JP2003017435A - Member for vitreous carbon coated ion implantation device - Google Patents

Member for vitreous carbon coated ion implantation device

Info

Publication number
JP2003017435A
JP2003017435A JP2001196467A JP2001196467A JP2003017435A JP 2003017435 A JP2003017435 A JP 2003017435A JP 2001196467 A JP2001196467 A JP 2001196467A JP 2001196467 A JP2001196467 A JP 2001196467A JP 2003017435 A JP2003017435 A JP 2003017435A
Authority
JP
Japan
Prior art keywords
glassy carbon
carbon film
ion
substrate
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196467A
Other languages
Japanese (ja)
Other versions
JP4936608B2 (en
Inventor
Takashi Hirose
敬司 広瀬
Taishin Horio
泰臣 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2001196467A priority Critical patent/JP4936608B2/en
Publication of JP2003017435A publication Critical patent/JP2003017435A/en
Application granted granted Critical
Publication of JP4936608B2 publication Critical patent/JP4936608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for a vitreous carbon coated ion implantation apparatus where foreign matters do not stick on a silicon wafer, since pure ion beam can be implanted to a silicon wafer without inclusion of foreign matters in ion beam, and which is superior in durability, since a glass-like carbon film applied to a substrate will not peel readily. SOLUTION: In the member for a vitreous carbon coated ion implantation apparatus, at least a substrate surface irradiated with an ion beam is coated with a vitreous carbon film. In the surface of the vitreous carbon film, regular reflectance of light injected at an angle of 30 degrees with respect to the surface of the vitreous carbon film is 10% or more, average roughness Ra by JIS B 0601 is 0.03 to 3 μm, and maximum roughness Rmax is 0.3 to 30 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イオン注入装置に
おけるイオンガイド用のスリット部材等において使用さ
れる、ガラス状炭素被覆イオン注入装置用部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass-like carbon-coated ion implantation device member used in a slit member or the like for an ion guide in an ion implantation device.

【0002】[0002]

【従来の技術】半導体に不純物をイオン状態で注入する
技術は、1970年代に工業化された技術であり、現在
LSIをはじめとして多くのシリコン半導体製品等に広
く用いられている。半導体デバイスにおけるイオン注入
は、シリコンウエハに目的とする不純物元素をイオン化
し、数十〜数百eVのエネルギーに加速して打ち込む。
2. Description of the Related Art A technique of implanting impurities into a semiconductor in an ionic state is a technique industrialized in the 1970s and is now widely used in many silicon semiconductor products including LSI. Ion implantation in a semiconductor device is performed by ionizing a target impurity element in a silicon wafer and accelerating it to an energy of several tens to several hundreds eV.

【0003】このとき、目的とする元素以外の成分が介
在しているとシリコンウエハに目的以外の不純物が打ち
込まれ、初期の性能が得られなくなる危険性がある。こ
のため、イオン注入装置の構成部品は半導体に対して悪
影響を及ぼさない、高純度の材料が要求される。
At this time, if a component other than the target element is present, impurities other than the target are implanted into the silicon wafer, and there is a risk that the initial performance may not be obtained. Therefore, high-purity materials that do not adversely affect the semiconductor are required for the components of the ion implantation apparatus.

【0004】図2は、従来のイオン注入装置の一例を示
した説明図である。図2に示した通り、従来のイオン注
入装置20には、目的とする不純物元素を含んだ気体を
高密度のプラズマ状態にするとともに、プラズマにより
イオンを発生させるイオン発生装置21、発生したイオ
ンをイオン発生装置21より引き出すのに必要なエネル
ギーを与える引き出し部22、引き出したイオンを目的
のイオンに選別するイオン分析部23、及び、イオンを
加速しイオンビームを生成する加速部24が配設されて
いる。
FIG. 2 is an explanatory view showing an example of a conventional ion implantation apparatus. As shown in FIG. 2, in the conventional ion implanter 20, a gas containing an impurity element of interest is put into a high-density plasma state, an ion generator 21 that generates ions by plasma, and the generated ions are generated. An extraction unit 22 that gives energy required to extract from the ion generator 21, an ion analysis unit 23 that selects the extracted ions into target ions, and an acceleration unit 24 that accelerates the ions to generate an ion beam are provided. ing.

【0005】さらに、イオン注入装置20には、イオン
ビームを収束する収束部25、イオンビームをシリコン
ウエハの表面に均一に打ち込むために走査する走査部2
6、及び、シリコンウエハ19にイオンを打ち込むイオ
ン打ち込み室27が配設されており、このイオン注入装
置20を構成する各部材は、その内部にイオンビームを
走行させることができるスリット部材28により連結さ
れている。
Further, the ion implanter 20 includes a focusing section 25 for focusing the ion beam, and a scanning section 2 for scanning the ion beam to uniformly hit the surface of the silicon wafer.
6, and an ion implantation chamber 27 for implanting ions into the silicon wafer 19 is provided, and each member constituting the ion implantation apparatus 20 is connected by a slit member 28 capable of moving an ion beam therein. Has been done.

【0006】即ち、イオン発生装置21において発生さ
せたイオンは、引き出し部22、イオン分析部23を経
て加速部24でイオンビームとなり、このイオンビーム
は収束部25、及び、走査部26の順にスリット部材2
8内を走行し、イオン打ち込み室27内に設置したシリ
コンウエハ19に打ち込まれるのである。
That is, the ions generated in the ion generator 21 pass through the extraction unit 22, the ion analysis unit 23, and the acceleration unit 24 to become an ion beam. The ion beam is slit by the focusing unit 25 and the scanning unit 26 in this order. Member 2
The silicon wafer 19 travels in the ion implantation chamber 8 and is implanted into the silicon wafer 19 installed in the ion implantation chamber 27.

【0007】このようなイオン注入装置20を構成する
各部材におけるイオンビームと接触する部分の材料は、
高純度を保持し、かつ、異物の混入を防止するための材
料、及び、構造上の配慮がなされているが、中でも、イ
オン源であるイオン発生装置及び走査部におけるスリッ
ト部材28には、高エネルギーのイオンが衝突するた
め、構成材料からの不純物、異物が混入し易く他部分の
材料より配慮が必要である。
The material of the portion which makes contact with the ion beam in each member constituting the ion implantation apparatus 20 is
Materials and structural considerations have been made to maintain high purity and prevent foreign matter from entering, and above all, the ion generator, which is the ion source, and the slit member 28 in the scanning unit are high in purity. Since the ions of energy collide with each other, impurities and foreign substances from the constituent materials are likely to be mixed in, and consideration must be given to the other materials.

