JP2003014541A - Infrared detection circuit - Google Patents

Infrared detection circuit

Info

Publication number
JP2003014541A
JP2003014541A JP2002145367A JP2002145367A JP2003014541A JP 2003014541 A JP2003014541 A JP 2003014541A JP 2002145367 A JP2002145367 A JP 2002145367A JP 2002145367 A JP2002145367 A JP 2002145367A JP 2003014541 A JP2003014541 A JP 2003014541A
Authority
JP
Japan
Prior art keywords
voltage
infrared
sensitive resistor
resistance
inverting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002145367A
Other languages
Japanese (ja)
Other versions
JP3900007B2 (en
Inventor
Yuji Takada
裕司 高田
Nobuyuki Ibara
伸行 茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002145367A priority Critical patent/JP3900007B2/en
Publication of JP2003014541A publication Critical patent/JP2003014541A/en
Application granted granted Critical
Publication of JP3900007B2 publication Critical patent/JP3900007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive, high-performance, and reliable infrared detection circuit. SOLUTION: The DC voltage of a DC power supply 11 is inverted and amplified by an inverting amplifier 14 for changing amplitude according to the change in resistance in the radiation heat of the infrared rays in a sensitive resistor Rt, and the output voltage of the inverting amplifier 14 is added to the DC voltage of the DC power supply 11 to obtain a DC voltage according to the change in resistance due to the radiation heat of the infrared rays of the sensitive resistor Rt, thus eliminating the need for a correction circuit for making linear the amount of change in an input voltage to the change in resistance as in the conventional method, reducing costs, and miniaturizing the entire infrared detection circuit. Additionally, since the need for the correction circuit is eliminated, error affecting the accuracy in the correction circuit is eliminated, and the entire accuracy of the infrared detection circuit can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線を検知する
存在検知型の赤外線検知回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a presence detection type infrared detection circuit for detecting infrared rays.

【0002】[0002]

【従来の技術】従来の赤外線検知回路を図21に示す。
この赤外線検知回路は、直流電源11の両端に基準抵抗
Rref を介して直列接続された赤外線感応抵抗体Rtで
赤外線を感知し、その感知出力が比較電圧13との差分
を直流差動増幅器12で増幅した電圧を出力電圧Vout
とするものである。
2. Description of the Related Art A conventional infrared detecting circuit is shown in FIG.
This infrared detection circuit detects infrared rays with an infrared sensitive resistor Rt serially connected to both ends of a DC power supply 11 via a reference resistor Rref, and the detected output is a difference from a comparison voltage 13 in a DC differential amplifier 12. The amplified voltage is the output voltage Vout
It is what

【0003】赤外線感応抵抗体(以下、感応抵抗体と呼
ぶ)Rtは、温度変化に応じて抵抗値が変化する例えば
サーミスタなどの抵抗体である。代表的なサーミスタの
温度変化に対する抵抗値変化(いわゆる温度特性)を図
22に示す。ここで、上記感応抵抗体Rtとしては、熱
容量が極力小さく、且つ熱抵抗が極力大きいものを用い
ることにより、わずかな輻射熱によっても、感応抵抗体
Rt自体の温度が上昇し、抵抗値変化を起こすようにし
てある。
An infrared sensitive resistor (hereinafter referred to as a sensitive resistor) Rt is a resistor such as a thermistor whose resistance value changes in accordance with a temperature change. FIG. 22 shows a change in resistance value (so-called temperature characteristic) of a typical thermistor with respect to a change in temperature. Here, as the sensitive resistor Rt, one having a heat capacity as small as possible and a heat resistance as large as possible is used, so that the temperature of the sensitive resistor Rt itself rises and a resistance value change occurs even with a slight radiation heat. Is done.

【0004】基準抵抗Rref は、上記感応抵抗体Rtと
全く同一の抵抗値のものであり、且つ感応抵抗体Rtと
全く同一の温度変化に対する抵抗変化率を有する抵抗体
である。但し、外部からの輻射熱からは完全に遮断され
ている。つまりは、抵抗値や抵抗変化率に影響を与えな
い方法、あるいは空間的に絶縁する方法で、赤外線によ
る輻射熱を遮断してある。従って、輻射熱が感応抵抗体
Rtに入射されない場合は、たとえ周囲温度が変化して
も、感応抵抗体Rtと基準抵抗Rref による分圧電圧は
一定となるようにしてある。
The reference resistance Rref has a resistance value exactly the same as that of the sensitive resistor Rt and has a resistance change rate with respect to a temperature change which is exactly the same as that of the sensitive resistor Rt. However, it is completely shielded from radiant heat from the outside. That is, the radiant heat due to infrared rays is blocked by a method that does not affect the resistance value or the rate of resistance change, or a method that spatially insulates. Therefore, when the radiant heat is not incident on the sensitive resistor Rt, the divided voltage by the sensitive resistor Rt and the reference resistance Rref is kept constant even if the ambient temperature changes.

【0005】比較電圧13は、直流電源11の電圧をE
とすると、E/2に設定してある。なお、比較電圧13
は、図25に示すように、直流電源11の電圧Eを抵抗
Rd1,Rd2 で分圧して得るようにしてもよい。
The comparison voltage 13 is the voltage of the DC power supply 11 E
Then, it is set to E / 2. The comparison voltage 13
Alternatively, as shown in FIG. 25, the voltage E of the DC power supply 11 may be obtained by dividing the voltage E by the resistors Rd 1 and Rd 2 .

【0006】上記赤外線検知回路では、感応抵抗体Rt
の輻射熱による抵抗値変化がない場合には、感応抵抗体
Rtと基準抵抗Rref との抵抗値は等しく、感応抵抗体
Rtと基準抵抗Rref との分圧電圧(直流差動増幅器1
2の入力電圧Vin)が比較電圧13と一致するので、直
流差動増幅器12の出力電圧Vout が0Vとなる。そし
て、感応抵抗体Rtの輻射熱による抵抗値変化がある
と、感応抵抗体Rtと基準抵抗Rref とによる分圧電圧
と比較電圧13の電圧E/2との差に応じた出力電圧V
out が直流差動増幅器12から出力される。即ち、周囲
温度の変化は相殺され、輻射熱量に応じた値のみが直流
差動増幅器12から出力される。
In the above infrared detecting circuit, the sensitive resistor Rt
When there is no change in the resistance value due to the radiant heat, the resistance values of the sensitive resistor Rt and the reference resistor Rref are equal, and the divided voltage of the sensitive resistor Rt and the reference resistor Rref (the DC differential amplifier 1
Since the input voltage Vin of 2) matches the comparison voltage 13, the output voltage Vout of the DC differential amplifier 12 becomes 0V. When the resistance value of the sensitive resistor Rt changes due to radiant heat, the output voltage V corresponding to the difference between the divided voltage of the sensitive resistor Rt and the reference resistance Rref and the voltage E / 2 of the comparison voltage 13 is generated.
out is output from the DC differential amplifier 12. That is, the change in ambient temperature is canceled out, and only the value corresponding to the amount of radiant heat is output from the DC differential amplifier 12.

【0007】ここで、直流差動増幅器12の利得をAと
した場合、直流差動増幅器12の入力電圧Vinと出力電
圧Vout は次式で表される。
Here, when the gain of the DC differential amplifier 12 is A, the input voltage Vin and the output voltage Vout of the DC differential amplifier 12 are expressed by the following equations.

【0008】[0008]

【数1】 [Equation 1]

【0009】上記赤外線検知回路を人体検知装置に適用
した場合を図23に示す。この人体検知装置では、レン
ズなどの適当な光学手段Lを用い、感応抵抗体Rtに赤
外線を照射するようにし、直流差動増幅器12の出力電
圧Vout を適当な基準電圧6と比較する比較器5を設
け、基準電圧6の設定により決まるある一定レベル以上
の輻射熱に対してハイ,ロー2値の出力(いわゆるオ
ン,オフ出力)が得られる。
FIG. 23 shows a case where the above infrared detecting circuit is applied to a human body detecting device. In this human body detecting device, an appropriate optical means L such as a lens is used to irradiate the sensitive resistor Rt with infrared rays, and a comparator 5 for comparing the output voltage Vout of the DC differential amplifier 12 with an appropriate reference voltage 6. Is provided, and high and low binary outputs (so-called ON and OFF outputs) are obtained for radiant heat above a certain level determined by the setting of the reference voltage 6.

【0010】赤外線輻射物体である人体Xが図23にお
ける(あ)→(い)→(う)というように移動した場合
の上記人体検知装置の動作を図24に示す。ここで、人
体Xが周囲温度よりΔT℃高い(ある場合は低い)エネ
ルギを有するものとし、図23における(あ)→(い)
→(う)というように検知視野(検知エリア)を通過し
たときの検知視野内における輻射エネルギの変化を図2
4(a)に示す。ここで、検知視野内に人体Xが存在し
ない場合は、検知視野内の温度と感応抵抗体Rt及び基
準抵抗Rref の温度とは等しいとする。
FIG. 24 shows the operation of the human body detecting device when the human body X, which is an infrared radiation object, moves in the order of (A) .fwdarw. (I) .fwdarw. (U) in FIG. Here, it is assumed that the human body X has energy higher than ambient temperature by ΔT ° C. (lower in some cases), and (a) → (i) in FIG.
→ Fig. 2 shows the change of radiant energy in the detection field of view when passing through the detection field of view (→)
4 (a). Here, when the human body X does not exist in the detection visual field, it is assumed that the temperature in the detection visual field is equal to the temperatures of the sensitive resistor Rt and the reference resistance Rref.

【0011】人体Xが上述のように移動した場合、図2
4(a)の検知視野内の輻射熱により同図(b)に示す
ように感応抵抗体Rtの抵抗値が変化する。この感応抵
抗体Rtの抵抗値の変化に伴い直流差動増幅器12の入
力電圧Vinが図24(c)に示すように変化する。ここ
で、図24(c)に示すように直流差動増幅器12の入
力電圧Vinが基準電圧E/2に対してΔVinだけ高くな
ったとすると、直流差動増幅器12から同図(d)に示
す出力電圧Vout が得られる。いま、比較器5の基準電
圧6を図24(d)に示すように設定してある場合、比
較器5の出力は同図(e)に示すようになる。
When the human body X moves as described above, FIG.
The radiant heat in the detection field of view 4 (a) changes the resistance value of the sensitive resistor Rt as shown in FIG. As the resistance value of the sensitive resistor Rt changes, the input voltage Vin of the DC differential amplifier 12 changes as shown in FIG. Here, if the input voltage Vin of the DC differential amplifier 12 becomes higher than the reference voltage E / 2 by ΔVin as shown in FIG. 24C, the DC differential amplifier 12 shows the same as shown in FIG. The output voltage Vout is obtained. Now, when the reference voltage 6 of the comparator 5 is set as shown in FIG. 24 (d), the output of the comparator 5 is as shown in FIG. 24 (e).

【0012】このように、検知視野内に人体Xが存在す
ることによって、感応抵抗体Rtの抵抗値が変化し、そ
の抵抗値の変化を電圧値変化として直流増幅することに
より、人体Xの存在を検知することができる。
As described above, the presence of the human body X in the detection visual field changes the resistance value of the sensitive resistor Rt, and the change in the resistance value is DC-amplified as a voltage value change, so that the human body X exists. Can be detected.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上述し
た赤外線検知回路では次のような問題がある。即ち、上
記赤外線検知回路では、直流電源11の直流電圧を感応
抵抗体Rtと基準抵抗Rref との直列回路により分圧す
ることにより直流差動増幅器12の入力電圧Vinを得て
いるため、感応抵抗体Rtの抵抗値変化と入力電圧Vin
の変化とが比例せずに非線形となってしまう。具体的に
は、感応抵抗体Rtの微小な抵抗値変化ΔRtに対する
入力電圧Vinの変化分ΔVinは次式で表される。
However, the above infrared detecting circuit has the following problems. That is, in the above infrared detecting circuit, the DC voltage of the DC power supply 11 is divided by the series circuit of the sensing resistor Rt and the reference resistor Rref to obtain the input voltage Vin of the DC differential amplifier 12, so that the sensing resistor is used. Rt resistance change and input voltage Vin
The change is not proportional and becomes non-linear. Specifically, the change amount ΔVin of the input voltage Vin with respect to the minute resistance value change ΔRt of the sensitive resistor Rt is expressed by the following equation.

