層配線に対して開口部を持たない
閉じた構造をとることができ、耐湿性に優れ信頼性の高
い有効な低誘電率薄膜としての役割を奏効する。
According to this structure, since it has a porous structure made up of holes having a three-dimensional network structure, it is possible to increase the mechanical strength and obtain a highly reliable insulating film. Further, when used as an interlayer insulating film, it can have a closed structure with no openings for the upper layer wiring and the lower layer wiring, and has excellent moisture resistance and high reliability as an effective low dielectric constant thin film. Play a role.

【0062】なお、前記実施形態では、スピナーを用い
た塗布方法について説明したが、刷毛で塗布するいわゆ
る刷毛塗り法も適用可能である。
In the above embodiment, the coating method using the spinner has been described, but a so-called brush coating method of coating with a brush is also applicable.

【0063】加えて、前記実施形態では、FRAMの層
間絶縁膜について説明したが、シリコンを用いた種々の
半導体デバイス、HEMTなど化合物半導体を用いたデ
バイスをはじめとする高速デバイス、マイクロ波ICな
どの高周波デバイス、MFMIS型の高集積強誘電体メ
モリ、フィルムキャリアなどを用いたマイクロ波伝送線
路あるいは多層配線基板、などにも適用可能である。
In addition, although the interlayer insulating film of the FRAM has been described in the above embodiments, various semiconductor devices using silicon, high speed devices including devices using compound semiconductors such as HEMT, microwave ICs, etc. It is also applicable to a high frequency device, an MFMIS type highly integrated ferroelectric memory, a microwave transmission line using a film carrier or a multilayer wiring board, and the like.

【0064】[0064]

【発明の効果】以上説明してきたように、本発明によれ
ば、3次元ネットワーク構造の空孔をもつポーラス構造
を容易に制御性よく、形成することができ、機械的強度
が高く低誘電率の絶縁膜を得ることが可能となる。
As described above, according to the present invention, it is possible to easily form a porous structure having pores of a three-dimensional network structure with good controllability, high mechanical strength and low dielectric constant. It is possible to obtain the insulating film of

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の方法で形成した絶縁
膜を用いたFRAMを示す図
FIG. 1 is a diagram showing an FRAM using an insulating film formed by the method of the first embodiment of the present invention.

【図2】図1のFRAMの製造工程を示す図FIG. 2 is a diagram showing a manufacturing process of the FRAM of FIG.

【図3】本発明の第1の実施形態における絶縁膜の形成
工程を示す説明図
FIG. 3 is an explanatory diagram showing a process of forming an insulating film according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態における絶縁膜を示す
説明図
FIG. 4 is an explanatory diagram showing an insulating film according to the first embodiment of the present invention.

【図5】本発明の第2の実施形態における絶縁膜の形成
工程を示す説明図
FIG. 5 is an explanatory diagram showing a process of forming an insulating film according to a second embodiment of the present invention.

【図6】本発明の第3の実施形態における絶縁膜の形成
工程を示す説明図
FIG. 6 is an explanatory diagram showing a process of forming an insulating film according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

h 空孔 1 シリコン基板 2 素子分離絶縁膜 3 ゲート絶縁膜 4 ゲート電極 5 ソース領域 6 ドレイン領域 7 絶縁膜 8 コンタクトホール 9 下部電極 10 強誘電体膜 11 上部電極 h hole 1 Silicon substrate 2 element isolation insulating film 3 Gate insulation film 4 gate electrode 5 Source area 6 drain region 7 Insulating film 8 contact holes 9 Lower electrode 10 Ferroelectric film 11 Upper electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥 良彰 京都市右京区西院溝崎町21番地 ローム株 式会社内 Fターム(参考) 5F033 HH07 HH35 JJ04 KK01 MM05 QQ37 RR29 SS22 XX24 5F058 BA20 BC02 BC04 BF22 BF25 BF46 BH01 BJ02 5F083 FR02 JA15 JA38 JA43 JA56 MA06 MA17 PR22 PR23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshiaki Oku             21 Ryozo Mizozaki-cho, Saiin, Ukyo-ku, Kyoto             Inside the company F term (reference) 5F033 HH07 HH35 JJ04 KK01 MM05                       QQ37 RR29 SS22 XX24                 5F058 BA20 BC02 BC04 BF22 BF25                       BF46 BH01 BJ02                 5F083 FR02 JA15 JA38 JA43 JA56                       MA06 MA17 PR22 PR23