【0008】従来、このような高純度の材料として、シ
リコンウエハに悪影響を及ぼしにくい材料で、かつ、容
易に高純度材質の確保が可能な黒鉛材料が利用されてい
た。
Conventionally, as such a high-purity material, a graphite material has been used, which is a material that is unlikely to adversely affect a silicon wafer and which can easily secure a high-purity material.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、黒鉛材
料はコークス等の微粒子の集合体であるため、イオンビ
ームが衝突した場合、微細な異物(黒鉛粒子)が混入す
る。そのため、シリコンウエハ上に異物が付着して結果
的に製品の歩留りを悪くする。
However, since the graphite material is an aggregate of fine particles such as coke, fine foreign matter (graphite particles) is mixed in when the ion beam collides. Therefore, foreign matter adheres to the silicon wafer, resulting in a poor product yield.

【0010】さらに、本発明者らは、上記問題点を解決
すべく、特開平8−171883号公報に開示されてい
るように、黒鉛基材の表面に20〜50μmの高純度熱
分解炭素被膜をコーティングすることにより、カーボン
部品を作製することを提案した。しかしながら、このよ
うにして形成した高純度熱分解炭素膜は、イオン注入装
置におけるイオンビームによりエッチングされて消耗
し、黒鉛基材が露出してしまうことがあり、また、黒鉛
基材の露出を防止するために高純度熱分解炭素膜を厚く
すると、基材との熱膨張係数のミスマッチにより被膜が
剥離してしまうことがあり、未だ改善の余地があった。
Further, in order to solve the above problems, the inventors of the present invention, as disclosed in JP-A-8-171883, have a high purity pyrolytic carbon coating of 20 to 50 μm on the surface of a graphite base material. It was proposed to make carbon parts by coating the. However, the high-purity pyrolytic carbon film thus formed may be etched and consumed by the ion beam in the ion implantation device, exposing the graphite base material, and preventing the graphite base material from being exposed. Therefore, if the high-purity pyrolytic carbon film is thickened, the coating film may peel due to a mismatch in the coefficient of thermal expansion with the base material, and there is still room for improvement.

【0011】また、特開平5−246703号公報に
は、スリット部材としてガラス状カーボンを使用するこ
とが提案されているが、このスリット部材は、硬いガラ
ス状カーボンそのものを加工する必要があるため所望の
形状のスリット部材を得ることが困難であり、また、そ
の製造工程も複雑なものであった。
Further, Japanese Patent Laid-Open No. 5-246703 proposes to use glassy carbon as a slit member. However, this slit member is desired because it is necessary to process hard glassy carbon itself. It was difficult to obtain the slit member having the shape of, and the manufacturing process thereof was complicated.

【0012】また、上記ガラス状カーボンからなるスリ
ット部材は、上記黒鉛からなるスリット部材に比べて、
イオンビームに晒された際、その表面から飛散する微細
な異物(黒鉛粒子)の量が格段に少ないものであった
が、イオンビームへ異物が混入し、該異物がシリコンウ
エハ上に付着すると、このシリコンウエハを用いて製造
する半導体チップの不良率が大きく増加するため、イオ
ンビームに混入する異物が、より少ないものが望まれて
いた。
Further, the slit member made of the above glassy carbon is more
When exposed to an ion beam, the amount of fine foreign matter (graphite particles) scattered from the surface was remarkably small, but when the foreign matter was mixed into the ion beam and the foreign matter adhered to the silicon wafer, Since the defect rate of semiconductor chips manufactured using this silicon wafer is greatly increased, it has been desired to reduce the amount of foreign matter mixed in the ion beam.

【0013】本発明は、かかる従来の問題点に鑑み、イ
オンビームに異物が混入することがなく、純粋なイオン
ビームをシリコンウエハに注入することができるため、
異物がシリコンウエハ上に付着することがなく、また、
基体に被覆されたガラス状炭素膜が容易に剥離すること
がないため耐久性に優れるガラス状炭素被覆イオン注入
装置用部材を提供することを目的とする。
In view of the above conventional problems, the present invention can implant a pure ion beam into a silicon wafer without mixing foreign matter into the ion beam.
Foreign matter does not adhere to the silicon wafer, and
An object of the present invention is to provide a member for a glassy carbon-coated ion implantation device which is excellent in durability because the glassy carbon film coated on the substrate does not easily peel off.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、少なくともイオンビームが照射され
る基体表面がガラス状炭素膜により被覆されたガラス状
炭素被覆イオン注入装置用部材について、ガラス状炭素
膜の表面状態と微細な異物発生機構との関係を種々検討
した結果、ガラス状炭素膜の表面の滑らかさ及び面粗度
と、異物発生量との間に密接な関係があることを見出し
た。
In order to achieve the above-mentioned object, the present inventors have made a glassy carbon-coated ion implantation device member in which at least the surface of a substrate irradiated with an ion beam is coated with a glassy carbon film. The results of various studies on the relationship between the surface state of the glassy carbon film and the mechanism of generation of fine foreign matter showed that there was a close relationship between the surface smoothness and surface roughness of the glassy carbon film and the amount of foreign matter generation. I found that there is.

【0015】即ち、通常、ガラス状炭素膜は、無定形の
均質な連続緻密組織を呈し、このようなガラス状炭素膜
は、イオンビームに晒された場合、その表面は均一に消
耗が進行し、微細な異物(黒鉛粒子)が離脱することは
ない。しかしながら、ガラス状炭素膜の表面の滑らかさ
及び面粗度とが一定の範囲を外れると、ガラス状炭素膜
の表面から飛散する異物の量が多くなったり、ガラス状
炭素膜の剥離が発生することを新規に知見し、本発明を
完成するに至った。ここで、上記ガラス状炭素膜の表面
の滑らかさは、ガラス状炭素膜の表面に対し30度の角
度で入射させた光の正反射率で評価を行い、上記ガラス
状炭素膜の表面の面粗度は、JIS B 0601によ
る平均粗さRa及び最大粗さRmaxで評価を行う。
That is, usually, the glassy carbon film has an amorphous homogeneous continuous dense structure, and when such a glassy carbon film is exposed to an ion beam, its surface is uniformly consumed. However, fine foreign matter (graphite particles) does not come off. However, when the surface smoothness and surface roughness of the glassy carbon film deviate from a certain range, the amount of foreign matter scattered from the surface of the glassy carbon film increases, or the glassy carbon film peels off. The inventors have newly discovered this and completed the present invention. Here, the smoothness of the surface of the glassy carbon film is evaluated by the regular reflectance of light incident at an angle of 30 degrees with respect to the surface of the glassy carbon film, and the surface of the surface of the glassy carbon film is evaluated. The roughness is evaluated by the average roughness Ra and the maximum roughness Rmax according to JIS B0601.