【0014】[0014]

【数2】 [Equation 2]

【0015】すなわち、上式(2)に示すごとく、感応
抵抗体Rtの抵抗値変化ΔRtと入力電圧Vinの変化分
ΔVinとは比例せず、感応抵抗体Rtの抵抗値の変化幅
によってΔRtに対する入力電圧変化率(ΔVin)が大
きく変化することになる。
That is, as shown in the above equation (2), the resistance value change ΔRt of the sensitive resistor Rt and the change amount ΔVin of the input voltage Vin are not in proportion to each other, and depending on the change width of the resistance value of the sensitive resistor Rt, ΔRt is changed. The input voltage change rate (ΔVin) changes greatly.

【0016】例えば、周囲温度T1 においては感応抵抗
体Rtの抵抗値と基準抵抗Rref の抵抗値とは等しい
(Rt=Rref )が、そこに輻射熱が入射して感応抵抗
体Rtの抵抗値がΔRtだけ変化したとすると、この場
合の入力電圧Vinの変化分ΔVinは次式により表され
る。
For example, at ambient temperature T 1 , the resistance value of the sensitive resistor Rt and the resistance value of the reference resistance Rref are equal (Rt = Rref), but the radiation value is incident on the resistance value of the sensitive resistor Rt. If only ΔRt changes, the change ΔVin of the input voltage Vin in this case is expressed by the following equation.

【0017】[0017]

【数3】 [Equation 3]

【0018】上記式(3)は、感応抵抗体Rtの抵抗値
変化ΔRtと入力電圧Vinの変化分Vinとが比例すなわ
ち線形の関係にあることを示している。しかし、この式
(3)はΔRt1 が微小な場合に限って成立するもので
あり、感応抵抗体Rtの抵抗値が大きく変化した場合に
はRt=Rref という関係が崩れるため、上記式(3)
が成立せず、それぞれの感応抵抗体Rtの抵抗値におい
て抵抗値変化ΔRtに対する入力電圧Vinの変化分Vin
を計算しなければならない。
The above equation (3) shows that the resistance change ΔRt of the sensitive resistor Rt and the change Vin of the input voltage Vin have a proportional or linear relationship. However, this formula (3) is satisfied only when ΔRt1 is very small, and when the resistance value of the sensitive resistor Rt changes greatly, the relation of Rt = Rref collapses, and therefore the formula (3) above.
Does not hold, and the change amount Vin of the input voltage Vin with respect to the resistance value change ΔRt in the resistance value of each sensitive resistor Rt is Vin.
Must be calculated.

【0019】つまり、仮に輻射熱により感応抵抗体Rt
の抵抗値が、Rt=0.5×Rrefとなるまで変化した
とすると、この感応抵抗体Rtの抵抗値におけるΔRt
に対する入力電圧Vinの変化分ΔVinは、Rt=0.5
×Rref を式(2)に代入して次式のように表される。
That is, it is assumed that the responsive resistor Rt is radiated by heat.
Assuming that the resistance value of the sensitive resistor changes until Rt = 0.5 × Rref, ΔRt in the resistance value of the sensitive resistor Rt.
The variation ΔVin of the input voltage Vin with respect to Rt = 0.5
Substituting × Rref into the equation (2), it is expressed as the following equation.

【0020】[0020]

【数4】 [Equation 4]

【0021】ここで、感応抵抗体Rtの入射輻射熱に対
する変化率が一定であるとすると、同一の微小輻射熱の
変化に対する感応抵抗体Rtの抵抗値変化ΔRtは、Δ
Rt2 =0.5×ΔRt1 であるから、この場合の入力
電圧Vinの変化分Vinは次式にて表される。
Assuming that the rate of change of the sensitive resistor Rt with respect to incident radiant heat is constant, the resistance value change ΔRt of the sensitive resistor Rt with respect to the same change of minute radiant heat is Δ.
Since Rt2 = 0.5 × ΔRt1, the change Vin of the input voltage Vin in this case is expressed by the following equation.

【0022】[0022]

【数5】 [Equation 5]

【0023】つまり、上記式(4)と式(5)に示され
たΔVin2 の差が非線形性を示している。したがって、
従来回路においては、上記の非線形性を補正するための
補正手段を設ける必要があり、そのためにコストアップ
になったり、あるいは充分な補正ができずに赤外線の輻
射量に対する赤外線検知回路の出力(輻射温度計におけ
る温度計測値など)に誤差が生じてしまうという問題が
ある。
That is, the difference between ΔVin2 shown in the above equations (4) and (5) shows non-linearity. Therefore,
In the conventional circuit, it is necessary to provide a correction means for correcting the above-mentioned non-linearity, which results in an increase in cost or an insufficient output of the infrared detection circuit output (radiation There is a problem that an error occurs in the temperature measurement value in the thermometer).

【0024】本発明は上述の点に鑑みて為されたもので
あり、その目的は、安価で、高性能且つ高信頼性の赤外
線検知回路を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide an infrared detection circuit which is inexpensive, has high performance, and is highly reliable.

【0025】[0025]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、赤外線による輻射熱を受ける赤
外線感応抵抗体と、この赤外線感応抵抗体と同一の抵抗
値であり且つ同一の温度に対する抵抗値変化を示し赤外
線による輻射熱を受けない基準抵抗と、直流電圧を出力
する直流電圧発生手段と、上記赤外線感応抵抗体を帰還
抵抗とするとともに上記基準抵抗を入力抵抗として直流
電圧発生手段の直流電圧を反転増幅する反転増幅手段
と、上記直流電圧発生手段の直流電圧と反転増幅手段の
出力電圧とを加算する加算手段とを備えて成ることを特
徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 has the same resistance value and the same resistance value as the infrared sensitive resistor that receives radiant heat by infrared rays. A reference resistance that shows a change in resistance value with respect to temperature and does not receive radiant heat due to infrared rays, a DC voltage generating means that outputs a DC voltage, and a DC voltage generating means that uses the infrared sensitive resistor as a feedback resistance and the reference resistance as an input resistance. Inverting and amplifying means for inverting and amplifying the DC voltage, and adding means for adding the DC voltage of the DC voltage generating means and the output voltage of the inverting and amplifying means.

【0026】請求項2の発明は、上記目的を達成するた
めに、赤外線による輻射熱を受ける赤外線感応抵抗体
と、この赤外線感応抵抗体と同一の抵抗値であり且つ同
一の温度に対する抵抗値変化を示し赤外線による輻射熱
を受けない基準抵抗と、直流電圧を出力する直流電圧発
生手段と、上記赤外線感応抵抗体と基準抵抗との何れか
一方を帰還抵抗とし他方を入力抵抗として直流電圧発生
手段の直流電圧を反転増幅する反転増幅手段と、上記直
流電圧発生手段の直流電圧と反転増幅手段の出力電圧と
を加算する加算手段と、上記赤外線感応抵抗体が赤外線
による輻射熱を受けていないとき、上記加算手段の出力
が生じないように加算手段の加算比率または反転増幅手
段の利得を調節する調節手段を設けて成ることを特徴と
する。
In order to achieve the above-mentioned object, the invention according to a second aspect is such that an infrared sensitive resistor which receives radiant heat by infrared rays and a resistance value which has the same resistance value as the infrared sensitive resistor and changes at the same temperature. Indicated by a reference resistance that does not receive radiant heat due to infrared rays, a DC voltage generating means that outputs a DC voltage, and one of the infrared sensitive resistor and the reference resistance as a feedback resistance and the other as an input resistance by the DC voltage generating means Inversion amplification means for inverting and amplifying voltage, addition means for adding the DC voltage of the DC voltage generation means and output voltage of the inverting amplification means, and the addition when the infrared sensitive resistor is not receiving radiant heat from infrared rays The present invention is characterized in that adjustment means for adjusting the addition ratio of the addition means or the gain of the inverting amplification means is provided so that the output of the means does not occur.

【0027】請求項3の発明は、上記目的を達成するた
めに、赤外線による輻射熱を受ける赤外線感応抵抗体
と、この赤外線感応抵抗体と同一の抵抗値であり且つ同
一の温度に対する抵抗値変化を示し赤外線による輻射熱
を受けない基準抵抗と、直流電圧を出力する第1の直流
電圧発生手段と、この第1の直流電圧発生手段と絶対値
が同一で極性が逆の直流電圧を出力する第2の直流電圧
発生手段と、上記赤外線感応抵抗体を帰還抵抗として第
1の直流電圧発生手段の直流電圧を反転増幅する第1の
反転増幅手段と、上記基準抵抗を帰還抵抗として第2の
直流電圧発生手段の直流電圧を反転増幅する第2の反転
増幅手段と、上記第1及び第2の反転増幅手段の出力電
圧を加算する加算手段とを備えて成ることを特徴とす
る。
In order to achieve the above-mentioned object, an infrared sensitive resistor which receives radiant heat from infrared rays and a resistance change which has the same resistance value as the infrared sensitive resistor and the same temperature change. A reference resistance that does not receive radiant heat due to infrared rays, a first DC voltage generating means that outputs a DC voltage, and a second DC voltage that has the same absolute value as the first DC voltage generating means but an opposite polarity. DC voltage generating means, first infrared amplifying means for inverting and amplifying the DC voltage of the first DC voltage generating means by using the infrared sensitive resistor as a feedback resistance, and second DC voltage by using the reference resistance as a feedback resistance. The present invention is characterized by comprising second inverting amplification means for inverting and amplifying the DC voltage of the generation means, and addition means for adding the output voltages of the first and second inverting amplification means.

【0028】請求項4の発明は、請求項3の発明におい
て、上記赤外線感応抵抗体が赤外線による輻射熱を受け
ていないとき、上記加算手段の出力が生じないように加
算手段の加算比率または反転増幅手段の利得または第1
及び第2の直流電圧発生手段のいずれかの直流電圧を調
節する調節手段を設けて成ることを特徴とする。
According to a fourth aspect of the invention, in the third aspect of the invention, when the infrared sensitive resistor is not receiving radiant heat from infrared rays, the addition ratio of the adding means or the inverting amplification is performed so that the output of the adding means does not occur. Means gain or first
And adjusting means for adjusting the DC voltage of any one of the second DC voltage generating means.

【0029】請求項5の発明は、上記目的を達成するた
めに、赤外線による輻射熱を受ける赤外線感応抵抗体
と、この赤外線感応抵抗体と同一の抵抗値であり且つ同
一の温度に対する抵抗値変化を示し赤外線による輻射熱
を受けない基準抵抗と、直流電圧を出力する第1の直流
電圧発生手段と、この第1の直流電圧発生手段と絶対値
が同一で極性が逆の直流電圧を出力する第2の直流電圧
発生手段と、上記赤外線感応抵抗体及び基準抵抗の一方
と他方とをそれぞれ介して入力される第1の直流電圧発
生手段の直流電圧と第2の直流電圧発生手段の直流電圧
とを加算し反転増幅する加算反転増幅手段とを備え、上
記赤外線感応抵抗体が赤外線による輻射熱を受けていな
いとき、上記加算手段の出力が生じないように加算手段
の加算比率または第1及び第2の直流電圧発生手段のい
ずれかの直流電圧を調節する調節手段を設けて成ること
を特徴とする。
In order to achieve the above-mentioned object, an infrared sensitive resistor which receives radiant heat from infrared rays and an infrared sensitive resistor which has the same resistance value as the infrared sensitive resistor and changes the resistance value with respect to the same temperature. A reference resistance that does not receive radiant heat due to infrared rays, a first DC voltage generating means that outputs a DC voltage, and a second DC voltage that has the same absolute value as the first DC voltage generating means but an opposite polarity. Of the direct current voltage generating means, and the direct current voltage of the first direct current voltage generating means and the direct current voltage of the second direct current voltage generating means which are input via one and the other of the infrared sensitive resistor and the reference resistance, respectively. And an inverting and amplifying means for adding and inverting and amplifying, and when the infrared sensitive resistor is not receiving radiant heat from infrared rays, the addition ratio of the adding means or the And characterized by comprising providing an adjustment means for adjusting one of the DC voltage of the second DC voltage generating means.