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板表面に形成され、3次元的なネットワ
ークを構成する空孔を有するポーラス構造を有する無機
絶縁膜を含むことを特徴とする半導体装置。
1. A semiconductor device comprising an inorganic insulating film formed on the surface of a substrate and having a porous structure having pores forming a three-dimensional network.
【請求項2】前記無機絶縁膜は、周期的な3次元的ネッ
トワークを構成する空孔を有するポーラス構造を有する
ことを特徴とする請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the inorganic insulating film has a porous structure having holes forming a periodic three-dimensional network.
【請求項3】前記無機絶縁膜は、半導体基板または半導
体基板上に形成された下層配線導体と、上層配線導体と
の間に介在せしめられる層間絶縁膜であることを特徴と
する請求項1または2に記載の半導体装置。
3. The inorganic insulating film is an interlayer insulating film interposed between a semiconductor substrate or a lower layer wiring conductor formed on the semiconductor substrate and an upper layer wiring conductor. 2. The semiconductor device according to item 2.
【請求項4】シリカ誘導体と界面活性剤を含む前駆体溶
液を生成する工程と、前記前駆体溶液を基板表面に接触
させる接触工程と、前記前駆体溶液が接触せしめられた
基板を焼成し、前記界面活性剤を分解除去する工程とを
含み絶縁膜を形成するようにしたことを特徴とする半導
体装置の製造方法。
4. A step of producing a precursor solution containing a silica derivative and a surfactant, a step of contacting the precursor solution with the surface of the substrate, and a step of baking the substrate contacted with the precursor solution, And a step of decomposing and removing the surfactant to form an insulating film.
【請求項5】前記接触工程に先立ち、さらに前記前駆体
溶液を昇温し、架橋反応を開始する予備架橋工程を含む
ことを特徴とする請求項4に記載の半導体装置の製造方
法。
5. The method of manufacturing a semiconductor device according to claim 4, further comprising a preliminary cross-linking step of raising the temperature of the precursor solution and starting a cross-linking reaction prior to the contacting step.
【請求項6】前記接触工程は、基板を前駆体溶液に浸せ
きする工程であることを特徴とする請求項4または5に
記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 4, wherein the contacting step is a step of immersing the substrate in a precursor solution.
【請求項7】前記接触工程は、基板を前駆体溶液に浸せ
きし、所望の速度で引き上げる工程であることを特徴と
する請求項4または5に記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 4, wherein the contacting step is a step of immersing the substrate in a precursor solution and pulling it up at a desired speed.
【請求項8】前記接触工程は、前駆体溶液を基板上に塗
布する工程であることを特徴とする請求項4または5に
記載の半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 4, wherein the contacting step is a step of applying a precursor solution onto a substrate.
【請求項9】前記接触工程は、前駆体溶液を基板上に滴
下し、前記基板を回転させる回転塗布工程であることを
特徴とする請求項8に記載の半導体装置の製造方法。
9. The method of manufacturing a semiconductor device according to claim 8, wherein the contacting step is a spin coating step in which a precursor solution is dropped on a substrate and the substrate is rotated.
JP2001198943A 2001-06-29 2001-06-29 Semiconductor device and method for manufacturing the same Pending JP2003017483A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001198943A JP2003017483A (en) 2001-06-29 2001-06-29 Semiconductor device and method for manufacturing the same
EP20020743749 EP1408539A1 (en) 2001-06-29 2002-06-27 Semiconductor device and production method therefor
US10/482,564 US7075170B2 (en) 2001-06-29 2002-06-27 Semiconductor device and production method therefor
PCT/JP2002/006508 WO2003003440A1 (en) 2001-06-29 2002-06-27 Semiconductor device and production method therefor
KR1020037016885A KR100645654B1 (en) 2001-06-29 2002-06-27 Semiconductor device and production method thereof
TW091114279A TWI233215B (en) 2001-06-29 2002-06-28 Semiconductor device and method of manufacturing same
US11/399,724 US7385276B2 (en) 2001-06-29 2006-04-07 Semiconductor device, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001198943A JP2003017483A (en) 2001-06-29 2001-06-29 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003017483A true JP2003017483A (en) 2003-01-17

Family

ID=19036297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198943A Pending JP2003017483A (en) 2001-06-29 2001-06-29 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003017483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017560A (en) * 2001-06-29 2003-01-17 Rohm Co Ltd Semiconductor device and method of manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015280A1 (en) * 1997-09-25 1999-04-01 Sandia Corporation Ordered mesoporous thin films
EP1094506A2 (en) * 1999-10-18 2001-04-25 Applied Materials, Inc. Capping layer for extreme low dielectric constant films
JP2001130911A (en) * 1999-10-29 2001-05-15 Japan Chemical Innovation Institute Method for producing high crystal silica mesoporous thin film
JP2002033314A (en) * 2000-02-10 2002-01-31 Applied Materials Inc Method and integrated device for treating low dielectric constant deposition containing pecvd capping module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015280A1 (en) * 1997-09-25 1999-04-01 Sandia Corporation Ordered mesoporous thin films
EP1094506A2 (en) * 1999-10-18 2001-04-25 Applied Materials, Inc. Capping layer for extreme low dielectric constant films
JP2001130911A (en) * 1999-10-29 2001-05-15 Japan Chemical Innovation Institute Method for producing high crystal silica mesoporous thin film
JP2002033314A (en) * 2000-02-10 2002-01-31 Applied Materials Inc Method and integrated device for treating low dielectric constant deposition containing pecvd capping module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017560A (en) * 2001-06-29 2003-01-17 Rohm Co Ltd Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP1482567A1 (en) Light-emitting device comprising led chip and method for manufacturing this device
KR20080089507A (en) Highly selective doped oxide etchant
US20070164437A1 (en) Semiconductor device and method of manufacturing the same
US7385276B2 (en) Semiconductor device, and method for manufacturing the same
JP4170219B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4391240B2 (en) Thin film forming method and semiconductor device
JP4953523B2 (en) Semiconductor device and manufacturing method thereof
JP2003017483A (en) Semiconductor device and method for manufacturing the same
JP2003017485A (en) Semiconductor device and method for manufacturing the same
JPH1154729A (en) Manufacture of capacitor of semiconductor device
JP2003017486A (en) Semiconductor device and method for manufacturing the same
JP2003017484A (en) Semiconductor device and method for manufacturing the same
JP4931292B2 (en) Ferroelectric memory and manufacturing method thereof
JP2003017487A (en) Semiconductor device and method for manufacturing the same
KR20030013123A (en) Semiconductor device with capacitor and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011