【0016】本発明は、少なくともイオンビームが照射
される基体表面がガラス状炭素膜により被覆されたガラ
ス状炭素被覆イオン注入装置用部材であって、上記ガラ
ス状炭素膜の表面は、該ガラス状炭素膜の表面に対し3
0度の角度で入射させた光の正反射率が10%以上であ
り、JIS B 0601による平均粗さRaが0.0
3〜3μmであり、かつ、最大粗さRmaxが0.3〜
30μmであることを特徴とするガラス状炭素被膜イオ
ン注入装置用部材である。以下、本発明を実施の形態に
より、具体的に説明する。
The present invention relates to a member for a glassy carbon-coated ion implantation device in which at least the surface of a substrate irradiated with an ion beam is coated with a glassy carbon film, and the surface of the glassy carbon film is the glass-like carbon film. 3 for the surface of the carbon film
The regular reflectance of light incident at an angle of 0 degree is 10% or more, and the average roughness Ra according to JIS B 0601 is 0.0.
3 to 3 μm, and the maximum roughness Rmax is 0.3 to
It is a member for a glassy carbon film ion implantation device, which has a thickness of 30 μm. Hereinafter, the present invention will be specifically described with reference to embodiments.

【0017】[0017]

【発明の実施の形態】本発明は、少なくともイオンビー
ムが照射される基体表面がガラス状炭素膜により被覆さ
れたガラス状炭素被覆イオン注入装置用部材であって、
上記ガラス状炭素膜の表面は、該ガラス状炭素膜の表面
に対し30度の角度で入射させた光の正反射率が10%
以上であり、JIS B 0601による平均粗さRa
が0.03〜3μmであり、かつ、最大粗さRmaxが
0.3〜30μmであることを特徴とするガラス状炭素
被膜イオン注入装置用部材である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a glassy carbon-coated ion implantation device member in which at least the surface of a substrate irradiated with an ion beam is coated with a glassy carbon film,
The surface of the glassy carbon film has a regular reflectance of 10% with respect to the light incident on the surface of the glassy carbon film at an angle of 30 degrees.
The above is the average roughness Ra according to JIS B 0601.
Is 0.03 to 3 μm, and the maximum roughness Rmax is 0.3 to 30 μm.

【0018】図1は、本発明のガラス状炭素被覆イオン
注入装置用部材(以下、ガラス状炭素被覆部材ともい
う)の一例を模式的に示した部分断面図である。図1に
示した通り、本発明のガラス状炭素被覆部材10は、そ
の中央付近に貫通孔を有する基体12と、基体12の貫
通孔の内壁面に被覆されたガラス状炭素膜11とから構
成されている。
FIG. 1 is a partial cross-sectional view schematically showing an example of the glassy carbon-coated ion implantation device member of the present invention (hereinafter, also referred to as glassy carbon-coated member). As shown in FIG. 1, the glassy carbon coating member 10 of the present invention comprises a substrate 12 having a through hole in the vicinity of its center, and a glassy carbon film 11 coated on the inner wall surface of the through hole of the substrate 12. Has been done.

【0019】本発明のガラス状炭素被覆部材10におい
て、基体12の貫通孔の内壁面は、ガラス状炭素膜11
により被覆されており、このガラス状炭素膜11の表面
(イオン通路壁13)をイオンビームが走行する。即
ち、基体12の内壁面から飛散する不純物や異物が存在
していたとしても、基体12の内壁面は、ガラス状炭素
膜11で完全に被覆されているため、上記不純物や異物
がイオン通路壁13から飛散することがなく、イオンビ
ームに混入することがない。なお、基体12の外周部分
もガラス状炭素膜により被覆されていてもよい。基体1
2の外周部分から飛散する不純物や異物も、間接的にイ
オンビームに混入することがあり、また、ガラス状炭素
膜を被覆形成する方法によっては、基体12の貫通孔の
内壁面のみをガラス状炭素膜により被覆することが困難
な場合があるからである。
In the glassy carbon coating member 10 of the present invention, the inner wall surface of the through hole of the substrate 12 has a glassy carbon film 11 formed thereon.
And the ion beam travels on the surface (ion passage wall 13) of the glassy carbon film 11. That is, even if impurities or foreign matter scattered from the inner wall surface of the base 12 are present, since the inner wall surface of the base 12 is completely covered with the glassy carbon film 11, the impurities or foreign matter are not covered by the ion passage wall. 13 does not scatter and does not mix with the ion beam. The outer peripheral portion of the substrate 12 may also be covered with the glassy carbon film. Base 1
Impurities and foreign substances scattered from the outer peripheral portion of 2 may be indirectly mixed in the ion beam. Further, depending on the method of forming the glassy carbon film by coating, only the inner wall surface of the through hole of the base 12 is glassy. This is because it may be difficult to cover with a carbon film.

【0020】本発明のガラス状炭素被覆部材10におい
て、イオン通路壁13に対し30度の角度で入射させた
光の正反射率は10%以上であり、JIS B 060
1による平均粗さRaは0.03〜3μmであり、か
つ、最大粗さRmaxが0.3〜30μmである。この
ようなイオン通路壁13は、その表面に殆ど凹凸が存在
しないため、イオン通路壁13に高エネルギーのイオン
ビームが接触又は衝突する等の機械的衝撃が加わった場
合であっても、イオン通路壁13に欠けが発生すること
がなく、イオンビームに異物(欠けにより発生した微粒
子)が混入することがない。また、ガラス状炭素膜11
は基体12との接着強度に優れるため、ガラス状炭素膜
11が基体12から剥離することもない。
In the glassy carbon coating member 10 of the present invention, the regular reflectance of the light incident on the ion passage wall 13 at an angle of 30 degrees is 10% or more, and JIS B 060 is used.
The average roughness Ra according to No. 1 is 0.03 to 3 μm, and the maximum roughness Rmax is 0.3 to 30 μm. Since such an ion passage wall 13 has almost no unevenness on its surface, even if a mechanical shock such as contact or collision of a high-energy ion beam is applied to the ion passage wall 13, the ion passage wall 13 is not affected. There is no chipping on the wall 13 and no foreign matter (fine particles generated by chipping) is mixed in the ion beam. In addition, the glassy carbon film 11
The glassy carbon film 11 does not peel off from the substrate 12 because it has excellent adhesive strength to the substrate 12.

【0021】イオン通路壁13の正反射率が10%未満
であると、イオン通路壁13の平均粗さRa及び最大粗
さRmaxが上述した範囲内であっても、イオン通路壁
13に微小な凹凸が多数存在するようになり、高エネル
ギーのイオンビームが接触又は衝突する等の機械的衝撃
が加わった場合、上記微小な凹凸の凸部が欠けることが
あり、この欠けた凸部がシリコンウエハの表面に付着し
て異物となる。
When the regular reflectance of the ion passage wall 13 is less than 10%, even if the average roughness Ra and the maximum roughness Rmax of the ion passage wall 13 are within the above-mentioned ranges, the ion passage wall 13 has a minute amount. When a large number of irregularities are present and a mechanical impact such as contact or collision of a high-energy ion beam is applied, the convex portions of the minute irregularities may be chipped. Adheres to the surface of and becomes foreign matter.