【0030】[0030]

【発明の実施の形態】(実施形態1)図1に本発明の第
1の実施形態を示す。本実施形態の赤外線検知回路は、
直流電源11の直流電圧を感応抵抗体Rtの赤外線の輻
射熱による抵抗変化に応じて増幅度の変化する反転増幅
器14によって反転増幅し、この反転増幅器14の出力
電圧を直流電源11の直流電圧に加算して、感応抵抗体
Rtの赤外線の輻射熱による抵抗変化に応じた直流電圧
を得るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 shows a first embodiment of the present invention. The infrared detection circuit of this embodiment is
The DC voltage of the DC power supply 11 is inverted and amplified by the inverting amplifier 14 whose amplification degree changes according to the resistance change of the sensitive resistor Rt due to infrared radiation, and the output voltage of the inverting amplifier 14 is added to the DC voltage of the DC power supply 11. Then, a DC voltage corresponding to the resistance change of the sensitive resistor Rt due to the radiant heat of infrared rays is obtained.

【0031】具体的には、図1に示すように、図21の
従来例と同じく直流電源11を用いるとともに、反転増
幅器14により直流電源11の直流電圧を反転増幅し、
さらに、その反転増幅された直流電圧Vinと直流電源1
1の電源電圧とを加算直流増幅器15において加算し増
幅する構成としてある。
Specifically, as shown in FIG. 1, a DC power supply 11 is used as in the conventional example of FIG. 21, and a DC voltage of the DC power supply 11 is inverted and amplified by an inverting amplifier 14,
Further, the inverted and amplified DC voltage Vin and the DC power supply 1
The power supply voltage of 1 is added in the adding DC amplifier 15 to be amplified.

【0032】上記反転増幅器14は、基準抵抗Rref を
入力抵抗とするとともに、感応抵抗体Rtを帰還抵抗と
して演算増幅器14aを用いて構成してある。この反転
増幅器14では、感応抵抗体Rtが輻射熱を受けていな
いとき、感応抵抗体Rtと基準抵抗Rref との抵抗値が
等しいため、反転増幅器14の増幅度は−1となり、反
転増幅器14からは直流電源11の直流電圧と絶対値が
等しく極性が反転した直流電圧が出力される。このた
め、加算直流増幅器15にて直流電源11の直流電圧と
反転増幅器14の出力電圧とを加算すると、互いに相殺
され、加算直流増幅器15の出力は0Vとなる。
The inverting amplifier 14 is constructed by using the operational amplifier 14a as the input resistance of the reference resistance Rref and the sensitive resistance Rt as the feedback resistance. In the inverting amplifier 14, when the sensitive resistor Rt does not receive radiant heat, the resistance value of the sensitive resistor Rt is equal to that of the reference resistor Rref. A DC voltage whose absolute value is equal to that of the DC voltage of the DC power supply 11 and whose polarity is inverted is output. Therefore, when the DC voltage of the DC power supply 11 and the output voltage of the inverting amplifier 14 are added by the addition DC amplifier 15, they cancel each other out, and the output of the addition DC amplifier 15 becomes 0V.

【0033】逆に、感応抵抗体Rtが輻射熱を受けたと
きは、感応抵抗体Rtの抵抗値が変化し反転増幅器14
の増幅度の絶対値が1からずれるため、反転増幅器14
の出力電圧が変化し、これにより直流電源11の直流電
圧とに差を生じる。したがって、このときには、加算直
流増幅器15の出力として、感応抵抗体Rtが受けた輻
射熱に応じた直流電圧出力Vout が得られる。
On the contrary, when the sensitive resistor Rt receives radiant heat, the resistance value of the sensitive resistor Rt changes and the inverting amplifier 14
Since the absolute value of the amplification degree of is deviated from 1, the inverting amplifier 14
Output voltage changes, which causes a difference from the DC voltage of the DC power supply 11. Therefore, at this time, a DC voltage output Vout corresponding to the radiant heat received by the sensitive resistor Rt is obtained as the output of the adding DC amplifier 15.

【0034】すなわち、反転増幅器14の出力電圧とし
て加算直流増幅器15に入力される電圧Vinと、加算直
流増幅器15の出力電圧Vout との間には次式の関係が
ある。なお、Eは直流電源11の直流電圧、Aは加算直
流増幅器15の増幅度である。
That is, the relationship between the voltage Vin input to the addition DC amplifier 15 as the output voltage of the inverting amplifier 14 and the output voltage Vout of the addition DC amplifier 15 is as follows. Note that E is the DC voltage of the DC power supply 11, and A is the amplification degree of the adding DC amplifier 15.

【0035】[0035]

【数6】 [Equation 6]

【0036】よって、上記式(6)より、感応抵抗体R
tの抵抗値変化ΔRtに対する入力電圧Vinの変化分Δ
Vinは次式により求められる。
Therefore, from the above equation (6), the sensitive resistor R
Change Δ in input voltage Vin with respect to change in resistance value ΔRt of t
Vin is calculated by the following equation.

【0037】[0037]

【数7】 [Equation 7]

【0038】上記式(8)より明らかなように、上述の
構成によれば、抵抗値変化ΔRtと入力電圧Vinの変化
分ΔVinとは、感応抵抗体Rtの抵抗値に依らず、常に
線形関係(比例関係)を維持することができる。したが
って、従来のように抵抗値変化ΔRtに対する入力電圧
Vinの変化分ΔVinを線形とするための補正回路が不要
となり、コストの削減を図ることができ、併せて赤外線
検知回路全体の小型化も図れる。また、補正回路が必要
でなくなることから、補正回路の精度に起因する誤差が
生じなくなり、赤外線検知回路の全体の精度を向上させ
ることができる。さらに、補正回路を備えた場合に上記
誤差を回避して精度を確保するために、従来では補正回
路の調整を行わなければならず、その調整に多大な時間
と労力(調整のためのヒートアップ、エージングあるい
は補正値の微調整等)を要していたのが、全て不要とな
り、この点においてもコストの削減を図ることができる
という利点がある。ここで、上述のように反転増幅器1
4を用いることにより、赤外線検知回路の全体のインピ
ーダンスを下げることができ、外来ノイズの影響を受け
にくくできるという利点もある。
As is clear from the above equation (8), according to the above configuration, the resistance value change ΔRt and the change amount ΔVin of the input voltage Vin are always in a linear relationship regardless of the resistance value of the sensitive resistor Rt. (Proportional relationship) can be maintained. Therefore, unlike the conventional case, a correction circuit for linearizing the variation ΔVin of the input voltage Vin with respect to the resistance value variation ΔRt is not required, so that the cost can be reduced and the infrared detection circuit as a whole can be downsized. . Further, since the correction circuit is not necessary, an error due to the accuracy of the correction circuit does not occur, and the accuracy of the infrared detection circuit as a whole can be improved. Further, in the case where a correction circuit is provided, in order to avoid the above error and ensure accuracy, conventionally, the correction circuit must be adjusted, which requires a great deal of time and effort (heat-up for adjustment). , Aging or fine adjustment of the correction value) are all unnecessary, and there is an advantage that the cost can be reduced also in this respect. Here, as described above, the inverting amplifier 1
The use of 4 has an advantage that the impedance of the entire infrared detection circuit can be lowered and the influence of external noise can be reduced.

【0039】なお、抵抗値変化ΔRtと入力電圧Vinの
変化分ΔVinとが線形関係を維持することができるた
め、周囲温度との演算により、対象物の温度を非接触に
測定することができる輻射温度計にこの赤外線検知回路
を応用することができる。
Since the resistance value change ΔRt and the change amount ΔVin of the input voltage Vin can maintain a linear relationship, the temperature of the object can be measured in a non-contact manner by calculating the ambient temperature. This infrared detection circuit can be applied to a thermometer.

【0040】本実施形態の赤外線検知回路を用いて、輻
射温度計を構成した場合を図2に示す。構成的には、上
記実施形態1〜8に示した存在検知型の人体検知装置と
同様に、レンズなどの適当な光学手段Lを用い、感応抵
抗体Rtに赤外線を照射するようにし、演算増幅器15
aにて構成される加算直流増幅器15から、赤外線の輻
射量に応じた直流の出力電圧Vout が得られる。この出
力電圧Vout と周囲温度とを演算することにより、測定
対象の表面温度を非接触にて計測することができる。
FIG. 2 shows a case where a radiation thermometer is constructed by using the infrared detection circuit of this embodiment. Structurally, similar to the presence detecting type human body detecting device shown in the above-described first to eighth embodiments, an appropriate optical means L such as a lens is used to irradiate the sensitive resistor Rt with infrared rays, and an operational amplifier is provided. 15
A DC output voltage Vout corresponding to the amount of infrared radiation is obtained from the adding DC amplifier 15 constituted by a. By calculating the output voltage Vout and the ambient temperature, the surface temperature of the measurement target can be measured in a non-contact manner.

【0041】赤外線輻射物体である人体Xが図2におけ
る(あ)→(い)→(う)というように移動した場合の
上記輻射温度計の動作を図3に示す。ここで、人体Xが
図2における(あ)→(い)→(う)というように検知
視野(検知エリア)を通過したときの検知視野内におけ
る輻射エネルギーの変化は図3(a)に示すようにな
る。従って、この人体Xの移動に伴う図3(a)の検知
視野内の輻射熱により同図(b)に示すように感応抵抗
体Rtの抵抗値が変化する。この感応抵抗体Rtの抵抗
値の変化に伴い加算直流増幅器15の入力電圧Vinが図
3(c)に示すように変化し、加算直流増幅器15から
同図(d)に示す出力電圧Vout が得られる。この出力
電圧Vout を他の適当な手段により得られた周囲温度に
応じた出力との間で演算することにより、人体Xの表面
温度を非接触で計測することができる。
FIG. 3 shows the operation of the radiation thermometer when the human body X, which is an infrared radiation object, moves in the order of (A) .fwdarw. (I) .fwdarw. (U) in FIG. Here, the change of the radiant energy in the detection visual field when the human body X passes through the detection visual field (detection area) as shown in (a) → (i) → (u) in FIG. 2 is shown in FIG. 3 (a). Like Therefore, as the human body X moves, the radiant heat in the detection field of view of FIG. 3A changes the resistance value of the sensitive resistor Rt as shown in FIG. As the resistance value of the sensitive resistor Rt changes, the input voltage Vin of the addition DC amplifier 15 changes as shown in FIG. 3C, and the output voltage Vout shown in FIG. 3D is obtained from the addition DC amplifier 15. To be The surface temperature of the human body X can be measured in a non-contact manner by calculating the output voltage Vout with the output corresponding to the ambient temperature obtained by another suitable means.

【0042】ただし、図2の場合には、加算直流増幅器
15を演算増幅器15aから成る反転増幅器にて構成し
てあるため、出力電圧Vout の極性は図3(d)とは反
対になる。
However, in the case of FIG. 2, since the adding DC amplifier 15 is composed of an inverting amplifier composed of the operational amplifier 15a, the polarity of the output voltage Vout is opposite to that of FIG. 3 (d).

【0043】(実施形態2)図4に本発明の第2の実施
形態を示す。本実施形態では、図1に示した上記第1の
実施形態において、加算直流増幅器15を用いる代わり
に、反転増幅器14の出力端と直流電源11の正極とを
抵抗Rd1 ,Rd2 を介して接続し、直流増幅器16に
より直流増幅している点に特徴がある。すなわち、反転
増幅器14の出力電圧を直流電源11の電源電圧Eとを
抵抗Rd1 ,Rd2 により加算しており、これらの抵抗
Rd1 ,Rd2 が加算手段となる。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention. In the present embodiment, instead of using the summing DC amplifier 15 in the first embodiment shown in FIG. 1, the output terminal of the inverting amplifier 14 and the positive electrode of the DC power supply 11 are connected via resistors Rd 1 and Rd 2. It is characterized in that they are connected and are amplified by the DC amplifier 16. That is, the output voltage of the inverting amplifier 14 is added to the power supply voltage E of the DC power supply 11 by the resistors Rd 1 and Rd 2 , and these resistors Rd 1 and Rd 2 serve as addition means.

【0044】上述の赤外線検知回路の動作は、出力電圧
Vout が低下(約半分)する以外は基本的に実施形態1
のものと同一であり、説明は省略する。
The operation of the above infrared detecting circuit is basically the same as that of the first embodiment except that the output voltage Vout drops (about half).
The description is omitted here.

【0045】上述の構成によれば、加算直流増幅器15
は必要でなく、通常の1入力の直流増幅器16を用いれ
ばよいから、コストの削減を図ることができる。
According to the above configuration, the summing DC amplifier 15
Is not necessary, and a normal one-input DC amplifier 16 may be used, so that the cost can be reduced.

