JP2003013152A - Method for charging ore to be charged into flash furnace - Google Patents

Method for charging ore to be charged into flash furnace

Info

Publication number
JP2003013152A
JP2003013152A JP2001201619A JP2001201619A JP2003013152A JP 2003013152 A JP2003013152 A JP 2003013152A JP 2001201619 A JP2001201619 A JP 2001201619A JP 2001201619 A JP2001201619 A JP 2001201619A JP 2003013152 A JP2003013152 A JP 2003013152A
Authority
JP
Japan
Prior art keywords
charging
ore
flow rate
chute
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201619A
Other languages
Japanese (ja)
Inventor
Makoto Hamamoto
真 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001201619A priority Critical patent/JP2003013152A/en
Publication of JP2003013152A publication Critical patent/JP2003013152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for charging an ore to be charged into a flash smelting furnace, which can inexpensively and accurately regulate the charging amount of ore, and can stabilize the mat grade. SOLUTION: In the method for charging an ore to be charged into the flash smelting furnace, which cuts out the ore 30 into a fixed volume, carries it by a chain conveyor 12 and drops it in a chute 14, and charges it into the flash smelting furnace 1 with an oxygen-enriched air 40 from a concentrate burner 9 at the outlet of the chute, a flowmeter 15 is installed on the way to the chute, which converts a change of the capacitance detected when particulate matters pass between capacitor plates, into a flow rate of the particulate matters; the falling flow rate of the charged ore in the chute is measured with the flowmeter; and the revolution speed of a motor 13 for the chain conveyer is regulated so as to make the measured flow rate of the charged ore match with an aimed charging quantity. And also, a shutter 17 for opening/closing the chute is installed on the outlet side of the installed flow meter, and it is opened during charging and closed during the rest time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Cu,Niなどのマッ
トを産出する自溶炉の装入鉱石装入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging ore charging method for a flash smelting furnace that produces mats such as Cu and Ni.

【0002】[0002]

【従来の技術】非鉄金属製錬に広く用いられている自溶
炉法は、装入鉱石の酸化反応熱を利用するため、他の方
法(溶鉱炉法、反射炉法)に比し燃料消費率が低く、環
境管理の強化にも対応できるなどの特徴を備えている。
図1に示すように、自溶炉1の炉体は、シャフト2、セ
ットラー3、アップテイク4からなる。操業にあたって
は、シャフト2頂部から精鉱バーナ9を用いて、Cuまた
はNiなどの精鉱、フラックスその他の装入物および微粉
炭、コークスなどの燃料(以下、これらの装入物を「装
入鉱石」という。)を、炉頂ダクト10に別途配送されて
きた熱風(予熱された酸素富化空気)とともにシャフト
2内に吹き込む。シャフト2内では装入物の酸化反応熱
と燃料の燃焼熱により精鉱等の溶解および酸化が進行
し、マット5、スラグ6からなる溶体および亜硫酸ガス
が生成する。溶体はセットラー3内に蓄積し、比重差に
より上下に分離した層をなす。マット5は間欠的にマッ
トホール7から抽出され、レードルを介して転炉工場に
送られる。スラグ6は連続的あるいは間欠的にスラグホ
ール8から抽出され、錬かん炉(図示せず)に送られた
り、水砕処理などを施される。亜硫酸ガスはスラグ層の
上空を流れ、アップテイク4を経て硫酸工場へ配送さ
れ、硫酸製造の原料とされる。
2. Description of the Related Art The flash smelting furnace method, which is widely used for smelting non-ferrous metals, utilizes the heat of oxidation reaction of the ore charged, so the fuel consumption rate is higher than other methods (blast furnace method, reverberatory furnace method). It has low characteristics and is capable of responding to the strengthening of environmental management.
As shown in FIG. 1, the furnace body of the flash smelting furnace 1 includes a shaft 2, a setler 3, and an uptake 4. In operation, a concentrate burner 9 is used from the top of the shaft 2 to concentrate Cu, Ni, etc., flux and other charges, and pulverized coal, coke, etc. fuel (hereinafter, these charges are referred to as “charge”). Ore ”) is blown into the shaft 2 together with the hot air (preheated oxygen-enriched air) separately delivered to the furnace top duct 10. In the shaft 2, the oxidization reaction heat of the charge and the combustion heat of the fuel cause dissolution and oxidation of the concentrate and the like, and a solution composed of the mat 5 and the slag 6 and sulfur dioxide are produced. The solution accumulates in the setler 3 and forms layers separated vertically due to the difference in specific gravity. The mat 5 is intermittently extracted from the mat hole 7 and sent to the converter factory via a ladle. The slag 6 is continuously or intermittently extracted from the slag hole 8 and sent to a smelting furnace (not shown) or subjected to water granulation treatment or the like. Sulfurous acid gas flows over the slag layer, is delivered to the sulfuric acid factory via the uptake 4, and is used as a raw material for sulfuric acid production.

【0003】自溶炉では、産出マットのマット品位(マ
ットの主体金属濃度)を転炉要求値(Cuマットの一例で
はCu:60〜67%)に一致させる必要がある。マット品位
は、主に装入鉱石装入量と酸素富化空気量とのバランス
によって決まるので、装入鉱石装入量を正しく計測・制
御することが肝要である。自溶炉の装入鉱石装入量を測
定する方式としては、次のようなものがある。
In the flash smelting furnace, it is necessary to match the matte quality of the produced mat (concentration of the main metal of the matte) with the converter required value (Cu: 60 to 67% in one example of Cu matte). Since the matte quality is mainly determined by the balance between the charged ore charging amount and the oxygen-enriched air amount, it is important to correctly measure and control the charged ore charging amount. The following methods are available for measuring the amount of ore charged in the flash smelting furnace.

【0004】(A) ロスインウェイトフィーダ ホッパに充填された精鉱もしくは装入鉱石を秤量器でリ
アルタイムに計測し、スクリューコンベアで徐々に切り
出し、ホッパの重量減分を装入量として取り扱うもの。
ホッパ内の精鉱もしくは装入鉱石が使い果たされる前に
すばやく充填し、連続して切り出す。オートクンプ社が
主にエンジニアリングしており、最近、多くの海外製錬
所が導入し始めている。
(A) Loss-in-weight feeder The concentrate or ore charged in the hopper is measured in real time by a weighing machine, gradually cut out by a screw conveyor, and the weight reduction of the hopper is treated as the charging amount.
Before the concentrate or ore in the hopper is exhausted, it is quickly filled and continuously cut out. Mainly engineered by Autokump, many overseas smelters have recently begun to introduce it.