【0022】また、イオン通路壁13のJIS B 0
601による平均粗さRaが0.03μm未満である
と、イオン通路壁13をこのように平滑なものとするた
めには研磨作業等に相当な時間を要するため、生産性の
低下及びコストの上昇を招く。一方、イオン通路壁13
の平均粗さRaが3μmを超えると、イオン通路壁13
の正反射率及び最大粗さRmaxが上述した範囲内であ
っても、イオン通路壁13に比較的大きな凹凸が存在し
ている箇所が部分的に存在し、高エネルギーのイオンビ
ームが上記凹凸の凸部に接触又は衝突する等の機械的衝
撃が加わった場合に欠けが発生し、この欠けた凸部がシ
リコンウエハ上に付着して異物となる。
In addition, the JIS B 0 of the ion passage wall 13
If the average roughness Ra according to 601 is less than 0.03 μm, it takes a considerable amount of time for polishing work to make the ion passage wall 13 smooth in this way, resulting in a decrease in productivity and an increase in cost. Invite. On the other hand, the ion passage wall 13
When the average roughness Ra of the ion-exchange wall exceeds 3 μm, the ion passage wall 13
Even if the regular reflectance and the maximum roughness Rmax of the above are within the ranges described above, there is a portion where relatively large irregularities are present in the ion passage wall 13, and the high-energy ion beam has the above irregularities. When a mechanical impact such as contact or collision with the convex portion is applied, a chip is generated, and the chipped convex portion adheres to the silicon wafer to become a foreign substance.

【0023】さらに、イオン通路壁13のJIS B
0601による最大粗さRmaxが0.3μm未満であ
ると、イオン通路壁13の研磨作業に相当の時間を要す
るため、生産性の低下及びコストの上昇を招く。一方、
イオン通路13の最大粗さRmaxが30μmを超える
と、イオン通路壁13の正反射率及び平均粗さRaが上
述した範囲内であっても、イオン通路壁13に大きな凹
凸か存在していることとなり、高エネルギーのイオンビ
ームが上記大きな凹凸の凸部に接触又は衝突する等の機
械的衝撃が加わった場合に欠けが発生し、この欠けた凸
部がシリコンウエハ上に付着して異物となる。
Furthermore, JIS B of the ion passage wall 13
If the maximum roughness Rmax according to 0601 is less than 0.3 μm, a considerable amount of time is required for polishing the ion passage wall 13, resulting in a decrease in productivity and an increase in cost. on the other hand,
If the maximum roughness Rmax of the ion passage 13 exceeds 30 μm, even if the regular reflectance and the average roughness Ra of the ion passage wall 13 are within the ranges described above, there are large irregularities on the ion passage wall 13. When a high-energy ion beam is subjected to a mechanical impact such as contact or collision with the above-mentioned large uneven projections, chipping occurs, and the chipped projections adhere to the silicon wafer and become foreign matter. .

【0024】即ち、本発明のガラス状炭素被覆部材10
において、イオン通路壁13の正反射率、平均粗さRa
及び最大粗さRmaxは、いずれもが上記範囲内である
必要があり、いずれか一つでも上記範囲を外れると、本
発明の効果を得ることができなくなる。
That is, the glassy carbon coating member 10 of the present invention
, The specular reflectance and average roughness Ra of the ion passage wall 13
Both the maximum roughness Rmax and the maximum roughness Rmax need to be within the above range, and if any one of them is out of the above range, the effect of the present invention cannot be obtained.

【0025】ガラス状炭素膜11の原料としては、例え
ば、塩化ビニル樹脂、ポリビニルアルコール、油溶性フ
ェノール樹脂、アルキルフェノール樹脂、塩素化パラフ
ィン、塩素化ポリプロピレン、酢酸ビニル樹脂、ポリカ
ーボネート樹脂等の有機重合体を挙げることができ、こ
れらのなかでは、不純物の含有等を考慮すると、塩化ビ
ニル樹脂であることが望ましい。
As the raw material of the glassy carbon film 11, for example, organic polymers such as vinyl chloride resin, polyvinyl alcohol, oil-soluble phenol resin, alkylphenol resin, chlorinated paraffin, chlorinated polypropylene, vinyl acetate resin and polycarbonate resin are used. Among these, vinyl chloride resin is preferable in view of inclusion of impurities and the like.

【0026】また、イオン通路壁13の正反射率は、ガ
ラス状炭素膜11により被覆される前の基体12の内壁
面の正反射率よりも大きくなり、しかも、イオン通路壁
13の正反射率は、ガラス状炭素膜11の厚さに比例し
て大きくなる傾向を有するため、これらの点を考慮し
て、ガラス状炭素膜11の厚さを適宜決定することが望
ましい。具体的には、ガラス状炭素膜11の厚さとして
は0.5〜10μm程度であることが望ましい。ガラス
状炭素膜11の厚さが0.5μm未満であると、基体1
2の表面形状が、ガラス状炭素膜11の表面に大きな影
響を及ぼすため、ガラス状炭素膜11の正反射率、平均
粗さ及び最大粗さが上述した範囲を外れることがあり、
また、このように薄いガラス状炭素膜11を、基体12
の内壁面全体に均一に形成すること自体が困難である。
一方、ガラス状炭素膜11の厚さが10μmを超える
と、ガラス状炭素膜11に微小なクラックが発生しやす
く、不純物や異物が飛散し、イオンビームに混入するこ
とがある。
The regular reflectance of the ion passage wall 13 is larger than the regular reflectance of the inner wall surface of the base 12 before being covered with the glassy carbon film 11, and the regular reflectance of the ion passage wall 13 is further increased. Has a tendency to increase in proportion to the thickness of the glassy carbon film 11, so it is desirable to appropriately determine the thickness of the glassy carbon film 11 in consideration of these points. Specifically, the thickness of the glassy carbon film 11 is preferably about 0.5 to 10 μm. When the thickness of the glassy carbon film 11 is less than 0.5 μm, the substrate 1
Since the surface shape of 2 has a great influence on the surface of the glassy carbon film 11, the specular reflectance, the average roughness and the maximum roughness of the glassy carbon film 11 may be out of the ranges described above.
In addition, the thin glassy carbon film 11 is formed on the substrate 12 as described above.
It is difficult to form it uniformly on the entire inner wall surface.
On the other hand, if the thickness of the glassy carbon film 11 exceeds 10 μm, minute cracks are likely to occur in the glassy carbon film 11, and impurities or foreign matter may be scattered and mixed into the ion beam.

【0027】また、基体12のガラス状炭素膜11との
界面には、ガラス状炭素の含浸層が形成されていること
が望ましい。ガラス状炭素膜11と基体12との接着強
度が極めて高いものとなるからである。基体12におけ
るガラス状炭素の含浸層の厚さとしては、基体12とガ
ラス状炭素膜11との界面から500〜6000μm程
度であることが望ましい。含浸層の厚さが500μm未
満であると、基体12とガラス状炭素膜11との接着強
度が余り高いものとならず、一方、上記含浸層の厚さが
6000μmを超えると、所定の厚さのガラス状炭素膜
11を形成するのに時間がかかり、また、ガラス状炭素
膜11の厚さを制御することが困難となる。
Further, it is desirable that an impregnated layer of glassy carbon is formed at the interface of the substrate 12 with the glassy carbon film 11. This is because the adhesive strength between the glassy carbon film 11 and the substrate 12 becomes extremely high. The thickness of the glassy carbon impregnated layer in the substrate 12 is preferably about 500 to 6000 μm from the interface between the substrate 12 and the glassy carbon film 11. When the thickness of the impregnated layer is less than 500 μm, the adhesive strength between the substrate 12 and the glassy carbon film 11 is not so high, while when the thickness of the impregnated layer exceeds 6000 μm, the predetermined thickness is obtained. It takes time to form the glassy carbon film 11 and it is difficult to control the thickness of the glassy carbon film 11.