【0046】(実施形態3)図5に本発明の第3の実施
形態を示す。本実施形態では、上記実施形態1の赤外線
検知回路(図1参照)において、感応抵抗体Rtに赤外
線が輻射されていないときにおける加算直流増幅器15
の出力電圧Vout が0Vとなるように、加算直流増幅器
15における加算比率を制御するフィードバック回路1
7を設けた点に特徴がある。
(Embodiment 3) FIG. 5 shows a third embodiment of the present invention. In the present embodiment, in the infrared detection circuit of the first embodiment (see FIG. 1), the addition DC amplifier 15 when infrared rays are not radiated to the sensitive resistor Rt
Of the feedback circuit 1 for controlling the addition ratio in the addition DC amplifier 15 so that the output voltage Vout of
The feature is that 7 is provided.

【0047】上記フィードバック回路17は、加算直流
増幅器15のオフセット電圧・電流の温度による変動お
よび長期的なレンジにおける安定性、あるいは感応抵抗
体Rtと基準抵抗Rref の抵抗値の不安定性による問題
を回避するように働く。即ち、このような目的で上記フ
ィードバック回路17は使用されるので、フィードバッ
ク制御系における時定数は非常に大きな値(例えば、数
時間)であればよい。
The feedback circuit 17 avoids the problems caused by the variation of the offset voltage / current of the adding DC amplifier 15 due to the temperature and the stability in the long-term range, or the instability of the resistance values of the sensitive resistor Rt and the reference resistor Rref. Work to do. That is, since the feedback circuit 17 is used for such a purpose, the time constant in the feedback control system may be a very large value (for example, several hours).

【0048】なお、本実施形態の場合には、図示しない
が実施形態2と同様に、感応抵抗体Rtに輻射熱が加わ
っているかどうかを検知する検知手段を備えている。こ
の検知手段では、例えば加算直流増幅器15の出力電圧
Vout の短期的な変動を測定して、感応抵抗体Rtに輻
射熱が加わっているかどうかを検知するようにしてあ
る。即ち、人体の移動であれば、0.1〜10Hzくら
いの周波数成分の短期的な変動が測定されるので、その
有無により感応抵抗体Rtに輻射熱が加わっているかど
うかを検知することが可能である。
Incidentally, in the case of the present embodiment, although not shown, as in the case of the second embodiment, a detecting means for detecting whether or not radiant heat is applied to the sensitive resistor Rt is provided. In this detection means, for example, a short-term fluctuation of the output voltage Vout of the addition DC amplifier 15 is measured to detect whether or not radiant heat is applied to the sensitive resistor Rt. That is, if the human body is moving, a short-term fluctuation of the frequency component of about 0.1 to 10 Hz is measured, and it is possible to detect whether or not the radiant heat is applied to the sensitive resistor Rt depending on the presence or absence thereof. is there.

【0049】但し、さらに確実に感応抵抗体Rtに輻射
熱が加わっているかどうかを検知する場合には、感応抵
抗体Rtの前に、光学的なシャッタなどの輻射熱遮蔽手
段を配置し、必要に応じた時間間隔で輻射熱を遮断した
状態で、上記フィードバック制御を行うことが望まし
い。
However, in order to more reliably detect whether or not the radiant heat is applied to the sensitive resistor Rt, a radiant heat shielding means such as an optical shutter is arranged in front of the sensitive resistor Rt and, if necessary, It is desirable to perform the above feedback control in a state where the radiant heat is cut off at different time intervals.

【0050】上述の構成とすれば、感応抵抗体Rtに入
射される輻射エネルギーに応じた直流電圧出力Vout を
得ることができるとともに、実施形態1の場合と同様に
感応抵抗体Rtの抵抗値変化ΔRtと加算直流増幅器1
5の入力電圧Vinの変化分ΔVinとの線形性を常時維持
することができる。しかも、加算直流増幅器15におい
ては反転増幅器14からの入力電圧Vinと直流電源11
からの直流電圧Eとが加算されるため、従来例のように
直流差動増幅器を用いた場合に問題であったオフセット
電圧、電流値の変動あるいは感応抵抗体Rtや基準抵抗
Rref の抵抗値の不安定性に起因するドリフトによる直
流的誤差の発生は全く起こらないことになる。すなわ
ち、加算直流増幅器15においては上記のようなオフセ
ット電圧や電流値変動あるいはドリフトが相殺され、出
力には一切現れないからである。従って、従来のように
入力オフセットに関して要求されていた非常に高精度な
性能は不要であり、一般的に市販されている安価な演算
増幅器を用いて加算直流増幅器15を構成しても、十分
に安定した特性を得ることができる。
With the above-described structure, the DC voltage output Vout corresponding to the radiant energy incident on the sensitive resistor Rt can be obtained, and the resistance value change of the sensitive resistor Rt can be changed as in the first embodiment. ΔRt and addition DC amplifier 1
The linearity with the change ΔVin of the input voltage Vin of 5 can always be maintained. Moreover, in the adding DC amplifier 15, the input voltage Vin from the inverting amplifier 14 and the DC power supply 11
Since the DC voltage E from the above is added, the offset voltage, the fluctuation of the current value or the resistance value of the sensitive resistor Rt or the reference resistor Rref which has been a problem when the DC differential amplifier is used as in the conventional example. The DC error due to the drift due to the instability will not occur at all. That is, in the addition DC amplifier 15, the offset voltage and the current value fluctuation or drift as described above are canceled out and do not appear at all in the output. Therefore, the extremely high-precision performance required for the input offset as in the past is not necessary, and even if the adding DC amplifier 15 is configured by using a generally available inexpensive operational amplifier, it is sufficient. Stable characteristics can be obtained.

【0051】また、上記直流的な誤差を回避するため
に、従来では直流差動増幅器12の温度上昇を抑えた
り、温度勾配を無くしたりする構造的あるいは回路的な
手段を講じる場合もあったが、本実施形態の場合には加
算直流増幅器15に対してそのような手段を講じる必要
が全くないという利点もある。さらに、従来では直流的
精度を確保するための調整に多大な時間と労力とがかか
っていたが、本実施形態では直流的な精度は要求されな
いので、調整作業も軽減できる利点もある。
Further, in order to avoid the above-mentioned DC error, in the past, structural or circuit means for suppressing the temperature rise of the DC differential amplifier 12 or eliminating the temperature gradient may be taken. In the case of the present embodiment, there is also an advantage that it is not necessary to take such means for the adding DC amplifier 15. Further, in the past, it took a lot of time and labor to make adjustment for ensuring DC accuracy, but in this embodiment, since DC accuracy is not required, there is also an advantage that the adjustment work can be reduced.

【0052】さらに、本実施形態では、フィードバック
回路17によって赤外線による輻射熱が感応抵抗体Rt
に加わっていないときに加算直流増幅器15の出力Vou
t を0となるようにしているため、この点でも直流的誤
差が生じず、信頼性すなわち長期的安定性を向上させる
ことができるという利点がある。
Further, in the present embodiment, the radiant heat due to infrared rays is radiated by the feedback circuit 17 to the sensitive resistor Rt.
Output Vou of the adding DC amplifier 15 when not added to
Since t is set to 0, a DC error does not occur in this respect as well, and there is an advantage that reliability, that is, long-term stability can be improved.

【0053】それに加えて、本実施形態では、実施形態
1と同様に抵抗値変化ΔRtと入力電圧Vinの変化分Δ
Vinとは、感応抵抗体Rtの抵抗値に依らず、常に線形
関係(比例関係)を維持することができるから、従来の
ように抵抗値変化ΔRtに対する入力電圧Vinの変化分
ΔVinを線形とするための補正回路が不要となり、コス
トの削減を図ることができ、併せて赤外線検知回路全体
の小型化も図れる。また、補正回路が必要でなくなるこ
とから、補正回路の精度に起因する誤差が生じなくな
り、赤外線検知回路の全体の精度を向上させることがで
きる。さらに、補正回路を備えた場合に上記誤差を回避
して精度を確保するために、従来では補正回路の調整を
行わなければならず、その調整に多大な時間と労力(調
整のためのヒートアップ、エージングあるいは補正値の
微調整等)を要していたのが、全て不要となり、この点
においてもコストの削減を図ることができるという利点
がある。ここで、上述のように反転増幅器14を用いる
ことにより、赤外線検知回路の全体のインピーダンスを
下げることができ、外来ノイズの影響を受けにくくでき
るという利点もある。
In addition to this, in the present embodiment, the resistance value change ΔRt and the change amount Δ of the input voltage Vin are the same as in the first embodiment.
Since Vin can always maintain a linear relationship (proportional relationship) regardless of the resistance value of the sensitive resistor Rt, the variation ΔVin of the input voltage Vin with respect to the resistance value variation ΔRt is linear as in the conventional case. Therefore, the correction circuit is unnecessary, and the cost can be reduced, and the infrared detection circuit as a whole can be downsized. Further, since the correction circuit is not necessary, an error due to the accuracy of the correction circuit does not occur, and the accuracy of the infrared detection circuit as a whole can be improved. Further, in the case where a correction circuit is provided, in order to avoid the above error and ensure accuracy, conventionally, the correction circuit must be adjusted, which requires a great deal of time and effort (heat-up for adjustment). , Aging or fine adjustment of the correction value) are all unnecessary, and there is an advantage that the cost can be reduced also in this respect. Here, by using the inverting amplifier 14 as described above, there is also an advantage that the overall impedance of the infrared detection circuit can be lowered and the influence of external noise can be reduced.

【0054】本実施形態の赤外線検知回路を用いて、存
在検知型の人体検知装置を構成した場合を図6に示す。
なお、構成的には実施形態1のものと同じく、レンズな
どの適当な光学手段Lを用い、感応抵抗体Rtに赤外線
を照射するようにし、加算直流増幅器15の出力電圧V
out を適当なしきい値と比較し、しきち値を越えるある
一定レベル以上の輻射熱に対してハイ,ロー2値の出力
(オン,オフ出力)が得られるようにしてある。さら
に、図6においては、感応抵抗体Rtを反転増幅器14
の入力抵抗、基準抵抗Rref を帰還抵抗としており、直
流電源11からの直流電圧Eに対する加算直流増幅器1
5の入力抵抗Rd2 として電圧制御型抵抗を用い、この
抵抗Rd2 の抵抗値をフィードバック回路17の出力で
調節することで、感応抵抗体Rtに赤外線による輻射熱
が加わっていないとき、加算直流増幅器15の出力電圧
Vout を0Vに保つようにしてある。
FIG. 6 shows a case in which a presence detecting type human body detecting device is constructed by using the infrared detecting circuit of the present embodiment.
As in the configuration, as in the first embodiment, an appropriate optical means L such as a lens is used to irradiate the sensitive resistor Rt with infrared rays, and the output voltage V of the addition DC amplifier 15 is increased.
By comparing out with an appropriate threshold value, high and low binary outputs (on and off outputs) can be obtained with respect to radiant heat above a certain level exceeding a threshold value. Further, in FIG. 6, the sensitive resistor Rt is connected to the inverting amplifier 14
Is used as the feedback resistance, and the addition DC amplifier 1 for the DC voltage E from the DC power supply 11 is used.
A voltage control type resistor is used as the input resistor Rd 2 of FIG. 5, and the resistance value of the resistor Rd 2 is adjusted by the output of the feedback circuit 17, so that when the radiant heat due to infrared rays is not applied to the sensitive resistor Rt, the addition DC amplifier The output voltage Vout of 15 is kept at 0V.

【0055】赤外線輻射物体である人体Xが図6におけ
る(あ)→(い)→(う)というように移動した場合の
上記人体検知装置の動作を図7に示す。ここで、人体X
が図6における(あ)→(い)→(う)というように検
知視野(検知エリア)を通過したときの検知視野内にお
ける輻射エネルギの変化は図7(a)に示すようにな
る。従って、この人体Xの移動に伴う図7(a)の検知
視野内の輻射熱により同図(b)に示すように感応抵抗
体Rtの抵抗値が変化する。この感応抵抗体Rtの抵抗
値の変化に伴い加算直流増幅器15の入力電圧Vinが図
7(c)に示すように変化し、加算直流増幅器15から
同図(d)に示す直流の出力電圧Vout が得られる。こ
の出力電圧Vout を比較器5の比較電圧6と比較するこ
とで、人体の有無が検知される。この人体検知装置の場
合には、図6における(い)に示す状態に人体Xがたと
え長時間静止しても安定に検知することができる。
FIG. 7 shows the operation of the human body detection device when the human body X, which is an infrared radiation object, moves in the order of (A) .fwdarw. (I) .fwdarw. (U) in FIG. Where the human body X
The change of the radiant energy in the detection visual field (detection area) when passing through the detection visual field (detection area) as shown in FIG. 6 is as shown in FIG. 7A. Therefore, the resistance value of the sensitive resistor Rt changes as shown in FIG. 7B due to the radiant heat in the detection field of view of FIG. 7A accompanying the movement of the human body X. With the change of the resistance value of the sensitive resistor Rt, the input voltage Vin of the addition DC amplifier 15 changes as shown in FIG. 7C, and the addition DC amplifier 15 outputs the DC output voltage Vout shown in FIG. 7D. Is obtained. By comparing this output voltage Vout with the comparison voltage 6 of the comparator 5, the presence or absence of a human body is detected. In the case of this human body detection device, even if the human body X remains stationary for a long time in the state shown in FIG. 6B, it can be detected stably.

【0056】なお、図8に示すように、直流電源11の
正極と反転増幅器14の出力端とを入力抵抗Rd1 ,R
2 を介して接続し、1入力の直流増幅器16の入力端
に接続して実施形態2と同様に構成してもよい。
As shown in FIG. 8, the positive terminals of the DC power supply 11 and the output terminal of the inverting amplifier 14 are connected to the input resistors Rd 1 and Rd.
The configuration may be similar to that of the second embodiment by connecting via d 2 and connecting to the input terminal of the one-input DC amplifier 16.

【0057】(実施形態4)図9に本発明の第4の実施
形態を示す。本実施形態の赤外線検知回路は、直流電圧
Eを発生する直流電源111 と、この直流電圧Eと絶対
値が等しく逆極性の直流電圧E’(E’=−E)を発生
する直流電源112 と、抵抗R1 を入力抵抗とし感応抵
抗体Rtを帰還抵抗とする反転増幅器141 と、抵抗R
2 を入力抵抗とし基準抵抗Rref を帰還抵抗とする反転
増幅器142 と、2つの反転増幅器141 ,142 から
の入力電圧Vin1 ,Vin2 を加算増幅する加算直流増幅
器15とを備え、一方の反転増幅器141 に直流電源1
1 の直流電圧Eを入力し、他方の反転増幅器142
直流電源112 の直流電圧E’を入力している。なお、
各反転増幅器141 ,142 の入力抵抗R1 ,R2 の抵
抗値は等しくしてある。
(Embodiment 4) FIG. 9 shows a fourth embodiment of the present invention. The infrared detection circuit according to the present embodiment includes a DC power supply 11 1 that generates a DC voltage E, and a DC power supply 11 that generates a DC voltage E ′ (E ′ = − E) that has the same absolute value as the DC voltage E and an opposite polarity. 2 , an inverting amplifier 14 1 having a resistor R 1 as an input resistor and a sensitive resistor Rt as a feedback resistor, and a resistor R 1.
An inverting amplifier 14 2 having 2 as an input resistance and a reference resistance Rref as a feedback resistance, and a summing DC amplifier 15 for summing and amplifying the input voltages Vin 1 and Vin 2 from the two inverting amplifiers 14 1 and 14 2 are provided. DC to the inverting amplifier 14 1 power 1
The DC voltage E of 1 1 is input, and the DC voltage E ′ of the DC power supply 11 2 is input to the other inverting amplifier 14 2 . In addition,
Each inverting amplifier 14 1, 14 input resistance R 1 of 2, the resistance value of R 2 is made equal.

【0058】2つの反転増幅器141 ,142 は、それ
ぞれ同じ抵抗値の抵抗R1 ,R2 を入力抵抗とし、感応
抵抗体Rtと基準抵抗Rref とをそれぞれ帰還抵抗とし
て演算増幅器14a1 ,14a2 を用いて構成してあ
る。ここで、感応抵抗体Rtが輻射熱を受けていないと
き、感応抵抗体Rtと基準抵抗Rref との抵抗値が等し
いため、反転増幅器141 ,142 の増幅度は−1とな
り、各反転増幅器141,142 から加算直流増幅器1
5に入力される入力電圧Vin1 ,Vin2 は絶対値が等し
く逆極性となるから加算直流増幅器15の出力電圧Vou
t は0Vとなる。
The two inverting amplifiers 14 1 and 14 2 use the resistors R 1 and R 2 having the same resistance value as input resistors, and the sensitive resistor Rt and the reference resistor Rref as feedback resistors, respectively, and operational amplifiers 14 a 1 and 14 a. It is configured using 2 . Here, when the sensitive resistor Rt does not receive radiant heat, the resistance values of the sensitive resistor Rt and the reference resistor Rref are equal, so that the amplification degree of the inverting amplifiers 14 1 and 14 2 becomes −1, and the inverting amplifiers 14 1 and 14 2 respectively. From 1 and 14 2 Summing DC amplifier 1
Since the input voltages Vin 1 and Vin 2 input to 5 have the same absolute value and opposite polarities, the output voltage Vou of the adding DC amplifier 15 is increased.
t becomes 0V.

【0059】逆に、感応抵抗体Rtが輻射熱を受けたと
きは、感応抵抗体Rtの抵抗値が変化し反転増幅器14
1 の増幅度の絶対値が1からずれるため、2つの反転増
幅器141 ,142 の増幅度の間に感応抵抗体Rtの抵
抗値の変化に応じた差が生じる。すなわち、加算直流増
幅器15の出力電圧Vout は、反転増幅器141 からの
入力電圧Vin1 と、反転増幅器142 からの入力電圧V
in2 とにより、以下の式で表される。なお、Aは加算直
流増幅器15の増幅度である。
On the contrary, when the sensitive resistor Rt receives radiant heat, the resistance value of the sensitive resistor Rt changes and the inverting amplifier 14
Since the absolute value of the amplification degree of 1 deviates from 1 , a difference is generated between the amplification degrees of the two inverting amplifiers 14 1 and 14 2 according to the change of the resistance value of the sensitive resistor Rt. That is, the output voltage Vout of the addition DC amplifier 15 is the input voltage Vin 1 from the inverting amplifier 14 1 and the input voltage V 1 from the inverting amplifier 14 2.
It is represented by the following formula by in 2 . In addition, A is the amplification degree of the addition DC amplifier 15.

【0060】[0060]

【数8】 [Equation 8]

【0061】よって、上記式(9)より、感応抵抗体R
tの抵抗値変化ΔRtに対する入力電圧Vinの変化分Δ
Vinは次式により求められる。
Therefore, from the above equation (9), the sensitive resistor R
Change Δ in input voltage Vin with respect to change in resistance value ΔRt of t
Vin is calculated by the following equation.

【0062】[0062]

【数9】 [Equation 9]

【0063】上記式(10)より明らかなように、上述
の構成によれば、抵抗値変化ΔRtと入力電圧Vin1
変化分ΔVin1 とは、感応抵抗体Rtの抵抗値に依ら
ず、常に線形関係(比例関係)を維持することができ
る。したがって、線形に補正するための補正回路が不要
となり、コストの削減を図ることができ、併せて赤外線
検知回路全体の小型化も図れる。また、補正回路が必要
でなくなることから、補正回路の精度に起因する誤差が
生じなくなり、赤外線検知回路の全体の精度を向上させ
ることができる。さらに、補正回路を備えた場合に上記
誤差を回避して精度を確保するために、従来では補正回
路の調整を行わなければならず、その調整に多大な時間
と労力(調整のためのヒートアップ、エージングあるい
は補正値の微調整等)を要していたのが、全て不要とな
り、この点においてもコストの削減を図ることができる
という利点がある。ここで、上述のように反転増幅器1
1 ,142 を用いることにより、赤外線検知回路の全
体のインピーダンスを下げることができ、外来ノイズの
影響を受けにくくできるという利点もある。
[0063] As apparent from the above equation (10), according to the configuration described above, the resistance change ΔRt the variation .DELTA.Vin 1 of the input voltage Vin 1, regardless of the resistance value of sensitive resistor Rt, always A linear relationship (proportional relationship) can be maintained. Therefore, a correction circuit for linearly correcting is unnecessary, cost can be reduced, and the infrared detection circuit as a whole can be downsized. Further, since the correction circuit is not necessary, an error due to the accuracy of the correction circuit does not occur, and the accuracy of the infrared detection circuit as a whole can be improved. Further, in the case where a correction circuit is provided, in order to avoid the above error and ensure accuracy, conventionally, the correction circuit must be adjusted, which requires a great deal of time and effort (heat-up for adjustment). , Aging or fine adjustment of the correction value) are all unnecessary, and there is an advantage that the cost can be reduced also in this respect. Here, as described above, the inverting amplifier 1
The use of 4 1 and 14 2 also has the advantage that the impedance of the entire infrared detection circuit can be lowered and the influence of external noise can be reduced.

【0064】なお、抵抗値変化ΔRtと入力電圧Vin1
の変化分ΔVin1 とが線形関係を維持することができる
ため、周囲温度との演算により、対象物の温度を非接触
に測定することができる輻射温度計にこの赤外線検知回
路を応用することができる。
The resistance value change ΔRt and the input voltage Vin 1
Since it is possible to maintain a linear relationship with the change amount ΔVin 1 of, the infrared detection circuit can be applied to a radiation thermometer that can measure the temperature of an object in a non-contact manner by calculating the ambient temperature. it can.

【0065】本実施形態の赤外線検知回路を用いて、存
在検知型の人体検知装置を構成した場合を図10に示
す。図11は図10の(あ)→(い)→(う)と人体X
が移動したときの動作を示す。図10における(い)の
位置に人体Xが存在する場合、上述したように感応抵抗
体Rtと基準抵抗Rref との抵抗値のバランスが崩れ、
同図(c)に示すように反転増幅器141 ,142 から
の加算直流増幅器15への入力電圧Vin1 ,Vin2 間に
差が生じ、この差に応じて加算直流増幅器15から入射
した赤外線の輻射量に比例した直流電圧出力Vout が得
られる。この出力電圧Vout を比較器5の比較電圧6と
比較することで、人体の有無が検知される。この人体検
知装置の場合には、図10における(い)に示す状態に
人体Xがたとえ長時間静止しても安定に検知することが
できる。ただし、図10の場合には、加算直流増幅器1
5を演算増幅器15aから成る反転増幅器にて構成して
あるため、出力電圧Vout の極性は図11(d)とは反
対になる。
FIG. 10 shows a case where a presence detecting type human body detecting device is constructed by using the infrared detecting circuit of the present embodiment. FIG. 11 shows the human body X as (A) → (I) → (U) in FIG.
Shows the operation when is moved. When the human body X is present at the position (ii) in FIG. 10, the balance between the resistance values of the sensitive resistor Rt and the reference resistor Rref is lost as described above,
As shown in FIG. 6C, a difference occurs between the input voltages Vin 1 and Vin 2 from the inverting amplifiers 14 1 and 14 2 to the adding DC amplifier 15, and the infrared rays incident from the adding DC amplifier 15 are generated in accordance with the difference. A DC voltage output Vout proportional to the radiation amount of By comparing this output voltage Vout with the comparison voltage 6 of the comparator 5, the presence or absence of a human body is detected. In the case of this human body detection device, even if the human body X remains stationary for a long time in the state shown in FIG. However, in the case of FIG.
Since 5 is composed of an inverting amplifier composed of the operational amplifier 15a, the polarity of the output voltage Vout is opposite to that of FIG. 11 (d).

【0066】なお、図12に示すように、反転増幅器1
1 ,142 の出力端を抵抗Rd1,Rd2 を介して接
続し、1入力の直流増幅器16の入力端に接続して実施
形態2と同様に構成してもよい。
As shown in FIG. 12, the inverting amplifier 1
The output terminals of 4 1 and 14 2 may be connected via the resistors Rd 1 and Rd 2 and may be connected to the input terminal of the one-input DC amplifier 16 to have the same configuration as that of the second embodiment.

【0067】(実施形態5)図13に本発明の第5の実
施形態を示す。本実施形態の赤外線検知回路において
は、実施形態4の赤外線検知回路において、実施形態3
で説明したと同様の働きをするフィードバック回路17
を設けた点に特徴がある。即ち、本実施形態のフィード
バック回路17では、感応抵抗体Rtに赤外線が輻射さ
れてないときにおける加算直流増幅器15の出力Vout
が0となるように、直流電源112 の直流電圧E’を制
御するようにしてある。これにより、長期的なレンジに
おける直流電源111 ,112 の不安定性や感応抵抗体
Rtと基準抵抗Rref の抵抗値の不安定性による問題を
回避する。
(Embodiment 5) FIG. 13 shows a fifth embodiment of the present invention. In the infrared detection circuit of the present embodiment, the infrared detection circuit of the fourth embodiment is similar to the third embodiment.
Feedback circuit 17 that operates in the same manner as described in
It is characterized by the provision of. That is, in the feedback circuit 17 of the present embodiment, the output Vout of the adding DC amplifier 15 when infrared rays are not radiated to the sensitive resistor Rt.
The DC voltage E ′ of the DC power supply 11 2 is controlled so that the voltage becomes 0. This avoids problems due to instability of the DC power supplies 11 1 and 11 2 in the long-term range and instability of the resistance values of the sensitive resistor Rt and the reference resistor Rref.

【0068】図14は本発明の赤外線検知回路を用いた
人体検知装置を示し、その動作を図15に示す。なお、
図14の人体検知装置では、反転増幅器142 の出力端
に接続された加算直流増幅器15の入力抵抗Rd2 に電
圧制御型抵抗を用い、フィードバック回路17で直流電
源112 の電圧を制御することに代え、フィードバック
回路17の出力で上記抵抗Rd2 の抵抗値を調節するこ
とで、感応抵抗体Rtに赤外線による輻射熱が加わって
いないとき、加算直流増幅器15の出力電圧Vout を0
Vに保つようにしてある。
FIG. 14 shows a human body detection apparatus using the infrared detection circuit of the present invention, and its operation is shown in FIG. In addition,
In the human body detection device of FIG. 14, a voltage control type resistor is used as the input resistance Rd 2 of the summing DC amplifier 15 connected to the output end of the inverting amplifier 14 2 , and the feedback circuit 17 controls the voltage of the DC power supply 11 2. Instead, by adjusting the resistance value of the resistor Rd 2 by the output of the feedback circuit 17, the output voltage Vout of the adding DC amplifier 15 is set to 0 when radiation heat due to infrared rays is not applied to the sensitive resistor Rt.
I keep it at V.

【0069】なお、図16に示すように、反転増幅器1
1 ,142 の出力端を抵抗Rd1,Rd2 を介して接
続し、1入力の直流増幅器16の入力端に接続して実施
形態2と同様に構成してもよい。また、フィードバック
回路17で直流電源112 の電圧や入力抵抗Rdを制御
することに代え、基準抵抗Rref として電圧制御型抵抗
を用い、この基準抵抗Rref の抵抗値をフィードバック
回路17の出力で調節するようにしてもよい。
As shown in FIG. 16, the inverting amplifier 1
The output terminals of 4 1 and 14 2 may be connected via the resistors Rd 1 and Rd 2 and may be connected to the input terminal of the one-input DC amplifier 16 to have the same configuration as that of the second embodiment. Further, instead of controlling the DC power source 11 and second voltage and the input resistance Rd in the feedback circuit 17, using a voltage-controlled resistor as the reference resistor Rref, adjusts the resistance of the reference resistor Rref in the output of the feedback circuit 17 You may do it.

【0070】(実施形態6)図17に本発明の第6の実
施形態を示す。本実施形態では、直流電圧Eを発生する
直流電源111 と、この直流電圧Eと絶対値が等しく逆
極性の直流電圧E’(E’=−E)を発生する直流電源
112 と、感応抵抗体Rtと基準抵抗Rrefとをそれぞ
れ入力抵抗とし固定抵抗R1 を帰還抵抗とする加算反転
増幅器18と、加算反転増幅器18からの入力電圧Vin
を直流増幅する直流増幅器16と、感応抵抗体Rtに赤
外線が輻射されてないときにおける直流増幅器16の出
力Voutが0となるように、直流電源112 の直流電圧
E’を制御するフィードバック回路17とを備えてい
る。
(Embodiment 6) FIG. 17 shows a sixth embodiment of the present invention. In the present embodiment, a DC power supply 11 1 that generates a DC voltage E, a DC power supply 11 2 that generates a DC voltage E ′ (E ′ = − E) that has the same absolute value as the DC voltage E and an opposite polarity, and A summing inverting amplifier 18 having a resistor Rt and a reference resistor Rref as input resistors and a fixed resistor R 1 as a feedback resistor, and an input voltage Vin from the summing inverting amplifier 18.
And a feedback circuit 17 for controlling the DC voltage E ′ of the DC power supply 11 2 so that the output Vout of the DC amplifier 16 becomes 0 when infrared rays are not radiated to the sensitive resistor Rt. It has and.

【0071】上記加算反転増幅器18は、直流電源11
1 の直流電圧Eと直流電源112 の直流電圧E’とをそ
れぞれ感応抵抗体Rt及び基準抵抗Rref を介して加算
するとともに反転増幅している。したがって、この加算
反転増幅器18では、赤外線による輻射熱が感応抵抗体
Rtに加わっていないときは、感応抵抗体Rt及び基準
抵抗Rref の接続点においてそれぞれの直流電源1
1 ,112 の出力電圧E,E’が打ち消され、赤外線
による輻射熱で感応抵抗体Rtの抵抗値が変化して、感
応抵抗体Rtと基準抵抗Rref との抵抗値のバランスが
崩れたときに、そのアンバランス状態に応じた直流出力
電圧が感応抵抗体Rtと基準抵抗Rref の接続点の電位
変化として得られ、感応抵抗体Rt及び基準抵抗Rref
の接続点における加算出力を増幅するようにしてある。
The adding and inverting amplifier 18 is a DC power supply 11
The DC voltage E of 1 and the DC voltage E'of the DC power supply 11 2 are added and inverted and amplified via the sensitive resistor Rt and the reference resistor Rref, respectively. Therefore, in the addition inverting amplifier 18, when the radiant heat due to infrared rays is not applied to the sensitive resistor Rt, the DC power source 1 at each connection point of the sensitive resistor Rt and the reference resistor Rref.
When the output voltages E 1 and E 1 of 1 1 and 11 2 are canceled and the resistance value of the sensitive resistor Rt is changed by radiant heat due to infrared rays, the balance of the resistance values of the sensitive resistor Rt and the reference resistor Rref is lost. Further, a DC output voltage corresponding to the unbalanced state is obtained as a potential change at the connection point between the sensitive resistor Rt and the reference resistor Rref, and the sensitive resistor Rt and the reference resistor Rref are obtained.
The addition output at the connection point is amplified.

【0072】図18に本実施形態の赤外線検知回路を用
いた人体検知装置を示し、その動作を図19に示す。な
お、図18に示した人体検知装置では、直流電源112
の代わりにもう一方の直流電源111 の電圧をフィード
バック回路17の出力によって制御するようにしてあ
る。また、図20に示すように、直流電源112 に接続
された基準抵抗Rref を電圧制御型抵抗とし、フィード
バック回路17で直流電源111 ,112 の電圧を制御
することに代え、この基準抵抗Rref の抵抗値をフィー
ドバック回路17の出力で調節するようにしてもよい。
あるいは加算反転増幅器18の帰還抵抗R1 を電圧制御
型抵抗とし、この抵抗R1 をフィードバック回路17の
出力で調整するようにしてもよい。
FIG. 18 shows a human body detection apparatus using the infrared detection circuit of this embodiment, and its operation is shown in FIG. In the human body detection device shown in FIG. 18, the DC power supply 11 2
Instead of this, the voltage of the other DC power supply 11 1 is controlled by the output of the feedback circuit 17. Further, as shown in FIG. 20, the reference resistor Rref connected to the DC power supply 11 2 is a voltage control type resistor, and instead of controlling the voltages of the DC power supplies 11 1 and 11 2 by the feedback circuit 17, the reference resistance Rref is used. The resistance value of Rref may be adjusted by the output of the feedback circuit 17.
Alternatively, the feedback resistor R 1 of the adding / inverting amplifier 18 may be a voltage control type resistor, and the resistor R 1 may be adjusted by the output of the feedback circuit 17.

【0073】[0073]

【発明の効果】請求項1の発明は、赤外線による輻射熱
を受ける赤外線感応抵抗体と、この赤外線感応抵抗体と
同一の抵抗値であり且つ同一の温度に対する抵抗値変化
を示し赤外線による輻射熱を受けない基準抵抗と、直流
電圧を出力する直流電圧発生手段と、上記赤外線感応抵
抗体を帰還抵抗とするとともに上記基準抵抗を入力抵抗
として直流電圧発生手段の直流電圧を反転増幅する反転
増幅手段と、上記直流電圧発生手段の直流電圧と反転増
幅手段の出力電圧とを加算する加算手段とを備えたもの
であり、赤外線の輻射熱による赤外線感応抵抗体の抵抗
値変化に対する反転増幅手段の出力電圧変化が赤外線感
応抵抗体に依存しないようにすることができ、これによ
り、赤外線感応抵抗体の抵抗値変化と加算手段から出力
される赤外線検知出力とが比例することになり、両者の
非線形性を補正するために従来必要であった補正回路を
不要とすることができ、赤外線検知回路の高精度化が図
れるとともに安価に構成することを可能とし、且つ小型
化が図れる。さらに、補正回路が不要となることで、補
正回路による調整作業が要らなくなって調整時間や調整
作業にかかる時間や労力を不要とし、この点においても
コストの削減を図ることができる。
According to the first aspect of the present invention, an infrared sensitive resistor which receives radiant heat from infrared rays, and an infrared sensitive resistor which has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature, receive the radiant heat from infrared rays. A non-reference resistance, a DC voltage generating means for outputting a DC voltage, and an inverting amplifying means for inverting and amplifying the DC voltage of the DC voltage generating means using the infrared sensitive resistor as a feedback resistance and the reference resistance as an input resistance, It is provided with an adding means for adding the DC voltage of the DC voltage generating means and the output voltage of the inverting amplifying means, and a change in the output voltage of the inverting amplifying means with respect to a change in the resistance value of the infrared sensitive resistor due to the radiant heat of infrared rays. It is possible to make it independent of the infrared sensitive resistor, and this makes it possible to detect the change in the resistance value of the infrared sensitive resistor and the infrared detection output from the adding means. Since it is proportional to the force, the correction circuit that was required in the past to correct the non-linearity of both can be eliminated, and the infrared detection circuit can be made highly accurate and can be constructed at low cost. And downsizing can be achieved. Further, since the correction circuit is not required, the adjustment work by the correction circuit is not required, and the adjustment time and the time and labor required for the adjustment work are unnecessary, and the cost can be reduced in this respect as well.

【0074】請求項2の発明は、赤外線による輻射熱を
受ける赤外線感応抵抗体と、この赤外線感応抵抗体と同
一の抵抗値であり且つ同一の温度に対する抵抗値変化を
示し赤外線による輻射熱を受けない基準抵抗と、直流電
圧を出力する直流電圧発生手段と、上記赤外線感応抵抗
体と基準抵抗との何れか一方を帰還抵抗とし他方を入力
抵抗として直流電圧発生手段の直流電圧を反転増幅する
反転増幅手段と、上記直流電圧発生手段の直流電圧と反
転増幅手段の出力電圧とを加算する加算手段と、上記赤
外線感応抵抗体が赤外線による輻射熱を受けていないと
き、上記加算手段の出力が生じないように加算手段の加
算比率または反転増幅手段の利得を調節する調節手段を
設けたものであり、直流電圧発生手段の直流電圧と、赤
外線の輻射熱に応じて変化する反転増幅手段の出力電圧
とを加算手段にて加算することにより、加算手段を構成
する直流増幅器の直流的な誤差の影響を相殺して加算手
段の出力に一切現れないようにするので、赤外線検知回
路を安価に構成することができ、また、加算手段を構成
する直流増幅器の直流的な誤差の影響が加算手段の出力
に一切現れないことにより、高性能且つ高信頼性を確保
することができる。さらに、経年変化で赤外線感応抵抗
体及び基準抵抗の抵抗値が変化することにより、赤外線
感応抵抗体が赤外線による輻射熱を受けていないとき、
加算手段の出力が生じることを、調節手段により回避す
るができ、このため長期使用時の動作の安定性及び信頼
性を確保することができる。なお、赤外線感応抵抗体を
帰還抵抗とし基準抵抗を入力抵抗とすれば、請求項1の
発明と同様に赤外線の輻射熱による赤外線感応抵抗体の
抵抗値変化に対する反転増幅手段の出力電圧変化が赤外
線感応抵抗体に依存しなくなり、赤外線感応抵抗体の抵
抗値変化と加算手段から出力される赤外線検知出力とが
比例し、両者の非線形性を補正するために従来必要であ
った補正回路を不要とすることが可能になり、赤外線検
知回路の高精度化が図れるとともに安価に構成すること
ができ、且つ小型化が図れ、さらに、補正回路が不要と
なることで、補正回路による調整作業が要らなくなって
調整時間や調整作業にかかる時間や労力を不要とし、こ
の点においてもコストの削減を図ることができる。一
方、赤外線感応抵抗体を反転増幅手段の入力抵抗とし基
準抵抗を帰還抵抗とすれば、赤外線感知回路の全体のイ
ンピーダンスを低下させることができ、外来ノイズの影
響を受けにくくすることができる。
According to the second aspect of the present invention, an infrared sensitive resistor which receives radiant heat from infrared rays, and a reference which has the same resistance value as that of the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature and which does not receive radiant heat from infrared rays. A resistor, a DC voltage generating means for outputting a DC voltage, and an inverting amplifying means for inverting and amplifying the DC voltage of the DC voltage generating means with one of the infrared sensitive resistor and the reference resistance as a feedback resistance and the other as an input resistance. And an adding means for adding the DC voltage of the DC voltage generating means and the output voltage of the inverting amplifying means, and when the infrared sensitive resistor is not receiving radiant heat from infrared rays, the output of the adding means does not occur. An adjusting means for adjusting the addition ratio of the adding means or the gain of the inverting amplifying means is provided, and the adjusting means adjusts the DC voltage of the DC voltage generating means and the infrared radiation heat. By adding the output voltage of the inverting amplification means that changes with the addition means, the influence of the DC error of the DC amplifier constituting the addition means is canceled so that it does not appear in the output of the addition means at all. , The infrared detection circuit can be constructed at low cost, and the output of the addition means is not affected by the DC error of the DC amplifier forming the addition means, thereby ensuring high performance and high reliability. be able to. Furthermore, when the infrared sensitive resistor does not receive the radiant heat from the infrared rays due to the resistance values of the infrared sensitive resistor and the reference resistance changing with age,
The output of the adding means can be prevented by the adjusting means, so that the stability and reliability of the operation during long-term use can be ensured. If the infrared sensitive resistor is used as the feedback resistor and the reference resistor is used as the input resistor, the output voltage change of the inverting amplification means with respect to the change of the resistance value of the infrared sensitive resistor due to the radiant heat of infrared rays is infrared sensitive. Since it does not depend on the resistor, the change in the resistance value of the infrared sensitive resistor is proportional to the infrared detection output output from the adding means, eliminating the need for a correction circuit conventionally required to correct the non-linearity of both. It is possible to improve the accuracy of the infrared detection circuit, can be inexpensively configured, and can be downsized, and since the correction circuit is unnecessary, the adjustment work by the correction circuit is unnecessary. The adjustment time and the time and labor required for the adjustment work are unnecessary, and the cost can be reduced in this respect as well. On the other hand, if the infrared sensitive resistor is used as the input resistance of the inverting amplification means and the reference resistance is used as the feedback resistance, the overall impedance of the infrared sensing circuit can be lowered and the influence of external noise can be reduced.

【0075】請求項3の発明は、赤外線による輻射熱を
受ける赤外線感応抵抗体と、この赤外線感応抵抗体と同
一の抵抗値であり且つ同一の温度に対する抵抗値変化を
示し赤外線による輻射熱を受けない基準抵抗と、直流電
圧を出力する第1の直流電圧発生手段と、この第1の直
流電圧発生手段と絶対値が同一で極性が逆の直流電圧を
出力する第2の直流電圧発生手段と、上記赤外線感応抵
抗体を帰還抵抗として第1の直流電圧発生手段の直流電
圧を反転増幅する第1の反転増幅手段と、上記基準抵抗
を帰還抵抗として第2の直流電圧発生手段の直流電圧を
反転増幅する第2の反転増幅手段と、上記第1及び第2
の反転増幅手段の出力電圧を加算する加算手段とを備え
たものであり、赤外線の輻射熱による赤外線感応抵抗体
の抵抗値変化に対する反転増幅手段の出力電圧変化が赤
外線感応抵抗体に依存しないようにすることができるの
で、赤外線感応抵抗体の抵抗値変化と加算手段から出力
される赤外線検知出力とが比例することになり、両者の
非線形性を補正するために従来必要であった補正回路を
不要とすることができ、赤外線検知回路の高精度化が図
れるとともに安価に構成することができ、且つ小型化が
図れる。さらに、補正回路が不要となることで、補正回
路による調整作業が要らなくなって調整時間や調整作業
にかかる時間や労力を不要とし、この点においてもコス
トの削減を図ることができる。なお、赤外線感応抵抗体
及び基準抵抗をそれぞれ第1及び第2の反転増幅手段の
帰還抵抗としているため、赤外線感知回路の全体のイン
ピーダンスを低下させることができ、外来ノイズの影響
を受けにくくすることができる。
The invention according to claim 3 is an infrared sensitive resistor which receives radiant heat from infrared rays, and a reference which has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature and which is not radiant heat due to infrared rays. A resistor, a first direct current voltage generating means for outputting a direct current voltage, a second direct current voltage generating means for outputting a direct current voltage having the same absolute value and a reverse polarity as the first direct current voltage generating means, First infrared amplifying means for inverting and amplifying the direct current voltage of the first direct current voltage generating means by using the infrared sensitive resistor as a feedback resistance, and inversion amplification of the direct current voltage of the second direct current voltage generating means by using the reference resistance as a feedback resistance. Second inverting amplification means, and the first and second
And an adding means for adding the output voltage of the inverting amplifying means, so that the output voltage change of the inverting amplifying means with respect to the resistance value change of the infrared sensitive resistor due to the radiant heat of infrared rays does not depend on the infrared sensitive resistor. Therefore, the change in the resistance value of the infrared sensitive resistor and the infrared detection output output from the adding means are proportional to each other, which eliminates the need for a correction circuit conventionally required to correct the non-linearity of both. Therefore, the infrared detection circuit can be highly accurate, can be inexpensively configured, and can be miniaturized. Further, since the correction circuit is not required, the adjustment work by the correction circuit is not required, and the adjustment time and the time and labor required for the adjustment work are unnecessary, and the cost can be reduced in this respect as well. Since the infrared sensitive resistor and the reference resistor are used as the feedback resistors of the first and second inverting amplification means, respectively, the impedance of the whole infrared sensing circuit can be lowered, and the influence of external noise can be reduced. You can

【0076】請求項4の発明は、上記赤外線感応抵抗体
が赤外線による輻射熱を受けていないとき、上記加算手
段の出力が生じないように加算手段の加算比率または反
転増幅手段の利得または第1及び第2の直流電圧発生手
段のいずれかの直流電圧を調節する調節手段を設けてあ
るので、経年変化による赤外線感応抵抗体や基準抵抗の
抵抗値の変化などにより、赤外線感応抵抗体が赤外線に
よる輻射熱を受けていないときに加算手段の出力が生じ
ることを調節手段により回避でき、このため長期使用時
の動作の安定性及び信頼性を確保することができる。
According to a fourth aspect of the present invention, the addition ratio of the adding means, the gain of the inverting amplifying means, or the first and the second and the first and second infrared receiving resistors are so arranged that the output of the adding means does not occur when the infrared sensitive resistor is not receiving radiant heat from infrared rays. Since the adjusting means for adjusting the direct current voltage of any one of the second direct current voltage generating means is provided, the infrared sensitive resistor is radiated by infrared rays due to changes in the resistance value of the infrared sensitive resistor or the reference resistance due to aging. It is possible to prevent the output of the adding means from occurring when not receiving, by the adjusting means, and therefore, it is possible to ensure the stability and reliability of the operation during long-term use.

【0077】請求項5の発明は、赤外線による輻射熱を
受ける赤外線感応抵抗体と、この赤外線感応抵抗体と同
一の抵抗値であり且つ同一の温度に対する抵抗値変化を
示し赤外線による輻射熱を受けない基準抵抗と、直流電
圧を出力する第1の直流電圧発生手段と、この第1の直
流電圧発生手段と絶対値が同一で極性が逆の直流電圧を
出力する第2の直流電圧発生手段と、上記赤外線感応抵
抗体及び基準抵抗の一方と他方とをそれぞれ介して加算
された第1の直流電圧発生手段の直流電圧と第2の直流
電圧発生手段の直流電圧とを反転増幅する反転増幅手段
とを備え、上記赤外線感応抵抗体が赤外線による輻射熱
を受けていないとき、上記加算手段の出力が生じないよ
うに加算手段の加算比率または第1及び第2の直流電圧
発生手段のいずれかの直流電圧を調節する調節手段を設
けてあるので、第1の直流電圧発生手段の直流電圧と、
第2の直流電圧発生手段の逆極性の直流電圧とを赤外線
感応抵抗体及び基準抵抗のそれぞれ一方と他方とを介し
て加算し、反転増幅することにより、加算手段を構成す
る直流増幅器の直流的な誤差の影響を相殺して加算手段
の出力に一切現れないようにするので、赤外線検知回路
を安価に構成することができ、また、高性能且つ高信頼
性を確保することができる。さらに、経年変化で赤外線
感応抵抗体及び基準抵抗の抵抗値が変化することによ
り、赤外線感応抵抗体が赤外線による輻射熱を受けてい
ないとき、加算手段の出力が生じることを、調節手段に
より回避でき、このため長期使用時の動作の安定性及び
信頼性を確保することができる。また、赤外線感応抵抗
体及び基準抵抗が反転増幅手段の入力抵抗となるため、
赤外線感知回路の全体のインピーダンスを低下させるこ
とができ、外来ノイズの影響を受けにくくすることがで
きる。
The invention according to claim 5 is an infrared sensitive resistor which receives radiant heat from infrared rays, and a reference which has the same resistance value as that of the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature and which is not radiant heat due to infrared rays. A resistor, a first direct current voltage generating means for outputting a direct current voltage, a second direct current voltage generating means for outputting a direct current voltage having the same absolute value and a reverse polarity as the first direct current voltage generating means, Inverting amplification means for inverting and amplifying the direct current voltage of the first direct current voltage generating means and the direct current voltage of the second direct current voltage generating means that are added via one and the other of the infrared sensitive resistor and the reference resistance, respectively. Any of the addition ratio of the adding means or the first and second DC voltage generating means so that the output of the adding means is not generated when the infrared sensitive resistor is not receiving radiant heat from infrared rays. Since is provided with adjusting means for adjusting the DC voltage, the DC voltage of the first DC voltage generating means,
The DC voltage of the opposite polarity of the second DC voltage generating means is added via one and the other of the infrared sensitive resistor and the reference resistance, respectively, and inverted amplification is performed, so that the DC amplifier of the DC amplifier constituting the adding means is operated. Since the influence of such an error is canceled so that it does not appear in the output of the addition means at all, the infrared detection circuit can be constructed at low cost, and high performance and high reliability can be ensured. Furthermore, by changing the resistance values of the infrared sensitive resistor and the reference resistance with aging, it is possible to prevent the output of the adding means from occurring when the infrared sensitive resistor is not receiving radiant heat from infrared rays, by the adjusting means, Therefore, the stability and reliability of operation during long-term use can be ensured. Further, since the infrared sensitive resistor and the reference resistor serve as the input resistance of the inverting amplification means,
It is possible to reduce the overall impedance of the infrared sensing circuit and make it less susceptible to external noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態の回路図である。FIG. 1 is a circuit diagram of a first embodiment.

【図2】同上を輻射温度計に用いた場合の回路図であ
る。
FIG. 2 is a circuit diagram when the same is used in a radiation thermometer.

【図3】同上の輻射温度計の動作説明図である。FIG. 3 is an operation explanatory diagram of the radiation thermometer of the same.

【図4】第2の実施形態の回路図である。FIG. 4 is a circuit diagram of a second embodiment.

【図5】第3の実施形態の回路図である。FIG. 5 is a circuit diagram of a third embodiment.

【図6】同上を人体検知装置に用いた場合の回路図であ
る。
FIG. 6 is a circuit diagram when the same is used in a human body detection device.

【図7】同上の人体検知装置の動作説明図である。FIG. 7 is an operation explanatory diagram of the human body detection device of the above.

【図8】同上の人体検知装置の一部構成を異ならせた場
合の回路図である。
FIG. 8 is a circuit diagram when a part of the configuration of the human body detection device is different.

【図9】第4の実施形態の回路図である。FIG. 9 is a circuit diagram of a fourth embodiment.

【図10】同上を人体検知装置に用いた場合の回路図で
ある。
FIG. 10 is a circuit diagram when the same is used in a human body detection device.

【図11】同上の人体検知装置の動作説明図である。FIG. 11 is an operation explanatory diagram of the human body detection device of the above.

【図12】同上の人体検知装置の一部構成を異ならせた
場合の回路図である。
FIG. 12 is a circuit diagram when a part of the configuration of the human body detecting device is different.

【図13】第5の実施形態の回路図である。FIG. 13 is a circuit diagram of a fifth embodiment.

【図14】同上を人体検知装置に用いた場合の回路図で
ある。
FIG. 14 is a circuit diagram when the same is used in a human body detection device.

【図15】同上の人体検知装置の動作説明図である。FIG. 15 is an operation explanatory diagram of the human body detection device of the above.

【図16】同上の人体検知装置の一部構成を異ならせた
場合の回路図である。
FIG. 16 is a circuit diagram when a partial configuration of the human body detection device of the above embodiment is different.

【図17】第6の実施形態の回路図である。FIG. 17 is a circuit diagram of a sixth embodiment.

【図18】同上を人体検知装置に用いた場合の回路図で
ある。
FIG. 18 is a circuit diagram when the same is used in a human body detection device.

【図19】同上の人体検知装置の動作説明図である。FIG. 19 is an operation explanatory diagram of the human body detection device of the above.

【図20】同上の人体検知装置の一部構成を異ならせた
場合の回路図である。
FIG. 20 is a circuit diagram in the case where a part of the configuration of the human body detecting device is different.

【図21】従来例の回路図である。FIG. 21 is a circuit diagram of a conventional example.

【図22】赤外線感応抵抗体としてのサーミスタの温度
特性図である。
FIG. 22 is a temperature characteristic diagram of a thermistor as an infrared sensitive resistor.

【図23】従来例を人体検知装置に用いた場合の回路図
である。
FIG. 23 is a circuit diagram when a conventional example is used in a human body detection device.

【図24】同上の人体検知装置の動作説明図である。FIG. 24 is an operation explanatory view of the human body detection device of the above.

【図25】従来例の一部構成を異ならせた場合の回路図
である。
FIG. 25 is a circuit diagram when a part of the configuration of the conventional example is changed.

【符号の説明】[Explanation of symbols]

11 直流電源 14 反転増幅器 15 加算直流増幅器 11 DC power supply 14 Inverting amplifier 15 Summing DC amplifier

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 赤外線による輻射熱を受ける赤外線感応
抵抗体と、この赤外線感応抵抗体と同一の抵抗値であり
且つ同一の温度に対する抵抗値変化を示し赤外線による
輻射熱を受けない基準抵抗と、直流電圧を出力する直流
電圧発生手段と、上記赤外線感応抵抗体を帰還抵抗とす
るとともに上記基準抵抗を入力抵抗として直流電圧発生
手段の直流電圧を反転増幅する反転増幅手段と、上記直
流電圧発生手段の直流電圧と反転増幅手段の出力電圧と
を加算する加算手段とを備えて成ることを特徴とする赤
外線検知回路。
1. An infrared sensitive resistor which receives radiant heat from infrared rays, a reference resistance which has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature, and which does not receive radiant heat due to infrared rays, and a DC voltage. DC voltage generating means for outputting, the infrared sensitive resistor as a feedback resistance and inverting amplification means for inverting and amplifying the DC voltage of the DC voltage generating means with the reference resistance as an input resistance, and the DC voltage of the DC voltage generating means. An infrared detection circuit comprising: an addition means for adding the voltage and the output voltage of the inverting amplification means.
【請求項2】 赤外線による輻射熱を受ける赤外線感応
抵抗体と、この赤外線感応抵抗体と同一の抵抗値であり
且つ同一の温度に対する抵抗値変化を示し赤外線による
輻射熱を受けない基準抵抗と、直流電圧を出力する直流
電圧発生手段と、上記赤外線感応抵抗体と基準抵抗との
何れか一方を帰還抵抗とし他方を入力抵抗として直流電
圧発生手段の直流電圧を反転増幅する反転増幅手段と、
上記直流電圧発生手段の直流電圧と反転増幅手段の出力
電圧とを加算する加算手段と、上記赤外線感応抵抗体が
赤外線による輻射熱を受けていないとき、上記加算手段
の出力が生じないように加算手段の加算比率または反転
増幅手段の利得を調節する調節手段を設けて成ることを
特徴とする赤外線検知回路。
2. An infrared sensitive resistor that receives radiant heat from infrared rays, a reference resistor that has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature, and that does not receive radiant heat from infrared rays, and a DC voltage. A DC voltage generating means for outputting, and an inverting amplifying means for inverting and amplifying the DC voltage of the DC voltage generating means with one of the infrared sensitive resistor and the reference resistance as a feedback resistance and the other as an input resistance,
An adding means for adding the DC voltage of the DC voltage generating means and the output voltage of the inverting amplifying means, and an adding means for preventing the output of the adding means from being generated when the infrared sensitive resistor is not receiving radiant heat of infrared rays. An infrared detecting circuit, characterized in that it is provided with adjusting means for adjusting the addition ratio of or the gain of the inverting amplifying means.
【請求項3】 赤外線による輻射熱を受ける赤外線感応
抵抗体と、この赤外線感応抵抗体と同一の抵抗値であり
且つ同一の温度に対する抵抗値変化を示し赤外線による
輻射熱を受けない基準抵抗と、直流電圧を出力する第1
の直流電圧発生手段と、この第1の直流電圧発生手段と
絶対値が同一で極性が逆の直流電圧を出力する第2の直
流電圧発生手段と、上記赤外線感応抵抗体を帰還抵抗と
して第1の直流電圧発生手段の直流電圧を反転増幅する
第1の反転増幅手段と、上記基準抵抗を帰還抵抗として
第2の直流電圧発生手段の直流電圧を反転増幅する第2
の反転増幅手段と、上記第1及び第2の反転増幅手段の
出力電圧を加算する加算手段とを備えて成ることを特徴
とする赤外線検知回路。
3. An infrared sensitive resistor which receives radiant heat from infrared rays, a reference resistance which has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature, and which does not receive radiant heat due to infrared rays, and a DC voltage. First to output
DC voltage generating means, second DC voltage generating means for outputting a DC voltage having the same absolute value and opposite polarity to the first DC voltage generating means, and the infrared sensitive resistor as a feedback resistance for the first DC voltage generating means. First inverting amplification means for inverting and amplifying the DC voltage of the DC voltage generating means, and second inverting amplification for the DC voltage of the second DC voltage generating means using the reference resistance as a feedback resistance.
2. The infrared detecting circuit, comprising: the inverting amplification means of 1. and the addition means for adding the output voltages of the first and second inverting amplification means.
【請求項4】 上記赤外線感応抵抗体が赤外線による輻
射熱を受けていないとき、上記加算手段の出力が生じな
いように加算手段の加算比率または反転増幅手段の利得
または第1及び第2の直流電圧発生手段のいずれかの直
流電圧を調節する調節手段を設けて成ることを特徴とす
る請求項3記載の赤外線検知回路。
4. The addition ratio of the adding means, the gain of the inverting amplifying means, or the first and second DC voltages so that the output of the adding means does not occur when the infrared sensitive resistor is not receiving radiant heat by infrared rays. 4. The infrared detecting circuit according to claim 3, further comprising adjusting means for adjusting the DC voltage of any one of the generating means.
【請求項5】 赤外線による輻射熱を受ける赤外線感応
抵抗体と、この赤外線感応抵抗体と同一の抵抗値であり
且つ同一の温度に対する抵抗値変化を示し赤外線による
輻射熱を受けない基準抵抗と、直流電圧を出力する第1
の直流電圧発生手段と、この第1の直流電圧発生手段と
絶対値が同一で極性が逆の直流電圧を出力する第2の直
流電圧発生手段と、上記赤外線感応抵抗体及び基準抵抗
の一方と他方とをそれぞれ介して入力される第1の直流
電圧発生手段の直流電圧と第2の直流電圧発生手段の直
流電圧とを加算し反転増幅する加算反転増幅手段とを備
え、上記赤外線感応抵抗体が赤外線による輻射熱を受け
ていないとき、上記加算手段の出力が生じないように加
算手段の加算比率または第1及び第2の直流電圧発生手
段のいずれかの直流電圧を調節する調節手段を設けて成
ることを特徴とする赤外線検知回路。
5. An infrared sensitive resistor which receives radiant heat from infrared rays, a reference resistance which has the same resistance value as the infrared sensitive resistor and shows a change in resistance value with respect to the same temperature, and which does not receive radiant heat due to infrared rays, and a DC voltage. First to output
DC voltage generating means, second DC voltage generating means for outputting a DC voltage having the same absolute value and opposite polarity to the first DC voltage generating means, and one of the infrared sensitive resistor and the reference resistance. The infrared responsive resistor is provided with addition inverting amplification means for adding and inverting and amplifying the DC voltage of the first DC voltage generating means and the DC voltage of the second DC voltage generating means input via the other and respectively. When there is no radiant heat from the infrared rays, an adjusting means is provided for adjusting the addition ratio of the adding means or the DC voltage of either the first or second DC voltage generating means so that the output of the adding means does not occur. An infrared detection circuit characterized by being formed.
JP2002145367A 1993-11-25 2002-05-20 Infrared detection circuit Expired - Lifetime JP3900007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145367A JP3900007B2 (en) 1993-11-25 2002-05-20 Infrared detection circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-295771 1993-11-25
JP29577193 1993-11-25
JP2002145367A JP3900007B2 (en) 1993-11-25 2002-05-20 Infrared detection circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29086494A Division JP3363272B2 (en) 1993-11-25 1994-11-25 Infrared detection circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006276754A Division JP2007003546A (en) 1993-11-25 2006-10-10 Infrared detection circuit

Publications (2)

Publication Number Publication Date
JP2003014541A true JP2003014541A (en) 2003-01-15
JP3900007B2 JP3900007B2 (en) 2007-04-04

Family

ID=26560409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145367A Expired - Lifetime JP3900007B2 (en) 1993-11-25 2002-05-20 Infrared detection circuit

Country Status (1)

Country Link
JP (1) JP3900007B2 (en)

Also Published As

Publication number Publication date
JP3900007B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US6320450B1 (en) Temperature sensing circuit using thermopile sensor
JPS597928B2 (en) Strain gauge exchanger signal conditioning circuit device
US4907446A (en) Flow sensor incorporating a thermoresistor
US4447780A (en) Linearizing circuit and method of calibrating same
JP2003050270A (en) Output correction method of magnetic sensor and its correction circuit
JP2003014541A (en) Infrared detection circuit
JPH07198483A (en) Infrared detection circuit
JP2001183106A (en) Gap detecting device with temperature compensation
JP6024561B2 (en) Sensor circuit
KR0145591B1 (en) Method and apparatus of temperature detecting by using thermofile sensor
JPH05110350A (en) Input offset voltage correcting device
JP2007003546A (en) Infrared detection circuit
Filatov et al. A Simple Digital Thermometer
KR20010036293A (en) Apparatus for determining a temperature using a Bolometer type Ifrared Rays sensor and method for compensating a sensetivity of the same
US20230408604A1 (en) Sensor output compensation circuit
JP2005055323A (en) Noncontact temperature detecting apparatus
JP2673075B2 (en) Humidity detection circuit
JPH0843208A (en) Infrared detection circuit
JP3070308B2 (en) Heat detector
KR19980021473A (en) Temperature measuring device and temperature compensation method
KR19980035932A (en) Digital Amplification Error Correction Method
JPH0572053A (en) Temperature detecting apparatus
JP2023056616A (en) gas sensor
JP2010011294A (en) Amplifier, and load signal amplification device
JPS61243338A (en) Temperature compensation circuit for semiconductor prressure sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

EXPY Cancellation because of completion of term