【0005】(B) チェーンコンベアの駆動モータ出力か
ら換算 例えば、精鉱もしくは装入鉱石を大量(200〜400t程度)
に貯蔵してあるビンの下部に付設されている、チェーン
コンベアに定容積で精鉱等が充填されるようにしてお
き、そのチェーンコンベアの搬送スピードから装入量を
求める。通常、チェーンコンベアの搬送スピードは、チ
ェーンコンベアを駆動しているモータの回転量(モータ
のインバータ出力)から求められることが多い。大概の
製錬所で従来から用いられている。
(B) Conversion from the drive motor output of the chain conveyor For example, a large amount of concentrate or charged ore (about 200 to 400 t)
The chain conveyor, which is attached to the lower part of the bottle stored in, is filled with concentrate or the like in a constant volume, and the charging amount is obtained from the transport speed of the chain conveyor. Usually, the transport speed of the chain conveyor is often obtained from the amount of rotation of the motor driving the chain conveyor (motor inverter output). Traditionally used in most smelters.

【0006】[0006]

【発明が解決しようとする課題】前記(A) の方式は信頼
性に優れると考えられるが、導入費用が高価(億単位)
なため、投資額が過大となる問題がある。また、前記
(B) の方式は安価であるが、複数の銘柄の精鉱を調合
(ブレンド)して使用する場合、ビンの充填度や使用す
る精鉱等の種類によって、チェーンコンベアに充填され
る粉末状の装入鉱石のかさ比重が変わるために、搬送ス
ピードが一定でも搬送重量が変わり、装入鉱石装入量
(単位時間あたりの装入鉱石装入重量)が狙い値から外
れて、マット品位のばらつきが大きくなるという問題が
ある。
Although the method (A) is considered to have excellent reliability, the introduction cost is high (100 million units).
Therefore, there is a problem that the investment amount becomes excessive. Also, the above
Method (B) is inexpensive, but mixes concentrates from multiple brands
When used as a (blend), the bulk specific gravity of the powdered ore charged to the chain conveyor changes depending on the filling degree of the bottle and the type of concentrate used. However, there is a problem that the amount of charged ore (charged amount of charged ore per unit time) deviates from the target value and the variation in mat quality becomes large.

【0007】そこで、本発明は、装入鉱石装入量を安価
にかつ精度よく調節でき、マット品位を安定させうる自
溶炉の装入鉱石装入方法を提供することを目的とする。
[0007] Therefore, an object of the present invention is to provide a charging ore charging method for a flash smelting furnace capable of adjusting the charging ore charging amount inexpensively and accurately and stabilizing the matte quality.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく鋭意検討した結果、コンデンサ極板間に粉
粒体を流して検出した静電容量の変化を粉粒体流量に換
算する方式の流量計(特開平11−79411 号公報、特開20
01−21397 号公報参照)を用いて精鉱バーナへのシュー
ト内の装入鉱石流量を計測し、この計測装入鉱石流量が
目標装入量に一致するように、前記シュートにビンから
定容積に切出した装入鉱石を送り込むチェーンコンベア
のモータ回転数を制御することにより、装入鉱石装入量
の狙い精度が向上することを見出した。また、シュート
の流量計出側部にシャッタを設けることにより、流量計
の熱損傷を防止し計測精度を確保できることを見出し
た。また、精鉱等のブレンド割合の変動による計測装入
鉱石流量の真値外れに対しては、炉況監視データ(炉内
ガス温度、廃熱ボイラ入側ガス温度、排出スラグのスラ
グロスなど)に基づいて、酸素富化空気流量を加減する
ことにより、マット品位を安定させうることを見出し
た。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a change in capacitance detected by flowing a powder or granular material between capacitor electrode plates is determined by the flow rate of the powder or granular material. A conversion type flow meter (Japanese Patent Laid-Open Nos. 11-79411 and 20
(Refer to the 01-21397 publication) to measure the flow rate of the charged ore in the chute to the concentrate burner, and to ensure that the measured charged ore flow rate matches the target charging amount, the chute has a constant volume from the bottle. It was found that the target accuracy of the charging amount of the ore is improved by controlling the motor speed of the chain conveyor that feeds the charged ore into the ground. It was also found that the shutter is provided on the flow meter outlet side of the chute to prevent heat damage to the flow meter and ensure measurement accuracy. In addition, for deviations in the true value of the measured ore flow rate due to fluctuations in the blending ratio of concentrates, etc., the reactor condition monitoring data (reactor gas temperature, waste heat boiler inlet gas temperature, slag loss of discharged slag, etc.) Based on this, it was found that the mat quality can be stabilized by adjusting the flow rate of oxygen-enriched air.

【0009】本発明はこれらの知見に基づいてなされた
ものであり、その要旨は以下のとおりである。 (1)装入鉱石を定容積に切出してチェーンコンベアで
運んでシュート内に落とし、シュート出口の精鉱バーナ
から酸素富化空気と共に自溶炉内に装入する自溶炉の装
入鉱石装入方法において、コンデンサ極板間に粉粒体を
流して検出した静電容量の変化を粉粒体流量に換算する
方式の流量計をシュート途中に設置してシュート内の装
入鉱石の落下流量を計測し、この計測装入鉱石流量が目
標装入量に一致するようにチェーンコンベアのモータ回
転数を調節することを特徴とする自溶炉の装入鉱石装入
方法。
The present invention has been made on the basis of these findings, and its gist is as follows. (1) Charged ore charge in a flash smelting furnace where the charge ore is cut into a fixed volume, conveyed by a chain conveyor, dropped into a chute, and charged into the flash smelter together with oxygen-enriched air from the concentrate burner at the chute exit. In the charging method, the flow rate of the charged ore in the chute is set by installing a flow meter in the chute that converts the change in capacitance detected by flowing the powder or granules between the capacitor plates into the flow rate of the granule. Is measured and the motor rotation speed of the chain conveyor is adjusted so that the measured charging ore flow rate matches the target charging amount.

【0010】(2)シュート開閉用シャッタを流量計設
置部出側に設置し、装入実行中は開、装入停止中は閉に
することを特徴とする(1)記載の自溶炉の精鉱装入方
法。 (3)前記シャッタは2以上の位置に設置し、装入停止
中は閉シャッタ間のシュート内に不活性ガスを流すこと
を特徴とする(2)記載の自溶炉の装入鉱石装入方法。
(2) A shutter for opening and closing a chute is installed on the outlet side of the flow meter installation section, and is opened during charging and closed during charging, and the flash smelting furnace according to (1) is characterized in that Concentrate charging method. (3) The shutter is installed at two or more positions, and an inert gas is allowed to flow in the chute between the closed shutters while charging is stopped. (2) Charging ore charging of a flash smelting furnace Method.