【0028】図1に示した通り、基体12はその中央付
近に貫通孔が形成された四角柱であるが、基体12の形
状はこれに限定されることはなく、例えば、その中央付
近に貫通孔を有する円柱状、楕円柱状、多角柱状等任意
の形状であってもよい。また、上記貫通孔の断面形状も
図示したような矩形のものに特に限定されず、例えば、
円形、楕円、多角形等任意の形状であってもよい。
As shown in FIG. 1, the base body 12 is a quadrangular prism having a through hole formed near the center thereof, but the shape of the base body 12 is not limited to this. It may have any shape such as a cylindrical shape having a hole, an elliptic cylindrical shape, and a polygonal cylindrical shape. Further, the cross-sectional shape of the through hole is not particularly limited to the rectangular shape as shown in the drawing, for example,
It may have any shape such as a circle, an ellipse, and a polygon.

【0029】基体12を構成する材料としては特に限定
されず、例えば、黒鉛、C/Cコンポジット等を挙げる
ことができる。
The material forming the substrate 12 is not particularly limited, and examples thereof include graphite and C / C composite.

【0030】また、ガラス状炭素膜13により被覆され
る前の基体12の内壁面は、該内壁面に対し30度の角
度で入射させた光の正反射率が5%以上であることが望
ましい。基体12の内壁面の正反射率が5%未満である
と、上記内壁面は荒れた状態であり、脱離し易い粒子で
覆われているため、ガラス状炭素膜11により被覆され
ても、このガラス状炭素膜11ごと粒子が脱離して、イ
オンビームに混入し、シリコンウエハ上に異物が付着す
ることがある。
The inner wall surface of the substrate 12 before being covered with the glassy carbon film 13 preferably has a regular reflectance of 5% or more with respect to light incident on the inner wall surface at an angle of 30 degrees. . When the regular reflectance of the inner wall surface of the substrate 12 is less than 5%, the inner wall surface is in a rough state and covered with particles that are easily desorbed. Therefore, even if the inner wall surface is covered with the glassy carbon film 11, Particles may be detached together with the glassy carbon film 11 and mixed into the ion beam, and foreign matter may adhere to the silicon wafer.

【0031】以上説明した通り、本発明のガラス状炭素
被覆部材は、少なくともイオンビームが照射される基体
表面がガラス状炭素膜により被覆され、該ガラス状炭素
膜の表面(イオン通路壁)に対し30度の角度で入射さ
せた光の正反射率が10%以上であり、JIS B 0
601による平均粗さRaが0.03〜3μmであり、
かつ、最大粗さRmaxが0.3〜30μmである。即
ち、本発明のガラス状炭素被覆部材は、イオンビームが
走行するイオン通路壁の表面が非常に滑らかであるとと
もに、大きな凹凸は殆ど存在しないため、イオンビーム
が上記イオン通路壁に接触又は衝突し、機械的衝撃が加
わった場合であっても、該イオン通路壁に欠け(異物)
が発生することがない。従って、本発明のガラス状炭素
被覆部材によると、イオンビーム中に異物が混入するこ
とは殆どなく、純粋なイオンビームをシリコンウエハに
注入することができ、異物がシリコンウエハ上に付着す
ることがない。さらに、ガラス状炭素膜と基体との接着
強度に優れるため、ガラス状炭素膜が基体から容易に剥
離することがなく、耐久性に優れたガラス状炭素被覆部
材となる。
As described above, in the glassy carbon coating member of the present invention, at least the surface of the substrate to which the ion beam is applied is coated with the glassy carbon film, and the surface (ion passage wall) of the glassy carbon film is covered. The regular reflectance of light incident at an angle of 30 degrees is 10% or more, and JIS B 0
The average roughness Ra according to 601 is 0.03 to 3 μm,
Moreover, the maximum roughness Rmax is 0.3 to 30 μm. That is, in the glass-like carbon coating member of the present invention, the surface of the ion passage wall on which the ion beam travels is very smooth, and since there is almost no large unevenness, the ion beam contacts or collides with the ion passage wall. , Even if a mechanical shock is applied, the ion passage wall is chipped (foreign matter)
Does not occur. Therefore, according to the glassy carbon coating member of the present invention, a foreign substance is hardly mixed in the ion beam, a pure ion beam can be injected into the silicon wafer, and the foreign substance can adhere to the silicon wafer. Absent. Further, since the glass-like carbon film and the substrate have excellent adhesive strength, the glass-like carbon film does not easily peel off from the substrate, and the glass-like carbon-coated member has excellent durability.

【0032】次に、本発明のガラス状炭素被覆部材の製
造方法について説明する。本発明のガラス状炭素被覆部
材は、基体の表面にガラス状炭素膜を形成することによ
り製造することができる。
Next, the method for producing the glassy carbon coated member of the present invention will be described. The glassy carbon coated member of the present invention can be manufactured by forming a glassy carbon film on the surface of a substrate.

【0033】初めに、基体を製造する。なお、上述した
通り、上記基体を構成する材料としては種々の材料を挙
げることができるが、以下においては、イオン注入装置
において、最も一般的に使用されている黒鉛を例に説明
することとする。
First, the substrate is manufactured. As described above, various materials can be used as the material forming the above-mentioned substrate, but in the following, the most commonly used graphite in the ion implantation apparatus will be described as an example. .

【0034】黒鉛からなる基体を製造する方法として
は、種々の方法を挙げることができるが、例えば、CI
P法、HIP法等により得られた等方性黒鉛ブロックを
切り出すことで図1に示した基体12のようなその中央
部付近に貫通孔を有する基体を製造することができる。
上記等方性黒鉛ブロックを切り出す方法としては、切削
液による汚染を防止するために、乾式による切削加工や
研削加工が望ましい。また、超音波や電子ビームにより
等方性黒鉛ブロックを切り出してもよい。このようにし
て製造した基体に、ハロゲンガス等により純化処理を施
すことが望ましい。
Various methods can be mentioned as a method for producing a substrate made of graphite, for example, CI.
By cutting out the isotropic graphite block obtained by the P method, the HIP method, or the like, a substrate having a through hole near its central portion, such as the substrate 12 shown in FIG. 1, can be manufactured.
As a method for cutting out the above isotropic graphite block, dry cutting or grinding is desirable in order to prevent contamination with a cutting fluid. Further, the isotropic graphite block may be cut out by ultrasonic waves or electron beams. It is desirable to subject the thus manufactured substrate to a purification treatment with a halogen gas or the like.

【0035】上記基体の中央部付近に形成した貫通孔の
内壁面には、該内壁面に対し30度の角度で入射させた
光の正反射率が5%以上となるように研磨処理を施すこ
とが望ましい。また、上記光の正反射率は5〜15%で
あることがより望ましい。上記研磨処理としては、例え
ば、バフ、パッド、ブラシ、紙ヤスリ等の通常の研磨法
で充分であるが、特にバフやパッドを使用すると、研磨
により離脱した粒子が基体の細孔中に目詰めされるた
め、ガラス状炭素膜を被覆形成後のガス不透過性効果が
大きくなる利点がある。
The inner wall surface of the through hole formed in the vicinity of the central portion of the base body is subjected to a polishing treatment so that the regular reflectance of light incident at an angle of 30 degrees with respect to the inner wall surface becomes 5% or more. Is desirable. Further, it is more preferable that the regular reflectance of the light is 5 to 15%. As the polishing treatment, for example, a normal polishing method such as a buff, a pad, a brush, and a sandpaper is sufficient, but especially when a buff or a pad is used, the particles separated by the polishing are clogged in the pores of the substrate. Therefore, there is an advantage that the gas impermeable effect after coating the glassy carbon film is increased.

【0036】次に、上記基体の貫通孔の内壁面にガラス
状炭素膜を被覆形成することで、ガラス状炭素膜の表面
(イオン通路壁)に対し30度の角度で入射させた光の
正反射率が10%以上であり、JIS B 0601に
よる平均粗さRaが0.03〜3μmであり、かつ、最
大粗さRmaxが0.3〜30μmであるガラス状炭素
被覆部材を製造する。
Next, a glassy carbon film is formed on the inner wall surface of the through hole of the substrate so that the light incident on the surface (ion passage wall) of the glassy carbon film at an angle of 30 degrees is positive. A glassy carbon-coated member having a reflectance of 10% or more, an average roughness Ra according to JIS B 0601 of 0.03 to 3 μm, and a maximum roughness Rmax of 0.3 to 30 μm is manufactured.

【0037】上記基体表面(貫通孔の内壁面)にガラス
状炭素膜を被覆形成する方法としては、例えば、上述し
た有機重合体の熱分解物を溶媒に溶解させた有機重合体
溶液を上記基体の内壁面に塗布し、不活性又は真空中で
1000〜1200℃程度で焼成する方法等を挙げるこ
とができる。
As a method for coating the surface of the substrate (inner wall surface of the through hole) with the glassy carbon film, for example, an organic polymer solution obtained by dissolving the above-mentioned pyrolyzed product of the organic polymer in a solvent is used as the substrate. The method of applying to the inner wall surface of, and baking at 1000-1200 degreeC in inert or vacuum can be mentioned.

【0038】上記基体の貫通孔の内壁面に上記有機重合
体溶液を塗布する方法としては、刷毛等により塗布する
方法やディッピングにより塗布する方法等を挙げること
ができる。なお、上記有機重合体溶液は、上記基体の貫
通孔の内壁面のほか、上記基体の外周部分にも塗布して
もよい。その後、必要に応じて上記ガラス状炭素膜の表
面にエッチング等の研磨処理を施し、ガラス状炭素膜の
表面(イオン通路壁)の正反射率、平均粗さRa及び最
大粗さRmax等を調整してもよい。
Examples of the method of applying the organic polymer solution to the inner wall surface of the through hole of the substrate include a method of applying with a brush or a method of applying by dipping. The organic polymer solution may be applied not only to the inner wall surface of the through hole of the base but also to the outer peripheral portion of the base. Then, if necessary, the surface of the glassy carbon film is subjected to polishing treatment such as etching to adjust the regular reflectance, average roughness Ra, maximum roughness Rmax, etc. of the surface of the glassy carbon film (ion passage wall). You may.

【実施例】以下、実施例により本発明を説明するが、本
発明は、これらの実施例に限定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0039】実施例1〜3 図1に示した基体12と略同形状で、嵩比重が1.85
の等方性黒鉛の表面(正反射率0.2%)を工業用パッ
ド(スコッチブライト7448)で研磨し、その正反射
率を10〜15%とした。
Examples 1 to 3 are substantially the same in shape as the substrate 12 shown in FIG. 1 and have a bulk specific gravity of 1.85.
The surface of the isotropic graphite (specular reflectance 0.2%) was polished with an industrial pad (Scotchbright 7448), and the specular reflectance was 10 to 15%.

【0040】次に、ポリ塩化ビニルを窒素中390℃で
熱分解しタール状の炭素前駆体を得た。トリクレンにこ
の炭素前駆体を溶解し、それを上記等方性黒鉛の表面に
刷毛により塗布した後、真空雰囲気中1200℃で焼成
してガラス状炭素膜とし、その表面(イオン通路壁)の
正反射率が15〜20%、平均粗さRaが0.04〜
1.0μm、最大粗さRmaxが0.5〜10μm(下
記表1参照)のガラス状炭素被覆部材を製造した。
Next, polyvinyl chloride was thermally decomposed in nitrogen at 390 ° C. to obtain a tar-like carbon precursor. This carbon precursor was dissolved in trichlene and applied on the surface of the above-mentioned isotropic graphite with a brush, and then baked at 1200 ° C. in a vacuum atmosphere to form a glassy carbon film. The reflectance is 15 to 20%, the average roughness Ra is 0.04 to
A glassy carbon-coated member having a thickness of 1.0 μm and a maximum roughness Rmax of 0.5 to 10 μm (see Table 1 below) was manufactured.

【0041】なお、上記正反射率は、光沢計(ミノルタ
カメラ社製)を用いて30度入射光の正反射率(%)を
測定し、上記面粗度は、電子式表面粗さ計(三豊社製
サーフテスト タイプ201)を用い、JIS B 0
601に従って平均粗さRa(μm)及び最大粗さRm
ax(μm)を測定した。
The specular reflectance was measured by using a gloss meter (manufactured by Minolta Camera Co., Ltd.) to specular reflectance (%) of incident light at 30 degrees, and the surface roughness was measured by an electronic surface roughness meter ( Made by Mitoyo
JIS B 0 with surf test type 201)
According to 601, average roughness Ra (μm) and maximum roughness Rm
The ax (μm) was measured.