【0011】(4)装入実行中に前記計測装入鉱石流量
に異常変動が生じ、次いで炉内ガス温度および/または
廃熱ボイラ入口ガス温度の監視計測データに異常変化が
生じたとき、該異常変化が増側ならば前記酸素富化空気
の流量を減少させ、前記異常変化が減側ならば前記酸素
富化空気の流量を増加させることを特徴とする(1)〜
(3)のいずれかに記載の自溶炉の装入鉱石装入方法。
(4) When an abnormal change occurs in the flow rate of the measured charging ore during charging, and then an abnormal change occurs in the monitoring measurement data of the gas temperature in the furnace and / or the gas temperature at the waste heat boiler inlet, If the abnormal change is on the increase side, the flow rate of the oxygen-enriched air is decreased, and if the abnormal change is on the decrease side, the flow rate of the oxygen-enriched air is increased (1)-
The charging ore charging method of the flash smelting furnace according to any one of (3).

【0012】(5)装入実行中に前記計測装入鉱石流量
に異常変動が生じ、次いで排出スラグのスラグロスおよ
び/または抽出マットのマット品位の監視分析データに
異常変化が生じたとき、該異常変化が増側ならば前記酸
素富化空気の流量を減少させ、前記異常変化が減側なら
ば前記酸素富化空気の流量を増加させることを特徴とす
る(1)〜(4)のいずれかに記載の自溶炉の装入鉱石
装入方法。
(5) When an abnormal change occurs in the measured ore flow rate during the charging operation, and then an abnormal change occurs in the monitoring analysis data of the slag loss of the discharged slag and / or the matte quality of the extraction mat, the anomaly occurs. If the change is on the increase side, the flow rate of the oxygen-enriched air is decreased, and if the abnormal change is on the decrease side, the flow rate of the oxygen-enriched air is increased (1) to (4). The method for charging ore charging of the flash smelting furnace described in.

【0013】[0013]

【発明の実施の形態】図2は、本発明(1)の実施形態
の1例を示す模式図である。ビン11に貯蔵されている装
入鉱石30は定容積(所定の容積)に切出されチェーンコ
ンベア12で運ばれてシュート14内に落とされる。シュー
ト14は自溶炉1のシャフト2頂部の精鉱バーナ9に繋が
っている。精鉱バーナ9に達した装入鉱石30は、炉頂ダ
クト10からの酸素富化空気40の気流に乗って炉内に装入
される。シュート14の途中には、シュート内の装入鉱石
の落下流量を計測する流量計15が設置されている。流量
計15の計測結果(計測装入鉱石流量)は調節器16に送ら
れる。調節器16は送られてきた計測装入鉱石流量と目標
装入量とを比較し、その差が許容誤差範囲内に収まるよ
うに、チェーンコンベア12を駆動するモータ13のインバ
ータに作用してモータ13の回転数を調節する。
FIG. 2 is a schematic view showing an example of an embodiment of the present invention (1). The charged ore 30 stored in the bin 11 is cut into a constant volume (predetermined volume), carried by the chain conveyor 12, and dropped into the chute 14. The chute 14 is connected to the concentrate burner 9 on the top of the shaft 2 of the flash smelting furnace 1. The charged ore 30 reaching the concentrate burner 9 is loaded into the furnace by riding on the air flow of the oxygen-enriched air 40 from the furnace top duct 10. A flow meter 15 is installed in the middle of the chute 14 to measure the falling flow rate of the charged ore in the chute. The measurement result of the flow meter 15 (flow rate of measured ore) is sent to the controller 16. The controller 16 compares the sent measured charge ore flow rate with the target charge amount, and acts on the inverter of the motor 13 that drives the chain conveyor 12 so that the difference falls within the allowable error range. Adjust the rotation speed of 13.

【0014】流量計15は、コンデンサ極板間に粉粒体を
流して検出した静電容量の変化を粉粒体流量に換算する
方式のものである。その構成例を図3に示す。同一構造
の2組のコンデンサ極板の1組を測定電極20、もう1組
を基準電極21とし、シュート14に測定電極20を装着し、
測定電極20と基準電極21とでブリッジ回路を組む。粉粒
体である装入鉱石30が測定電極20部を通過する間は、測
定電極20の静電容量が増加し、基準電極21との間に静電
容量に対応した差分電流がブリッジ回路から出力され
る。この差分電流をアンプ22で検出し、演算器23で処理
して粉粒体流量に換算し、流量計15の計測結果とする。
演算器23は、差分電流を時間積分し、その結果を粉粒体
流量に換算される。換算に必要な検量線(差分電流と粉
粒体流量との関係式)は実験で求めておく。この種の流
量計15としては、インステック株式会社製の「静電容量
式粉粒体流量計測装置」が好ましく用いうる。
The flow meter 15 is of a type in which a change in capacitance detected by flowing a powder or granular material between the capacitor plates is converted into a powder or granular material flow rate. An example of the configuration is shown in FIG. One set of two sets of capacitor plates having the same structure is the measurement electrode 20, the other set is the reference electrode 21, the measurement electrode 20 is attached to the chute 14,
The measurement electrode 20 and the reference electrode 21 form a bridge circuit. While the charged ore 30, which is a granular material, passes through the measurement electrode 20 part, the capacitance of the measurement electrode 20 increases, and a difference current corresponding to the capacitance is generated between the reference electrode 21 and the bridge circuit. Is output. The difference current is detected by the amplifier 22, processed by the calculator 23 and converted into the flow rate of the granular material, which is used as the measurement result of the flow meter 15.
The calculator 23 integrates the difference current with respect to time and converts the result into a powder or granular material flow rate. The calibration curve (the relational expression between the differential current and the flow rate of the granular material) required for the conversion is experimentally obtained. As the flow meter 15 of this type, “Capacitance type granular material flow rate measuring device” manufactured by Instech Co., Ltd. can be preferably used.

【0015】本発明で用いる測定方式は、従来方式(A)
よりも安価((A) の1/10程度)である。また、粉粒体
のかさ密度差は差分電流の瞬時値差と持続時間差を生じ
させるが、瞬時値差と持続時間差の積は一定となるの
で、差分電流の時間積分値は、粉粒体のかさ密度に関係
なく通過重量だけを反映する。よって、本発明では、従
来方式(B) よりも装入鉱石装入量の狙い精度が高くな
る。
The measuring method used in the present invention is the conventional method (A).
It is cheaper (about 1/10 of (A)). Further, the difference in bulk density of the granular material causes the difference in the instantaneous value of the differential current and the duration difference, but the product of the instantaneous value difference and the duration difference is constant, so the time integrated value of the differential current is It reflects only the passing weight regardless of the density. Therefore, in the present invention, the aiming accuracy of the charging amount of the ore is higher than that in the conventional method (B).

【0016】また、本発明(2)では、例えば図4に示
すように、シュート開閉用シャッタ17を流量計設置部出
側(シュート14の流量計15と精鉱バーナ9との間の部
分)に設置し、装入実行中は開、装入停止中は閉にす
る。本発明(1)ではシュート14は炉内に筒抜けである
ので、装入停止時(とくに操業トラブルによる装入停止
時)に、炉内ガスがシャフト2からシュート14内に流れ
込み、流量計設置部の温度が流量計15の適正使用温度
(例えば常温〜80℃程度)を超えて150 ℃近くまで上昇
し、流量計15の性能劣化をきたす可能性がある。これに
対し、本発明(2)によれば、装入停止中はシャッタ17
が閉じているから、流量計設置部へのSO2 ガスを含む炉
内ガス進入がなく、温度の異常上昇による流量計の性能
劣化を防止できる。好ましくは流量計を構成する材料は
耐熱、耐腐食性のものを選択しておくのがよい。なお、
10〜15分間程度の炉内点検のような、短時間の装入停止
時においては、シャッタ17を閉めなくてよい場合もあ
る。
Further, in the present invention (2), as shown in FIG. 4, for example, a chute opening / closing shutter 17 is provided on the outlet side of the flowmeter installation portion (a portion between the flowmeter 15 of the chute 14 and the concentrate burner 9). Installed at, open during charging and close during charging stop. In the present invention (1), since the chute 14 is hollow in the furnace, the gas inside the furnace flows into the chute 14 from the shaft 2 when charging is stopped (particularly when charging is stopped due to operational trouble), and the flowmeter installation part May exceed the appropriate operating temperature of the flowmeter 15 (for example, room temperature to about 80 ° C) and rise to nearly 150 ° C, resulting in deterioration of the performance of the flowmeter 15. On the other hand, according to the present invention (2), the shutter 17 is stopped while charging is stopped.
Since the is closed, there is no ingress of the furnace gas containing SO 2 gas into the flow meter installation part, and the performance deterioration of the flow meter due to abnormal temperature rise can be prevented. It is preferable to select heat-resistant and corrosion-resistant materials for the flowmeter. In addition,
The shutter 17 may not be required to be closed when the charging is stopped for a short time such as inspecting the furnace for about 10 to 15 minutes.

【0017】また、本発明(3)では、例えば図5に示
すように、前記シャッタ17を2以上の位置に設置し、装
入停止中は閉シャッタ間のシュート14内に、窒素ガスや
アルゴンガスなどの不活性ガス50を流す。これによれ
ば、シャッタ17が不活性ガス17で冷却されるので、流量
計15の温度上昇をより確実に防止できる。また、閉シャ
ッタ上に装入鉱石の一部が残留することがありうるが、
それが炉熱で昇温・発火する危険性もなくなる。
Further, in the present invention (3), for example, as shown in FIG. 5, the shutter 17 is installed at two or more positions, and nitrogen gas or argon is provided in the chute 14 between the closed shutters while charging is stopped. Inert gas 50 such as gas is flowed. According to this, since the shutter 17 is cooled by the inert gas 17, the temperature rise of the flow meter 15 can be prevented more reliably. Also, some of the charged ore may remain on the closed shutter,
There is also no danger of the temperature of the furnace heating up or igniting.

【0018】ところで、本発明で用いる測定方式では、
前述のようにかさ密度は計測装入鉱石流量の誤差要因か
ら外れるが、粉粒体の比誘電率が当該誤差要因に加わ
る。精鉱等はブレンドのされ方により比誘電率が変わ
る。使用するブレンド種ごとに検量線を求めておき、ブ
レンド種の変更の都度検量線を変更後のブレンド種に対
応するものに切り替えるようにすれば、比誘電率差によ
る流量計測誤差を小さくしうるが、ブレンド種の数が多
い場合、その数だけの検量線を逐一求める実験の負荷が
過大となり、現実的ではない。
By the way, in the measuring method used in the present invention,
As described above, the bulk density deviates from the error factor of the measured ore flow rate, but the relative permittivity of the granular material adds to the error factor. The relative permittivity of concentrates changes depending on how they are blended. If a calibration curve is obtained for each blend type to be used and the calibration curve is switched to the one corresponding to the blend type after the change every time the blend type is changed, the flow rate measurement error due to the difference in relative permittivity can be reduced. However, when the number of blended species is large, the load of the experiment for obtaining the calibration curve for that number is too large, which is not realistic.

【0019】このような場合の対応策として、本発明
(4)では、装入実行中に前記計測装入鉱石流量に異常
変動が生じ、次いで炉内ガス温度および/または廃熱ボ
イラ入口ガス温度の監視計測データに異常変化が生じた
とき、該異常変化が増側ならば前記酸素富化空気の流量
を減少させ、前記異常変化が減側ならば前記酸素富化空
気の流量を増加させるようにした。ここに、「異常変
動」または「異常変化」とは、同一ブレンド種装入時の
実績変動範囲に基づいて特定される範囲を超えた変動ま
たは変化を意味する (以下同じ)。なお、廃熱ボイラ
は、炉の排ガスの熱を利用して蒸気を得るもので、図示
を省略するが、図1のアップテイク4に連接させて配置
されている。
As a countermeasure against such a case, in the present invention (4), an abnormal fluctuation occurs in the flow rate of the measured ore charged during the charging operation, and then the gas temperature in the furnace and / or the gas temperature at the waste heat boiler inlet is measured. When an abnormal change occurs in the monitoring measurement data of, the flow rate of the oxygen-enriched air is decreased if the abnormal change is on the increase side, and the flow rate of the oxygen-enriched air is increased if the abnormal change is on the decrease side. I chose Here, the "abnormal fluctuation" or "abnormal change" means a fluctuation or change that exceeds a range specified based on the actual fluctuation range at the time of charging the same blend type (hereinafter the same). The waste heat boiler uses the heat of the exhaust gas of the furnace to obtain steam, and although it is not shown in the figure, it is arranged so as to be connected to the uptake 4 in FIG.

【0020】計測装入鉱石流量の異常変動は、ブレンド
種が現行の検量線と合わないものに変更されたことを指
し示している。したがって、計測装入鉱石流量の真値か
らのずれが大きくなっているはずである。計測装入鉱石
流量が真値よりも大(または小)の場合は、実際の装入
量が目標装入量よりも大(または小)となり、O2 /装
入鉱石比(炉内反応に関与する酸素量と装入鉱石量の
比)が、マット品位との関係から設定されている適正値
よりも小(または大)となる。これに伴って変化する要
因として、炉内ガス温度や廃熱ボイラ入口ガス温度が挙
げられる。炉内ガス温度や廃熱ボイラ入口ガス温度は、
2 /装入鉱石比が前記適正値よりも小(または大)の
とき、減(または増)側に変化する。この変化は炉内ガ
ス温度や廃熱ボイラ入口ガス温度の監視計測データに反
映される。
Anomalous fluctuations in the measured charge ore flow rate indicate that the blend species has been changed to one that does not match the current calibration curve. Therefore, the deviation of the measured ore flow rate from the true value should be large. When the measured charging ore flow rate is larger (or smaller) than the true value, the actual charging amount becomes larger (or smaller) than the target charging amount, and the O 2 / charging ore ratio (in reactor reaction The ratio of the amount of oxygen involved and the amount of ore charged) is smaller (or larger) than the appropriate value set from the relationship with the matte quality. Factors that change with this include the furnace gas temperature and the waste heat boiler inlet gas temperature. The furnace gas temperature and the waste heat boiler inlet gas temperature are
When the O 2 / charged ore ratio is smaller (or larger) than the appropriate value, it changes to the decreasing (or increasing) side. This change is reflected in the monitoring and measurement data of the furnace gas temperature and the waste heat boiler inlet gas temperature.

【0021】そこで本発明(4)では、炉内ガス温度お
よび/または廃熱ボイラ入口ガス温度の監視計測データ
の変化が異常か否かを判定し、異常ありの場合は、前記
変化が減側ならば酸素富化空気の流量を増側、前記変化
が増側ならば酸素富化空気の流量を減側に設定変更す
る。異常なしの場合は該設定変更を行わない。これによ
り、O2 /装入鉱石比を適正値に復帰させることができ
て、マット品位のばらつきが抑えられる。
Therefore, according to the present invention (4), it is judged whether or not the change in the monitoring measurement data of the furnace gas temperature and / or the waste heat boiler inlet gas temperature is abnormal. If there is an abnormality, the change is reduced. If so, the flow rate of the oxygen-enriched air is increased, and if the change is on the increase side, the oxygen-enriched air flow rate is decreased. If there is no abnormality, the setting is not changed. As a result, the O 2 / charged ore ratio can be returned to an appropriate value, and variations in matte quality can be suppressed.

【0022】炉内ガス温度と廃熱ボイラ入口ガス温度と
は、これらのいずれか一方または両方を酸素富化空気流
量設定変更の指示要因として用いうるが、ダブルチェッ
クして信頼性を高める観点からすれば、両方を用いる方
が好ましい。なお、本発明(4)の実施にあたっては、
炉内ガス温度や廃熱ボイラ入口ガス温度の変化量と酸素
富化空気流量の設定変更量との関係式が必要であるが、
かかる関係式は、操業実績データ解析や実験などにより
求めることができる。
Either one or both of the in-furnace gas temperature and the waste heat boiler inlet gas temperature can be used as an instruction factor for changing the oxygen-enriched air flow rate setting, but from the viewpoint of double checking to improve reliability. If so, it is preferable to use both. In carrying out the present invention (4),
A relational expression between the amount of change in the gas temperature in the furnace and the gas temperature at the inlet of the waste heat boiler and the setting change amount of the oxygen-enriched air flow rate is necessary
Such a relational expression can be obtained by analysis of operation result data, experiments, and the like.

【0023】また、本発明(5)では、装入実行中に前
記計測装入鉱石流量に異常変動が生じ、次いで排出スラ
グのスラグロスおよび/または抽出マットのマット品位
の監視分析データに異常変化が生じたとき、該異常変化
が増側ならば前記酸素富化空気の流量を減少させ、前記
異常変化が減側ならば前記酸素富化空気の流量を増加さ
せるようにした。
Further, in the present invention (5), an abnormal fluctuation occurs in the measured charging ore flow rate during the charging operation, and then an abnormal change occurs in the monitoring analysis data of the slag loss of the discharged slag and / or the matte quality of the extraction mat. When the abnormal change occurs, the flow rate of the oxygen-enriched air is decreased if the abnormal change is on the increase side, and the flow rate of the oxygen-enriched air is increased if the abnormal change is on the decrease side.

【0024】上述のように、計測精鉱流量の異常変動が
あると、それに伴ってO2 /装入鉱石比が、マット品位
との関係から設定されている適正値よりも小(または
大)となる。これに伴って変化する要因として、上記の
炉内ガス温度や廃熱ボイラ入口ガス温度のほか、スラグ
ロスやマット品位が挙げられる。マットの主体金属(製
錬主対象金属)をMで表すと、スラグロスはスラグのM
濃度、マット品位はマットのM濃度で評価される。スラ
グロスやマット品位は、O2 /装入鉱石比が前記適正値
よりも小(または大)のとき、減(または増)側に変化
する。この変化は排出スラグのスラグロスや抽出マット
のマット品位の監視分析データに反映される。
As described above, if there is an abnormal fluctuation in the measured concentrate flow rate, the O 2 / charged ore ratio will be smaller (or larger) than the appropriate value set from the relationship with the matte quality. Becomes Factors that change with this include the slag loss and matte grade, in addition to the above-mentioned furnace gas temperature and waste heat boiler inlet gas temperature. If the main metal of the matte (metal subject to refining) is represented by M, slag loss is M of slag.
The density and mat quality are evaluated by the M density of the mat. The slag loss and matte grade change to the decreasing (or increasing) side when the O 2 / charged ore ratio is smaller (or larger) than the proper value. This change is reflected in the monitoring analysis data of slag loss of discharged slag and matte quality of extraction matte.

【0025】そこで本発明(5)では、排出スラグのス
ラグロスおよび/または抽出マットのマット品位の監視
分析データの変化が異常か否かを判定し、異常ありの場
合は、前記変化が減側ならば酸素富化空気の流量を増
側、前記変化が増側ならば酸素富化空気の流量を減側に
設定変更する。異常なしの場合は該設定変更を行わな
い。これにより、O2 /装入鉱石比を適正値に復帰させ
ることができて、マット品位のばらつきが抑えられる。
Therefore, in the present invention (5), it is determined whether or not the change in the monitoring analysis data of the slag loss of the discharged slag and / or the matte quality of the extraction mat is abnormal. For example, the flow rate of the oxygen-enriched air is increased, and if the change is on the increase side, the flow rate of the oxygen-enriched air is decreased. If there is no abnormality, the setting is not changed. As a result, the O 2 / charged ore ratio can be returned to an appropriate value, and variations in matte quality can be suppressed.

【0026】排出スラグのスラグロスと抽出マットのマ
ット品位とは、これらのいずれか一方または両方を酸素
富化空気流量設定変更の指示要因として用いうるが、排
出スラグと抽出マットの分析チャンスを比較すると、ス
ラグは連続的に排出されるから排出スラグの分析チャン
スに制約はないのに対し、マットは断続的に抽出される
から抽出マットの分析チャンスは断続的なマット抽出チ
ャンスに限られる。そのため、酸素富化空気流量設定変
更の指示要因としては、分析チャンスフリーの排出スラ
グのスラグロスの方がより好ましく用いうる。抽出マッ
トのマット品位の方は、マット抽出チャンスが前記計測
装入鉱石流量の異常変動と同期した場合に、排出スラグ
のスラグロス変化傾向の検証用にするとよい。なお、本
発明(5)の実施にあたっては、排出スラグのスラグロ
スや抽出マットのマット品位の変化量と酸素富化空気流
量の設定変更量との関係式が必要であるが、かかる関係
式は、操業実績データ解析や実験などにより求めること
ができる。また、本発明(4)と(5)を併用すること
により、さらなる好結果が得られる。
The slag loss of the discharged slag and the matte quality of the extraction mat may be used as one or both of them as an instruction factor for changing the oxygen-enriched air flow rate setting. Since the slag is continuously discharged, there is no restriction on the analysis chance of the discharged slag, whereas the mat is extracted intermittently, so the analysis opportunity of the extracted mat is limited to the intermittent mat extraction opportunity. Therefore, as the instruction factor for changing the oxygen-enriched air flow rate setting, the slag loss of the exhaust slag that is analysis chance-free can be used more preferably. The matte quality of the extraction mat may be used for verifying the slag loss change tendency of the discharged slag when the matte extraction chance is synchronized with the abnormal fluctuation of the measured charging ore flow rate. In carrying out the present invention (5), a relational expression between the amount of change in the slag loss of the exhaust slag and the matte quality of the extraction mat and the amount of change in the setting of the oxygen-enriched air flow rate is necessary. It can be obtained by analyzing operation results data and experiments. Further, by using the present invention (4) and (5) together, further favorable results can be obtained.

【0027】[0027]

【実施例】図1に示した形態の自溶炉において、従来は
前記従来方式(B) でブレンドしたCu精鉱等からなる鉱石
(以下、Cu鉱石という。)の装入が行われており、マッ
ト品位変動はσ(標準偏差)=1〜3%程度であった。
この自溶炉において、本発明(1)に従い、図2のよう
に流量計15および調節器16を設置し、流量計の計測値が
目標装入量に一致するようにチェーンコンベアのモータ
回転数を制御しながらCu鉱石を装入するようにした。流
量計には図3のような構成になるインステック株式会社
製「静電容量式粉粒体流量計測装置」を用いた。この流
量計の適正使用温度は常温〜80℃である。
[Example] In the flash furnace of the form shown in FIG. 1, an ore (hereinafter referred to as Cu ore) composed of Cu concentrate or the like blended by the conventional method (B) is conventionally charged. The variation in matte quality was about σ (standard deviation) = 1 to 3%.
In this flash smelting furnace, according to the present invention (1), a flow meter 15 and a controller 16 are installed as shown in FIG. 2, and the motor speed of the chain conveyor is adjusted so that the measured value of the flow meter matches the target charging amount. The Cu ore was charged while controlling the temperature. As the flow meter, "Capacitance type granular material flow rate measuring device" manufactured by Instech Co., Ltd. having a configuration as shown in FIG. 3 was used. The proper operating temperature of this flow meter is room temperature to 80 ° C.

【0028】この自溶炉では従来、シュートは炉内に筒
抜けであり、装入停止時に炉内ガスが進入してきて流量
計設置部の温度が150 ℃近くまで上昇するので、まず本
発明(2)に従い、図4のようにシュートの流量計出側
部にシャッタを1つ設けて装入停止中はシャッタを閉じ
るようにした。これにより、装入停止中の流量計設置部
位の温度は70℃程度に抑えられた。
Conventionally, in this flash smelting furnace, the chute is hollow in the furnace, and when the charging is stopped, the gas in the furnace enters and the temperature of the flowmeter installation section rises to near 150 ° C. Therefore, the present invention (2 4), one shutter is provided on the outlet side of the flow meter of the chute as shown in FIG. 4, and the shutter is closed while charging is stopped. As a result, the temperature at the site where the flowmeter was installed during charging suspension was suppressed to around 70 ° C.

【0029】しかし、適正使用温度上限との差が小さい
ので、さらに安全を期すべく、本発明(3)に従い、図
5のようにシャッタを上下2段に配設し、装入停止中は
上下シャッタ間に窒素ガスを流すようにした。これによ
り、装入停止中の流量計設置部位の温度はより低温側の
50℃程度に抑えられた。この流量計の検量線(同一ブレ
ンド種の鉱石サンプルの流量と差分電流時間積分値との
相関回帰直線)の精度(検量線による換算流量と電子天
秤による実測流量の差のばらつきの程度)はσ=約0.3
%であった。これを100t/hスケールにすると、σ=約0.
3t/hの変動に抑えられ、従来の操業実績から導出した装
入鉱石装入量変動とマット品位変動との関係から推し
て、マット品位変動はσ=0.5 %以下となると予想され
た。
However, since the difference from the upper limit of the appropriate operating temperature is small, the shutters are arranged in two steps, as shown in FIG. 5, according to the present invention (3) for the sake of further safety. Nitrogen gas was made to flow between the shutters. As a result, the temperature of the flow meter installation site during charging suspension
It was suppressed to about 50 ℃. The accuracy of the calibration curve (correlation regression line between the flow rate of the ore sample of the same blend type and the differential current time integral value) of this flow meter (the degree of variation in the difference between the converted flow rate by the calibration curve and the measured flow rate by the electronic balance) is σ = Approx. 0.3
%Met. If this is set to 100 t / h scale, σ = about 0.
The fluctuation of 3t / h was suppressed, and the mat quality fluctuation was predicted to be σ = 0.5% or less based on the relationship between the fluctuation of the charged ore charging derived from the conventional operation record and the fluctuation of mat quality.

【0030】実際には、以下のようになった。 (ケース1)検量線の決定に用いたサンプルと同一のブ
レンド種を装入する操業が続く間は、酸素富化空気流量
を一定に保持する条件下で、マット品位変動はσ=0.3
〜0.5 %に抑えられ、予想通りの好結果が得られた。 (ケース2)しかし、多くの異なるブレンド種を適宜装
入する操業が続くと、酸素富化空気流量を一定に保持す
る条件下では、マット品位変動はσ=0.5 〜0.7 %と、
従来よりは小さいが、ケース1よりも大きくなった。
In practice, the following was done. (Case 1) While the operation of charging the same blend species as the sample used to determine the calibration curve continues, the mat quality fluctuation is σ = 0.3 under the condition that the oxygen-enriched air flow rate is kept constant.
It was suppressed to ~ 0.5%, and the good result as expected was obtained. (Case 2) However, if the operation of appropriately charging many different blend types continues, under the condition that the oxygen-enriched air flow rate is kept constant, the mat quality variation is σ = 0.5 to 0.7%,
Although smaller than before, it is larger than Case 1.

【0031】(ケース3)そこで、本発明(4)に従
い、装入実行中に流量計の指示値が±3%を超える率で
変動し、次いで炉内ガス温度および廃熱ボイラ入口ガス
温度の監視計測データが±4%を超える率で変化したと
き、これらデータの変化がともに増(+)側ならば酸素
富化空気の流量を減少させ、ともに減(−)側ならば酸
素富化空気の流量を増加させるようにした。酸素富化空
気流量の変更率は、操業実績データ解析により導出した
関係式に基づき、炉内ガス温度変化率1%あたり5%と
した。これにより、マット品位変動はσ=0.4 〜0.6 %
と、ケース2とケース1の中間程度となった。
(Case 3) Therefore, according to the present invention (4), the indicated value of the flow meter fluctuates at a rate exceeding ± 3% during charging, and then the temperature of gas in the furnace and the temperature of gas in the waste heat boiler are changed. When the monitoring measurement data changes at a rate of more than ± 4%, the flow rate of oxygen-enriched air is decreased if the changes in these data are both increased (+), and the oxygen-enriched air is decreased if they are both decreased (-). The flow rate was increased. The change rate of the oxygen-enriched air flow rate was set to 5% per 1% change rate of the gas temperature in the furnace, based on the relational expression derived from the analysis of the operation result data. As a result, the variation of matte quality is σ = 0.4-0.6%
Then, it became about halfway between Case 2 and Case 1.

【0032】(ケース4)さらに、本発明(4)および
本発明(5)に従い、装入実行中に流量計の指示値が±
3%を超える率で変動し、次いで炉内ガス温度および廃
熱ボイラ入口ガス温度の監視計測データが±4%を超え
る率で変化し、かつ、排出スラグのスラグロスの監視分
析データ(マット抽出チャンスと同期した場合は抽出マ
ットのマット品位の監視分析データも加える)が±7%
を超える率で変化したとき、これらデータの変化がとも
に増(+)側ならば酸素富化空気の流量を減少させ、と
もに減(−)側ならば酸素富化空気の流量を増加させる
ようにした。酸素富化空気流量の変更率は、操業実績デ
ータ解析により導出した関係式に基づき、スラグロス変
化率5%あたり1%とした。これにより、マット品位変
動はσ=0.3 〜0.5 %と、ケース1と同等のレベルにな
った。
(Case 4) Further, according to the present invention (4) and the present invention (5), the indicated value of the flow meter is ± within the charging execution.
It fluctuates at a rate exceeding 3%, then the monitoring measurement data of the furnace gas temperature and the waste heat boiler inlet gas temperature change at a rate of more than ± 4%, and the monitoring analysis data of the slag loss of the discharged slag (mat extraction chance If it is synchronized with, the monitoring analysis data of the matte quality of the extraction mat is also added) ± 7%
If the changes in these data both increase (+), the flow rate of oxygen-enriched air decreases, and if both changes (-), the flow rate of oxygen-enriched air increases. did. The rate of change of the oxygen-enriched air flow rate was set to 1% per 5% of the slag loss change rate, based on the relational expression derived from the operation result data analysis. As a result, the variation in matte quality was σ = 0.3 to 0.5%, which was the same level as in Case 1.

【0033】[0033]

【発明の効果】本発明によれば、装入鉱石装入量を安価
な計測方式で正確に管理できるようになり、O2 /装入
鉱石比が適正範囲に維持されてマット品位の安定度が大
幅に向上するという優れた効果を奏する。また、装入鉱
石の供給過不足によって発生する炉況の変動(スラグロ
スの増大、熱過不足)が抑制されて炉自体の稼働率およ
び負荷率(あわせて総合効率)が向上し、生産性が向上
するという効果も期待される。
According to the present invention, the charged amount of ore can be accurately controlled by an inexpensive measuring method, the O 2 / charged ore ratio can be maintained in an appropriate range, and the stability of matte quality can be improved. Has an excellent effect that it is significantly improved. In addition, fluctuations in the furnace conditions (increased slag loss, heat excess / insufficiency) that occur due to an excess or deficiency of the supply of the ore are suppressed, and the operation rate and load rate (total efficiency) of the furnace itself are improved, and productivity is improved. The effect of improvement is also expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】自溶炉の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of a flash smelting furnace.

【図2】本発明(1)の実施形態の1例を示す模式図で
ある。
FIG. 2 is a schematic diagram showing an example of an embodiment of the present invention (1).

【図3】本発明で用いる流量計の構成例を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a configuration example of a flow meter used in the present invention.

【図4】本発明(2)の実施形態の1例を示す模式図で
ある。
FIG. 4 is a schematic diagram showing an example of an embodiment of the present invention (2).

【図5】本発明(3)の実施形態の1例を示す模式図で
ある。
FIG. 5 is a schematic diagram showing an example of an embodiment of the present invention (3).

【符号の説明】[Explanation of symbols]

1 自溶炉 2 シャフト 3 セットラー 4 アップテイク 5 マット 6 スラグ 7 マットホール 8 スラグホール 9 精鉱バーナ 10 炉頂ダクト 11 ビン 12 チェーンコンベア 13 モータ 14 シュート 15 流量計 16 調節器 17 シャッタ 20 測定電極 21 基準電極 22 アンプ 23 演算器 30 装入鉱石 40 酸素富化空気 50 不活性ガス 1 flash furnace 2 shafts 3 setler 4 uptake 5 mats 6 slugs 7 mat hall 8 slug halls 9 Concentrate burner 10 Furnace top duct 11 bottles 12 chain conveyor 13 motor 14 shoots 15 flow meter 16 regulator 17 Shutter 20 Measuring electrode 21 Reference electrode 22 amplifier 23 arithmetic unit 30 Charged ore 40 oxygen-enriched air 50 inert gas

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 装入鉱石を定容積に切出してチェーンコ
ンベアで運んでシュート内に落とし、シュート出口の精
鉱バーナから酸素富化空気と共に自溶炉内に装入する自
溶炉の装入鉱石装入方法において、コンデンサ極板間に
粉粒体を流して検出した静電容量の変化を粉粒体流量に
換算する方式の流量計をシュート途中に設置してシュー
ト内の装入鉱石の落下流量を計測し、この計測装入鉱石
流量が目標装入量に一致するようにチェーンコンベアの
モータ回転数を調節することを特徴とする自溶炉の装入
鉱石装入方法。
1. A flash furnace charging in which a charged ore is cut into a constant volume, carried by a chain conveyor, dropped into a chute, and charged into a flash furnace together with oxygen-enriched air from a concentrate burner at the exit of the chute. In the ore charging method, a flowmeter of the type that converts the change in capacitance detected by flowing a granular material between the capacitor plates to the granular material flow rate is installed in the chute and A method for charging ore charging of a flash smelting furnace, which comprises measuring a falling flow rate and adjusting a motor speed of a chain conveyor so that the measured charging ore flow rate matches a target charging amount.
【請求項2】 シュート開閉用シャッタを流量計設置部
出側に設置し、装入実行中は開、装入停止中は閉にする
ことを特徴とする請求項1記載の自溶炉の装入鉱石装入
方法。
2. The apparatus for a flash smelting furnace according to claim 1, wherein a shutter for opening and closing the chute is installed on the outlet side of the flow meter installation section, and is opened during charging and closed during charging stop. How to charge ore.
【請求項3】 前記シャッタは2以上の位置に設置し、
装入停止中は閉シャッタ間のシュート内に不活性ガスを
流すことを特徴とする請求項2記載の自溶炉の装入鉱石
装入方法。
3. The shutter is installed at two or more positions,
The charging ore charging method for a flash smelting furnace according to claim 2, wherein an inert gas is allowed to flow in the chute between the closed shutters while charging is stopped.
【請求項4】 装入実行中に前記計測装入鉱石流量に異
常変動が生じ、次いで炉内ガス温度および/または廃熱
ボイラ入口ガス温度の監視計測データに異常変化が生じ
たとき、該異常変化が増側ならば前記酸素富化空気の流
量を減少させ、前記異常変化が減側ならば前記酸素富化
空気の流量を増加させることを特徴とする請求項1〜3
のいずれかに記載の自溶炉の装入鉱石装入方法。
4. When an abnormal change occurs in the measured charge ore flow rate during the charging operation and then an abnormal change occurs in the monitoring measurement data of the furnace gas temperature and / or the waste heat boiler inlet gas temperature, the abnormality occurs. The flow rate of the oxygen-enriched air is decreased when the change is on the increase side, and the flow rate of the oxygen-enriched air is increased when the change is on the decrease side.
The method for charging ore charging of the flash smelting furnace according to any one of 1.
【請求項5】 装入実行中に前記計測装入鉱石流量に異
常変動が生じ、次いで排出スラグのスラグロスおよび/
または抽出マットのマット品位の監視分析データに異常
変化が生じたとき、該異常変化が増側ならば前記酸素富
化空気の流量を減少させ、前記異常変化が減側ならば前
記酸素富化空気の流量を増加させることを特徴とする請
求項1〜4のいずれかに記載の自溶炉の装入鉱石装入方
法。
5. An abnormal fluctuation occurs in the measured charging ore flow rate during the charging operation, and then the slag loss of the discharged slag and / or
Alternatively, when an abnormal change occurs in the monitoring analysis data of the matte quality of the extraction mat, the flow rate of the oxygen-enriched air is decreased if the abnormal change is on the increase side, and the oxygen-enriched air is decreased if the abnormal change is on the decrease side. 5. The method for charging ore charging of a flash smelting furnace according to claim 1, wherein the flow rate of the gas is increased.
JP2001201619A 2001-07-03 2001-07-03 Method for charging ore to be charged into flash furnace Pending JP2003013152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201619A JP2003013152A (en) 2001-07-03 2001-07-03 Method for charging ore to be charged into flash furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201619A JP2003013152A (en) 2001-07-03 2001-07-03 Method for charging ore to be charged into flash furnace

Publications (1)

Publication Number Publication Date
JP2003013152A true JP2003013152A (en) 2003-01-15

Family

ID=19038543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201619A Pending JP2003013152A (en) 2001-07-03 2001-07-03 Method for charging ore to be charged into flash furnace

Country Status (1)

Country Link
JP (1) JP2003013152A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063035A (en) * 2012-12-25 2013-04-24 苏占忠 Furnace charging conveyor for silicon carbide smelting furnaces
WO2014167176A1 (en) 2013-04-08 2014-10-16 Outetec (Finland) Oy Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063035A (en) * 2012-12-25 2013-04-24 苏占忠 Furnace charging conveyor for silicon carbide smelting furnaces
WO2014167176A1 (en) 2013-04-08 2014-10-16 Outetec (Finland) Oy Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace
CN105431714A (en) * 2013-04-08 2016-03-23 奥图泰(芬兰)公司 Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace
EP2984459A4 (en) * 2013-04-08 2016-11-23 Outotec Finland Oy Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace
KR101777938B1 (en) * 2013-04-08 2017-09-12 오토텍 (핀랜드) 오와이 Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace
EA029267B1 (en) * 2013-04-08 2018-02-28 Оутотек (Финлэнд) Ой Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace
US10605531B2 (en) 2013-04-08 2020-03-31 Outotec (Finland) Oy Method and arrangement for feeding feed material from a bin for feed material into a furnace space of a smelting furnace

Similar Documents

Publication Publication Date Title
KR20230098852A (en) Converter operation method and converter blow control system
US8673247B2 (en) Method for operating a regenerative shaft furnace for producing lime
CA1226481A (en) Process and apparatus for blowing carbon dust into an industrial furnace
RU2647411C2 (en) Method and system for the frequency change control system of the main exhaust fan in the sintering system
GB2064742A (en) Process and system for cooling sintered material
JP2003013152A (en) Method for charging ore to be charged into flash furnace
US4141795A (en) Dry type method for quenching coke
WO2015175785A1 (en) Furnace control for manufacturing steel using slag height measurement and off-gas analysis systems
JPH02309182A (en) Continuously heating furnace
JP2018062681A (en) Method of estimating mixture ratio of raw material in blast furnace
CN103017533A (en) Method and system for controlling air quantity of main draft fan of sintering machine
RU2456353C2 (en) Method of automatic control of copper content in matte
JP5547799B2 (en) Hot gas feed method to shaft furnace
JP3846288B2 (en) Operation method of copper smelting furnace
RU2571968C2 (en) Method of automatic control of melting process of copper-nick sulphide raw material in vanyukov's furnace during sulphide charge processing to regulus
JPS63114911A (en) Method for operation smelting/reducing furnace
JP2814826B2 (en) Smelting furnace ore supply equipment
JP2005133170A (en) Method for discharging raw material for blast furnace and method for operating blast furnace
SU1271876A1 (en) Method of conducting blast furnace heat
CN211537767U (en) Accurate measurement of aluminium grain and discontinuous unloading reaction unit
SU1018989A1 (en) Method and apparatus for controlling cooling of material
KR100887082B1 (en) Apparatus for controlling pulverized coal injection
JPS59213434A (en) Controlling method of fixed quantity feed of powder and particulate body
RU2229074C1 (en) Method for controlling pellets roasting process on conveying machine
JPH0748633A (en) Method for adjusting supplying quantity of dry ore