【0042】実施例4、5 図1に示した基体12と略同形状で、嵩比重が1.60
の押出材黒鉛の表面(正反射率0.1%)を工業用パッ
ド(スコッチプライト7448)で研磨し、その正反射
率を5%とした。その後、上記押出材黒鉛の表面に、実
施例1と同様の方法でガラス状炭素膜の被覆を行って、
イオン通路壁の正反射率が10〜12%、平均粗さRa
が2.0〜3.0μm、最大粗さRmaxが20〜25
μm(下記表1参照)のガラス状炭素被覆部材を製造し
た。
Examples 4 and 5 The substrate 12 has substantially the same shape as that of the substrate 12 shown in FIG. 1 and a bulk specific gravity of 1.60.
The surface (regular reflectance of 0.1%) of the extruded graphite was polished with an industrial pad (Scotchprite 7448) to have a regular reflectance of 5%. Then, the extruded graphite surface was coated with a glassy carbon film in the same manner as in Example 1,
Specular reflectance of ion passage wall is 10 to 12%, average roughness Ra
Is 2.0 to 3.0 μm, and the maximum roughness Rmax is 20 to 25
A glassy carbon-coated member having a thickness of μm (see Table 1 below) was manufactured.

【0043】比較例1 等方性黒鉛基体の内壁面にガラス状炭素膜を被覆形成し
なかったほかは、実施例1と同様にしてガラス状炭素被
覆部材を製造した。
Comparative Example 1 A glassy carbon-coated member was produced in the same manner as in Example 1 except that the glassy carbon film was not formed on the inner wall surface of the isotropic graphite substrate.

【0044】比較例2 押出材黒鉛基体の内壁面にガラス状炭素膜を被覆形成し
なかったほかは、実施例4と同様にしてガラス状炭素被
覆部材を製造した。
Comparative Example 2 A glassy carbon-coated member was produced in the same manner as in Example 4 except that the glassy carbon film was not formed on the inner wall surface of the extruded graphite substrate.

【0045】比較例3 イオン通路壁の正反射率が6%、平均粗さRaが4.2
μm、最大粗さRmaxが40μmであるほかは、実施
例4と同様にしてガラス状炭素被覆部材を製造した。
Comparative Example 3 The regular reflectance of the ion passage wall was 6%, and the average roughness Ra was 4.2.
A glassy carbon-coated member was produced in the same manner as in Example 4 except that the maximum roughness Rmax was 40 μm.

【0046】実施例1〜5、比較例1〜3で製造したガ
ラス状炭素被覆部材のイオン通路壁から発生する異物量
を以下の方法で測定し、また、ガラス状炭素膜の被覆状
態を観察した。その結果を表1に示す。
The amount of foreign matter generated from the ion passage walls of the glassy carbon coating members produced in Examples 1 to 5 and Comparative Examples 1 to 3 was measured by the following method, and the coating state of the glassy carbon film was observed. did. The results are shown in Table 1.

【0047】(1)異物量の測定 ガラスセル(15φ×301)中に試料(7×7×7、
3個)を入れ、振幅0.05mm、周波数60Hzで振
動を与え、0.3μm以上の異物(微粒子)数をパーテ
ィクルカウンターで測定した。
(1) Measurement of the amount of foreign matter A sample (7 × 7 × 7) was placed in a glass cell (15φ × 301).
3 pieces) were put in, vibration was given at an amplitude of 0.05 mm and a frequency of 60 Hz, and the number of foreign matters (fine particles) of 0.3 μm or more was measured by a particle counter.

【0048】(2)ガラス状炭素膜の状態 製造したガラス状炭素被覆部材のガラス状炭素膜の被覆
状態を目視により観察し、剥離の発生の有無を確認し
た。
(2) State of glassy carbon film The state of the glassy carbon film of the manufactured glassy carbon coating member was visually observed to confirm the occurrence of peeling.

【0049】[0049]

【表1】 [Table 1]

【0050】表1に示した結果より明らかなように、イ
オン通路壁の正反射率が10%以上、平均粗さが0.0
3〜3μm、及び、最大粗さが0.3〜30μmの範囲
内である実施例1〜5に係るガラス状炭素被覆部材で測
定された異物量は極めて少なく、また、ガラス状炭素膜
に剥離は発生していなかった。一方、比較例1、2に係
る部材は、基体がガラス状炭素膜により被覆されていな
いものであったため、基体から飛散した異物が大量に測
定された。また、比較例3に係るガラス状炭素被覆部材
は、イオン通路壁の正反射率が低く、また、イオン通路
壁の平均粗さ及び最大粗さともに、大きかったため、ガ
ラス状炭素膜の剥離は発生していなかったが、異物量が
多かった。
As is clear from the results shown in Table 1, the regular reflectance of the ion passage wall is 10% or more, and the average roughness is 0.0.
The amount of foreign matter measured by the glassy carbon coating members according to Examples 1 to 5 having a maximum roughness of 3 to 3 μm and a range of 0.3 to 30 μm is extremely small, and the glassy carbon film is peeled off. Did not occur. On the other hand, in the members according to Comparative Examples 1 and 2, since the substrate was not covered with the glassy carbon film, a large amount of foreign matter scattered from the substrate was measured. Further, in the glassy carbon coating member according to Comparative Example 3, the regular reflectance of the ion passage wall was low, and both the average roughness and the maximum roughness of the ion passage wall were large, and therefore the glassy carbon film peeled off. I did not, but there was a lot of foreign matter.

【0051】[0051]

【発明の効果】以上の説明しように、本発明のガラス状
炭素被覆部材によると、イオンビームが照射される基体
表面に被覆されたガラス状炭素膜の表面にイオンビーム
が接触又は衝突しても飛散する異物が殆ど存在しないた
め、イオンビーム中に不純物や異物が混入することがな
く、純粋なイオンビームをシリコンウエハに注入するこ
とができ、異物がシリコンウエハ上に付着することもな
い。また、ガラス状炭素膜の基体に対する接着強度が優
れたものであるため、ガラス状炭素膜が容易に剥離する
ことがなく、耐久性に優れたガラス状炭素被覆部材とな
る。
As described above, according to the glassy carbon coating member of the present invention, even if the ion beam comes into contact with or collides with the surface of the glassy carbon film coated on the surface of the substrate irradiated with the ion beam. Since almost no scattered foreign matter is present, impurities or foreign matter are not mixed into the ion beam, a pure ion beam can be injected into the silicon wafer, and the foreign matter does not adhere to the silicon wafer. Further, since the glassy carbon film has excellent adhesive strength to the substrate, the glassy carbon film does not easily peel off, and the glassy carbon coating member has excellent durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラス状炭素被覆部材の一例を模式的
に示した斜視図である。
FIG. 1 is a perspective view schematically showing an example of a glassy carbon coating member of the present invention.

【図2】従来のイオン注入装置の一例を模式的に示した
説明図である。
FIG. 2 is an explanatory view schematically showing an example of a conventional ion implantation device.

【符号の説明】[Explanation of symbols]

10 ガラス状炭素被覆部材 11 ガラス状炭素膜 12 基体 13 イオン通路壁 19 シリコンウエハ 20 イオン注入装置 21 イオン発生装置 22 引き出し部 23 イオン分析部 24 加速部 25 収束部 26 走査部 27 イオン打ち込み室 28 スリット部材 10 Glassy carbon coated member 11 Glassy carbon film 12 Base 13 ion passage wall 19 Silicon wafer 20 Ion implanter 21 Ion generator 22 Drawer 23 Ion analysis unit 24 Accelerator 25 Converging section 26 Scanning section 27 Ion implantation room 28 Slit member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともイオンビームが照射される基
体表面がガラス状炭素膜により被覆されたガラス状炭素
被覆イオン注入装置用部材であって、前記ガラス状炭素
膜の表面は、該ガラス状炭素膜の表面に対し30度の角
度で入射させた光の正反射率が10%以上であり、JI
S B 0601による平均粗さRaが0.03〜3μ
mであり、かつ、最大粗さRmaxが0.3〜30μm
であることを特徴とするガラス状炭素被膜イオン注入装
置用部材。
1. A member for a glassy carbon-coated ion implantation device in which at least the surface of a substrate irradiated with an ion beam is coated with a glassy carbon film, wherein the surface of the glassy carbon film is the glassy carbon film. The regular reflectance of light incident at an angle of 30 degrees to the surface of J is 10% or more.
The average roughness Ra according to S B 0601 is 0.03 to 3 μ.
m and the maximum roughness Rmax is 0.3 to 30 μm
The glass-like carbon film ion implantation device member characterized by the following.
【請求項2】 ガラス状炭素膜により被覆される前の基
体表面は、該表面に対し30度の角度で入射させた光の
正反射率が5%以上である請求項1記載のガラス状炭素
被覆イオン注入装置用部材。
2. The glassy carbon according to claim 1, wherein the surface of the substrate before being coated with the glassy carbon film has a regular reflectance of 5% or more for light incident at an angle of 30 degrees to the surface. A member for a coated ion implanter.
JP2001196467A 2001-06-28 2001-06-28 Glassy carbon-coated ion implanter components Expired - Fee Related JP4936608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196467A JP4936608B2 (en) 2001-06-28 2001-06-28 Glassy carbon-coated ion implanter components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196467A JP4936608B2 (en) 2001-06-28 2001-06-28 Glassy carbon-coated ion implanter components

Publications (2)

Publication Number Publication Date
JP2003017435A true JP2003017435A (en) 2003-01-17
JP4936608B2 JP4936608B2 (en) 2012-05-23

Family

ID=19034278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196467A Expired - Fee Related JP4936608B2 (en) 2001-06-28 2001-06-28 Glassy carbon-coated ion implanter components

Country Status (1)

Country Link
JP (1) JP4936608B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447019A (en) * 1987-08-18 1989-02-21 Denki Kagaku Kogyo Kk Glassy carbon coated susceptor
JPH0316907A (en) * 1989-06-13 1991-01-24 Tokai Carbon Co Ltd Production of glass like carbon sheet
JPH0450185A (en) * 1990-06-20 1992-02-19 Denki Kagaku Kogyo Kk Glassy carbon-coated product
JPH05246703A (en) * 1992-01-28 1993-09-24 Tokai Carbon Co Ltd Carbon member for ion implanting device
JPH06128762A (en) * 1992-10-21 1994-05-10 Hitachi Chem Co Ltd Electrode plate for plasma etching
JPH08171883A (en) * 1994-12-15 1996-07-02 Ibiden Co Ltd Carbon material for ion implantating device
JPH08199399A (en) * 1995-01-30 1996-08-06 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPH0963532A (en) * 1995-08-23 1997-03-07 Tokai Carbon Co Ltd Member for ion implanter
JPH09289195A (en) * 1996-04-22 1997-11-04 Nisshinbo Ind Inc Plasma etching electrode
JP2000128640A (en) * 1998-10-27 2000-05-09 Nisshinbo Ind Inc Carbon member for ion injector and its production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447019A (en) * 1987-08-18 1989-02-21 Denki Kagaku Kogyo Kk Glassy carbon coated susceptor
JPH0316907A (en) * 1989-06-13 1991-01-24 Tokai Carbon Co Ltd Production of glass like carbon sheet
JPH0450185A (en) * 1990-06-20 1992-02-19 Denki Kagaku Kogyo Kk Glassy carbon-coated product
JPH05246703A (en) * 1992-01-28 1993-09-24 Tokai Carbon Co Ltd Carbon member for ion implanting device
JPH06128762A (en) * 1992-10-21 1994-05-10 Hitachi Chem Co Ltd Electrode plate for plasma etching
JPH08171883A (en) * 1994-12-15 1996-07-02 Ibiden Co Ltd Carbon material for ion implantating device
JPH08199399A (en) * 1995-01-30 1996-08-06 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPH0963532A (en) * 1995-08-23 1997-03-07 Tokai Carbon Co Ltd Member for ion implanter
JPH09289195A (en) * 1996-04-22 1997-11-04 Nisshinbo Ind Inc Plasma etching electrode
JP2000128640A (en) * 1998-10-27 2000-05-09 Nisshinbo Ind Inc Carbon member for ion injector and its production

Also Published As

Publication number Publication date
JP4936608B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
US6300641B1 (en) Process for modifying surfaces of materials, and materials having surfaces modified thereby
KR100288500B1 (en) Method for modifying surface of nitride materials and surface modified nitride materials by means of the same
EP2065736B1 (en) Anti-reflection structure body, method of producing the same and method of producing optical member
KR20030079781A (en) Quartz glass spray parts and the manufaturing method thereof
JP5574586B2 (en) Substrate structure and method for forming the same
TWI803449B (en) Method for ultra-shallow etching using neutral beam processing based on gas cluster ion beam technology and articles produced thereby
US6900113B2 (en) Method for producing bonded wafer and bonded wafer
JPH10330971A (en) Production of member for thin film forming apparatus and member for the apparatus
KR101855812B1 (en) Method of manufacturing bonded wafer
JP4988327B2 (en) Ion implanter
TW201203448A (en) Improved radiation heating efficiency by increasing optical absorption of a silicon containing material
WO2012008252A1 (en) Chemical-mechanical polishing pad and chemical-mechanical polishing method
JP2003017435A (en) Member for vitreous carbon coated ion implantation device
TW200903597A (en) Ion implanter, internal structure of ion implanter and method of forming a coating layer in the ion implanter
US6627095B2 (en) Magnetic recording disk and method of manufacturing same
TW200934743A (en) Method of making ceramic reactor components and ceramic reactor component made therefrom
JPH10101459A (en) Modification of surface of nitride and nitride having improved surface by the same
TWI795717B (en) Plasma corrosion-resistant component, preparation method thereof, and plasma treatment equipment
JP5643343B2 (en) Method for producing particles
WO2006117887A1 (en) Corrosion-resistant member and process for producing the same
Hein et al. Self-masking controlled by metallic seed layer during glass dry-etching for optically scattering surfaces
JP2001295024A (en) Member for thin film deposition system, and its manufacturing method
JP4057165B2 (en) Manufacturing method of parts for semiconductor manufacturing equipment
US6355577B1 (en) System to reduce particulate contamination
US6576981B1 (en) Reduced particulate etching

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4936608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees