JP2003009866A - Method for discriminating animal species by sine method - Google Patents

Method for discriminating animal species by sine method

Info

Publication number
JP2003009866A
JP2003009866A JP2001126667A JP2001126667A JP2003009866A JP 2003009866 A JP2003009866 A JP 2003009866A JP 2001126667 A JP2001126667 A JP 2001126667A JP 2001126667 A JP2001126667 A JP 2001126667A JP 2003009866 A JP2003009866 A JP 2003009866A
Authority
JP
Japan
Prior art keywords
dna
sine
seq
nos
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001126667A
Other languages
Japanese (ja)
Other versions
JP3600891B2 (en
Inventor
Norihiro Okada
典弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2001126667A priority Critical patent/JP3600891B2/en
Publication of JP2003009866A publication Critical patent/JP2003009866A/en
Application granted granted Critical
Publication of JP3600891B2 publication Critical patent/JP3600891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for discriminating animal species by SINE(short interspersed element) method. SOLUTION: This method comprises the steps of preparing each genomic DNA library from at least one animal species to be discriminated, isolating each clone including an orthologous gene locus specifically inserted with a SINE family or subfamily in at least one of the animal species, amplifying by PCR the sequence of the gene locus for each of the animal species using a set of PCR primers annealing on the flanking sequences located on both ends of the SINE family or subfamily in the gene locus, and discriminating the animal species based on the presence/absence of a band indicating the presence of the gene locus by making a gel electrophoresis of the resultant PCR product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、SINE法により
動物の種を判別する方法に関する。より特に、SINE
サブファミリーを用いた鯨目を含む哺乳動物の種判別の
方法に関する。
TECHNICAL FIELD The present invention relates to a method for discriminating animal species by the SINE method. More particularly, SINE
The present invention relates to a method for identifying species of mammals including whale eyes using subfamilies.

【0002】[0002]

【従来の技術】DNA配列決定及び分子クローニング技
術の自動化は、生物のゲノムへのアクセスを劇的に拡大
している。さらに、ゲノムのディジタル情報の洪水は、
多数の生物学者をコンピューターを使用したバイオ・イ
ンフォマティックスティクに惹きつけている。ヒトゲノ
ム計画の如き包括的な努力の結果は、核酸再生試験によ
り30年程前に明らかにされたものを極めて詳細に示し
た。すなわち、真核生物のゲノムの大部分は、特定のタ
ンパク質産物をコードしておらず、明らかな機能をもた
ない反復要素から構成されている (Kazazian et al.,
1998)。ゲノム解析の結果として、たんぱく質をコード
していない、いわゆる「ジャンクヤード」は、DNAタイ
プの転移因子やRNA性の転移因子などの活動的な要素で
満ちたダイナミックな分子の「ジャングル」として新た
に認識されている。レトロポゾンは、系統学の再構築及
び集団分析のための分類学のツールとして利用されるこ
とができると考えられつつある興味深い遍在性の反復配
列であり、上記RNA性の転移因子の一員である(Brosius,
1991; Shedlock and Okada, 2000)。これゆえ、レトロ
ポゾンによる診断は、個体レベルあるいは種レベルにお
ける進化生物学の関連亜分野の間の重要な橋渡しをす
る。
BACKGROUND OF THE INVENTION Automation of DNA sequencing and molecular cloning techniques has dramatically expanded access to the genome of organisms. In addition, the flood of genomic digital information
He attracts many biologists to computer-based bioinformatics. The results of comprehensive efforts such as the Human Genome Project have shown in great detail what was revealed about 30 years ago by nucleic acid regeneration studies. That is, the vast majority of eukaryotic genomes are composed of repetitive elements that do not code for specific protein products and have no apparent function (Kazazian et al.,
1998). As a result of genome analysis, so-called "junk yard", which does not encode proteins, has newly become a "jungle" of dynamic molecules filled with active elements such as DNA type transposable elements and RNA transposable elements. Is recognized. Retroposons are an interesting ubiquitous repeat sequence that is believed to be available as a taxonomic tool for phylogenetic reconstruction and population analysis, and are members of the RNA-based transposable element. (Brosius,
1991; Shedlock and Okada, 2000). Therefore, retroposon diagnosis provides an important bridge between relevant subfields of evolutionary biology at the individual or species level.

【0003】用語「レトロポジション」とは、上記要素
が、RNA中間体によりゲノム内の親遺伝子座と標的遺
伝子座の間でどのように移動するかをいう (Rogers, 19
83)。このコピー・アンド・ペースト過程は、RNAか
ら染色体DNAへの遺伝情報の逆流を作り出す (Weine
r, et al., 1986, Schmid, 1996)。それは親遺伝子座に
元のコピーを残さないような様式、則ちカット・アンド
・ペースト様式で、染色体の周辺をジャンプするDNAタ
イプのトランスポゾン、例えば、mariner及びPエレメン
トとは異なる (Clark and Kidwell, 1997; Hartl et a
l, 1997)。レトロポゾンを分類するために使用される重
要な特徴は、自己増幅のために不可欠な酵素である逆転
写酵素(RTase)をコードしているか否かである
(Okada, 1991; Eickbush, 1994)。自己増幅しないレト
ロポゾンンの中で、短い散在性の要素(short interspe
rsed elements, SINEs)は、ゲノム内に多数存在するの
で、真核生物の分類学の研究のためには極めて有用であ
ると考えられる。SINEは、サイズが70〜500b
pの範囲にあり、そして2つのカテゴリー、tRNA由来の
ものと7SLRNA由来のものに分類される。7SLR
NA由来のSINEは、2つのSINEファミリー、す
なわち、霊長類のAluファミリーとげっ歯類のB1フ
ァミリーだけを含む。それ以外のこれまで調べられた他
のSINEの全てがtRNA由来であることが示されて
いる。増幅のためのRTaseをコードするLINE
も、2つのカテゴリーに分類される。すなわち、増幅の
ための特定の配列を必要とせずに単純なポリA配列のみ
を逆転写のために必要とする哺乳動物のL1、と増幅の
ためにRTaseに認識されるべく3’末端に厳格な配
列モチーフを必要とする、ほとんどのLINEを含むの
他のカテゴリーである。ほとんどの非哺乳動物のSIN
EとLINEは、同一の3’末端尾配列を共有し、その
存在により、SINEは、LINEによりコードされる
RTaseにより増幅されることができる (Ohshima et
al, 1997; Okada et al, 1997; Terai et al., 199
8)。哺乳動物の場合、tRNAと7SLRNA由来のも
のを含むSINEは、哺乳動物のL1によりコードされ
るRTaseの助けを借りて増幅されるようである。そ
れゆえ、この場合、上記の保存された配列モチーフは、
SINEの3’末端尾には観察されない。SINEのレ
トロポジションに関する一般ダイアグラムを図1に示
す。
The term "retroposition" refers to how the above elements move between the parent locus and the target locus in the genome by RNA intermediates (Rogers, 19
83). This copy-and-paste process creates a reverse flow of genetic information from RNA to chromosomal DNA (Weine
r, et al., 1986, Schmid, 1996). It differs from DNA-type transposons, such as the mariner and P element, which jump around the chromosomes in a manner that leaves no original copy at the parental locus, i.e. cut and paste (Clark and Kidwell, 1997; Hartl et a
l, 1997). An important feature used to classify retroposons is whether they encode reverse transcriptase (RTase), an enzyme essential for self-amplification.
(Okada, 1991; Eickbush, 1994). Among retroposons that do not self-amplify, short interspe
Since many rsed elements (SINEs) exist in the genome, they are considered to be extremely useful for the study of taxonomy of eukaryotes. SINE is 70-500b in size
It is in the p range and is divided into two categories, those derived from tRNA and those derived from 7SL RNA. 7 SLR
NA-derived SINEs contain only two SINE families, the Alu family of primates and the B1 family of rodents. All other SINEs examined so far have been shown to be from tRNA. LINE encoding RTase for amplification
Also falls into two categories. That is, a mammalian L1 that does not require a specific sequence for amplification but only a simple poly A sequence for reverse transcription, and a stringent 3 ′ end for recognition by RTase for amplification. Are other categories, including most LINEs, that require unique sequence motifs. Most non-mammal SINs
E and LINE share the same 3'terminal tail sequence, the presence of which allows SINE to be amplified by RTase encoded by LINE (Ohshima et al.
al, 1997; Okada et al, 1997; Terai et al., 199
8). In mammals, SINEs, including those derived from tRNA and 7SLRNA, appear to be amplified with the help of RTase encoded by mammalian L1. Therefore, in this case, the conserved sequence motif above is
Not observed in the 3'end tail of SINE. A general diagram for the SINE retro position is shown in FIG.

【0004】レトロポジションが一方向性に常に生じる
と云う事実とSINEの104以上のコピーが宿主ゲノ
ムの全体にわたって散在するという事実は、SINE挿
入分析が分子分類学への強力な新規アプローチであるこ
とを際立たせている。このSINE挿入分析は、キャラ
クター・データをもつ他の形態の、最も顕著にはDNA
配列及び形態学の分析を補う (例えば、Murata et al,
1993, Shimamura et al., 1997, Takahashi et al, 199
8; Nikaido et al, 1999)。分類学のツールとしてのS
INE進化とそれらの重要性に関する論文は入手できる
(Weiner et al, 1996, Deininger and Batzer, 1993,
Schmid, 1996, Rokas and Holland, 2000; Shedlock an
d Okada, 2000, Shedlock et al. 2000)。
The fact that retropositions always occur unidirectionally and that more than 10 4 copies of SINE are scattered throughout the host genome make SINE insertion analysis a powerful new approach to molecular taxonomy. It makes things stand out. This SINE insertion analysis shows that other forms of character data, most notably DNA
Complementary sequence and morphology analysis (eg Murata et al,
1993, Shimamura et al., 1997, Takahashi et al, 199
8; Nikaido et al, 1999). S as a taxonomic tool
Papers on INE evolution and their importance are available
(Weiner et al, 1996, Deininger and Batzer, 1993,
Schmid, 1996, Rokas and Holland, 2000; Shedlock an
d Okada, 2000, Shedlock et al. 2000).

【0005】ところで、鯨類を含む動物種の判別におい
ては、PCRでミトコンドリア遺伝子の或る特定の領域
を増幅した後、それらをアガロース・ゲルで電気泳動し
て増幅を確認し、その後シークエンス法を用いて塩基配
列を決定して、その配列の違いを指標にして種判別がな
されてきた。シークエンス法実験設備は高額であるた
め、それらの解析は現在ほとんど専門会社により行われ
ている。したがって、膨大な数の個体数についての種を
判別するためには、その解析数も当然に膨大となり、そ
のコストは多大なものとなる。さらに、塩基配列の解析
は、以下に述べるように未だ不十分・不確実な面もあ
り、それらの解釈もしばしば問題視されている。
By the way, in the discrimination of animal species including whales, after amplifying a specific region of the mitochondrial gene by PCR, they are electrophoresed on an agarose gel to confirm the amplification, and then the sequencing method is used. It has been used to determine the nucleotide sequence, and the difference in the sequence is used as an index for species discrimination. Due to the high cost of the sequence method experimental equipment, most of these analyzes are currently performed by specialized companies. Therefore, in order to discriminate species for a huge number of individuals, the number of analyzes is naturally enormous and the cost thereof is enormous. Furthermore, the analysis of nucleotide sequences still has some inadequacies and uncertainties as described below, and their interpretation is often regarded as a problem.

【0006】[0006]

【発明が解決しようとする課題】したがって、塩基配列
の解析を用いずに、簡易・迅速・安価に、鯨類を含む動
物種を判別するための検定方法の必要性が未だ存在す
る。
Therefore, there is still a need for an assay method for discriminating animal species including whales simply, quickly and inexpensively without using the analysis of nucleotide sequences.

【0007】[0007]

【課題を解決するための手段】今般、本願発明者は、S
INEが、上述のように系統学・分類学の研究に利用で
きるだけでなく、鯨類を含む動物の種判別のための簡易
・迅速・安価な検定方法に利用できることを発見した。
そして広範囲にわたる試料について鋭意実験を重ねた結
果その確実性を証明して本願発明を完成するに至った。
すなわち、以下に詳細に述べるように、SINEの挿入
が共通にあれば、それらの共通に挿入のある種どうしが
互いに単系統であるということを系統学的に明らかにで
きるわけであるが、それらのSINEファミリー又はサ
ブファミリーの挿入が、ある特定の種内に特有であれ
ば、その挿入の有無が種判別に利用できることがわか
る。このような種に特有のSINEサブファミリー配列
の単離・同定方法も本願発明の範囲内にある。従来SINE
ファミリーを使った系統樹作成はなされて来たが、それ
はSINEファミリーを用いてサブファミリーとして分類す
る事なく行なわれて来た。種の同定を可能にするSINE
は、最近に増幅を行ったSINEでなくては行う事が出来な
いので、最近に増幅したサブファミリーを特異的に単離
する必要が有る。本方法はその方法を提出するものであ
る。
Means for Solving the Problems Now, the present inventor
It has been discovered that INE can be used not only for the study of phylogeny and taxonomy as described above, but also for a simple, rapid, and inexpensive assay method for species identification of animals including whales.
As a result of repeated intensive experiments on a wide range of samples, the certainty was proved and the present invention was completed.
That is, as will be described in detail below, if the SINE insertions are common, it is possible to systematically clarify that some species of those common insertions are monogenic to each other. It can be seen that if the SINE family or subfamily of S. is unique within a particular species, the presence or absence of the insertion can be used for species discrimination. Methods for isolating and identifying SINE subfamily sequences unique to such species are also within the scope of the present invention. Conventional SINE
Although phylogenetic trees have been created using families, it has been done without using the SINE family and classifying them as subfamilies. SINE enables species identification
Can only be performed with SINE that has been recently amplified, so it is necessary to specifically isolate the recently amplified subfamily. This method submits the method.

【0008】本願発明の1の態様においては、SINE
法により動物の種を判別する方法であって、以下のステ
ップ:判別しようとする1以上の動物種からそれぞれゲ
ノムDNAライブラリーを作成し;上記各ライブラリー
から、上記動物種の中の少なくとも1種においてSIN
Eファミリー又はサブファミリーが特異的に挿入されて
いるオルソロガス遺伝子座を含むクローンをそれぞれ単
離し;上記遺伝子座において上記SINEファミリー又
はサブファミリーの両側に位置するフランキング配列に
アニールするPCRプライマーのセットを用いて、上記
動物種のそれぞれについて上記遺伝子座の配列をPCR
により増幅し;そして得られたPCR産物をゲル電気泳
動して、上記SINEファミリー又はサブファミリー挿
入遺伝子座の存在を示すバンドの有無により、上記動物
の種を判別する;を含む、前記方法が提供される。前記
SINEファミリー又はサブファミリーは、配列番号3
〜7から成る群から選ばれる配列を有するDNA又は上
記DNAとストリンジェント条件下でハイブリダイズす
るSINE DNAであることができる。例えば、前記
SINEサブファミリーは、配列番号6に示すCD配列
又は配列番号7に示すCDO配列を有するDNAであ
る。
In one aspect of the present invention, SINE
A method for discriminating an animal species according to the method, comprising the steps of: preparing a genomic DNA library from each of one or more animal species to be discriminated; SIN in seed
A clone containing an orthologous locus in which the E family or subfamily is specifically inserted is isolated respectively; PCR of the sequences of the loci for each of the above animal species using
And the PCR product obtained is subjected to gel electrophoresis, and the species of the animal is discriminated by the presence or absence of a band indicating the presence of the SINE family or subfamily insertion locus. To be done. The SINE family or subfamily has SEQ ID NO: 3
It can be DNA having a sequence selected from the group consisting of ~ 7 or SINE DNA which hybridizes with the above DNA under stringent conditions. For example, the SINE subfamily is a DNA having the CD sequence shown in SEQ ID NO: 6 or the CDO sequence shown in SEQ ID NO: 7.

【0009】本願発明の他の態様においては、配列番号
3〜7から成る群から選ばれる配列を有するSINEフ
ァミリー又はサブファミリーDNA又は上記DNAとス
トリンジェント条件下でハイブリダイズするSINE
DNAが提供される。前記オルソロガス遺伝子座が、配
列番号8〜21のいずれか1に示す配列に相当するBa
ndo1であるか、配列番号22〜35のいずれか1に
示す配列に相当するSp316であるか、配列番号36
〜46のいずれか1に示す配列に相当するMago19
であるか、配列番号47〜51のいずれか1に示す配列
に相当するIshi14であるか、配列番号52〜65
のいずれか1に示す配列に相当するIshi36である
か、配列番号66〜79のいずれか1に示す配列に相当
するIshi38であるか、配列番号211〜224の
いずれか1に示す配列に相当するMago24である
か、配列番号225〜238のいずれか1に示す配列に
相当するMago26であるか、配列番号80〜93の
いずれか1に示す配列に相当するMago32である
か、配列番号94〜98のいずれか1に示す配列に相当
するMago8であるか、配列番号99〜112のいず
れか1に示す配列に相当するMago13であるか、配
列番号113〜117のいずれか1に示す配列に相当す
るMago21であるか、配列番号239〜252のい
ずれか1に示す配列に相当するMago22であるか、
配列番号118〜129のいずれか1に示す配列に相当
するSperm8であるか、配列番号130〜135の
いずれか1に示す配列に相当するSperm28である
か、配列番号136〜140のいずれか1に示す配列に
相当するSperm47であるか、配列番号141〜1
45のいずれか1に示す配列に相当するAmz13であ
るか、配列番号146〜151のいずれか1に示す配列
に相当するAmz11であるか、配列番号152〜15
6のいずれか1に示す配列に相当するTuti24であ
るか、配列番号157〜171のいずれか1に示す配列
に相当するTuti35であるか、配列番号172〜1
85のいずれか1に示す配列に相当するSp2である
か、配列番号186〜190のいずれか1に示す配列に
相当するSp9であるか、配列番号191〜204のい
ずれか1に示す配列に相当するHump20であるか、
又は配列番号205〜210のいずれか1に示す配列に
相当するHump203であることができる。
In another embodiment of the present invention, SINE family or subfamily DNA having a sequence selected from the group consisting of SEQ ID NOS: 3 to 7 or SINE hybridizing with the above DNA under stringent conditions.
DNA is provided. The Ba orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 8 to 21.
Whether it is ndo1, Sp316 corresponding to the sequence shown in any one of SEQ ID NOs: 22 to 35, or SEQ ID NO: 36.
~ Mago19 corresponding to the sequence shown in any one of 46
Or is Ishi14 corresponding to the sequence shown in any one of SEQ ID NOS: 47 to 51, or SEQ ID NOS: 52 to 65
Corresponding to the sequence shown in any one of SEQ ID NOs: 66 to 79, Ishi38 corresponding to the sequence shown in any one of SEQ ID NOS: 66 to 79, or the sequence shown in any one of SEQ ID NOS: 211 to 224. Mago24, Mago26 corresponding to the sequence shown in any one of SEQ ID NOs: 225 to 238, Mago32 corresponding to the sequence shown in any one of SEQ ID NOs: 80 to 93, or SEQ ID NOs: 94 to 98 Which corresponds to the sequence shown in any one of SEQ ID NOs: 99 to 112, the sequence corresponding to the sequence shown in any one of SEQ ID NOS: 99 to 112, or the sequence shown in any one of SEQ ID NOS: 113 to 117. Whether it is Mago21 or Mago22 corresponding to the sequence shown in any one of SEQ ID NOs: 239 to 252,
Sperm8 corresponding to the sequence shown in any one of SEQ ID NOs: 118 to 129, Sperm28 corresponding to the sequence shown in any one of SEQ ID NOs: 130 to 135, or any one of SEQ ID NOs: 136 to 140 Sperm47 corresponding to the sequence shown or SEQ ID NOs: 141 to 1
Amz13 corresponding to the sequence shown in any one of 45, Amz11 corresponding to the sequence shown in any one of SEQ ID NOs: 146 to 151, or SEQ ID NOs: 152 to 15
6 is Tuti24 corresponding to the sequence shown in any one of 6 or Tuti35 corresponding to the sequence shown in any one of SEQ ID NOS: 157 to 171, or SEQ ID NOS: 172 to 1
85 corresponding to the sequence shown in any one of 85, Sp9 corresponding to the sequence shown in any one of SEQ ID NOS: 186-190, or corresponding to the sequence shown in any one of SEQ ID NOS: 191-204 Hump20 to do,
Alternatively, it may be Hump203 corresponding to the sequence shown in any one of SEQ ID NOs: 205 to 210.

【0010】本願発明の他の態様においては、配列番号
8〜238のいずれか1に示す配列を有するDNA又は
上記DNAとストリンジェント条件下でハイブリダイズ
するオルソロガスDNAが提供される。前記PCRプラ
イマーは、配列番号276〜325から成る群から選ば
れることができる。前記動物が哺乳動物であることがで
きる。かかる哺乳動物は鯨偶蹄目に属することができ
る。
In another aspect of the present invention, there is provided a DNA having the sequence shown in any one of SEQ ID NOs: 8 to 238 or an orthologous DNA which hybridizes with the above DNA under stringent conditions. The PCR primer can be selected from the group consisting of SEQ ID NOs: 276 to 325. The animal can be a mammal. Such mammals can belong to the order Artiodactyla.

【0011】本願発明の他の態様においては、SINE
サブファミリーのコンセンサス配列の獲得方法であっ
て、以下のステップ:インビトロにおける全ゲノム転写
又は60kbpより大きなゲノムDNAの自動配列決定
により反復単位の多数コピーの配列を決定し;数種由来
の上記配列をアラインメントして、コンセンサス配列を
得;RNAポリメラーゼIIIのための第2プロモータ
ーのコンセンサス配列を見つけて、この配列を含むステ
ム・ループ構造を作り;上記ステム領域から5’上流方
向にある5塩基を1ユニットとして、3’-PyPyPuPuPu-
5’配列であることを確かめ;tRNA構造のアンチコ
ドン−ステム領域を形成する次の5塩基を、他のユニッ
トとみなし;tRNA構造のアンチコドン−ループ領域
を形成する次の7塩基を、さらに他のユニットとみな
し、ここで、その3’末端がAA残基であり、かつ、5’
末端が3’-TC-5’残基であることを確認し;次の5塩基
を他のユニットとみなし、アンチコドン−ステム領域に
割り当てられた5塩基との塩基対の形成を確認し、ここ
で、このユニットを正確に整列させるために上記アンチ
コドン−ステムの3’側の第1塩基の位置に欠失を配置
し;このtRNA様構造のD領域のためのステム・ルー
プ構造を構築し、ここで、上記RNAポリメラーゼII
Iの第1プロモーター領域内の2つのGの存在を確認
し;上記配列とtRNAの間の配列類似性を、DNAデ
ータベースを用いて検索して、その二次構造の類似性を
確認し;複数の種由来の上記のようにして得られたSI
NEファミリー配列をアランメントして、特徴的なヌク
レオチド又は欠失の存在からSINEサブファミリーを
得;そして上記SINEサブファミリーのアラインメン
トからSINEサブファミリーのコンセンサス配列を得
る、前記方法が提供される。
In another aspect of the invention, SINE
A method of obtaining a consensus sequence of subfamilies, comprising the steps of: sequencing multiple copies of a repeat unit by whole genome transcription in vitro or automatic sequencing of genomic DNA larger than 60 kbp; Alignment to obtain a consensus sequence; find the consensus sequence for the second promoter for RNA polymerase III and create a stem-loop structure containing this sequence; one 5 bases 5'upstream from the stem region As a unit, 3'-PyPyPuPuPu-
Confirm that it is a 5'sequence; consider the next 5 bases forming the anticodon-stem region of the tRNA structure as another unit; the next 7 bases forming the anticodon-loop region of the tRNA structure, Unit, where the 3'end is an AA residue and the 5'end
Confirm that the end is a 3'-TC-5 'residue; consider the next 5 bases as another unit, and confirm the formation of a base pair with the 5 bases assigned to the anticodon-stem region. To place the deletion at the position of the first base 3'of the anticodon-stem in order to align this unit correctly; construct a stem-loop structure for the D region of this tRNA-like structure, Here, the above RNA polymerase II
The presence of two G's in the first promoter region of I was confirmed; the sequence similarity between the above sequence and the tRNA was searched using a DNA database to confirm the similarity of its secondary structure; SI obtained as described above derived from
There is provided the above method, wherein the NE family sequences are aligned to obtain the SINE subfamily from the presence of characteristic nucleotides or deletions; and the SINE subfamily consensus sequence from the SINE subfamily alignment.

【0012】前記SINEサブファミリーは、上記のS
INEサブファミリーのコンセンサス配列の獲得方法に
より得られたSINEサブファミリーのコンセンサス配
列を有するDNAであることができる。本願発明の他の
態様においては、上記のSINEサブファミリーのコン
センサス配列の獲得方法により得られたSINEサブフ
ァミリーのコンセンサス配列を有するDNAが提供され
る。
The SINE subfamily is the above S
It can be a DNA having a SINE subfamily consensus sequence obtained by the method for obtaining a INE subfamily consensus sequence. In another aspect of the present invention, there is provided a DNA having a SINE subfamily consensus sequence obtained by the method for obtaining a SINE subfamily consensus sequence.

【0013】定義 本願明細書中、「SINE」とは、その1次構造上の長
さは約100〜400塩基である短い散在性の反復配列
であって、その5’末端から順にtRNA相同領域、t
RNA非相同領域、ATに富む領域を含むものをいう。
その両端にはSINEがゲノム内に挿入される際にでき
ると考えられている約5〜20塩基の同方向の繰返し配
列(direct repeats)が存在することを特徴とする。本願
明細書中、「SINEファミリー」とは、同一のtRN
Aに由来する、お互いに配列の似通ったSINEのメン
バーをいう。一方、本願明細書中、「SINEサブファ
ミリー」とは、同じ起源(ファミリー)に由来するが、
特徴的(diagnostic)な変異が見られるため、SINEフ
ァミリーの中の同じ祖先メンバーから増幅したようSI
NE群のメンバーをいう。サブファミリーはタイプとも
互換使用される。本願明細書中、オルソロガス遺伝子座
とは、二つの遺伝子座がある共通祖先からの種分化に由
来することをいう。一方,種分化ではなく遺伝子重複に
よって二つの遺伝子が生じたとき、それらは「パラロガ
ス」である。分子系統樹の推定にとって必要な情報を与
えるのは、パラロガス遺伝子ではなく、オルソロガス遺
伝子である。
Definitions In the present specification, "SINE" is a short interspersed repetitive sequence having a primary structural length of about 100 to 400 bases, and a tRNA homologous region in order from its 5'end. , T
It refers to those containing an RNA heterologous region and an AT-rich region.
It is characterized by the presence of direct repeats of about 5 to 20 bases, which are considered to be formed when SINE is inserted into the genome, at both ends thereof. In the present specification, "SINE family" means the same tRN
A member of SINE derived from A and having similar sequences to each other. On the other hand, in the present specification, “SINE subfamily” is derived from the same origin (family),
Due to the characteristic mutations, SI seems to be amplified from the same ancestor member in the SINE family.
A member of the NE group. Subfamily is also used interchangeably with type. In the present specification, the orthologous locus means that it is derived from speciation from a common ancestor having two loci. On the other hand, when two genes are generated by gene duplication rather than speciation, they are “paralogous”. It is the orthologous gene, not the paralogous gene, that provides the information necessary for the estimation of the molecular phylogenetic tree.

【0014】本願明細書中、「フランキング配列」と
は、オルソロガス遺伝子座内に特異的にSINEファミ
リー又はサブファミリーが挿入された場合、その挿入部
位の両側に位置する配列をいう。かかるフランキング配
列内でPCRプライマーを任意に設計することができ
る。本明細書中、ストリンジェント条件とは、鋳型DN
Aを、ハイブリバックに入れ、そこにプレハイブリ溶液
(6 X SSC, 1 % SDS ) を適当量加え、ハイブリバック
をシーラーでパックし1時間以上インキュベートし、溶
液を捨て、ハイブリ溶液(6 X SSC, 1 % SDS, 1 X Denh
art's solution , Carrier DNA (Shared Herring Sperm
DNA solution)を加えた後、さらに予め調整したプロー
ブを95 ℃で3分間熱変性しておいたものを加え、またハ
イブリバックをシールし、その後42℃のウォーターバス
で一晩(〜15時間程度)インキュベートし、それらの
メンブレンを適当量のウォッシュ溶液(2X SSC, 1 % SD
S)で軽く濯いだとき、プローブが上記鋳型DNAとハ
イブリダイズするような条件をいう。
In the present specification, the "flanking sequence" means a sequence located on both sides of the insertion site when the SINE family or subfamily is specifically inserted into the orthologous locus. PCR primers can be arbitrarily designed within such flanking sequences. In the present specification, the stringent conditions mean template DN.
Put A into a hybrid bag, add an appropriate amount of pre-hybrid solution (6 X SSC, 1% SDS), pack the hybrid bag with a sealer, incubate for 1 hour or more, discard the solution, and remove the hybrid solution (6 X SSC, 1% SDS, 1 X Denh
art's solution, Carrier DNA (Shared Herring Sperm
After adding DNA solution), add a pre-conditioned probe that has been heat-denatured at 95 ° C for 3 minutes, seal the hybrid bag, and then in a 42 ° C water bath overnight (about 15 hours). ) Incubate the membranes with an appropriate volume of wash solution (2X SSC, 1% SD
The conditions under which the probe hybridizes with the template DNA when lightly rinsed with S).

【0015】本願明細書中、「外群比較」とは、系統推
定論において,外群 (outgroup),すなわち対象生物群
すなわち内群 (ingroup)に対して最も近縁であると仮
定される種または種群に基づく形質極性の決定法をい
う。外群を解析に含めることにより、内群根(内群系統
樹全体の共通祖先)の位置を決めることができる。分岐
分類学の初期の理論では、まず初めに外群のもつ形質状
態に基づいて内群の形質状態の極性すなわち原始的形質
状態と派生的形質状態の判定を行い、次に、あらかじめ
判定された形質の極性に基づいて,派生的形質状態を共
有する種を単系統群としてまとめる。外群比較は、とり
わけ形態形質の極性を判別する主たる方法として広く用
いられる。その論理的根拠は最節約原理とよばれるもの
で、内群根に連なる枝での仮想的形質状態(内群での極
性判別の基準)を外群の形質分布から最節約的に推定し
ているからである。Maddison, Donoghue & Maddison
(1984)とSwofford & Maddison(1987)は、外群比較に
基づく内群の系統推定が、内群と外群をあわせた群に対
する極性判定を行わない最節約的な系統推定と論理的に
等価であることを証明した。したがって,特に制限酵素
の切断部位や核酸の塩基配列など極性判定が困難な分子
データからも分岐分類学に基づく最節約系統推定が可能
になった。
In the present specification, the term "outer group comparison" refers to a species which is assumed to be most closely related to an outgroup, that is, a target organism group, that is, an ingroup in phylogenetic estimation theory. Alternatively, it refers to a method for determining trait polarity based on species group. By including the outer group in the analysis, the position of the inner group root (a common ancestor of the entire inner group phylogenetic tree) can be determined. In the early theory of diversification taxonomy, first the polarity of the trait state of the inner group, that is, the primordial trait state and the derivative trait state, was judged based on the trait state of the outer group, and then it was decided beforehand. Organize species that share a derivative trait state into a monophyletic group based on the polarity of the trait. Out-group comparison is widely used, among other things, as the main method for discriminating the polarity of morphological traits. The rationale is called the most conservative principle.The most conservative estimation of the virtual trait state (criteria for polarity discrimination in the inner group) on the branches connected to the roots of the inner group is made by the most conservative estimation. Because there is. Maddison, Donoghue & Maddison
(1984) and Swofford & Maddison (1987), the systematic estimation of the inner group based on the outer group comparison is logically equivalent to the most conservative systematic estimation that does not perform polarity judgment for the group including the inner group and the outer group. Proved that. Therefore, it has become possible to estimate the most conserved strains based on branch taxonomy even from molecular data such as restriction enzyme cleavage sites and nucleic acid base sequences that are difficult to determine polarity.

【0016】本願明細書中、「共有派生形質」とは、外
群比較などを用いて極性の推定をした結果、派生的と判
定された形質状態 (apomorphy)を共有することをい
う。分岐分類学の理論では共有派生形質だけが系統関係
を推定する情報を与えると主張される。推定された派生
形質を共有する種群を生んだ直接共通祖先を仮定できる
からである。したがって、共有派生形質は単系統群(正
確には完系統群)を構築する手掛かりとなる。ここで,
もしも形質分布に不整合が生じたときには,いくつかの
形質の派生的形質状態は,ある共通祖先からではなく別
々の枝で進化したホモプラシーであると考えなければな
らない。共有派生形質という仮説の妥当性は,最節約原
理に基づいて選択された系統仮説,すなわち分岐図との
整合性によって検証される。
In the present specification, the term "co-derived trait" means that a trait state (apomorphy) determined to be derivative is shared as a result of the estimation of the polarity using the outgroup comparison or the like. The theory of branching taxonomy argues that only covalent traits provide information to infer phylogenetic relationships. This is because it is possible to assume a direct common ancestor that gave rise to a species group that shares the deduced trait. Therefore, the shared derivation trait serves as a clue for constructing a monophyletic group (more precisely, a complete phylogenetic group). here,
If a trait distribution mismatch occurs, the derivative trait state of some traits must be considered to be homoplasia that evolved in separate branches rather than from a common ancestor. The validity of the hypothesis of a shared derivation trait is verified by the consistency with the phylogenetic hypothesis selected based on the most parsimony principle, that is, the bifurcation diagram.

【0017】本願明細書中、「極性」とは、ある形質の
形質状態間の遷移順序の進化方向という。したがって、
極性は遷移順序(order)のモデルに依存する。形質状態
の遷移順序は、系統推定に用いる形質データの形質を反
映する。質的な形態形質では直線状または分岐状の遷移
順序を仮定できることもまれではない。一方、核酸塩基
配列や制限酵素切断サイトなどの分子データの多くは、
形質状態の間に順序付けができない無順序的(unordere
d)な形質である。分岐分類学や進化分類学では、系統解
析に先立って形質進化の極性推定を要求している。極性
を推定する規準としては、外群比較あるいは化石記録や
個体発生の情報などが利用されているが、もっとも広く
用いられているのは外群比較である。
In the present specification, "polarity" refers to the evolution direction of the transition order between the trait states of a certain trait. Therefore,
The polarity depends on the model of transition order. The transition order of the trait state reflects the trait of the trait data used for lineage estimation. It is not uncommon for qualitative morphological traits to assume a linear or branched transitional order. On the other hand, most of the molecular data such as nucleobase sequences and restriction enzyme cleavage sites,
Unordered among trait states that cannot be ordered
d) It is a trait. Divergence taxonomy and evolutionary taxonomy require polarity estimation of trait evolution prior to phylogenetic analysis. Outgroup comparison, fossil records and information on ontogeny are used as criteria for estimating polarity, but the most widely used is outgroup comparison.

【0018】SINEの進化 系統推定及び本願発明に係る単離・同定方法並びに種判
別方法に、SINEを有効に利用する為には、SINE
がどのように進化してきたかを理解することが重要であ
る。SINEは、以下詳細に記載するように、配列類似
性に基づくファミリーと特徴的なヌクレオチド存在及び
/又は欠失に基づくサブファミリーとに分類されること
ができる。一旦ゲノム内に挿入されたSINEがどのよ
うな運命を辿るかは、染色体環境中の様々な要因(Schmi
t and Maraia 1992)とSINEに蓄積する増幅を妨げる
ような突然変異とのバランスによって決定される。さら
に、SINEの増幅の為にはLINEにコードされたR
Taseが必要であるので、LINEがゲノム中で増幅
能力を失い死んでしまえば、それはその生物中でのSI
NEの死も同時に意味するところとなる (Okada et a
l., 1997)。
Evolution of SINE In order to effectively use SINE in the strain estimation, the isolation / identification method and the species discrimination method according to the present invention, SINE is used.
It is important to understand how has evolved. SINEs can be divided into families based on sequence similarity and subfamilies based on characteristic nucleotide presence and / or deletion, as described in detail below. The fate of SINE once inserted in the genome depends on various factors (Schmi
and Maraia 1992) and a mutation that prevents amplification that accumulates in SINE. Furthermore, for the amplification of SINE, R coded in LINE
Since Tase is required, if LINE loses its amplification ability in the genome and dies, it will cause SI in the organism.
The death of the NE is also meant at the same time (Okada et a
l., 1997).

【0019】ゲノム内でSINEが進化過程でどのよう
に増幅するかに関しては、これまでにSINE進化の2
つの対立モデル:マスター遺伝子モデルと多数源遺伝子
モデルが提唱されて来た。マスター遺伝子モデル(図2
(A))は、1又は数個の「マスター」遺伝子座だけ
が、全ての子孫コピーの元であり、この子孫コピーはそ
れら自身の上で複製する能力はもたない、というもので
ある。このシナリオにおいては、時間の経過にわたるそ
の増幅率は、そのマスター遺伝子の条件及び活性に完全
に依存する。一方、多数源遺伝子モデル(図2(B))
では、子孫も親コピーと同様の増幅する能力を持つ事が
出来るので、進化の時間の経過にわたり「多数源遺伝
子」として機能する、というものである。後者モデルに
おいては、増幅率は、源遺伝子の全てに由来する合計コ
ピー数の増加又は減少率の関数である。マスター遺伝子
モデルはげっ歯類のID SINE (Kim et al, 1994)
及びヒトAlu反復の初期の研究 (Shen et al., 1991)
からの経験的証拠により提唱された。しかし、その後
の詳細なAlu配列の研究や他の様々な分類群からの比
較研究により、今では大部分のSINEファミリーの増
幅は、上記多数源遺伝子モデルにより起こると解釈する
ことが最も妥当であると考えられている(Materaet al,
1990; Schmid and Maraia, 1992; Leeflang et al, 199
2; Kido et al.,1994; Takasaki et al. 1994; Shedloc
k and Okada, 2000)。実際には、特徴的なヌクレオチド
の存在及び/又は欠失を特徴とするサブファミリーが、
それぞれの源遺伝子を表すことになる。
Regarding how SINE is amplified in the evolution process in the genome, there have been two studies of SINE evolution so far.
Two allelic models have been proposed: a master gene model and a multi-source gene model. Master gene model (Fig. 2
(A)) is that only one or a few "master" loci are the source of all progeny copies, which are not capable of replicating on themselves. In this scenario, its amplification over time depends entirely on the conditions and activity of its master gene. On the other hand, multi-source gene model (Fig. 2 (B))
Then, since the offspring can have the same amplification ability as the parent copy, they function as "multi-source genes" over the course of evolution. In the latter model, amplification rate is a function of the rate of increase or decrease in total copy number from all of the source genes. The master gene model is rodent ID SINE (Kim et al, 1994)
And early studies of human Alu repeats (Shen et al., 1991)
Proposed by empirical evidence from. However, subsequent detailed Alu sequence studies and comparative studies from various other taxa now make the most sense to interpret that most SINE family amplification is caused by the multisource gene model. (Matera et al,
1990; Schmid and Maraia, 1992; Leeflang et al, 199
2; Kido et al., 1994; Takasaki et al. 1994; Shedloc
k and Okada, 2000). In practice, subfamilies characterized by the presence and / or deletion of characteristic nucleotides are:
It represents each source gene.

【0020】SINEの誕生と死の間の期間が、宿主ゲ
ノム内のSINEの活動の期間であり、その寿命が分類
学の及び本願発明におけるツールとしてのそれらの使用
に直接関連する。SINEサブファミリーのメンバー間
の平均配列相違度が小さい場合、そのサブファミリーは
かなり若く、かつ、その宿主内で未だ活動的に増幅して
いると推定することが妥当である。そのSINEサブフ
ァミリーのメンバー間の平均配列相違度が大きい場合、
そのサブファミリーは比較的古く、かつ、その宿主内で
既に不活性又は死んでいると推定することが妥当であ
る。しかしながら、SINE挿入を用いた宿主分類群間
の共通先祖の診断は、与えられたサブファミリーの活動
寿命内でのみ可能である。このSINE法の基本原理
を、以下の「手順」欄でさらに説明する。
The period between the birth and death of SINEs is the period of activity of SINEs within the host genome, and their longevity is directly related to their use in taxonomy and as tools in the present invention. If the average degree of sequence dissimilarity between members of the SINE subfamily is small, it is reasonable to assume that the subfamily is fairly young and still actively amplified in the host. If the average sequence difference between members of the SINE subfamily is large,
It is reasonable to assume that the subfamily is relatively old and is already inactive or dead in the host. However, the diagnosis of common ancestors between host taxa using SINE insertion is possible only within the active lifespan of a given subfamily. The basic principle of this SINE method will be further described in the "Procedure" section below.

【0021】SINE挿入動態及び特徴理論 SINEがなぜ強力な分類学のツールであるかというこ
との鍵は、それらが宿主ゲノム内に不可逆的に独立して
挿入されるということである (Murata et al,1993; She
dlock and Okada 2000)。ゲノムからSINEを特異的
に除去する既知のメカニズムは存在せず、かつ、2つの
要素が全く同じ遺伝子座内に挿入され又は同一遺伝子座
内から正確に切除される確率は極めて低いので、本願発
明者は、2つの異なる分類群内の同一遺伝子座のSIN
Eの存在を、そのゲノムにおける極性化された派生表現
型であるとみなすことができる。これは系統発生仮説を
構築するために、共有派生形質、又は共有された派生し
た特性だけを使用するHennig (1966)の方法の厳格な意
味において、1の分岐群又は単系統群を定める。この分
岐群においては、既知の先祖条件、又は与えられた遺伝
子座におけるSINE挿入の欠如が、周知の人工物を作
り出す競合方法を介して特性極性を確立する必要とせず
に外群を一義的に定める(Hendy and Penny, 1989)(図
3参照)。
SINE Insertion Kinetics and Feature Theory The key to why SINEs are powerful taxonomic tools is that they are irreversibly independently inserted into the host genome (Murata et al. , 1993; She
dlock and Okada 2000). Since there is no known mechanism for specifically removing SINE from the genome, and the probability of two elements being inserted into the exact same locus or being excised exactly from the same locus is extremely low, the present invention Have SINs at the same locus in two different taxa
The presence of E can be considered as a polarized derivative phenotype in its genome. This defines a clade or monophyletic group in the strict sense of the method of Hennig (1966), which uses only covalently derived traits or shared derivational traits to construct the phylogenetic hypothesis. In this clade, known ancestral conditions, or lack of SINE insertions at a given locus, uniquely identify the outgroup without the need to establish a characteristic polarity via a competing method that produces well-known artifacts. (Hendy and Penny, 1989) (see Figure 3).

【0022】SINEの単離及び特徴付け方法 以下、ゲノム・ライブラリーから新規SINEを単離す
るための戦略、そのスクリーニング方法、クローンの配
列決定及びSINEのファミリーからサブファミリーへ
の特徴付け、代表的な宿主分類群におけるコピー数の定
量、並びに系統発生学的な情報を提供するSINE挿入
パターンの決定的な診断について説明する。
Methods for Isolation and Characterization of SINEs The following are strategies for isolating novel SINEs from genomic libraries, screening methods for them, sequencing of clones and SINE family-to-subfamily characterization, representative Copy number quantification in various host taxa, as well as the definitive diagnosis of SINE insertion patterns that provide phylogenetic information.

【0023】手順 ゲノム・ライブラリーを作成するための種の選択方法 SINE法は、以下の基本ステップ:1)選択された種
からのゲノム・ライブラリーの作成;2)SINE遺伝
子座を含むクローンの単離;3)クローンのDNA配列
の決定;4)そのSINE遺伝子座のフランキング配列
内でのポリメラーゼ・チェイン・リアクション(PC
R)プライマーの設計;及び5)着目の関連種間のSI
NEの存在又は非存在のPCR診断、を含む。SINE
法は一旦確立することができれば迅速・確実に確定的な
結果を提供することができるけれども、その手順及び条
件の確立及び立にはかなりの時間及び労力を要する。
Procedure Species Selection Method for Generating Genomic Libraries The SINE method consists of the following basic steps: 1) Generation of a genomic library from the selected species; 2) Selection of clones containing the SINE locus. Isolation; 3) Determination of the DNA sequence of the clone; 4) Polymerase chain reaction (PC) within the flanking sequences of the SINE locus.
R) primer design; and 5) SI between related species of interest
PCR diagnostics for the presence or absence of NE. SINE
Once established, a law can provide deterministic results quickly and reliably, but establishing and establishing its procedures and conditions requires considerable time and effort.

【0024】例えば、密接に関連する種A,B,C,及
びDの間の系統発生関係を決定する場合を考える。上記
種の実際の系統樹を図4(A)に示す。この場合、種D
が、それからSINEを単離するための宿主として選ば
れた場合、系統発生の情報を提供するSINE遺伝子座
は得られない。なぜなら、種Dは、着目の4つの分類群
の共通先祖内及びさらに古い起源内に挿入されたSIN
E遺伝子座を含むからである。4種の全ての先祖内に挿
入された遺伝子座を図4(B)中SINE3として示
す。SINE3の挿入の存在(+)又は非存在(−)を
示すPCRの電気泳動ゲルのパターンを図4(C)の下
段に示す。系統発生の情報を提供するSINEを単離す
るためには、図4(B)中に示す3つのSINE遺伝子
座、SINE1、SINE2、及びSINE3を提供す
ることができる種A又は種Bを選ばなければならない。
これらの遺伝子座のそれぞれが、これらの種の進化の歴
史において共通の先祖を共有する分岐群、又は単系統群
を定める。
Consider, for example, the case of determining the phylogenetic relationship between closely related species A, B, C, and D. The actual phylogenetic tree of the above species is shown in Figure 4 (A). In this case, seed D
, But when selected as a host from which to isolate SINE, no SINE locus providing phylogenetic information is obtained. Species D is a SIN inserted within the common ancestors and older origins of the four taxa of interest.
This is because it includes the E locus. The locus inserted in all four ancestors is shown as SINE3 in FIG. 4 (B). The pattern of the PCR electrophoresis gel showing the presence (+) or absence (-) of SINE3 insertion is shown in the lower part of FIG. 4 (C). In order to isolate SINEs that provide phylogenetic information, species A or species B capable of providing the three SINE loci shown in Figure 4 (B), SINE1, SINE2, and SINE3, must be selected. I have to.
Each of these loci defines a clade, or monophyletic group, that shares a common ancestor in the evolutionary history of these species.

【0025】特定の種からの新規SINEファミリーの
単離方法 特定の種、例えば、図4(A)中の種AにおいてSIN
Eファミリーが全く知られていないとき、そのゲノムか
らSINEファミリーを新たに単離し分析することが必
要である。選択された種から新規SINEファミリーを
単離することができる2つの方法がある。1は、インビ
トロにおける全ゲノムDNA転写 (Endoh and Okada, 1
986)を含み、そして他は、新たな高処理量自動DNA配
列決定法により容易化された約60Kbp以上のゲノム
DNA配列決定(Nikaido and Okada, 公表に至らず)を
含む。
Of a new SINE family from a particular species
Isolation Method SIN in a specific species, eg, species A in Figure 4 (A)
When the E family is completely unknown, it is necessary to newly isolate and analyze the SINE family from its genome. There are two methods by which new SINE families can be isolated from selected species. 1 is total genomic DNA transcription in vitro (Endoh and Okada, 1
986), and others include genomic DNA sequencing of about 60 Kbp and above facilitated by a new high-throughput automated DNA sequencing method (Nikaido and Okada, unpublished).

【0026】インビトロにおける全ゲノムDNA転写 ほとんどのSINEは、tRNA由来であることが知ら
れている、それゆえ、SINEは、RNAポリメラーゼ
IIIのための内部プロモーターをもっている。SIN
Eはインビボにおいては極めて稀に転写されるけれど
も、SINEはインビトロにおいては裸DNAから容易
に転写されることができる。放射標識された前駆体ヌク
レオチド、例えば、アルファP32−GTPを用いたH
eLa細胞抽出物中である種の全ゲノムDNAを転写す
るとき、通常、放射標識されたRNAが転写される。い
くつかの場合、これらの放射標識転写産物は、それらが
ゲル電気泳動に供されるときクリアなバンドを形成する
(Endoh and Okada. 1986; Matsumoto et al. 1986)。
In Vitro Total Genomic DNA Transcription Most SINEs are known to be derived from tRNA, therefore SINE has an internal promoter for RNA polymerase III. SIN
Although E is extremely rarely transcribed in vivo, SINE can be easily transcribed from naked DNA in vitro. H using a radiolabeled precursor nucleotide, eg alpha P32-GTP
When transcribing certain total genomic DNA in eLa cell extracts, radiolabeled RNA is usually transcribed. In some cases, these radiolabeled transcripts form clear bands when they are subjected to gel electrophoresis.
(Endoh and Okada. 1986; Matsumoto et al. 1986).

【0027】この放射標識されたRNAは着目の選択さ
れた種からのゲノム・ライブラリーをスクリーニングす
るためのプローブとして使用されることができる。この
転写産物がゲル内でクリアなバンドを形成する場合、そ
れは実際のSINEファミリーを表している。なぜな
ら、与えられたSINEファミリーの各遺伝子座からの
同一転写産物の全てが集合して区別されるバンドを形成
するからである。ゲノムDNAから不明瞭なバンドが生
じた場合でさえ、スクリーニングのためのプローブとし
てそれらを用いることができる。しかしながら、後者の
場合には、その転写産物は多数のSINEファミリーを
表している可能性がある。
This radiolabeled RNA can be used as a probe to screen a genomic library from a selected species of interest. If this transcript forms a clear band in the gel, it represents the actual SINE family. This is because all of the same transcripts from each locus of a given SINE family assemble to form distinct bands. Even if unclear bands are generated from genomic DNA, they can be used as probes for screening. However, in the latter case, the transcript may represent multiple SINE families.

【0028】本願発明者のこれまでの経験から、脊椎動
物及び/又は無脊椎動物のゲノム中に10,000以上
のコピー数のSINEが存在するとき、それらは全ゲノ
ムDNAのインビトロ転写産物により検出されることが
できる。図4は、選択された動物種由来の全ゲノムDN
Aからの転写産物のいくつかのパターン例を示す(Endoh
and Okada, 1986)。
From the experience of the inventor of the present invention, when SINE having a copy number of 10,000 or more is present in the genome of vertebrate and / or invertebrate, they are detected by in vitro transcripts of total genomic DNA. Can be done. FIG. 4 shows whole-genome DN from selected animal species.
Some example patterns of transcripts from A are shown (Endoh
and Okada, 1986).

【0029】自動シーケンサーによる60kbpより大
きなゲノムDNAの配列決定 本願発明者の経験によれば、ゲノム内のSINEファミ
リーのコピー数は通常10,000を超える。全ゲノム
が長さ3x109bpであり、かつ、あるSINEのサ
イズが300bpであると仮定すると、このようなSI
NEファミリーはそのゲノムの0.1%を占めることに
なる(例えば、300x104=3x106)。したがっ
て、60kbp以上にわたり配列決定することによりこ
の種のランダムに単離されたDNA断片内に2つの独立
したSINE配列を見つけることができるであろう(例
えば、600x100/0.1=6x106)。
Greater than 60 kbp by automatic sequencer
Sequencing of Kina Genomic DNA According to the experience of the present inventors, the copy number of the SINE family in the genome is usually over 10,000. Assuming that the entire genome is 3 × 10 9 bp in length and the size of a certain SINE is 300 bp, such SI
The NE family will occupy 0.1% of its genome (eg, 300x10 4 = 3x10 6 ). Thus, sequencing over 60 kbp or more could find two independent SINE sequences within this kind of randomly isolated DNA fragment (eg 600x100 / 0.1 = 6x10 6 ).

【0030】これは、高処理量自動DNAシーケンサー
の最新モデルへのアクセスにより実験室において簡単に
達成できるようになってきた。例えば、新規SINEフ
ァミリーが最近ゾウのゲノムから特徴づけされ、そして
この新規SINEがAfrotheriaの全ての種間
に分布していることが示された (Nikaido and Okada,未
発表)。この方法は、全ての哺乳動物及びおそらくほと
んどの脊椎動物のゲノムに適用されることができる。
This has become easier to achieve in the laboratory with access to the latest models of high throughput automated DNA sequencers. For example, a novel SINE family has recently been characterized from the elephant genome and it has been shown that this novel SINE is distributed among all species of Afroteria (Nikaido and Okada, unpublished). This method can be applied to the genomes of all mammals and perhaps most vertebrates.

【0031】SINEファミリーを正確に同定し、そし
てそのtRNA構造を演繹する方法 上記の方法に従って反復単位の多数コピーの配列を決定
した後、それらを整列させ、そして反復ファミリーのコ
ンセンサス配列を演繹することができる。SINE要素
以外にもゲノム内には多くの反復配列が存在するので、
その配列を適切に診断することが不可欠である。ほとん
どのSINEはtRNA由来であることが知られている
ので、それらはRNAポリメラーゼIIIのためのプロ
モーターを含む。RNAポリメラーゼIIIプロモータ
ーは保存された配列ブロックであり、そのゲノム内で互
いに分離された第1プロモーターと第2プロモーターの
特性を有する。この第2プロモーターは高く保存されて
おり、そして経験的に容易に認識されることができる。
Accurate identification of the SINE family
Method of Deducing Its tRNA Structure After sequencing multiple copies of the repeat unit according to the method described above, they can be aligned and the consensus sequence of the repeat family can be deduced. Since there are many repetitive sequences in the genome besides the SINE element,
Proper diagnosis of the sequence is essential. Since most SINEs are known to be from tRNA, they contain a promoter for RNA polymerase III. The RNA polymerase III promoter is a conserved sequence block, having the characteristics of a first promoter and a second promoter separated from each other in its genome. This second promoter is highly conserved and can be easily recognized empirically.

【0032】以下、CHR−2 SINEの例を考え
る。これらの要素のtRNA様構造を以下のように確立
することができる(図6参照): 1.まず、CHR−2のいくつかの配列の整列からCH
R−2 SINEのコンセンサス配列を構築する(図8
参照)。 2.目視により、RNAポリメラーゼIIIのための第
2プロモーターのコンセンサス配列を検索する。この配
列は5’-GT(又はA)TCG(又はA)-3’である。このプロモ
ーターをスクリーニングするとき、このモチーフに対す
る例外は存在しない。このモチーフが存在するとき、こ
の第2プロモーター配列を含むステム・ループ構造を作
る。ループ内の塩基の数は7であり、そしてステム内の
塩基対の数は5である。ステム領域内の塩基の全てが塩
基対を形成しない場合でさえも、図6(A)に示すよう
に、tRNA内の適当な位置にそれらの塩基を配置す
る。
Consider now an example of CHR-2 SINE. The tRNA-like structure of these elements can be established as follows (see Figure 6): First, from the alignment of several sequences of CHR-2, CH
Construct a consensus sequence for R-2 SINE (Fig. 8
reference). 2. Visually search for the consensus sequence of the second promoter for RNA polymerase III. This sequence is 5'-GT (or A) TCG (or A) -3 '. There are no exceptions to this motif when screening this promoter. When this motif is present, it creates a stem-loop structure containing this second promoter sequence. The number of bases in the loop is 7 and the number of base pairs in the stem is 5. Even if all of the bases in the stem region do not form base pairs, they are placed at the appropriate positions within the tRNA, as shown in Figure 6 (A).

【0033】3.上記ステム領域から5’上流方向にあ
る5塩基を1のユニットを考える。なぜなら、原形質ク
ラスItRNAにおいては、この余分ループ領域は5塩
基から成るからである。CHR−2 SINEの場合、
5塩基のこのユニットの配列は3’-CAGGG-5’である。
3’-PyPyPuPuPu-5’配列がいくつかのtRNAにおける
この余分ループに典型的であり(Sprinzl et al. 198
7)、そしてこれにより、上記SINEのtRNA起源を
演繹することができる(図6(B)参照)。 4.tRNA構造のアミノアシル−ステム領域を形成す
る次の5塩基を、他のユニットとみなす。この場合、
3’-GACGT-5’である(図6(C)参照)。 5.tRNA構造のアンチコドン−ループ領域を形成す
る次の7塩基を、さらに他のユニットとみなす。この場
合、3’-AACCGTC-5’である。その3’末端におけるAA
残基5’末端における3’-TC-5’残基はこのSINEの
tRNA起源の良い指標である。なぜなら、これらの塩
基はほとんどのtRNAにおいて高く保存されているか
らである(Galli et al.,1981)。これはさらにこのSI
NEのtRNA起源を支持する(図6(D)参照)。 6.通常、次の5塩基は他のユニットとみなし、そして
それらはアンチコドン−ステム領域(図6(C))に割
り当てられた5塩基と塩基対を形成するはずである。こ
の場合、その配列は3’-CGTCT-5’であり、そしてその
最初の4塩基だけが上記アンチコドン−ステム領域の相
手とよくマッチする。このユニットを正確に整列させる
ためには、上記アンチコドン−ステムの3’側の第1塩
基の位置に欠失を配置する(図6(E)参照)。 7.次に、このtRNA様構造のD領域のためのステム
・ループ構造を構築する。このステムとループの塩基の
数は通常それぞれ4と8であるが、特にSINEのtR
NA様構造においては、1〜2塩基程変化することがで
きる。明らかに、CHR−2次のいくつかの塩基対は意
味のある二次構造を形成しない。この場合、その第1プ
ロモーター領域に注目する。第1プロモーター領域にお
ける最も目立った特徴は、その領域内の2つのGの存在
である。他の特徴はこのループ内の15位(tRNAのナン
バリングシステムによる。以下同じ。)におけるGと1
4位におけるAである。この14位におけるAは5’側
上そのループ内の最初の塩基である。それゆえ、これら
の塩基を、このtRNA様構造のループの対応の位置に
配置する(図6(F)参照)。図6(F)中の最初の塩
基であるTはtRNA分子の全てにおいて高く保存され
ていることは周知である。 8.CHR−2 SINEのtRNA様構造は、図6
(F)に示す配列を、このファミリーのための他の配列
(図7(A))と併合することにより、演繹することが
できる。 9.次に、GenBank DNAデータベース中のB
LASTNプログラムを用いて(Altschul et al. 199
0)、CHR−2 SINEと実際のtRNAの間の類似
性について検索する。この例では、tRNA Gluが
CHR−2の配列に最も類似する。図7(B)はヒトt
RNA Gluの二次構造を示す。
3. Consider a unit consisting of 5 bases 5 ′ upstream from the stem region. This is because, in protoplasmic class ItRNA, this extra loop region consists of 5 bases. In the case of CHR-2 SINE,
The sequence of this unit of 5 bases is 3'-CAGGG-5 '.
The 3'-PyPyPuPuPu-5 'sequence is typical of this extra loop in some tRNAs (Sprinzl et al. 198).
7), and thereby, the SRNA tRNA origin can be deduced (see FIG. 6 (B)). 4. The next 5 bases that form the aminoacyl-stem region of the tRNA structure are considered another unit. in this case,
It is 3'-GACGT-5 '(see FIG. 6 (C)). 5. The next 7 bases forming the anticodon-loop region of the tRNA structure are considered yet another unit. In this case it is 3'-AACCGTC-5 '. AA at its 3'end
The 3'-TC-5 'residue at the 5'end of the residue is a good indicator of the origin of this SINE tRNA. This is because these bases are highly conserved in most tRNAs (Galli et al., 1981). This is this SI
It supports the tRNA origin of NE (see Figure 6 (D)). 6. Usually, the next 5 bases are considered another unit and they should base pair with the 5 bases assigned to the anticodon-stem region (FIG. 6 (C)). In this case, the sequence is 3'-CGTCT-5 ', and only its first four bases match well with its anticodon-stem region partner. In order to correctly align this unit, a deletion is placed at the position of the first base 3'of the anticodon-stem (see Fig. 6 (E)). 7. Next, a stem-loop structure for the D region of this tRNA-like structure is constructed. The number of bases in this stem and loop is usually 4 and 8, respectively, but especially tR of SINE
In the NA-like structure, it can vary by 1-2 bases. Apparently, some base pairs in CHR-2 order do not form meaningful secondary structure. In this case, pay attention to the first promoter region. The most prominent feature in the first promoter region is the presence of two G's in that region. Another feature is G and 1 at position 15 in this loop (depending on the tRNA numbering system. The same applies hereinafter).
It is A in 4th place. The A at position 14 is the first base in the loop on the 5'side. Therefore, these bases are placed at the corresponding positions of the loop of this tRNA-like structure (see FIG. 6 (F)). It is well known that T, which is the first base in FIG. 6 (F), is highly conserved in all tRNA molecules. 8. The tRNA-like structure of CHR-2 SINE is shown in FIG.
The sequence shown in (F) can be deduced by combining it with another sequence for this family (FIG. 7 (A)). 9. Next, B in the GenBank DNA database
Using the LASTN program (Altschul et al. 199
0), searching for similarities between CHR-2 SINE and actual tRNA. In this example, tRNA Glu most closely resembles the sequence of CHR-2. FIG. 7 (B) shows human t
The secondary structure of RNA Glu is shown.

【0034】SINEファミリーをサブファミリーに特
徴付ける方法 あるSINEファミリーが系統発生において種Aのゲノ
ム内に特徴付けられ、かつ、このSINEファミリーが
進化の間に最初に生成された時が知られていないと仮定
する。さらに、このSINEファミリーが図9中の分岐
群Yの全ての分類群の古い共通先祖において最初に生成
されたと仮定する。この場合、種Aのゲノム内に存在す
るSINEのコピーは、図9のtの時に増幅された古い
SINEと、uの時に増幅された若いSINEを含む。
種Aのゲノム・ライブラリーをこのSINEファミリー
のコンセンサス配列を用いてスクリーニングするとき、
上記の古いSINEと新しいSINEの両者を単離する
ことができる。種A,B,C,及びDの系統関係だけが
求められているので、単離されたSINEの増幅事件の
全ての時を調べるのは効率が悪い。むしろ、種Dの分岐
付近の時に増幅され、かつ、図9中の分岐群Xを含む4
つの分類群の全ての分岐にわたるSINE遺伝子座を単
離するように試みるのがはるかに効率がよい。
Specializing the SINE family as a subfamily
Method of conjecture It is assumed that a SINE family has been characterized in phylogeny within the genome of species A, and it is unknown when this SINE family was first generated during evolution. Further assume that the SINE family was first generated in the old common ancestor of all taxa of the clades Y in FIG. In this case, the copy of SINE present in the genome of species A contains the old SINE amplified at t and the young SINE amplified at u in FIG.
When screening a genomic library of species A with this SINE family consensus sequence,
Both the old SINE and the new SINE described above can be isolated. Since only the phylogenetic relationships of species A, B, C, and D are sought, it is inefficient to look at all times of an isolated SINE amplification event. Rather, it is amplified near the branch of species D and includes branch group X in FIG.
It is much more efficient to try to isolate the SINE locus across all branches of one taxon.

【0035】上述のように、SINEとLINEは多数
源遺伝子モデルに従って増幅されると信じられている
(Schmit and Maraia 1992; Smit et al. 1995)。ある源
遺伝子が突然変異を受け、そして進化の間に首尾よく増
幅された場合、この突然変異した源遺伝子はその対応の
SINEファミリー内のサブファミリーとして認識され
ることができる (Britten et al. 1988; Jurka et al.
1995)。サブファミリーは進化のある段階において増幅
される。それゆえ、あるサブファミリーが種A,B,
C,及びDの共通先祖においてのみ増幅された場合、こ
のサブファミリーのコピーは、これら4つの分岐群の系
統発生関係を決定するために有効に使用されることがで
きる。
As mentioned above, SINE and LINE are believed to be amplified according to the multisource gene model.
(Schmit and Maraia 1992; Smit et al. 1995). If a source gene is mutated and successfully amplified during evolution, this mutated source gene can be recognized as a subfamily within its corresponding SINE family (Britten et al. 1988). ; Jurka et al.
1995). Subfamilies are amplified at some stage of evolution. Therefore, one subfamily is species A, B,
When amplified only in the common ancestors of C and D, copies of this subfamily can be effectively used to determine the phylogenetic relationship of these four clade.

【0036】種AにおけるSINEファミリーのコンセ
ンサス配列は、上記手順の一部として確立され、そして
そのSINE配列の5’末端における1のPCRプライ
マー及びその3’末端付近の保存領域における他のプラ
イマーの設計を可能にする。このプライマー・セットに
より増幅される配列はそのSINE配列の全体を包含す
る。このプライマー・セットは、種A由来のゲノムDN
Aを用いたPCRによるSINEの多くのコピーを増幅
するために使用されることができる。この反応のPCR
産物は適当なベクターDNA内でクローニングされ、そ
して配列決定されることができる。この時点で、そのP
CR産物からのSINEの100コピーの配列決定は困
難な仕事ではない。これらの配列を整列させることによ
り、このSINEファミリーのサブファミリーを表す特
徴的なヌクレオチド又は可能な欠失を同定することがで
きる(図10参照)。特徴的なヌクレオチドは、特定の
サブファミリー内の3以上のヌクレオチド位置において
協調的に変更されており、かつ、進化の間のSINE配
列内でランンダムに蓄積した自然突然変異から区別され
うるものとして定義される。特徴的なヌクレオチドの存
在及びしばしば特異的な欠失に基づきサブファミリーを
首尾よく特徴づけた後に初めて、ドット−ブロット・ハ
イブリダイゼーション又はPCRにより与えられたサブ
ファミリーの分類学的分布を調べることができるように
なる。
The SINE family consensus sequence in species A was established as part of the above procedure, and the design of one PCR primer at the 5'end of the SINE sequence and another primer in a conserved region near its 3'end. To enable. The sequence amplified by this primer set includes the entire SINE sequence. This primer set is a genomic DN derived from species A
It can be used to amplify multiple copies of SINE by PCR with A. PCR of this reaction
The product can be cloned into an appropriate vector DNA and sequenced. At this point, the P
Sequencing 100 copies of SINE from a CR product is not a difficult task. By aligning these sequences, one can identify the characteristic nucleotides or possible deletions that represent a subfamily of this SINE family (see Figure 10). A characteristic nucleotide is defined as one that is cooperatively altered at three or more nucleotide positions within a particular subfamily and that can be distinguished from the spontaneous mutations accumulated in the random in the SINE sequence during evolution. To be done. Only after successfully characterizing the subfamily based on the presence of characteristic nucleotides and often specific deletions can the taxonomic distribution of the given subfamily be examined by dot-blot hybridization or PCR. Like

【0037】CHR−2 SINEのサブファミリー 図8は、クジラ目(Cetaceans)、猪豚亜目(Hippopota
muses)、及び核脚亜目(Ruminants)のゲノム中に存在
すると元々特徴づけられたCHR−2 SINEファミ
リー(Shimamura et al. 1997)のコピーのアラインメン
トを示す。CHR−2 SINEには6つのサブファミ
リーが存在することが容易に分かる。欠失の存在に因
り、FL(完全長)、MDI(中央欠失I)、MDII
(中央欠失II)、及び最短群を特徴付けした。次に、
この最短群を、DT(欠失型)、CD(クジラ欠失
型)、及びCDO(クジラ欠失歯クジラ特異的)のサブ
ファミリーに分類することができる。図11は、これら
サブファミリーのコンセンサス配列のアラインメント結
果を示す。配列番号1は上位コンセンサス配列、配列番
号2はFLコンセンサス配列、配列番号3はMDIコン
サンサス配列、配列番号4はMDIIコンセンサス配
列、配列番号は5DTコンセンサス配列、配列番号6は
CDコンセンサス配列、そして配列番号7はCDOコン
サンサス配列を表す。
CHR-2 SINE Subfamily FIG. 8 shows Cetaceans and Subpopulations of Hippopota.
muses), and an alignment of copies of the CHR-2 SINE family (Shimamura et al. 1997) originally characterized as present in the genome of the Ruminants. It is easy to see that there are six subfamilies in CHR-2 SINE. FL (full length), MDI (central deletion I), MDII due to the presence of the deletion
(Central deletion II), and the shortest group were characterized. next,
This shortest group can be divided into DT (deletion type), CD (whale deletion type), and CDO (whale deletion tooth whale specific) subfamilies. FIG. 11 shows the alignment results of the consensus sequences of these subfamilies. SEQ ID NO: 1 is an upper consensus sequence, SEQ ID NO: 2 is an FL consensus sequence, SEQ ID NO: 3 is an MDI consensus sequence, SEQ ID NO: 4 is an MDII consensus sequence, SEQ ID NO: 5DT consensus sequence, SEQ ID NO: 6 is a CD consensus sequence, and SEQ ID NO: 7 represents the CDO consansus sequence.

【0038】図12に、CD,CDO,及び他のサブフ
ァミリーに特異的なプローブを、それぞれ、用いたドッ
ト−ハイブリダイゼーション実験の結果を示す。この結
果はCDサブファミリーがクジラ目(歯クジラ及び髭ク
ジラ)のゲノムに特異的であり、そしてCDOサブファ
ミリーが歯クジラのゲノムに特異的であることをはっき
りと示している。それゆえ、CDサブファミリーに属す
るSINEは、クジラ目の、特に髭クジラの系統関係を
推定するために有用であり、一方、CDOサブファミリ
ーに属するSINEは、歯クジラの系統関係を推定する
ために有用である。CDOサブファミリーのコピーの分
布は、哺乳動物の分類生物学において最も争いのある点
の中の1つであったマッコウクジラを含む歯クジラ亜目
の単系統性をも示唆する。
FIG. 12 shows the results of dot-hybridization experiments using probes specific to CD, CDO and other subfamilies. The results clearly show that the CD subfamily is specific to the genome of Cetaceans (dental and bearded whales) and the CDO subfamily is specific to the genome of cetaceans. Therefore, SINEs belonging to the CD subfamily are useful for estimating the phylogenetic relationships of Cetacea, especially bearded whales, while SINEs belonging to the CDO subfamily are useful for estimating phylogenetic relationships of dental whales. It is useful. The distribution of copies of the CDO subfamily also suggests a monophyletic order of the suborder Whales, which includes sperm whales, which was one of the most controversial points in taxonomic biology of mammals.

【0039】フランキングSINE PCR 図9中に示す分岐群Xの共通先祖において生成されたサ
ブファミリーに属する、種AからのSINE遺伝子座を
単離し、そしてそれらの配列を決定した後、与えられた
遺伝子座における挿入の存在又は非存在を診断するため
に、PCR実験を行うことができる。そのフランキング
(隣接)配列を見て、プライマー配列を選択する。プラ
イマーの設計に際しては、二次構造の折り畳みの形成に
対して及び上流プライマーと下流プライマーの間のタン
デム・アニーリンングに対して注意しなければならな
い。これは、商業的に又はインターネットを通して入手
できるPCRプライマー設計を容易にするために書かれ
たさまざまな標準的なソフトウェア・プログラムを用い
て容易にチェックすることができる。オリゴヌクレオチ
ド・プライマーの溶融温度は55℃付近に設定する。そ
れゆえ、PCRのためのアニーリング温度は、種B,
C,及びDからのオルソロガスな遺伝子座の増幅を最適
化するとき、この温度に基づかなければならない。とき
に種B,C,及びDについてのプライマー結合領域内の
突然変異の蓄積が、この反応の間の効率的なプライマー
−鋳型アニーリングを阻害する。この場合、アニーリン
グ温度は、約45〜50℃まで低下されなければならな
い。PCR産物が最初のプライマーを用いたPCRによ
り増幅されない場合、PCRの効率を低下させるかもし
れない潜在的な人工物に関してさらに注意して、新たな
PCRプライマーを設計すべきである。図13にフラン
キングSINE PCRの原理を模式的に示す。
Flanking SINE PCR Given after the isolation and sequencing of the SINE loci from species A belonging to a subfamily generated in the common ancestor of clade X shown in FIG. PCR experiments can be performed to diagnose the presence or absence of insertions at the locus. A primer sequence is selected by looking at the flanking (flanking) sequence. Care must be taken in the design of the primers for the formation of secondary structure folds and for tandem annealing between upstream and downstream primers. This can be easily checked using various standard software programs written to facilitate PCR primer design available commercially or through the internet. The melting temperature of the oligonucleotide primer is set to around 55 ° C. Therefore, the annealing temperature for PCR is
This temperature must be based when optimizing the amplification of orthologous loci from C and D. Occasionally, the accumulation of mutations in the primer binding region for species B, C, and D prevents efficient primer-template annealing during this reaction. In this case, the annealing temperature should be reduced to about 45-50 ° C. If the PCR product is not amplified by PCR with the first primer, new PCR primers should be designed, with additional attention to potential artifacts that may reduce the efficiency of PCR. FIG. 13 schematically shows the principle of flanking SINE PCR.

【0040】図14は、PCR結果の1例を示す。ま
た、2つの異なるプローブを用いた同一フィルターを用
いて行ったハイブリダイゼーション実験結果を同時に示
す。図14(A)は、海イルカが単系統である証拠を提
供するPCRパターンである。なぜなら、海イルカから
のPCR産物は挿入された要素を含む予想断片サイズを
もっており、一方、他の歯クジラからの断片はMago 19
における挿入を欠く予想断片サイズをもつからである。
図14(B)は、SINEプローブを使用したハイブリ
ダイゼーション実験を示し、一方、図14(C)は、上
記遺伝子座のフランキングDNAを使用したハイブリダ
イゼーション実験を示す。この後者の実験は、オルソロ
ガスな遺伝子座が、それから上記遺伝子座が元々単離さ
れかつ特徴付けられたところのマゴンドウ以外の種にお
いてPCRにより忠実に増幅されたことを証明するため
に行われた。
FIG. 14 shows an example of the PCR result. In addition, the results of hybridization experiments performed using the same filter using two different probes are also shown. FIG. 14 (A) is a PCR pattern that provides evidence that sea dolphins are monophyletic. Because the PCR products from sea dolphins have the expected fragment size containing the inserted elements, while fragments from other tooth whales are Mago 19
Because it has the expected fragment size that lacks the insertion at.
FIG. 14 (B) shows the hybridization experiment using the SINE probe, while FIG. 14 (C) shows the hybridization experiment using the flanking DNA of the above loci. This latter experiment was performed to demonstrate that orthologous loci were faithfully amplified by PCR in species other than Magnolia that the loci were originally isolated and characterized from.

【0041】PCRデータの解釈 比較的最近分岐した種を調べる場合、オルソロガスなS
INE遺伝子座におけるフランンキング配列は忠実に保
存され、そして典型的には、PCR診断を阻害する問題
を引き起こさない。しかしながら、比較的古く分岐した
分類群を調べる場には、PCRはより頻繁に失敗し、そ
して実験結果の解釈を困難にする。不成功のPCRにお
いては、SINE−マイナス・データが現れる。すなわ
ち、SINE挿入の非存在を示す与えられた遺伝子座に
おける成功したPCR増幅がある。不成功のPCRは、
失われたデータを表し、そして挿入の存在又は非存在の
パターンをコードするSINEキャラクター・マトリッ
クスの最節約分析を行うとき、そのまま(例えば、
「?」)コードされる。調べた独立した遺伝子座の間に
矛盾した挿入パターンが存在するとき、先祖の多型性及
びその後の不完全な系統分類が、あるはずである。
Interpretation of PCR data When examining relatively recently diverged species, orthologous S
The flanking sequences at the INE locus are faithfully conserved, and typically do not pose problems that interfere with PCR diagnosis. However, PCR is more often missed when examining relatively old divergent taxa, making interpretation of experimental results difficult. In unsuccessful PCR, SINE-minus data appears. That is, there is a successful PCR amplification at a given locus indicating the absence of SINE insertion. The unsuccessful PCR is
As is (eg,
"?") Is coded. There should be ancestral polymorphisms and subsequent incomplete phylogeny when there are inconsistent insertion patterns between the independent loci examined.

【0042】哺乳類ゲノム中のSINEの分布 一般にほとんどの哺乳動物は大量のSINEをもってい
る。それらは、調べた種間のハイブリダイゼーション・
パターン(例えば、図12中のCHR−2 SINEの
分布)に基づき、明らかに目、亜目、上科、科、属、又
は種に特異的である。このような経験的な証拠は、SI
NEファミリーが多くの先祖哺乳動物系統において新た
に生成したことを示している。但し、その生成メカニズ
ムは十分に理解されていない。哺乳動物のゲノム中にこ
のように多数のSINE又はレトロポゾンが存在する理
由は、哺乳動物のL1によりコードされるRTaseが
哺乳動物の共通先祖においてその鋳型認識の特異性を変
更したためであると思われる。これは、ステム−ループ
構造の形成に責任を負う3’尾を厳格に認識する多くの
LINE内に存在するレトロポジションのために要求さ
れるポリA尾の認識を可能 (Ohshima et al. 1996; Oka
da et al. 1997; Kajikawa et al.)。このようなシナリ
オは、哺乳動物ゲノム内のL1 RTaseを介してポ
リA含有RNAが擬似遺伝子となることを可能にするこ
とができたのであろう。
Distribution of SINEs in the Mammalian Genome Generally, most mammals have large amounts of SINEs. They include hybridization between the species investigated.
Based on the pattern (eg, CHR-2 SINE distribution in FIG. 12), it is clearly eye, suborder, superfamily, family, genus, or species specific. Such empirical evidence is based on SI
It shows that the NE family is newly generated in many ancestral mammalian strains. However, its generation mechanism is not fully understood. The reason for such large numbers of SINEs or retroposons in the mammalian genome may be that the RTase encoded by the mammalian L1 alters its template recognition specificity in the mammalian common ancestor. . This allows the recognition of the poly A tail required for the retroposition present in many LINEs, which strictly recognizes the 3'tail responsible for the formation of the stem-loop structure (Ohshima et al. 1996; Oka
da et al. 1997; Kajikawa et al.). Such a scenario could have allowed poly A-containing RNAs to become pseudogenes via L1 RTases in the mammalian genome.

【0043】図15は、最近提案された哺乳動物の系統
樹を示す (Waddell et al. 1999; Cao et al. 2000; Ni
kaido et al. 2000)。現在まで特徴付けられた哺乳動物
SINEファミリーを図15上に記す。簡単に言えば、
全哺乳動物ゲノム中に分布する最も古いSINEファミ
リーはMIRである (Smit and Riggs 1995; Jurka et
al. 1995)。Aluファミリーは明らかに霊長類ゲノム
に特異的であるが、その近縁種、例えば、ヒヨケザル間
のその分布は詳細に調べられていない。げっ歯類B1,
B2,及びIDはげっ歯目のゲノムに特異的である。ウ
サギのCファミリーはウサギ目のゲノム内に報告されて
いるが、その近縁種間の分布は報告されていない。鯨偶
蹄目ゲノム内に存在するSINEファミリー、例えば、
CHR−1,CHR−2,CHRS,CHRS−S,P
RE−1,及びBov-tAは、詳細に調べられている
(Shimamura et al. 1997; Shimamura et al. 1999; Nik
aido et al. 1999)。CanSINEAはCanidaeゲノム
から最初に報告されたが(Minnick et al. 1992; Coltma
n and Wright 1994)、多くの他の食肉目ゲノム内の進化
の間に生じたことがその後示された (van der Vlugt an
d Lenstra 1995)。EREファミリーと命名されたウマ
SINEが報告され、そしてその分布が調べられた (Sa
kagami et al. 1994; Gallagher et al. 1999)。コウモ
リSINEファミリーがBorodulina and Kramerov (199
9)により単離され、そしてVESと命名され、そして他
のコウモリSINEファミリーも最近特徴付けられた
(Kawaiet al. )。ゾウSINEファミリーが最近単離さ
れ、Afrotheriaの種間に分布していることが
示された (Nikaido and Okada)。ここで、由来するtRNA
が異なっていたり、まったく違った配列であるSINEをfa
milyとして区別し、同じ起源に由来するがdiagnosticな
変異が見うけられるようなSINEをTypeまたはsubfamily
として区別している。あるSINEはある時期に爆発的にそ
のコピー数を増やし、その爆発的増幅時期と生物全体の
進化における時間軸がそれらの系統関係とSINEの分布と
の関連性につながっていると考えられる。
FIG. 15 shows the recently proposed mammalian phylogenetic tree (Waddell et al. 1999; Cao et al. 2000; Ni
kaido et al. 2000). The mammalian SINE family characterized to date is listed above in FIG. Simply put,
The oldest SINE family distributed in the entire mammalian genome is MIR (Smit and Riggs 1995; Jurka et al.
al. 1995). Although the Alu family is clearly specific to the primate genome, its distribution among its related species, such as the cynomolgus monkey, has not been investigated in detail. Rodent B1,
B2 and ID are specific to the rodent genome. The rabbit C family has been reported within the Genome of the order Lagomorpha, but its distribution among related species has not been reported. SINE family present in the Artiodactyla genome, for example,
CHR-1, CHR-2, CHRS, CHRS-S, P
RE-1 and Bov-tA have been investigated in detail
(Shimamura et al. 1997; Shimamura et al. 1999; Nik
aido et al. 1999). CanSINEA was first reported from the Canidae genome (Minnick et al. 1992; Coltma.
n and Wright 1994), and was subsequently shown to occur during evolution within many other carnivorous genomes (van der Vlugt an.
d Lenstra 1995). An equine SINE, named ERE family, was reported and its distribution examined (Sa
kagami et al. 1994; Gallagher et al. 1999). The bat SINE family is Borodulina and Kramerov (199
9) and named VES, and other bat SINE families have recently been characterized
(Kawai et al.). The elephant SINE family was recently isolated and shown to be distributed among Afrothelia species (Nikaido and Okada). Where the derived tRNA
Or SINE that has a completely different array
SINEs that are derived from the same origin but have a diagnostic mutation can be identified as mily by Type or subfamily
Are distinguished as. It is considered that a certain SINE explosively increases its copy number at a certain time, and the time of its explosive amplification and the time axis in the evolution of the whole organism are related to their phylogenetic relationship and the distribution of SINE.

【0044】重要なことは、哺乳動物ゲノム内に多くの
SINEファミリーが今日まで単離されてきたけれど
も、それらは未だそのサブファミリー構造まで特徴付け
られていないということである。したがって、本願発明
に従って、今後、そのサブファミリー構造が明らかにさ
れるであろうし、新たな哺乳動物SINEファミリー又
はサブファミリーもさらに獲得されることができる。
Importantly, although many SINE families have been isolated to date within the mammalian genome, they have not yet been characterized to their subfamily structure. Therefore, according to the present invention, its subfamily structure will be clarified in the future, and a new mammalian SINE family or subfamily can be further acquired.

【0045】SINEの新しい増幅:固定及び短期間の
種分岐 SINEがゲノムの進化においてひじょうに新しく増幅
され、そして1の種の集団の間で固定されていない場
合、共通派生形質としての地位は不安定であり、そして
それは系統樹作成のために使用されるべきではない。し
かしながら、このようなSINEの分布は、集団構造の
分析のためには使用されることができる (例えば、Hama
da et al. 1998)。種分岐が短期間に生じた場合、すな
わち、大部分のSINEが遺伝的浮動を介して集団の間
に固定される前には、先祖の多型性その後の不完全な系
統分類は矛盾したSINE挿入パターンを作り出す。こ
の現象は、SINEレトロポジションの不可逆な性質と
結合して、爆発的に派生した分類群における系統分類の
歴史的パターンを調べるためにSINEを使用するため
のバイアスを提供する。先祖に多型性があり、その後不
完全にSINEが子孫に分配され、矛盾する挿入パターンを
作り出した場合には、系統樹作成法の一つである最節約
法を用いて、各遺伝子座における挿入の存在又は非存在
についてのSINEキャラクター・マトリックスを評価
することが有用である。固定されていない、多形性SI
NEは、高レベルの系統関係のためには有用ではないけ
れども、それらは、集団分析のための優れた分類学的ツ
ールとなることが知られている(Deininger and Batzer,
1994, Stoneking et al, 1997; Hamada et al, 199
8)。したがって、本願明細書に記載する方法に従って、
SINEファミリー又はサブファミリーを同定し、か
つ、特徴付けすることにより、かかるSINEファミリ
ー又はサブファミリーを利用して動物の種判別方法を行
うことができる。
New amplification of SINE: fixed and short term
If the species divergence SINE is very newly amplified in the evolution of the genome and is not fixed between populations of one species, its status as a common trait is unstable and it is used for phylogenetic tree generation. Should not be. However, such SINE distributions can be used for analysis of population structure (eg, Hama
da et al. 1998). If species divergence occurs in the short term, that is, before most SINEs are fixed among populations via genetic drift, ancestral polymorphisms and subsequent incomplete phylogenetic classification may lead to inconsistent SINEs. Create an insertion pattern. This phenomenon, combined with the irreversible nature of the SINE retroposition, provides a bias for using SINE to investigate historical patterns of phylogenetic taxonomy in explosively derived taxa. If the ancestor has a polymorphism and the SINEs are incompletely distributed to the offspring and create inconsistent insertion patterns, the most conservative method, which is one of the phylogenetic tree construction methods, is used at each locus. It is useful to evaluate the SINE character matrix for the presence or absence of insertions. Unfixed, polymorphic SI
Although NEs are not useful for high-level phylogenetic relationships, they are known to be excellent taxonomic tools for population analysis (Deininger and Batzer,
1994, Stoneking et al, 1997; Hamada et al, 199
8). Therefore, according to the methods described herein,
By identifying and characterizing the SINE family or subfamily, it is possible to carry out a method for determining the species of animals using the SINE family or subfamily.

【0046】フランキング配列の機能及び価値(有用
性) SINE挿入について調べられた遺伝子座内のヌクレオ
チド・フランキング配列の情報は有用である。もちろん
挿入データは系統樹の作成及び本願発明に係る方法に使
用するために有用であるけれども、フランキング配列と
の挿入配列の統合は、独立したSINE挿入事件により
定められる分岐群間の枝の長さについての情報を提供す
る (Lum et al, 2000; Shedlock and Okada, 2000)。さ
らに、与えられた挿入要素と会合したフランキング配列
は文字通り連結されているので、SINE由来のトポロ
ジー対フランキング配列の間の一貫性は、各遺伝子座に
おける不可逆挿入の基本的仮定の評価への数多くのアプ
ローチを提供する (Lum etal, 2000)。独立したSIN
E遺伝子座にホモプラシー(成因的相同)、又は形質矛
盾が存在する場合、系統発生樹の間には明らかに矛盾が
あるかもしれない。このようなアプローチはSINE分
析の新たな次元として始まりつつあり、そしてSINE
法の統計学的評価を高めるための基礎を提供する。
Function and value of flanking sequence (useful
Sex) Information on the nucleotide flanking sequences within the locus examined for SINE insertions is useful. Although the insertion data is of course useful for creating a phylogenetic tree and for use in the method according to the present invention, the integration of the insertion sequence with the flanking sequence does not affect the length of the branches between clades defined by the independent SINE insertion case. Information about the quality (Lum et al, 2000; Shedlock and Okada, 2000). Furthermore, since the flanking sequences associated with a given insert are literally linked, the consistency between the SINE-derived topological versus flanking sequences is important for assessing the basic hypothesis of irreversible insertion at each locus. Provides numerous approaches (Lum et al, 2000). Independent SIN
There may be apparent discrepancies between the phylogenetic trees if there is homoplasia at the E locus, or trait inconsistency. Such an approach is emerging as a new dimension of SINE analysis, and SINE
It provides the basis for enhancing the statistical evaluation of law.

【0047】[0047]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、以下の実施例により本発明の技術的範囲が限
定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples. However, the technical scope of the present invention is not limited by the following examples.

【0048】材料及び方法 緩衝液、酵素類その他試薬 核酸の操作に用いる種々の緩衝液、酵素、大腸菌の培養
に用いる培地、その他の試薬類は、和光純薬(株)、Si
gma社、Difco社、FMC社より購入したものをSambrook et
al. (1989)の文献を参考にして調整した。各種制限酵
素、修飾酵素、ベクターDNAは、宝酒造(株)、東洋紡
績(株)、アマシャムライフサイエンス社より購入し
た。ラジオアイソトープは、第一化学薬品(株)より購
入した。PCRプライマーに関してはOligoExpress(アマシ
ャムファルマシアバイオテク(株))に合成を委託注文
したものを使用した。
Materials and Methods Buffers, Enzymes and Other Reagents Various buffers used for manipulating nucleic acids, enzymes, media used for culturing E. coli, and other reagents are Wako Pure Chemical Industries, Ltd., Si.
Sambrook et purchased from gma, Difco, FMC
It was adjusted with reference to the reference of al. (1989). Various restriction enzymes, modification enzymes, and vector DNA were purchased from Takara Shuzo Co., Ltd., Toyobo Co., Ltd., and Amersham Life Sciences. The radioisotope was purchased from Daiichi Pure Chemicals Co., Ltd. Regarding PCR primers, those ordered by Oligo Express (Amersham Pharmacia Biotech Co., Ltd.) for synthesis were used.

【0049】ゲノムDNA 本研究に使用した各種サンプル(組織もしくはDNA)に
ついて以下に示す。尚解析に用いた鯨、偶蹄類の英名、
和名、学名等について以下の表1:
Genomic DNA Various samples (tissue or DNA) used in this study are shown below. The whales and cloven-hoofed English names used in the analysis,
Table 1 below for Japanese and scientific names:

【表1】 に示す。フタコブラクダは東京大学医学部の吉田穣博士
より提供された筋肉組織からDNAを抽出した。ブタにつ
いては当研究室に保管されていたDNAをそのまま用い
た。ペッカリーは農水省畜産試験場の安江博博士より提
供されたDNAを用いた。ジャワマメジカは米国サンディ
エゴ動物園から提供されたDNAを用いた。アクシスジ
カ、アミメキリン、セーブルアンテロープ、ニホンカモ
シカ、マーコール、ムフロン、カバに関しては千葉市立
動物公園の宗近功氏より提供されたDNAを用いた。ヒツ
ジは長野県上田食肉衛生検査場の向井康氏より提供され
た肝臓から抽出したものを使用した。ウシに関しては神
奈川県食肉衛生試験場相模出張所より提供された腎臓か
らDNAを抽出して用いた。
[Table 1] Shown in. Bactrian camels extracted DNA from muscle tissue provided by Dr. Minoru Yoshida of the University of Tokyo School of Medicine. For pigs, the DNA stored in our laboratory was used as it was. The peccary used the DNA provided by Dr. Hiroshi Yasue of the Livestock Experiment Station of the Ministry of Agriculture and Fisheries. Javan deer used DNA provided by San Diego Zoo, USA. The DNA provided by Isao Munechika of Chiba City Zoological Park was used for Axis deer, Amemequilin, Sable antelope, Japanese serow, Markhor, Muflon, and hippopotamus. The sheep used was extracted from the liver provided by Mr. Yasushi Mukai of Ueda Meat Inspection Center, Nagano Prefecture. For cattle, DNA was extracted from the kidneys provided by the Sagami Branch Office of the Meat Hygiene Research Center in Kanagawa Prefecture and used.

【0050】イッカク、オオギハクジラのサンプルにつ
いては、千葉県立中央博物館の宮正樹博士より筋肉と思
われる組織片を入手しDNAを抽出して用いた。オオギハ
クジラのサンプルに関してはアカボウクジラ科オオギハ
クジラ属であることは判明しているが種名は不明であ
る。カワイルカ類を除くその他のサンプルは、水産庁遠
洋水産研究所大型鯨類研究室の加藤秀弘博士より提供さ
れた各種組織片からDNAを抽出して用いた。カワイルカ
類のサンプルについては、アメリカ合衆国南西漁業科学
センターのブラウネル博士(Dr. Robert L. Brownell,
Jr.: Chief Marine Mammal Division, Southeast Fish
eries Science Center, P.O. BOX 271, LaJolla, Calif
ornia 92038)により日本国への入手手続きを行っても
らった。それに基づいて、アマゾンカワイルカの皮下組
織片、ラプラタカワイルカの肝臓組織片についてはカリ
フォルニア州立大学バークレー校のHealy H. Hamilton
氏より提供を受けDNAを抽出した。ガンジスカワイルカ
は乾燥骨サンプルを国立科学博物館の山田格氏より提供
されDNAを抽出した。ヨウスコウカワイルカに関しては
中国科学院水生生物研究所の付属水族館に飼育されてい
る個体から鮮血を採取しその場でヘパリン処理したもの
を研究所へ搬送し即座にDNAを抽出した。抽出したDNA
は、日本への持ち込みが不可能なため現在は中国の研究
所において保管されている。
As a sample of narwhal and great whale, a tissue piece considered to be muscle was obtained from Dr. Masaki Miya of the Chiba Prefectural Central Museum, and DNA was extracted and used. Regarding the sample of Great Gray Whale, it is known that it belongs to the genus Great Gray Whale of the family Red Whale, but the species name is unknown. Other samples except river dolphins were used by extracting DNA from various tissue pieces provided by Dr. Hidehiro Kato of the Large Whale Research Laboratory, Oceanic Fisheries Research Institute, Fisheries Agency. For samples of river dolphins, see Dr. Robert L. Brownell, Center for Southwestern Fisheries Science, USA.
Jr .: Chief Marine Mammal Division, Southeast Fish
eries Science Center, PO BOX 271, LaJolla, Calif
ornia 92038), I had the procedure for acquisition in Japan carried out. Healy H. Hamilton of California State University, Berkeley, for the subcutaneous tissue slices of the Amazon dolphin and the liver tissue slices of the La Plata dolphin based on it.
DNA was extracted by the donation from Dr. Gandhiskawa dolphins were provided with dried bone samples by Mr. Tadashi Yamada of National Science Museum and extracted DNA. As for dolphins, fresh blood was collected from individuals kept in the aquarium of the Institute for Aquatic Biological Research, Chinese Academy of Sciences, heparinized on the spot, transported to the laboratory, and DNA was extracted immediately. Extracted DNA
Is currently stored in a Chinese laboratory because it cannot be brought into Japan.

【0051】ゲノムDNAの抽出 解析に用いた動物種の組織からのゲノムDNA抽出は、簡
便法(Rapid法;ProteinaseKを用いる方法)で行った。
抽出したゲノムDNAはライブラリーの作製及びPCRの鋳型
として使用した。また、それらは4℃で保管している。
−40℃のフリザーに保存しておいた鯨、偶蹄類の組織
(肝臓、筋肉)をメスで数ミリ角に切り出し、マイクロ
チューブに移してから組織の重量を測った後、そのマイ
クロチューブに1X TNE buffer (10mM Tris-HCl(pH8.0),
100mM NaCl, 1mM EDTA (pH 8.0))を500μl加えた。チュ
ーブ内の組織片をパスツールピペットを用いて細かく粉
砕したらその、組織及びTNE bufferに1X Lysis buffer
(20mg/ml Proteinase K,2% SDS, 10mM Tris-HCl(pH8.
0), 150mM NaCl, 10mM EDTA (pH8.0)) を加え、転倒撹
拌した後、55℃のウォーターバスを用いてインキュベー
トし組織片を完全に溶解させた。その溶液と等量のフェ
ノールを加え、ベリーダンサー(200〜300rpm)で1〜2
時間撹拌した。遠心分離後 (室温、12000rpm, 5min),
上清を別の2.0mlマイクロチューブに移した。同様にし
てフェノール/クロロホルム抽出に続きクロロホルム抽
出を繰り返し、最終的な上清に0.1倍量の3M 酢酸ナトリ
ウム及び2倍量のエタノールを加えた。この際多くの場
合ファイバーが確認され、その後70%エタノールを用い
てリンスした後適当量のTE bufferを加えペレットを溶
解させた。ヨウスコウカワイルカの血液サンプルからの
DNAの抽出は市販のカラム(QIAamp Tissue/Blood Kit C
at. No.29306: キアゲン(株)社製)を用いて行った。
Extraction of Genomic DNA Genomic DNA was extracted from the tissues of the animal species used for analysis by a simple method (Rapid method; method using Proteinase K).
The extracted genomic DNA was used as a template for library preparation and PCR. Also, they are stored at 4 ° C.
Cut tissues (liver, muscle) of whale and cloven-hoofed animals stored in a -40 ° C freezer into a few millimeters square with a scalpel, transfer to a microtube, weigh the tissue, and then 1X into the microtube. TNE buffer (10mM Tris-HCl (pH8.0),
500 μl of 100 mM NaCl, 1 mM EDTA (pH 8.0)) was added. Finely crush the tissue pieces in the tube using a Pasteur pipette, and then add 1X Lysis buffer to the tissue and TNE buffer.
(20 mg / ml Proteinase K, 2% SDS, 10 mM Tris-HCl (pH 8.
0), 150 mM NaCl, 10 mM EDTA (pH 8.0)) was added, and the mixture was inverted and stirred, and then incubated using a water bath at 55 ° C. to completely dissolve the tissue piece. Add the same amount of phenol as the solution and add 1-2 with a belly dancer (200-300 rpm).
Stir for hours. After centrifugation (room temperature, 12000 rpm, 5 min),
The supernatant was transferred to another 2.0 ml microtube. In the same manner, phenol / chloroform extraction and then chloroform extraction were repeated, and 0.1 volume of 3M sodium acetate and 2 volumes of ethanol were added to the final supernatant. At this time, in many cases, fibers were confirmed, and after rinsing with 70% ethanol, an appropriate amount of TE buffer was added to dissolve the pellet. From a blood sample of a northern dolphin
DNA extraction is performed using a commercially available column (QIAamp Tissue / Blood Kit C
at. No.29306: Qiagen Co., Ltd.) was used.

【0052】フランキングPCR(主に相同遺伝子座の増
幅に用いる) フランキングPCRとはSINE配列を挟む様にその両側(上
流及び下流)の近傍領域にプライマーを設計し、ゲノム
DNAを鋳型としてPCRを行う事を意味している。その際に
用いるプライマーは長さにしておよそ17〜30ヌクレオチ
ドでTm(MeltingTemperature)値はおおよそ55℃周辺にな
るように設計した。その設計に関しては、マッキントッ
シュ版フリーソフトとしてインターネット上でダウンロ
ードが可能なCPrimer (Ver.1.08, Bristol and Anderso
n(1995))を使用した。反応組成:Template DNA (100 〜
500 ng); 10 X PCR Buffer (100 mM Tris -HCl (pH8.
3), 500 mM KCl, 15 mM MgCl2 5 μl; dNTP Mixture
(2.5 mM each)4 μl; Forward and Reverse Primer (5
pmol/μl) 2 μl each; TaKaRa TaqTM(5 U/μl) 0.25
μl; adds ddH2O up to final volume 50 μl。反応条
件: 94 ℃(Pre-denature) 2〜3 min.; and 30 cycle
s of 94 ℃ (Denature) 30 sec.; 45 ℃〜60 ℃(Anneal
ing) 1 min; 72 ℃ (Extension) 30〜90sec.。この際An
nealingの温度はプライマーのTm値はもちろんのこと、
その遺伝子座の増えやすさなどに応じて適宜変えていき
最適な温度を探した。
Flanking PCR (mainly for increasing homologous loci)
With flanking PCR, primers are designed in the flanking regions on both sides (upstream and downstream) so as to sandwich the SINE sequence.
This means performing PCR using DNA as a template. The primers used at that time were designed to have a length of about 17 to 30 nucleotides and a Tm (Melting Temperature) value of about 55 ° C. Regarding its design, CPrimer (Ver.1.08, Bristol and Anderso, which can be downloaded on the Internet as Macintosh version free software)
n (1995)) was used. Reaction composition: Template DNA (100 ~
500 ng); 10 X PCR Buffer (100 mM Tris -HCl (pH 8.
3), 500 mM KCl, 15 mM MgCl 2 5 μl; dNTP Mixture
(2.5 mM each) 4 μl; Forward and Reverse Primer (5
pmol / μl) 2 μl each; TaKaRa TaqTM (5 U / μl) 0.25
μl; adds ddH 2 O up to final volume 50 μl. Reaction conditions: 94 ℃ (Pre-denature) 2-3 min .; and 30 cycles
s of 94 ℃ (Denature) 30 sec .; 45 ℃ ~ 60 ℃ (Anneal
ing) 1 min; 72 ℃ (Extension) 30 ~ 90sec. At this time An
The temperature of the not only the primer Tm value,
The optimum temperature was sought by changing the loci according to the ease of increase of the loci.

【0053】コロニーPCR コロニーPCRはサブクローニングを行う時、目的のDNA断
片がインサートとしてあるクローンに含まれているか否
かを選別するのに大変簡便な方法である。従来はプラス
ミドDNAをMiniprepによって調整した後に、制限酵素で
消化してそのインサートの有無を確認していたが、この
行程をPCRによるチェックのみで済ませる事が可能とな
るので、時間と労力の大幅な短縮につながる。まずプレ
ートに生えた大腸菌のコロニーを爪楊枝で軽くつつき0.
5 ml PCR 用マイクロチューブに擦り付け、それを鋳型
にして通常のPCRを20 μlの反応系にして行うだけであ
る。この際用いるプライマーはベクターに特異的な配列
に基づいて作製されている。PCR反応における熱変性の
際に大腸菌の細胞膜が破壊され鋳型となるベクターDNA
が溶液中に溶け出すことでこのPCRが可能になる。後で
述べるがこのPCRによってインサートの有無を確認した
後、このPCR産物を直接ABIシークエンサーを用いて配列
決定の鋳型とすることが可能なので、インサートチェッ
クの直後にそのインサートのシークエンスも可能なので
時間的にもかなりの短縮になった。
Colony PCR Colony PCR is a very convenient method for selecting whether or not a target DNA fragment is contained as an insert in a clone when performing subcloning. Conventionally, plasmid DNA was prepared by Miniprep and then digested with a restriction enzyme to confirm the presence or absence of the insert.However, it is possible to check this process only by PCR, so it takes a lot of time and labor. It leads to shortening. First, lightly peck the colonies of E. coli on the plate with a toothpick.
Simply rub it onto a 5 ml PCR microtube and use it as a template to perform ordinary PCR in a reaction system of 20 μl. The primer used at this time is prepared based on the sequence specific to the vector. Vector DNA that serves as a template because the cell membrane of E. coli is destroyed during heat denaturation in the PCR reaction
This PCR can be performed by dissolving in the solution. As will be described later, after confirming the presence or absence of the insert by this PCR, this PCR product can be directly used as a template for sequencing by using an ABI sequencer, so that the sequence of the insert can also be performed immediately after the insert check. It was considerably shortened.

【0054】塩基配列の決定 塩基配列の決定には以下に示すシークエンサー及びシー
クエンス反応キットを使用した。LI-COR dNA Sequencer
(Model 4000) を用いたシークエンス:SequiTherm EXC
ELL(商標)II Long-ReadTM DNA Sequence Kit-LC (Ca
t. No. SE7701LC, EPICENTRE TECHNOLOGIES社製);ABI
PRIZM(商標) 310 Genetic Analyser を用いたシーク
エンス: BigDye Terminator Cycle Sequencing FS Rea
dy Reaction Kit (P/N 4303152, Perkin Elmer社製)。
サブクローニングしたプラスミドDNAをシークエンス反
応の鋳型に用いる場合は、 SDS-Alkaline and Mg沈殿法
を用いて調整したものを使用した。スクリーニングによ
って単離したSINE配列を含んだ遺伝子座の塩基配列を決
定する場合はベクター配列上のM4及びRV、そしてSINEの
コンセンサス配列に基づいて作製した蛍光の付加してい
るオリゴヌクレオチドプライマー(アロカ(株)社製)
を用いた。PCR産物をダイレクトシークエンスする場合
は、PCR産物にShrimp Alkaline Phosphatase (SAP) 2U/
μl 0.5μl; Exonuclease I 10U/μl 0.5 μl (共にア
マシャムライフサイエンス社製)を直接加え、37 ℃で30
分インキュベートしてオリゴヌクレオチドを分解した
後、85 ℃で15 分間インキュベートして酵素を失活させ
たものをシークエンス反応の鋳型として用いた。
Determination of nucleotide sequence The following sequencer and sequence reaction kit were used to determine the nucleotide sequence. LI-COR dNA Sequencer
Sequence using (Model 4000): SequiTherm EXC
ELL ™ II Long-ReadTM DNA Sequence Kit-LC (Ca
t. No. SE7701LC, EPICENTRE TECHNOLOGIES); ABI
Sequencing with PRIZM ™ 310 Genetic Analyser: BigDye Terminator Cycle Sequencing FS Rea
dy Reaction Kit (P / N 4303152, Perkin Elmer).
When the subcloned plasmid DNA was used as a template for the sequencing reaction, it was prepared using the SDS-Alkaline and Mg precipitation method. When determining the base sequence of the locus containing the SINE sequence isolated by screening, M4 and RV on the vector sequence, and an oligonucleotide primer (fluorescein (aloca ( Co., Ltd.)
Was used. When PCR products are directly sequenced, add Srimp Alkaline Phosphatase (SAP) 2U /
μl 0.5 μl; Exonuclease I 10U / μl 0.5 μl (both from Amersham Life Sciences) were added directly to the plate at 30 ° C at 37 ° C.
After incubating for a minute to decompose the oligonucleotide, it was incubated at 85 ° C. for 15 minutes to inactivate the enzyme, which was used as a template for the sequencing reaction.

【0055】ゲノム・ライブラリーの作製 スクロース勾配 ゲノムDNA約50 μgを適当な制限酵素(本研究において
は主にHind IIIを使用した)で完全消化し、フェノール
/クロロホルム抽出、エタノール沈殿を行った後、200
μ l の TE buffer に溶解した。15 ml の超遠心分離用
プラスチックチューブ (Centrifuge Tubes - 50 Ultra
- Clear(商標)Tube 14 X 89 mm, Order No. 344059:
BECKMAN 社製)に10-40 %スクロース勾配を作製し、こ
の上にDNA 溶液を加え、ローターに取り付け、超遠心分
離機(L8-70M, Serial No. 7C869: BECKMAN 社製)で遠
心分離(25000 rpm., 15 ℃, 15 時間)した。遠心後、
1.5 ml マイクロチューブに10〜15滴ずつ滴下して分画
(約250〜400 μl/フラクション)した。その分画を0.7
〜1 %アガロースゲル電気泳動し、約2〜4 kbpの断片を
含むフラクションを挟むように4〜6本のフラクションチ
ューブを選別しエタノール沈殿を行った後、適当量のTE
bufferに溶解した。再び0.7〜1 %アガロース電気泳動
を行い、ライブラリー作製に用いるフラクションを決定
した。
Preparation of genomic library About 50 μg of sucrose gradient genomic DNA was completely digested with an appropriate restriction enzyme (Hind III was mainly used in this study), phenol / chloroform extraction and ethanol precipitation were performed. , 200
It was dissolved in μl of TE buffer. 15 ml plastic tubes for ultracentrifugation (Centrifuge Tubes-50 Ultra
-Clear (TM) Tube 14 X 89 mm, Order No. 344059:
Create a 10-40% sucrose gradient on BECKMAN, add the DNA solution onto it, attach to a rotor, and centrifuge (25000) with an ultracentrifuge (L8-70M, Serial No. 7C869: BECKMAN). rpm., 15 ° C., 15 hours). After centrifugation,
Fractionation (about 250 to 400 μl / fraction) was carried out by dropping 10 to 15 drops into a 1.5 ml microtube. The fraction is 0.7
Electrophorese on a 1% agarose gel, select 4 to 6 fraction tubes so as to sandwich the fraction containing the fragment of about 2 to 4 kbp, and perform ethanol precipitation.
It was dissolved in buffer. 0.7 to 1% agarose electrophoresis was performed again to determine the fraction used for library preparation.

【0056】プラスミド・ライブラリーの構築 今回の実験においてはpUC18/HindIIIもしくはpUC19/Hin
dIIIを使用したプラスミド・ライブラリーのみを用い、
ファージライブラリーは作製しなかった。それは鯨、偶
蹄類ゲノム中にはSINEのコピー数が十分量存在し、ファ
ージライブラリーを使用しなくても十分量のポジティブ
クローンが得られる事が、当研究室での経験上わかって
いたため、時間の節約を考えて比較的操作行程の少ない
プラスミド・ライブラリーを活用した。プラスミド・ラ
イブラリーの作製は以下の様にして行った。組成はTaKa
Ra Ligation Kit Ver.1 A液, 12 μl; 同 B液, 1.5 μ
l;Vector DNA (pUC18 or 19/HindIII〜100 ng/μl), 0.
5 μl; Insert DNA (Genomic DNA Sucrose Density Gra
dient Fraction), 1.0 μl : 以上の溶液を0.5 mlチュ
ーブ中で混合した後、クールブロック上で16 ℃で30分
以上放置した。このゲノム・ライブラリーは-20 ℃で保
存している。
Construction of plasmid library In this experiment, pUC18 / HindIII or pUC19 / Hin was used.
Using only the plasmid library using dIII,
No phage library was created. Since it was known from our experience in our laboratory that it is possible to obtain a sufficient amount of positive clones without using a phage library, because there is a sufficient copy number of SINE in the whale and artiodactyl genomes. To save time, we used a plasmid library with relatively few steps. The plasmid library was prepared as follows. The composition is TaKa
Ra Ligation Kit Ver.1 A solution, 12 μl; Same B solution, 1.5 μ
l; Vector DNA (pUC18 or 19 / HindIII ~ 100 ng / μl), 0.
5 μl; Insert DNA (Genomic DNA Sucrose Density Gra
dient Fraction), 1.0 μl: The above solutions were mixed in a 0.5 ml tube, and then left on a cool block at 16 ° C for 30 minutes or longer. This genomic library is stored at -20 ° C.

【0057】SINE配列を含むクローン単離までの流れ 図16にSINE法における実験の流れを示す。スクリーニング スクリーニングに使用するメンブレンの作製 0.5 mlチューブに前述のゲノム・ライブラリー混合液を
1 μl、大腸菌( E.coli JM105株)のコンピテントセル
を適当量加えて混合した後、氷上で30分間静置した。42
〜45 ℃で 45 秒間ヒートショックした後、あらかじめ
37 ℃ でインキュベートしておいた L/amp/X-gal/IPTG
プレートにプレーティングし、37 ℃インキュベーター
に一晩放置した。プレート1枚当たりのコロニー数が20
0〜300個になるように調整し、プレート10〜20枚分のラ
イブラリーをまいた。このプレート上に生えたコロニー
をナイロンメンブレン(Colony/Plaque Screen(商標)
NEF-978:NEN Research Products 社製)にトランスファ
ーし、変性溶液(0.4 M NaOH, 0.6 M NaCl), 中和溶液
(1 M NaCl, 0.5 M Tris-HCl (pH7.0)) の順に3分間
程度放置した。そのメンブレンは水分を切った後よく乾
燥させておいた。コロニーをトランスファーした後のプ
レートは37℃でインキュベートして再度コロニーが十分
に生えた状態にしておき、後述のポジティブクローンの
ピックアップをしやすいようにした。
Flow until isolation of clone containing SINE sequence FIG. 16 shows a flow of an experiment in the SINE method. Screening Preparation of membrane used for screening Add the above-mentioned genomic library mixture to a 0.5 ml tube.
An appropriate amount of 1 μl of E. coli (E. coli JM105 strain) competent cells was added and mixed, and the mixture was allowed to stand on ice for 30 minutes. 42
After heat shock at ~ 45 ° C for 45 seconds,
L / amp / X-gal / IPTG incubated at 37 ° C
The plates were plated and left in a 37 ° C incubator overnight. 20 colonies per plate
It was adjusted so that the number of cells was 0 to 300, and a library for 10 to 20 plates was spread. Colonies that grew on this plate were collected using a nylon membrane (Colony / Plaque Screen ™).
NEF-978: Transferred to NEN Research Products, and then denatured solution (0.4 M NaOH, 0.6 M NaCl), neutralized solution (1 M NaCl, 0.5 M Tris-HCl (pH7.0)) for about 3 minutes. I left it. The membrane was well dried after draining. After transferring the colonies, the plate was incubated at 37 ° C. so that the colonies were sufficiently grown again so that the positive clones described later could be easily picked up.

【0058】スクリーニングに使用するプローブの作製 スクリーニングにはオリゴヌクレオチドもしくはPCR産
物を使用した。実際に使用したオリゴヌクレオチド配列
を以下の表2:
Preparation of probe used for screening Oligonucleotides or PCR products were used for screening. The oligonucleotide sequences actually used are shown in Table 2 below:

【表2】 に示す。その作製方法はまず、オリゴヌクレオチドの場
合:ddH2O 27〜37μl;Oligo Nucleotide (5 pmol/μl)
1 μl; 10 X T4 Polynucleotide Kinase Buffer 5 μl;
T4 polynucleotide Kinase 2μl; [γ-32P]ATP 5〜15
μlを0.5mlチューブに混合した後、37℃でインキュベー
トした。プローブとして用いたオリゴヌクレオチドの配
列を上記表2に示す。PCR産物を用いる場合(Primer-Ex
tension法): Template DNA, 500 μg; Forward prime
r (12.5 nmol/μl) 2 μl; Reverse primer (12.5 nmol
/μl) 2 μl dDTP Mixture (dATP, dGTP, dTTP) 2.5 μ
l; 以上の混合液を95 ℃で5分間熱変性し、続いて55 ℃
で1分間アニールさせた後氷上に移した。さらに以下の
試薬を順に混合した後60 ℃で30分間インキュベートし
た。10XBcaBEST(商標)Buffer 2.5 μl; BcaBEST(商
標)DNA polymerase2 μl; [α- 32P] dCTP。反応後の
それぞれのプローブはNICK Column (SephadexG-50 DNA
Grade: アマシャムファルマシアバイオテク(株)社製)
で溶出させて精製した。RIのカウントは液体シンチレー
ションカウンターで測定した。(簡易的測定にガイガー
カウンターも使用した。)
[Table 2] Shown in. The method of preparation is first for oligonucleotides: ddH2O 27-37 μl; Oligo Nucleotide (5 pmol / μl)
1 μl; 10 X T4 Polynucleotide Kinase Buffer 5 μl;
T4 polynucleotide Kinase 2 μl; [γ-32P] ATP 5〜15
μl was mixed in a 0.5 ml tube and then incubated at 37 ° C. The sequences of the oligonucleotides used as probes are shown in Table 2 above. When using PCR products (Primer-Ex
tension method): Template DNA, 500 μg; Forward prime
r (12.5 nmol / μl) 2 μl; Reverse primer (12.5 nmol
/ μl) 2 μl dDTP Mixture (dATP, dGTP, dTTP) 2.5 μ
l; Heat denaturation of the above mixture at 95 ° C for 5 minutes, then at 55 ° C
It was annealed for 1 minute and then transferred to ice. Furthermore, the following reagents were mixed in order and then incubated at 60 ° C. for 30 minutes. 10X BcaBEST (trademark) Buffer 2.5 µl; BcaBEST (trademark) DNA polymerase 2 µl; [α- 32 P] dCTP. After the reaction, each probe was a NICK Column (Sephadex G-50 DNA
Grade: Amersham Pharmacia Biotech Co., Ltd.)
It was eluted with and purified. RI counts were measured with a liquid scintillation counter. (A Geiger counter was also used for simple measurement.)

【0059】ハイブリダイゼーション メンブレンをハイブリバックに入れ、そこにプレハイブ
リ溶液(6 X SSC, 1 %SDS ) を適当量加えた。ハイブリ
バックをシーラーでパックし1時間以上インキュベート
した。溶液を捨て、ハイブリ溶液(6 X SSC, 1 % SDS,
1 X Denhart'ssolution , Carrier DNA (Shared Herrin
g Sperm DNA solution)を加えた後、さらに予め調整し
たプローブを95 ℃で3分間熱変性しておいたものを加
え、またハイブリバックをシールした。その後42 ℃の
ウォーターバスで一晩(〜15時間程度)インキュベー
トした。それらのメンブレンを適当量のウォッシュ溶液
(2XSSC, 1 % SDS)で軽くすすぎカウントを測定し確認
してから、さらに新たなウォッシュ溶液を用いてウォー
ターバスの温度を55〜60 ℃に設定してウォッシュを行
った。
Hybridization The membrane was placed in a hybrid bag, and an appropriate amount of prehybridization solution (6 X SSC, 1% SDS) was added thereto. The hybrid bags were packed with a sealer and incubated for 1 hour or more. Discard the solution and remove the hybrid solution (6 X SSC, 1% SDS,
1 X Denhart's solution, Carrier DNA (Shared Herrin
g Sperm DNA solution) was added, and then a preconditioned probe that had been heat-denatured at 95 ° C. for 3 minutes was added, and the hybrid bag was sealed. Then, it was incubated overnight (about 15 hours) in a 42 ° C water bath. After confirming the membranes by lightly rinsing counts with an appropriate amount of wash solution (2XSSC, 1% SDS), wash with a new wash solution by setting the water bath temperature to 55-60 ° C. I went.

【0060】現像 ウォッシュ溶液を捨て新たなウォッシュ溶液で軽くすす
いだ後、カウントを、ガイガーカウンターを用いて確認
した。暗室内で台紙、メンブレン、X線フィルム、Inten
sifierの順にカセットを入れ、これを−80 ℃のフリ
ザーに入れて感光させた。暗室内でカセットからX線フ
ィルムを取り出し、現像液、停止液、定着液の順にX線
フィルムを入れて現像した。
Development After discarding the wash solution and lightly rinsing with fresh wash solution, the count was confirmed using a Geiger counter. Mount, membrane, X-ray film, Inten in dark room
The cassettes were placed in the order of sifier, and this was placed in a -80 [deg.] C. frizer for exposure. The X-ray film was taken out of the cassette in a dark room, and the X-ray film was placed in the order of a developing solution, a stop solution and a fixing solution for development.

【0061】Positive Clone の単離 現像したX線フィルムとライブラリーをまいたプレート
を重ね合わせる様にしてそのポジティブクローンの位置
を確認した。そのポジティブクローンだと思われるコロ
ニーについてはMiniprepを行う前に、そのクローン中に
おけるSINE配列の有無の確認のためにベクターの配列で
はなく、スクリーニングに用いたSINE配列のコンセンサ
ス配列に基づいて作製したプライマーを用いてコロニー
PCRを行った。その後、ポジティブクローンのプラスミ
ドを調製し、LI-CORシークエンサーを用いてその近傍領
域の配列決定を行った。その後の操作に関しては上述の
通りであるので、以下、簡単に述べる。
Isolation of Positive Clone The position of the positive clone was confirmed by stacking the developed X-ray film and the plate plated with the library. Before performing Miniprep for colonies that are considered to be the positive clones, primers prepared based on the consensus sequence of the SINE sequence used for screening, not the sequence of the vector to confirm the presence or absence of the SINE sequence in the clone before performing Miniprep Colony with
PCR was performed. After that, a plasmid of a positive clone was prepared, and its neighboring region was sequenced using a LI-COR sequencer. Since the subsequent operation is as described above, it will be briefly described below.

【0062】まず、そのフランキング配列を基にしてプ
ライマーを作製し、種々の生物のゲノムDNAを鋳型にし
てフランキングPCRを行った。そして多くの場合、スク
リーニングに用いた生物種の近縁種に関しては相同遺伝
子座を簡単に増幅させることが可能であるが、それとは
遠縁のグループもしくは分岐が古い時代に起こったと考
えられる種の相同遺伝子座については、その近傍領域に
おける塩基置換がより多く蓄積しているのでスクリーニ
ングに用いた1種の配列に基づいたプライマーではアニ
ールがうまくいかず、最初のフランキングPCRでは増幅
できない場合もしばしば見られた。その際には増幅した
様々な種の相同遺伝子座の塩基配列を決定してそれらの
コンセンサスをとりそれを考慮してまた新たなフランキ
ングプライマーを作製し再度PCRを行った。
First, a primer was prepared based on the flanking sequence, and flanking PCR was performed using genomic DNAs of various organisms as templates. And in many cases, it is possible to easily amplify the homologous locus for a closely related species of the species used for screening, but the homology of a distantly related group or divergence that is thought to have occurred in an old age. As for the locus, since there are more base substitutions accumulated in the vicinity region, annealing is not successful with the primer based on one sequence used in the screening, and it is often the case that amplification is not possible with the first flanking PCR. Was given. At that time, the nucleotide sequences of the amplified homologous loci of various species were determined, their consensus was taken into consideration, new flanking primers were prepared, and PCR was performed again.

【0063】鯨・偶蹄目間の系統関係の推定の際にはア
ガロース・ゲル電気泳動の後、増幅されたバンドが相同
遺伝子座なのか否かを確認するためにサザンハイブリダ
イゼーションを行った。その行程は以下に示す。アガロ
ース・ゲル電気泳動後エチジウム・ブロマイド(EtBr)溶
液で染色し、デジタルカメラによって泳動パターンを確
認、撮影した。その後変性溶液(0.4 NaOH, 0.6M NaC
l) に十分浸したメンブレン1枚、ろ紙2枚をこの順で、
間に気泡が入らないようにゲルにのせてその上にJKワイ
パー、キムタオル(商標)、重しとして辞典などを載
せ、一晩(〜15時間)放置した。メンブレンを中和溶液
(1 M NaCl, 0.5 M Tris - HCl (pH 7.0))に15分程度
放置して中和した後十分に乾燥させた。その後のハイブ
リダイゼーション、現像などの操作は前述のスクリーニ
ングの時と同じなので省略する。また鯨目内の系統関係
推定の際には殆どの遺伝子座についてそれらの塩基配列
を決定したので基本的にサザンハイブリダイゼーション
による確認は行わなかった。
In estimating the phylogenetic relationship between the whale and the Artiodactyla, Southern hybridization was performed after agarose gel electrophoresis to confirm whether the amplified band was a homologous locus. The process is shown below. After agarose gel electrophoresis, it was stained with an ethidium bromide (EtBr) solution, and the migration pattern was confirmed and photographed with a digital camera. Then denaturing solution (0.4 NaOH, 0.6M NaC
l) Membrane fully dipped in 2 pieces, filter paper 2 pieces in this order,
JK wiper, Kim towel (trademark), a dictionary as a weight, etc. were placed on the gel so that air bubbles would not get in between and left overnight (up to 15 hours). The membrane was left in a neutralizing solution (1 M NaCl, 0.5 M Tris-HCl (pH 7.0)) for about 15 minutes to neutralize it, and then dried sufficiently. Subsequent operations such as hybridization and development are the same as those in the above-mentioned screening, and will be omitted. In addition, since the nucleotide sequences of most of the loci were determined when estimating the phylogenetic relationships within the Whale Order, basically, confirmation by Southern hybridization was not performed.

【0064】実施例1:鯨偶蹄目ゲノム内におけるCHR-
2各サブファミリーの分布 鯨の起源ついてはその内部系統について形態による分類
と分子による分類で見解がわかれている。鯨目は現生の
多くの種類を含む歯鯨亜目と髭鯨亜目、そしてこれらの
祖先となったと考えられている原鯨亜目(ムカシクジラ
亜目とも呼ばれている)の3つの亜目に分けられており
(Fordyce et al., 1994)、現生の鯨類の分類はその分類
名からも明らかなように、歯を持つか否かによって区別
されている。しかし、髭鯨類も発生のかなり最後の方の
段階まで歯が確認できるし原鯨類の化石種の中には当然
のことながら歯鯨と髭鯨の中間段階にあると思われるよ
うな形質を備えたもの(つまり歯を持った髭鯨)も存在
しているので、実際の問題として歯の存在だけで歯鯨の
単系統性を主張することはできない。それは系統的に考
えた時に髭鯨の「髭」はおそらく共有派生形質であるが
歯鯨の「歯」という形質は原始形質とみなされるためで
ある。しかし歯鯨のみがエコロケーションをする能力を
持ち、それに付随するメロン体の存在も歯鯨の単系統性
を示唆する最も有名な形質のひとつである。
Example 1: CHR- in the Artiodactyla genome
2 Distribution of each subfamily Regarding the origin of whales, its internal system is divided into morphological classification and molecular classification. There are three subspecies of the Whale eye, which includes many modern species, the Orchidacea and the Beard Whale, and the original Whale subgenus (also known as the Antarctic whale), which is thought to have been the ancestors of these. Divided into eyes
(Fordyce et al., 1994), the classification of modern whales is distinguished by whether they have teeth or not, as is clear from the classification name. However, whiskers can also see teeth until the very last stage of the development, and among the fossil species of the original whales, it is natural that they are in the intermediate stage between whales and whiskers. There is also a toothed whale with a tooth (that is, a toothed whiskers), so as a practical matter, it is not possible to assert the monophyleticity of a tooth whale only by the presence of teeth. This is because the "beard" of a whale is probably a shared trait when considered systematically, but the "tooth" trait of a toothed whale is considered to be a primitive trait. However, only whales have the ability to eco-locate, and the presence of melon bodies associated with them is one of the most famous traits that suggest monophyly of whales.

【0065】形態的分類が歯鯨、髭鯨類のそれぞれの単
系統性を強く主張しているのに対して、現在までに行わ
れてきた分子を用いた系統解析によればその殆どが歯鯨
が単系統群を形成しないことを示唆している。その中で
も大きな論争の火種となったのがMilinkovith and Meye
r(1993)のミトコンドリア遺伝子配列の比較解析により
提唱された系統樹でこの解析によれば歯鯨に含まれてい
るマッコウクジラ上科のグループが他の歯鯨類よりむし
ろ髭鯨類に近縁である(つまり歯鯨は多系統である)と
いう。この結果に続いて多くの分子統計学的研究がなさ
れたが多くは歯鯨が多系統もしくは解決不可能という結
果となっていた(e. g., Arnason et al., 1994; Adachi
et al., 1996; Smith et al., 1996:図17参照)。そ
こで、以下の問題を解決すべくSINE法を用いて種判
別を行った:問題(1)歯鯨の単系統性の問題;(2)
全てのカワイルカ類を含めたそれらの鯨目における系統
関係;(3)鯨類それぞれの分岐年代。本願発明によ
り、系統関係の決定のみならず現在まで絶対的な信頼性
をもって進められてきた統計学的解析の問題点なども明
らかにすることができた。
While the morphological classification strongly asserts the monophyly of each of the toothed whales and whiskers, according to the phylogenetic analyzes that have been conducted so far using molecules, most of them are toothed. It suggests that whales do not form monophytes. Among them, Milinkovith and Meye became the cause of big controversy.
In the phylogenetic tree proposed by the comparative analysis of mitochondrial gene sequences of r (1993), this analysis shows that the group of sperm whales contained in the whales is closely related to whiskers rather than other whales. That is, the whale is multi-system. Following this result, a number of molecular statistical studies were carried out, but most of them resulted in multiple or insolvent whales (eg, Arnason et al., 1994; Adachi).
et al., 1996; Smith et al., 1996: see Figure 17). Therefore, the species discrimination was performed using the SINE method to solve the following problems: Problem (1) Problems of monophyly of the whale; (2)
Phylogenetic relationships in all whale dolphins, including all dolphins; (3) Divergence age of each whale. The present invention has made it possible to clarify not only the determination of systematic relations, but also the problems of statistical analysis that have been advanced with absolute reliability up to the present.

【0066】上述のように、本願発明者は、偶蹄目ゲノ
ム中に存在するCHR-2には大きく分けてFL(Full Lengt
h), MD(Middle Deletion type)、DT(Deletion Type)、C
D(Cetacea Deletion type)、 CDO(Cetacea Deletion ty
pe Odontoceti)のサブファミリーが存在することを発見
した。それぞれのサブファミリーは進化の過程における
増幅時期が異なるためそれらの分布は系統関係を反映す
ると考えられる。各サブファミリーのコンセンサス配列
のアラインメントを図18に示す。図18から明らかな
ように各サブファミリーはそれらにDiagnosticな塩基置
換や欠失が認められる。
As described above, the present inventor has roughly divided FL (Full Lengt) into CHR-2 existing in the Artiodactyla genome.
h), MD (Middle Deletion type), DT (Deletion Type), C
D (Cetacea Deletion type), CDO (Cetacea Deletion ty
pe Odontoceti) was found to exist. It is considered that the distribution of each subfamily reflects the phylogenetic relationship because the amplification time of each subfamily differs during evolution. An alignment of the consensus sequences for each subfamily is shown in Figure 18. As is clear from FIG. 18, each subfamily has Diagnostic base substitutions or deletions in them.

【0067】これらSINE各サブファミリーの鯨、偶蹄目
における分布を確認するためにドットハイブリダイゼー
ションを行った。用いたプローブは、CDとCDOに関して
はそれらの区別が可能な位置にオリゴプローブを設計し
(アラインメントの太線)、FLに関してはPCR産物を使
用した。ドットハイブリダイゼーションの結果を図12
に示す。まずFLは全ての鯨目そして偶蹄目ではカバ、ウ
シ(反すう亜目を代表)のみに分布し、ブタやラクダ及
びその他外群として加えた哺乳類ゲノム中には存在しな
いことが示唆された。次にCDは鯨目のみに特異的に分布
し偶蹄目には分布してないと考えられ、鯨目の単系統性
を強く支持している。さらにCDOに関しては、歯鯨にの
み強くシグナルが確認されることからこのサブファミリ
ーは歯鯨亜目特異的に爆発的な増幅をしたと考えられ、
分子による解析から疑問視されている歯鯨の単系統性を
支持するデータである。しかしドットハイブリダイゼー
ションによる解析においてシグナルが確認されないだけ
では、単にその系統でコピー数が少なかっただけという
可能性を否定できないので、その結果だけで系統関係を
推定することはできない。そこで実際にそれらのSINEが
鯨目ゲノム中に挿入している様な遺伝子座を単離して系
統関係の推定を行った。
Dot hybridization was performed to confirm the distribution of each of these SINE subfamilies in the whale and Artiodactyla. For the probe used, an oligo probe was designed at a position where CD and CDO could be distinguished from each other (thick line of alignment), and a PCR product was used for FL. Figure 12 shows the results of dot hybridization.
Shown in. First, it was suggested that FL is distributed only in hippopotamus and cattle (representing ruminants) in all Whale orders and Artiodactyla, and not in the mammalian genomes added as pigs, camels and other subgroups. Next, CD is considered to be uniquely distributed only in the whale order and not in the even artiodactyla, strongly supporting the monophyly of the whale order. Furthermore, regarding CDO, since a strong signal was confirmed only in the whale, it is considered that this subfamily has undergone explosive amplification specifically in the suborder Whale,
This data supports the monophyly of the whale, which has been questioned by molecular analysis. However, if no signal is confirmed in the dot hybridization analysis, the possibility that the copy number was simply low in that strain cannot be ruled out, so it is not possible to infer the phylogenetic relationship based solely on the results. Therefore, we actually isolated the gene loci in which those SINEs were inserted in the whale eye genome and estimated their phylogenetic relationships.

【0068】実施例2−1:SINEのゲノム中への挿入を
指標とした鯨目内部系統の解析 鯨目内部系統に関する研究においては、鯨目に存在する
SINEの中から鯨目全体に特異的に分布しているCD及び、
歯鯨亜目に特異的に増幅していると考えられるCDOに注
目し、鯨目各種のゲノム・ライブラリーからこれらのサ
ブファミリーに属するSINE配列を含む遺伝子座の単離を
行った。上述のように効率的に系統解析を行うにはサブ
ファミリーの分布とその増幅時期を対応させて予測がで
きる。マッコウクジラの系統解析に関しては、歯鯨の単
系統性を示唆するような遺伝子座の探索を続けられてき
たにもかかわらずそのような遺伝子座が単離できなかっ
た理由として、主に歯鯨にのみ分布しているCDOに注目
して行っていたからではないかと考えた。そこでマッコ
ウクジラのゲノム・ライブラリーのスクリーニングだけ
はCDOより一つ前に増幅したと思われるCDの配列を用い
て行った。以下に記載する各遺伝子座の名称と使用した
ゲノム・ライブラリーがどの鯨種由来かの対応関係をま
とめておく:Mago:マゴンドウ、Isi:イシイルカ、 Amz:
アマゾンカワイルカ、Tuti:ツチクジラ、Sp 及びSperm:
マッコウクジラ、Bando:バンドイルカ、並びに Hump:ザ
トウクジラ。鯨目の系統関係を示唆する遺伝子座の単離
に用いたPCRプライマーを以下の表3:
Example 2-1: Insertion of SINE into the genome
Analysis of the internal lineage of the Whale eye as an index
CDs that are uniquely distributed in the whole whale eye from SINE,
Focusing on CDO, which is thought to be specifically amplified in the subgenus Odontocephalus, we have isolated loci containing SINE sequences belonging to these subfamilies from various genomic libraries of Whales. As described above, for efficient phylogenetic analysis, the distribution of subfamilies and their amplification timing can be associated and predicted. Regarding the phylogenetic analysis of sperm whales, the reason why such loci could not be isolated despite the continued search for loci suggesting monophyly I thought it was because I was paying attention to the CDOs that are distributed only in Japan. Therefore, we only screened the sperm whale genomic library using the sequence of the CD which was supposed to be amplified before CDO. Below is a summary of the correspondence between each locus name and which whale species the genomic library used from: Mago: Magondo, Isi: Dolphin, Amz:
Amazon River Dolphin, Tuti: Whale, Sp & Sperm:
Sperm Whale, Bando: Banded Dolphin, and Hump: Humpback Whale. The PCR primers used to isolate the loci suggesting phylogenetic relationships in the order Whales are shown in Table 3 below.

【表3】 に示す。[Table 3] Shown in.

【0069】実施例2−2:鯨目の単系統性を支持する
遺伝子座 遺伝子座Bando1をバンドウイルカ、遺伝子座Sp316をマ
ッコウクジラのゲノム・ライブラリーから単離した。こ
れらの遺伝子座の塩基配列決定、SINE近傍領域における
プライマー設計、鯨偶蹄目のゲノムDNAを鋳型としたPCR
反応、アガロース・ゲル電気泳動による分離を行った。
その結果、図19に示す通り遺伝子座Bando1とSp316で
は鯨目に共通にSINEの挿入があったようなバンドパター
ンが確認できた。最も近縁な外群として用いたカバには
この挿入はないので、鯨目が共通祖先であった時期にそ
の挿入が起こったものと考えられる。これらの遺伝子座
は鯨目の単系統性を強く支持している。遺伝子座Bando1
においてはまずCDが鯨目の共通祖先時に挿入し、その後
南米のカワイルカ2種アマゾンカワイルカ、ラプラタカ
ワイルカの共通祖先種においてCDOの挿入があったもの
と考えられる。よってこの遺伝子座は鯨目の単系統性だ
けでなく南米カワイルカの単系統性も同時に示唆してい
る。遺伝子座Sp316ではCHR-1typeIIIが鯨目の共通祖先
で挿入ことを示している。図20〜22に遺伝子座Ba
ndo1のアラインメントの結果を、そして図23に遺
伝子座Sp316のアラインメントの結果を示す。
Example 2-2: Supporting monophyly of Whale order
The locus locus Bando1 bottlenose dolphins, to isolate the gene locus Sp316 from a genomic library of the sperm whale. Nucleotide sequence determination of these loci, design of primers in the SINE vicinity region, PCR using genomic DNA of the Artiodactyla as a template
Reaction and separation by agarose gel electrophoresis were performed.
As a result, as shown in FIG. 19, a band pattern in which SINE was commonly inserted in whale eyes was confirmed at the loci Bando1 and Sp316. Since the hippopotamus used as the most closely related outer group does not have this insertion, it is considered that the insertion occurred at the time when the Whale eye was a common ancestor. These loci strongly support the monophyly of Whale order. Locus Bando1
It is considered probable that CD was first inserted in the common ancestor of the whale eye, and then CDO was inserted in the common ancestors of two species of river dolphins, Amazon river dolphin and Laplata river dolphin, in South America. Thus, this locus suggests not only monophyly of the whale order but also that of the South American river dolphin. At the Sp316 locus, CHR-1 type III has been shown to be inserted in a common ancestor of the order Whale. The loci Ba are shown in FIGS.
The results of the ndo1 alignment and the results of the alignment of the Sp316 locus are shown in FIG.

【0070】実施例2−3:イルカ上科の単系統性を支
持する遺伝子座 遺伝子座Mago19においてはイルカ上科4種(マイルカ
科:コビレゴンドウ、バンドウイルカ;ネズミイルカ
科:イシイルカ;イッカク科:イッカク)に特異的なCD
Oの挿入が確認された(図24参照)。この遺伝子座は
イルカ上科の単系統性を強く支持している。図25と2
6に遺伝子座Mago19のアラインメントの結果を示
す。
Example 2-3: Supporting monophyly of the dolphin superfamily
Owned locus At the locus Mago19, a CD that is specific to four dolphin superfamily species (Dolphinidae: Collembola, Banded dolphin; Mussel dolphin: Dall's porpoise; Narwhal family: Narwhal)
Insertion of O was confirmed (see FIG. 24). This locus strongly supports the monophyly of the dolphin superfamily. 25 and 2
6 shows the result of alignment of the locus Mago19.

【0071】実施例2−4:Infraorder: Delphinidaを
支持する遺伝子座 遺伝子座Mago24, Mago26, Mago32, Isi14, Isi36, Isi3
8ではCDOの挿入がイルカ上科4種、南米カワイルカ2種
アマゾンカワイルカ、ラプラタカワイルカ及びヨウスコ
ウカワイルカにのみ確認された(図27と28参照)。
よってこれらの遺伝子座はこのグループの単系統性を支
持している。Muizon(1988,1994)は形態的特徴からこれ
らのグループをDelphinida下目(亜目よりも階級的には
下)としてまとめているがこの考えにもよく一致してい
る。またArnason(1996)らのミトコンドリアCytb遺伝子
の配列による解析でもこのことは強く支持されている。
またカワイルカ類が多系統群でガンジスカワイルカが他
のカワイルカ類より原始的であることを示唆している。
図29に遺伝子座Ishi14のアラインメントの結果
を示す。図30〜31に遺伝子座Ishi36のアライ
ンメントの結果を示す。図32〜33に遺伝子座Ish
i38のアラインメントの結果を示す。図34〜35に
遺伝子座Mago24のアラインメントの結果を示す。
図36〜37に遺伝子座Mago26のアラインメント
の結果を示す。図38〜39に遺伝子座Mago32の
アラインメントの結果を示す。
Example 2-4: Infraorder: Delphinida
Loci supporting loci Mago24, Mago26, Mago32, Isi14, Isi36, Isi3
In 8, the insertion of CDO was confirmed only in 4 species of dolphin superfamily, 2 species of South American river dolphin, Amazon river dolphin, La Plata river dolphin, and White dolphin dolphin (see FIGS. 27 and 28).
Thus, these loci support the monophyly of this group. Muizon (1988, 1994) summarized these groups as Delphinida subclasses (classically lower than suborders) based on their morphological characteristics, and is in good agreement with this idea. This is also strongly supported by the analysis of the mitochondrial Cytb gene sequence by Arnason (1996).
It also suggests that the dolphins are multi-systemic and that the Ganges dolphins are more primitive than the other dolphins.
FIG. 29 shows the result of the alignment of the locus Ishi14. 30 to 31 show the results of the alignment of the locus Ishi36. The locus Ish is shown in FIGS.
The result of the i38 alignment is shown. 34 to 35 show the results of alignment of the locus Mago24.
36 to 37 show the results of alignment of the locus Mago26. 38 to 39 show the results of alignment of the locus Mago32.

【0072】実施例2−5:アカボウクジラ科の系統関
係を示唆する遺伝子座 遺伝子座Mago8, Mago13においてはDelphinidaとアカボ
ウクジラ科に属する2種ツチクジラ、オオギハクジラに
特異的なCDOの挿入が確認された(図40参照)。この
ことから現生種ではアカボウクジラ科がDelphinidaに最
も近縁な分類群であるといえる。またガンジスカワイル
カ科はアカボウクジラ科よりさらに原始的なグループで
あることがわかる。図41に遺伝子座Mago8のアラ
インメントの結果を示す。図42に遺伝子座Mago1
3のアラインメントの結果を示す。
Example 2-5: Phylogenetic relationship of Red Whale family
At the loci Mago8 and Mago13, which suggest a relationship, the insertion of CDOs specific to Delphinida and two species of blue whales belonging to the family Whale, the Great Whale, was confirmed (see FIG. 40). From this, it can be said that the red whale family is the most closely related taxa to Delphinida in modern species. Also, it can be seen that the scorpionfish is a more primitive group than the red whale. FIG. 41 shows the result of alignment of the locus Mago8. Figure 42 shows the locus Mago1.
The result of the alignment of 3 is shown.

【0073】実施例2−6:ガンジスカワイルカ科の系
統関係を示唆する遺伝子座 遺伝子座Mago21, Mago22においてはDelphinida、アカボ
ウクジラ科及びガンジスカワイルカに特異的なCDOの挿
入が確認された(図43参照)。よってガンジスカワイ
ルカ科(インダスカワイルカはサンプルがないため解析
には加えていないがおそらくガンジスカワイルカと単系
統群を形成する。)はマッコウクジラを除く歯鯨の中で
は最も原始的なグループであることが明らかとなった。
図44に遺伝子座Mago21のアラインメントの結果
を示す。図45〜47に遺伝子座Mago22のアライ
ンメントの結果を示す。
Examples 2-6: Gandhiskawa dolphin family
Locus that suggests a relationship. At the loci Mago21 and Mago22, insertion of CDO specific to Delphinida, red whale, and scorpion dolphin was confirmed (see FIG. 43). Therefore, the stag dolphin family (Indus dolphins are not included in the analysis because there is no sample, but probably form a monophyletic group with swan dolphins.) It became clear.
FIG. 44 shows the result of alignment of the locus Mago21. 45 to 47 show the results of alignment of the locus Mago22.

【0074】実施例2−7:歯鯨の単系統性を支持する
遺伝子座 遺伝子座Sperm8, Sperm28, Sperm47においてはマッコウ
クジラも含めた歯鯨亜目全ての種で共通にCDの挿入が確
認された(図48参照)。これらの遺伝子座の解析結果
は分子統計学的研究から疑問視され続けてきた歯鯨の単
系統性が強く支持された。図49〜50に遺伝子座Sp
erm8のアラインメントの結果を示す。図51に遺伝
子座Sperm28のアラインメントの結果を示す。図
52に遺伝子座Sperm47のアラインメントの結果
を示す。
Examples 2-7: Supporting monophyly of whales
At the loci Sperm8, Sperm28, and Sperm47, the insertion of CD was confirmed in all species of the subfamily Whale, including sperm whales (see FIG. 48). The results of analysis of these loci strongly support the monophyly of the whale, which has been questioned by molecular statistical studies. The loci Sp is shown in FIGS.
The result of the alignment of erm8 is shown. FIG. 51 shows the result of alignment of the locus Sperm28. FIG. 52 shows the result of the alignment of the locus Sperm47.

【0075】実施例2−8:南米カワイルカの単系統性
を支持する遺伝子座 遺伝子座Amz13, Bando1においては南米カワイルカ2種
アマゾンカワイルカ、ラプラタカワイルカにおいて共通
にCDOの挿入が見られた(図53参照)。南米カワイルカ
2種及びヨウスコウカワイルカの3者の系統関係に関し
てはいくつかの仮説がありヨウスコウカワイルカが南米
カワイルカ類のいずれかと単系統群を形成する説もあっ
たが(Kasuya, 1973; Barnes et al., 1985)これら2つ
の遺伝子座によって南米カワイルカ類が単系統であるこ
とが強く支持された。今までに提唱されてきたいくつか
の仮説の中では生物地理学的にも最も理想的な系統関係
であると考えられる。図54に遺伝子座Amz13のア
ラインメントの結果を示す。
Examples 2-8: Monophyly of South American river dolphins
In the loci Amz13 and Bando1, which support the locus , insertion of CDO was commonly found in two species of South American river dolphin, Amazon river dolphin and Laplata river dolphin (see FIG. 53). There are some hypotheses about the phylogenetic relationship between the two South American river dolphins and the three species of the northern dolphin, but there is also a theory that the northern dolphin forms a monophyletic group with any of the southern dolphins (Kasuya, 1973; Barnes et al. al., 1985) These two loci strongly supported that the South American river dolphins are monophyletic. Among the several hypotheses proposed so far, it is considered to be the most ideal biogeographical phylogenetic relationship. FIG. 54 shows the result of alignment of the locus Amz13.

【0076】実施例2−9:アマゾンカワイルカに特異
的な遺伝子座Amz11 図55にアマゾンカワイルカに特異的にCDOの挿入が
あったことを示す遺伝子座Amz11のバンドパターン
を示す。図56に遺伝子座Amz11のアラインメント
の結果を示す。
Example 2-9: Specific for Amazon River Dolphin
Typical locus Amz11 Fig. 55 shows the band pattern of the locus Amz11 showing that CDO was specifically inserted in Amazon river dolphin. FIG. 56 shows the result of alignment of the locus Amz11.

【0077】実施例2−10:アカボウクジラ科に特異
的な遺伝子座Tuti24, Tuti35 図57にアカボウクジラ科に特異的にCDOの挿入があ
ったことを示す遺伝子座Tuti24, Tuti35のバンドパター
ンを示す。図58に遺伝子座Tuti24のアラインメ
ントの結果を示す。図59〜60に遺伝子座Tuti3
5のアラインメントの結果を示す。
Examples 2-10: Unique to Red Whale Family
Shows a specific locus Tuti24, Tuti35 band pattern locus Tuti24, Tuti35 indicating that there was a specific insertion of CDO to beaked whale in Figure 57. FIG. 58 shows the result of alignment of the gene locus Tuti24. The gene locus Tuti3 is shown in FIGS.
The results of 5 alignments are shown.

【0078】実施例2−11:マッコウクジラ上科3種
に特異的な遺伝子座Sp9、及びマッコウクジラ科に特異
的なSp2 図61にマッコウクジラ上科3種にCDOの挿入があっ
たことを示す遺伝子座Sp9、及びマッコウクジラ科に特
異的なSp2のバンドパターンを示す。図62〜63に遺
伝子座Sp2のアラインメントの結果を示す。図64に
遺伝子座Sp9のアラインメントの結果を示す。
Example 2-11: Three sperm whales
Specific locus for sp9 and sperm whale family
Sp2 Fig. 61 shows the locus Sp9 indicating that CDO was inserted in three sperm whale superfamily species, and the band pattern of sperm whale specific Sp2. 62 to 63 show the results of the alignment of the locus Sp2. FIG. 64 shows the result of the alignment of the locus Sp9.

【0079】実施例2−12:ナガスクジラ科(又は髭
鯨)に特異的な遺伝子座Hump20, Hump203 図65にナガスクジラ科(又は髭鯨)に特異的なCDの挿
入があったことを示す遺伝子座Hump20, Hump203のバン
ドパターンを示す。図66〜68に遺伝子座Hump2
0のアラインメントの結果を示す。図69に遺伝子座H
ump203のアラインメントの結果を示す。
Examples 2-12: Fin whales (or whiskers)
Hump20, Hump203 locus specific to whale) Figure 65 shows the band patterns of the Hump20 and Hump203 loci indicating that there was CD insertion specific to the fin whale (or whiskers). The locus Hump2 is shown in FIGS.
The result of 0 alignment is shown. Fig. 69 shows the locus H
The result of the alignment of ump203 is shown.

【0080】実施例3:鯨目内部の系統樹の作成 以上の結果から得られたSINEの挿入パターンをマトリッ
クスにまとめた(図70参照)。これに基づき推定される
鯨目内部の系統発生樹を図71に示す。それぞれの遺伝
子座の解析の際に得られたPCR産物の塩基配列は可能な
限りすべて決定し、アラインメントした。その結果得ら
れたバンドパターンが2次的な挿入や欠失などによって
もたらされたものでないことを確認した。またこれらの
配列は鯨目の核遺伝子配列情報として今後の研究に重要
であると考えている。
Example 3: Preparation of phylogenetic tree inside Whale Order The SINE insertion patterns obtained from the above results are summarized in a matrix (see FIG. 70). The phylogenetic tree in the whale order estimated based on this is shown in FIG. 71. As much as possible, the nucleotide sequences of the PCR products obtained during the analysis of each locus were determined and aligned. It was confirmed that the resulting band pattern was not caused by secondary insertion or deletion. We also consider that these sequences are important for future research as information on the nuclear gene sequences of Cetacea.

【0081】結果 上記実施例によって明らかになった現生歯鯨類の系統関
係を以下にまとめる。 1.歯鯨類は単系統群を形成する。マッコウクジラ上科
は現生歯鯨の中で最初に分岐したグループである。 2.ガンジスカワイルカ(おそらくインダスカワイルカ
と単系統)がマッコウクジラ類の次に分岐した。他のカ
ワイルカ類とは別の系統群から派生したものである。 3.次にアカボウクジラ科のグループが分岐する。また
アカボウクジラ科のBeradius属及びMesoplodon属は単系
統である。 4.南米のカワイルカ2種アマゾンカワイルカ、ラプラ
タカワイルカが単系統である。 5.イルカ上科に属するマイルカ科、ネズミイルカ科及
びイッカク科は単系統群を形成する。
Results The phylogenetic relationships of the modern dental whales revealed by the above examples are summarized below. 1. The whales form a monophyletic group. The sperm whale superfamily is the first divergent group in modern tooth whales. 2. A striated dolphin (probably an Indus dolphin and a single strain) diverged next to sperm whales. It is derived from a different lineage than other river dolphins. 3. Next, a group of red whales diverges. In addition, the genus Beradius and the genus Mesoplodon of the red whale family are single strains. 4. Two species of river dolphins in South America, Amazon river dolphin and La Plata river dolphin, are single strains. 5. The dolphin family, the porpoise family and the narwhal family, which belong to the dolphin superfamily, form a monophyletic group.

【0082】以上の系統関係は、系統発生学的に重要な
意味をもつだけではなく、数種の動物から成る検体が提
供された場合、SINEが挿入された適当な遺伝子座を
選択することにより、塩基配列分析を省略してその検体
がどの種であるか判別することができる本願発明に係る
SINE法を用いた種判別方法の信頼性の基礎をなす。
鯨目以外の動物についてもSINE法により、さらに系
統発生樹を確立することによって、それらの目内におい
ても鯨目内におけるものと同様な種判別方法を確立する
ことができる。なぜなら、分子統計学的手法を用いた系
統解析には以下に述べるように限界があるからである。
過去にマッコウクジラの系統関係に関して行われた分子
統計学的な研究で歯鯨の単系統性を示唆するような結果
は殆ど得られていなかった。これらの解析が主にミトコ
ンドリア遺伝子の配列を用いていたことから当初はミト
コンドリアに特異的な現象なのかとも考えられたが、ミ
オグロビンのアミノ酸配列の解析(Czelusniak et al.,
1990)でも同じ結果であったし、核遺伝子IRBPの解析 (S
mith etal., 1996) でも歯鯨の多系統性(マッコウクジ
ラがよりヒゲクジラに近縁である)の方が統計的に有利
である結果を示していることから、分子配列を統計学的
に解析するとどうしても歯鯨が多系統であるような結果
が得られるようである(図72参照)。しかし上記の結果
は明らかに歯鯨が単系統群を形成する事を示唆している
し、また形態学的な特徴から考えても歯鯨の単系統性は
まず間違いないであろう。
The above phylogenetic relationships are not only important phylogenetically, but when a specimen consisting of several animals is provided, it is possible to select an appropriate locus into which SINE has been inserted. It is the basis of the reliability of the species discriminating method using the SINE method according to the present invention, which can discriminate which species the specimen is without the nucleotide sequence analysis.
By establishing a phylogenetic tree by the SINE method for animals other than Whale eyes, it is possible to establish the same species discriminating method in those eyes as in the Whale eyes. This is because the phylogenetic analysis using the molecular statistical method has limitations as described below.
In the past, molecular statistical studies on the phylogenetic relationships of sperm whales have yielded few results suggesting monophyly of the whale. Since these analyzes mainly used the sequences of mitochondrial genes, it was thought that the phenomenon was initially specific to mitochondria, but the analysis of the amino acid sequence of myoglobin (Czelusniak et al.,
(1990) showed the same results, and analysis of nuclear gene IRBP (S
Statistical analysis of the molecular sequence was also shown by mith et al., 1996), in which the polymorphism of the whale (the sperm whale is more closely related to the whale) is statistically advantageous. Then, it seems that the result seems to be that the whale has multiple strains (see Fig. 72). However, the above results clearly suggest that the whales form a monophyletic group, and the monophyly of the whales is almost certain from the viewpoint of morphological characteristics.

【0083】では何故鯨類を分子統計学的に解析すると
マッコウクジラがヒゲクジラにより近縁であるような結
果が出てしまうのだろうか。しばしば問題視されるのが
アウトグループの選択である。つまり分子の情報からわ
かるのは各グループの分子的な距離だけでありそれらの
グループ(この場合はイルカ、マッコウクジラ、ヒゲク
ジラ)が分岐する以前に分岐した外群を用いて系統樹の
根(Root)の位置を確定する必要がある。しかしその位
置は外群の種類と数の違いによって異なる場合があり、
初期のArnason(1994)の解析のように外群をウシ一種し
か用いない様な解析はかなり信頼度は低いと考えられ
る。実際にCytb遺伝子に関してはAdachiとHasegawa(199
5)の研究によればアウトグループを変えることでその結
果が大きく変わることがわかっている。しかしその後の
多数の偶蹄目及びその他有蹄類を外群に用いて行った解
析(Arnason et al., 1996)でも、歯鯨の単系統性を示唆
することができなかったことから単にアウトグループの
選択が問題であったとは考えにくい。次に鯨類それぞれ
の分類群の間で分子進化速度が異なる可能性が考えられ
る。Martin(1993)らの研究では塩基置換速度に影響を及
ぼすと考えられる代謝の影響などと生物の体のサイズの
相関関係を示し、一般に体のサイズが大きいほど塩基置
換速度が遅くなる傾向があることを示唆した。つまりイ
ルカ類などの小型の歯鯨類がマッコウクジラやナガスク
ジラ類の様な大型の髭鯨類に比べて分子進化速度が大き
いために統計的な誤差をもたらしたとも考えられる。し
かし最終的にHasegawa(1997)らが解析に用いた最尤法(M
aximum likelihood analysis)は最大節約法(Maximum p
arsimony analysis)とは異なり、各分類群間で分子進
化速度が違うような場合においても結果的に間違えた系
統樹をつくることは少ないのが特徴であるにもかかわら
ず結果は変わらなかった。
Then, why is the result of a molecular statistical analysis of whales such that a sperm whale is closely related to a whale? Outgroup selection is often a problem. In other words, the molecular information only shows the molecular distance of each group, and the roots of the phylogenetic tree (Root, ) Need to be fixed. However, its position may vary depending on the type and number of outgroups,
The analysis that uses only one bovine as the outgroup, such as the early analysis of Arnason (1994), is considered to be quite unreliable. In fact, regarding the Cytb gene, Adachi and Hasegawa (199
According to the research in 5), it is known that changing the outgroup greatly changes the result. However, the subsequent analysis using a large number of Artiodactyla and other ungulates in the outgroup (Arnason et al., 1996) could not suggest monophyly of the whale, so it was simply outgroup. It is unlikely that the choice of was a problem. Next, it is possible that the molecular evolution rate may differ between each taxon of whales. A study by Martin (1993) and others showed a correlation between the body size of an organism and the effects of metabolism, which are thought to affect the rate of base substitution. Generally, the larger the body size, the slower the base substitution rate. I suggested that. In other words, it is considered that small toothed whales such as dolphins caused a statistical error because their molecular evolution rate was higher than that of large bearded whales such as sperm whales and fin whales. However, the maximum likelihood method (M
aximum likelihood analysis) is the maximum savings method (Maximum p
Unlike the arsimony analysis), the results did not change even though the molecular evolution rate among the taxa was different, although the characteristic was that it rarely produced a wrong phylogenetic tree.

【0084】また種の分岐が短時間の間に起こった可能
性も十分に考えられる。例えば歯鯨類ニ髭鯨類の分岐の
後、極めて短時間で歯鯨類からマッコウクジラ類が分岐
してしまったような場合は歯鯨の間で共通な塩基置換が
蓄積するのに十分な時間がなく、しかもマッコウクジラ
類がその後の現在に至るまでの長い時間を独自の歴史を
経てしまえばその間に蓄積した塩基置換が、歯鯨が共通
祖先の時期に蓄積したであろうわずかな共通塩基置換を
うやむやにしてしまうことが考えられる。実際に今から
3500万年程前に起きた、オーストラリア大陸の北偏
がもたらした南極海流の成立で鯨類の適応放散による種
分化はかなりのスピードで起こったことが予想される(F
ordyce, 1992)。このような場合はどのような解析方法
を用いても分子統計学的な解析による系統推定は不可能
であると考えられる。また、もし様々な統計学的な仮定
を前提にしてより確からしい系統推定ができたとしても
かなり人為的な系統樹になってしまうのではないだろう
か。これでは形態的研究よりも勝っている「客観性」と
いう観念からはずれてしまうように思われる。
It is also quite possible that the species divergence occurred in a short time. For example, if the sperm whales branch off from the whales in a very short time after the branching of the whales, the whales are enough to accumulate common base substitutions among the whales. If there is no time, and if the sperm whales have their own history for a long time until then, the base substitutions that have accumulated during that time may have accumulated during the period of common ancestry of the whales. It is considered that base substitution is unnecessarily performed. Actually, about 35 million years ago, the formation of the Antarctic Ocean Current caused by the northern polarization of the Australian continent is expected to cause speciation due to the adaptive emission of whales at a considerable speed (F
ordyce, 1992). In such cases, it is considered impossible to estimate the lineage by molecular statistical analysis using any analysis method. Also, if a more probable systematic estimation could be made on the assumption of various statistical assumptions, it would be a very artificial systematic tree. This seems to deviate from the idea of "objectivity", which is superior to morphological research.

【0085】[0085]

【発明の効果】本発明に係る動物種の判別方法の有利な
効果の1つは、配列決定工程を省略できることである。
一般に、シークエンス装置は最低でも1500万円であ
り、そして消耗品については、1回のシークエンスにか
かる費用はおよそ1200円である。したがって、多数
の検体を分析する場合、かなりの費用がかかる。さら
に、検査会社により商業的に分析する場合、現状、1検
体当たり1万円以上請求される。時間的にも、配列決定
工程には1検体当たり少なくとも1時間30分程かかる
ので、これが省略できるSINE法を用いた種判別方法
は分析効率が高い。最も重要なことは、DNA塩基配列
の解析は統計的な操作を伴うということである。上述の
ように、このうような統計学的な手法はその解析方法に
よっても結果がことなるという問題が生じている。これ
に対し、SINE法は、SINEの挿入という不可逆現
象を指標として種判別を行うので、その結果は明瞭であ
り、特別な統計学的処理は必要とされない。結論とし
て、本願発明に係るSINE法を用いた種判別方法は、
従来技術の塩基配列の比較に基づく種判別方法よりも、
金銭的に、時間的にさらにはその信頼性に関しても優れ
ているといえる。
EFFECT OF THE INVENTION One of the advantageous effects of the method for discriminating animal species according to the present invention is that the sequencing step can be omitted.
In general, a sequencer costs at least 15 million yen, and for consumables, the cost of a single sequence is approximately 1200 yen. Therefore, the analysis of a large number of specimens is very expensive. Furthermore, in the case of conducting a commercial analysis by an inspection company, at present one sample is charged at 10,000 yen or more. In terms of time, the sequencing step requires at least about 1 hour and 30 minutes for each sample, and thus the species determination method using the SINE method, which can omit this step, has high analysis efficiency. Most importantly, the analysis of DNA nucleotide sequences involves statistical manipulation. As described above, such a statistical method has a problem that the results may vary depending on the analysis method. On the other hand, in the SINE method, since the species discrimination is performed using the irreversible phenomenon of SINE insertion as an index, the result is clear and no special statistical processing is required. In conclusion, the species discrimination method using the SINE method according to the present invention is
Rather than the species discrimination method based on the comparison of base sequences of the prior art,
It can be said that it is excellent in terms of money, time, and reliability.

【0086】参考文献一覧 1.Altschul SF, Gish W, Miller W, Myers EW, Lipma
n DJ. Basic localalignment search tool. J. Mol. Bi
ol. 1990; 215:403-410 2.Batzer, M. A. et al. African origin of human-s
pecific polymorphicAlu insertions. Proc. Nat. Aca
d. Sci. USA 1994; 91: 12288-12292 3.Borodulina OR, Kramerov DA. Wide distribution
of shortinterspersed elements among eukaryotic gen
omes. FEBS Lett. 1999;457:409-13 4.Britten RJ, Baron WF, Stout DB, Davidson Eli.
Sources andevolution of human Alu repeated sequenc
es. Proc. Natl. Acad. Sci.USA 1988;85:4770-4774 5.Brosius J. Retroposons -- seeds of evolution.
Science 1991; 251:753 6.Bucci S, Ragghianti M, Mancino G, Petroni G, G
uerrini F, GiampaoliS. Rana/Pol III: a family of S
INE-like sequences in the genomesof western Palear
ctic water frogs. Genoine 1999; 42:504-511 7.Cao Y, Fujiwara M, Nikaido M, Okada N, Hasegaw
a M. Interordinalrelationships and timescale of eu
therian evolution as inferredfrom mitochondrial ge
nome data. 2000 (in press) 8.Clark JB, Kidwell M. A phylogenetic perspectiv
e on P transposableelement evolution in Drosophil
a. Proc. Natl. Acad. Sci. USA 1197;94:11428-11433 9.Coltman DW, Wright JM. Can SINEs: a family of
tRNA-derivedretroposons specific to the superfamil
y Canoidea. Nucleic AcidsRes. 1994;22:2726-2730 10.Deininger PL, Batzer MA. Evolution of retropos
ons. Evol. Biol.1993;27:157-196 11.Deragon JM, Landry BS, Pelissier T, Tutois 5,
Tourmente 5, PicardG. An analysis of retroposition
in plants based on a family ofSINEs from Brassica
napus. J. Mol. Evol. 1994; 39:378-386 12.Eickbush TH. Origin and evolutionary relations
hips ofretroelements. In Morse SS. ed; The Evoluti
onary Biology ofViruses. New York: Raven Press. 19
94. Pp.121-157 13.Gallagher PC, Lear TL, Coogle LD, Bailey E. Tw
o SINE familiesassociated with equine microsatelli
te loci. Mamm Genome. 1999; 10:140-144 14.Galli G, Hofstetter H, Birnstiel ML. Two conse
rved sequence blockswithin eukaryotic tRNA genes a
re major promoter elements. Nature1981;294:626-631 15.Hamada M, Takasaki N, Reist JD, De Cicco, Goto
A, Okada N.Detection of the ongoing sorting of an
cestrally polymorphic SINEstoward fixation or loss
in populations of two species of charrduring spec
iation. Genetics 1998;150: 301-311 16.Hartl DL, Lohe AR, Lozovskya ER. Modern though
ts on an ancyentmarinere: function, evolution, reg
ulation. Annu. Rev. Genet. 1997;31:337-358. 17.Hendy MD, Penny D. Syst. Zool. 1989;38:297-000 18.Hennig W. Phylogenetic Systematics. Urbana-Cha
mpagne:University of Illinois Press. 1966. 19.Hillis DM. SINEs of the perfect character. Pro
c. Natl. Acad. Sci.,USA 1999;96: 9979-9981 20.Izsvak Z, Ivics Z, Garcia-Estefania D, Fahrenk
rug SC, Hackett PB.DANA elements: a family of comp
osite, tRNA-derived shortinterspersed DNA elements
associated with mutational activities inzebrafish
(Danio rerio). Proc. Natl. Acad. Sci. USA 1996;9
3:1077-1081 21.Jurka J, Zeitkiewicz E, Labuda D. Ubiquitous m
ammalian-wideinterspersed repeats (MIR5) are molec
ular fossils from theMesozonic era. Nucleic Acids
Res. 1995;23:170-175 22.Kass DH, Raynor ME, Williams TM. Evolutionary
history of B1retroposons in the genus Mus. J Mol E
vol. 2000;51:256-64 23.Kazazian HH Jr, Moran JV. The impact of Li ret
rotransposons on thehuman genome. Nature Genetics
1998;19:19-24 24.Kido Y, Himberg M, Takasaki N, Okada N. Amplif
ication of distinctsubfamilies of short interspers
ed elements (SINEs) duringevolution of the Salmoni
dae. J. Mol. Biol. 1994;241: 633-644 25.Kido Y, Saitoh M, Murata 5, Okada N. Evolution
of the activesequences of the HpaI short interspe
rsed elements. J. Mol. Evol.1995;41:986-995 26.Kim J, Martignetti JA, Shen MR, Brosius J, Dei
ninger P. Rodent BC1RNA gene as a master gene for
ID element amplification. Proc.Natl. Acad. Sci., U
SA 1994;91: 3607-3611 27.Kramerov D, Vassetzky N, Serdobova I. The evol
utionary position ofdormice (Gliridae) in Rodentia
determined by a novel shortretroposon. Mol. Biol.
Evol. 1999;16:715-717 28.Leeflang EP, Liu W-M, Hashimoto C, Choudary P
V, Schmid CW.Phylogenetic evidence for multiple Al
u source genes. J. Mol. Evol.1992;35: 7-16 29.Luan DD, Korman MH, Jakubczak JL, Eickbush TH.
Reversetranscription of R2Bm RNA is primed by a n
ick at the chromosomaltarget site: a mechanism for
non-RTL retrotransposition. Cell 1993;72: 595-605 30.Lum JK, Nikaido M, Shimamura M, Shimodaira H,
Shedlock AM, OkadaN, Hasegawa M. Consistency of SI
NE insertion topology and flankingsequence tree: Q
uantifying relationships among cetartiodactyls.Mo
l. Biol. Evol. 2000; 17:1417-1424 31.Matera A G, Hellman U, Schmid CW. A transposit
ionally andtranscriptionally competent Alu subfami
ly. Mol. Cell. Biol. 1990;i0: 5424-5432 32.Minnick MF, Stillwell LC, Heineinan JM, Stiegl
er GL. A highlyrepetitive DNA sequence possibly un
ique to canids. Gene 1992; 110:235-238 33.Miyamoto MM. Perfect SINEs of evolutionary his
tory? CurrentBiology 2000;9:816-819 34.Mochizuki K, Umeda M, Ohtsubo H, Ohtsubo E. Ch
aracterization of aplant SINE, p-SINE1, in rice ge
noines. Jpn. J. Genet. 1992; 67:155-166 35.Murata S, Takasaki N, Saitoh M, Okada N. Deter
mination of thephylogenetic relationships among Pa
cific salmonids by using shortinterspersed element
s (SINEs) as temporal landmarks of evolution.Proc.
Natl. Acad. Sci., USA 1993; 90: 6995-6999 36.Murata S, Takasaki N, Saitoh M, Tachida H, Oka
da N. Details ofretropositional genoine dynamics t
hat provide a rationale for agenetic division: the
distinct branching of all the Pacific salmonand t
rout (Oncorhynchus) from the Atlantic salmon and t
rout(Salmo). Genetics 1996;142:915-926 37.Nagahashi 5, Endoh H, Suzuki Y, Okada N. Chara
cterization of atandemly repeated DNA sequence fam
ily originally derived byretroposition of tRNA(Gl
u) in the newt. J. Mol. Biol. 1991; 222:391-404 38.Nei, M, Kumar S. Molecular evolution and phylo
genetics. OxfordUniversity Press, New York. 2000. 39.Nikaido M, Rooney AP, Okada N. Phylogenetic re
lationships amongcetartiodactyls based on insertio
ns of short and long interspersedelements: Hippopo
tamuses are the closest extant relatives ofwhales.
Proc. Natl. Acad. Sci., USA 1999;96: 10261-10266 40.Nikaido M, Matsuno F, Hamilton H, Brownell Jr.
RL, Cao Yin, DingWang, Zuoyan Zhu, Shedlock AM, F
ordyce E, Hasegawa M, Okada N.Retroposon analysis
of major cetacean lineages: the monophyly oftoothe
d whales and the paraphyly of river dolphins. Pro
c. Natl.Acad. Sci. USA 2001 (in press) 41.Nikaido M, Harada M, Cao Y, Hasegawa M, Okada
N. Monophyleticorigin of the order Chiroptera and
its phylogenetic position amongmammalia, as inferr
ed from the complete sequence of themitochondrial
DNA of a Japanese megabat, the Ryukyu flying fox(P
teropus dasymallus). J. Mol. Evol. 2000;51 :318-32
8 42.Ohshima K, Koishi R, Matsuo M, Okada N. Severa
l shortinterspersed repetitive elements (SINEs) in
distant species mayhave originated from a common
ancestral retrovirus:characterization of a squid S
INE and a possible mechanism forgeneration of tRNA
-derived retroposons. Proc. Natl. Acad. Sci. USA19
93;90:6260-6264 43.Ohshima K, Okada N. Generality of the tRNA ori
gin of shortinterspersed repetitive elements (SINE
s). Characterization ofthree different tRNA-derive
d retroposons in the octopus. J. Mol.Biol. 1994;24
3:25-37 44.Ohshima K, Hamada M, Terai Y, Okada N. The 3’
ends of tRNAderivedshort interspersed repetitive
elements are derived from the 3’ends of long inte
rspersed repetitive elements. Mol. Cell. Biol.199
6;16: 3756-3764 45.Okada N. SINEs: short interspersed repeated el
ements of theeukaryotic genome. TREE 1991a;6:358-3
61 46.Okada N. SINEs. Curr. Opin. Genet. Dev. 1991b;
1:498-504 47.Okada N, Ohshima K. Evolution of tRNA-derived
SINEs. In Maraia RJ.ed; The impact of short inters
persed elements (SINEs) on the hostgenoine. Austi
n: RG Landes Co. 1995. p 62-79. 48.Okada N, Hamada M, Ogiwara I, Ohshima K. SINEs
and LINEs sharecommon 3’ sequences: a review. Ge
ne 1997;205: 229-243 49.Waddel PJ, Okada N, Hasegawa M Towards resolvi
ng the interordinalrelationships of placental mamm
als. Syst. Biol. 1999;48:1-5 50.Rogers J. Retroposons defined. Nature 1983;30
1:460 51.Rokas A, Holland PWH. Rare molecular changes a
s a tool forphylogenetics. TREE (in press) 52.Sakagami M, Ohshima K, Mukoyama H, Yasue H, Ok
ada N. A novel tRNAspecies as an origin of short i
nterspersed repetitive elements(SINEs). Equine SIN
Es may have originated from tRNA(Ser). J. Mol.Bio
l. 1994;239:731-735 53.Schmid C. Alu: structure, origin, evolution, s
ignificance andfunction of one-tenth of human DNA.
Prog. Nucl. Acid Res. and Mol.Biol. 1996;53:283-3
19 54.Schmid CW, Maraia R. Transcriptional regulatio
n andtranspositional selection of active SINE sequ
ences. Curr. Opin.Genet. Devel. 1992;2: 874-882 55.Schmitz J, Ohxne M, Zischler H. SINE insertion
s in cladisticanalyses and the phylogenetic affili
ations of Tarsius bancanus toother Primates.Geneti
cs 2001 (in press) 56.Shedlock, AM., Okada N. SINE insertions: Power
ful tools formolecular systematics. BioEssays 200
0; 22:148-160 57.Shedlock AM, Milinkovitch MC, Okada N. SINE ev
olution, missingdata, and the origin of whales. Sy
st. Biol. 2000; 49:808-817 58.Shedlock AM, Takahashi K, Okada N. SINEs of sp
eciation: trackingthe sorting of lineages with ret
roposons. TREE 2001 59.Shen MR, Batzer MA, Deininger PL. Evolution of
the Master Alu Gene(s). J. Mol. Evol. 1991;33: 31
1-320 60.Sherry ST, Harpending HC, Batzer MA, Stoneking
M. Alu evolution inhuman populations: Using the c
oalescent to estimate effectivepopulation size. Ge
netics 1997; 147:1977-1982 61.Shimamura M, Yasue H, Ohshima K, Abe H, Kato
H, Kishiro T, Goto M,Munechika I, Okada N. Molecul
ar evidence from retroposons thatwhales form a dad
e within even-toed ungulates. Nature 1997;388:666-
670 62.Shimamura M, Abe H, Nikaido M, Ohshima K, Okad
a N. Genealogy offamilies of SINEs in cetacean and
artiodactyls: The presence of ahuge superfamily o
f tRNAG1u-derived families of SINEs. Mol. Biol.Evo
l. 1999;16:1046-1060 63.Smit AFA, Toth G, Riggs AD, Jurka J. Ancestra
l, mammalian-widesubfamilies of LINE-i repetitive
sequences. J. Mol. Evol. 1995;246:401-417 64.Smit AFA, Riggs AD. MIR5 are classic, tRNA-der
ived SINEs thatamplified before the mammalian radi
ation. Nucleic Acids Res. 1995;23:98-102 65.Sprinzl M. Hartmann T, Meissner F, Moll J, Vor
derwiilbecke T.Compilation of tRNA sequences and s
equences of tRNA genes. NucleicAcids Res. 1987;15:
r53-r188 66.Stoneking M. et al. Alu insertion polymorphism
s and humanevolution: Evidence for a larger popula
tion size in Africa. GenomeRes. 1997;7:1061-1071 67.Surzycki SA, Belknap WR. Characterization of r
epetitive DNAelements in Arabidopsis. J. Mol. Bio
l. 1999;48:684-691 68.Takahashi K, Terai Y, Nishida M, Okada N. A no
vel family of shortinterspersed repetitive element
s (SINEs) from cichlids: thepattern of insertion o
f SINEs at orthologoous loci support theproposed m
onophyly of four major groups of cichlid fishes in
LakeTanganyika. Mol. Biol. Evol. 1998;15:391-407 69.Takasaki N, Murata 5, Saitoh M, Kobayashi T, P
ark L, Okada N.Species-specific amplification of t
RNA-derived short interspersedrepetitive elements
(SINEs) by retroposition: A process ofparasitizati
on of entire genoines during the evolution ofsalmo
nids. Proc. Natl. Acad. Sci. USA 1994;91: 10153-10
157 70.Takasaki N, Park L, Kaeriyaina M, Gharrett AJ,
Okada N.Characterization of species-specifically
amplified SINEs in threesalmonid species - chum sa
lmon, pink salmon, and kokanee: thelocal enviromen
t of the genoine may be important for thegeneratio
n of a dominant source gene at a newly retroposed
locus.J. Mol. Evol. 1996;42:103-106 71.Terai Y, Takahashi K, Okada N. SINE Cousins: T
he 3’ end tails ofthe two oldest and distantly re
lated families of SINEs aredescended from the 3’
ends of LINEs with the same geneologicalorigin. Mo
l. Biol. Evol. 1998;15: 1460-1471 72.Unsal K, Morgan GT. A novel group of families
of shortinterspersed repetitive elements (SINEs) i
n Xenopus: evidence of aspecific target site for D
NA-mediated transposition of inverted-repeat SINE
s. J. Mol. Biol. 1995; 248:812-823 73.van der Vlugt HHJ, Lenstra JA. SINE elements o
f carnivores.Mammal. Genome 1995;6:49-51 74.Weiner A, Deininger PL, Efstratiadis A. Nonvir
al retroposons:genes, pseudogenes, and transposabl
e elements generated by thereverse flow of genetic
information. Ann. Rev. Biochem. 1986;55:631-661 75.Yoshioka Y, Matsumoto 5, Kojiina 5, Ohshima K,
Okada N, Machida Y.Molecular characterization of
a short interspersed repetitiveelement from tobacc
o that exhibits sequence homology to specifictRNA
5. Proc. Natl. Acad. Sci. USA 1993; 90:6562-6566
List of References 1. Altschul SF, Gish W, Miller W, Myers EW, Lipma
n DJ. Basic localalignment search tool. J. Mol. Bi
ol. 1990; 215: 403-410 2. Batzer, MA et al. African origin of human-s
pecific polymorphicAlu insertions. Proc. Nat. Aca
d. Sci. USA 1994; 91: 12288-12292 3. Borodulina OR, Kramerov DA. Wide distribution
of shortinterspersed elements among eukaryotic gen
omes. FEBS Lett. 1999; 457: 409-13 4. Britten RJ, Baron WF, Stout DB, Davidson Eli.
Sources and evolution of human Alu repeated sequenc
es. Proc. Natl. Acad. Sci. USA 1988; 85: 4770-4774 5. Brosius J. Retroposons-seeds of evolution.
Science 1991; 251: 753 6. Bucci S, Ragghianti M, Mancino G, Petroni G, G
uerrini F, GiampaoliS. Rana / Pol III: a family of S
INE-like sequences in the genomes of western Palear
ctic water frogs. Genoine 1999; 42: 504-511 7. Cao Y, Fujiwara M, Nikaido M, Okada N, Hasegaw
a M. Interordinal relationships and timescale of eu
therian evolution as inferredfrom mitochondrial ge
nome data. 2000 (in press) 8. Clark JB, Kidwell M. A phylogenetic perspectiv
e on P transposable element evolution in Drosophil
Proc. Natl. Acad. Sci. USA 1197; 94: 11428-11433 9. Coltman DW, Wright JM. Can SINEs: a family of
tRNA-derivedretroposons specific to the superfamil
y Canoidea. Nucleic AcidsRes. 1994; 22: 2726-2730 10. Deininger PL, Batzer MA. Evolution of retropos
ons. Evol. Biol. 1993; 27: 157-196 11. Deragon JM, Landry BS, Pelissier T, Tutois 5,
Tourmente 5, PicardG. An analysis of retroposition
in plants based on a family ofSINEs from Brassica
napus. J. Mol. Evol. 1994; 39: 378-386 12. Eickbush TH. Origin and evolutionary relations
hips of retroelements. In Morse SS. ed; The Evoluti
onary Biology of Viruses. New York: Raven Press. 19
94. Pp. 121-157 13. Gallagher PC, Lear TL, Coogle LD, Bailey E. Tw
o SINE families associated with equine microsatelli
te loci. Mamm Genome. 1999; 10: 140-144 14. Galli G, Hofstetter H, Birnstiel ML. Two conse
rved sequence blockswithin eukaryotic tRNA genes a
re major promoter elements. Nature1981; 294: 626-631 15. Hamada M, Takasaki N, Reist JD, De Cicco, Goto
A, Okada N. Detection of the ongoing sorting of an
cestrally polymorphic SINEstoward fixation or loss
in populations of two species of charrduring spec
iation. Genetics 1998; 150: 301-311 16. Hartl DL, Lohe AR, Lozovskya ER. Modern though
ts on an ancyentmarinere: function, evolution, reg
Anulation. Annu. Rev. Genet. 1997; 31: 337-358. Hendy MD, Penny D. Syst. Zool. 1989; 38: 297-000 18. Hennig W. Phylogenetic Systematics. Urbana-Cha
mpagne: University of Illinois Press. 1966. 19. Hillis DM. SINEs of the perfect character. Pro
c. Natl. Acad. Sci., USA 1999; 96: 9979-9981 20. Izsvak Z, Ivics Z, Garcia-Estefania D, Fahrenk
rug SC, Hackett PB. DANA elements: a family of comp
osite, tRNA-derived shortinterspersed DNA elements
associated with mutational activities inzebrafish
(Danio rerio). Proc. Natl. Acad. Sci. USA 1996; 9
3: 1077-1081 21. Jurka J, Zeitkiewicz E, Labuda D. Ubiquitous m
ammalian-wideinterspersed repeats (MIR5) are molec
ular fossils from theMesozonic era. Nucleic Acids
Res. 1995; 23: 170-175 22. Kass DH, Raynor ME, Williams TM. Evolutionary
history of B1retroposons in the genus Mus. J Mol E
vol. 2000; 51: 256-64 23. Kazazian HH Jr, Moran JV. The impact of Li ret
rotransposons on the human genome. Nature Genetics
1998; 19: 19-24 24. Kido Y, Himberg M, Takasaki N, Okada N. Amplif
ication of distinctsubfamilies of short interspers
ed elements (SINEs) duringevolution of the Salmoni
dae. J. Mol. Biol. 1994; 241: 633-644 25. Kido Y, Saitoh M, Murata 5, Okada N. Evolution
of the active sequences of the HpaI short interspe
rsed elements. J. Mol. Evol. 1995; 41: 986-995 26. Kim J, Martignetti JA, Shen MR, Brosius J, Dei
ninger P. Rodent BC1RNA gene as a master gene for
ID element amplification. Proc.Natl. Acad. Sci., U
SA 1994; 91: 3607-3611 27. Kramerov D, Vassetzky N, Serdobova I. The evol
utionary position ofdormice (Gliridae) in Rodentia
determined by a novel shortretroposon. Mol. Biol.
Evol. 1999; 16: 715-717 28. Leeflang EP, Liu WM, Hashimoto C, Choudary P
V, Schmid CW.Phylogenetic evidence for multiple Al
u source genes. J. Mol. Evol. 1992; 35: 7-16 29. Luan DD, Korman MH, Jakubczak JL, Eickbush TH.
Reversetranscription of R2Bm RNA is primed by an
ick at the chromosomal target site: a mechanism for
non-RTL retrotransposition. Cell 1993; 72: 595-605 30. Lum JK, Nikaido M, Shimamura M, Shimodaira H,
Shedlock AM, OkadaN, Hasegawa M. Consistency of SI
NE insertion topology and flanking sequence tree: Q
uantifying relationships among cetartiodactyls.Mo
l. Biol. Evol. 2000; 17: 1417-1424 31. Matera AG, Hellman U, Schmid CW. A transposit
ionally andtranscriptionally competent Alu subfami
Ly. Mol. Cell. Biol. 1990; i0: 5424-5432 32. Minnick MF, Stillwell LC, Heineinan JM, Stiegl
er GL.A highly repetitive DNA sequence possibly un
ique to canids. Gene 1992; 110: 235-238 33. Miyamoto MM. Perfect SINEs of evolutionary his
tory? CurrentBiology 2000; 9: 816-819 34. Mochizuki K, Umeda M, Ohtsubo H, Ohtsubo E. Ch
aracterization of aplant SINE, p-SINE1, in rice ge
noines. Jpn. J. Genet. 1992; 67: 155-166 35. Murata S, Takasaki N, Saitoh M, Okada N. Deter
mination of the phylogenetic relationships among Pa
cific salmonids by using shortinterspersed element
s (SINEs) as temporal landmarks of evolution.Proc.
Natl. Acad. Sci., USA 1993; 90: 6995-6999 36. Murata S, Takasaki N, Saitoh M, Tachida H, Oka
da N. Details of retropositional genoine dynamics t
hat provide a rationale for agenetic division: the
distinct branching of all the Pacific salmonand t
rout (Oncorhynchus) from the Atlantic salmon and t
rout (Salmo). Genetics 1996; 142: 915-926 37. Nagahashi 5, Endoh H, Suzuki Y, Okada N. Chara
cterization of atandemly repeated DNA sequence fam
ily originally derived by retroposition of tRNA (Gl
u) in the newt. J. Mol. Biol. 1991; 222: 391-404 38. Nei, M, Kumar S. Molecular evolution and phylo
genetics. OxfordUniversity Press, New York. 2000. 39. Nikaido M, Rooney AP, Okada N. Phylogenetic re
relationshipships amongcetartiodactyls based on insertio
ns of short and long interspersedelements: Hippopo
tamuses are the closest extant relatives of whales.
Proc. Natl. Acad. Sci., USA 1999; 96: 10261-10266 40. Nikaido M, Matsuno F, Hamilton H, Brownell Jr.
RL, Cao Yin, DingWang, Zuoyan Zhu, Shedlock AM, F
ordyce E, Hasegawa M, Okada N. Retroposon analysis
of major cetacean lineages: the monophyly of toothe
d whales and the paraphyly of river dolphins. Pro
c. Natl. Acad. Sci. USA 2001 (in press) 41. Nikaido M, Harada M, Cao Y, Hasegawa M, Okada
N. Monophyleticorigin of the order Chiroptera and
its phylogenetic position amongmammalia, as inferr
ed from the complete sequence of themitochondrial
DNA of a Japanese megabat, the Ryukyu flying fox (P
teropus dasymallus). J. Mol. Evol. 2000; 51: 318-32
8 42. Ohshima K, Koishi R, Matsuo M, Okada N. Severa
l shortinterspersed repetitive elements (SINEs) in
distant species mayhave originated from a common
ancestral retrovirus: characterization of a squid S
INE and a possible mechanism for generation of tRNA
-derived retroposons. Proc. Natl. Acad. Sci. USA19
93; 90: 6260-6264 43. Ohshima K, Okada N. Generality of the tRNA ori
gin of shortinterspersed repetitive elements (SINE
s) .Characterization of three different tRNA-derive
d retroposons in the octopus. J. Mol. Biol. 1994; 24
3: 25-37 44. Ohshima K, Hamada M, Terai Y, Okada N. The 3 '
ends of tRNAderivedshort interspersed repetitive
elements are derived from the 3'ends of long inte
rspersed repetitive elements. Mol. Cell. Biol. 199
6; 16: 3756-3764 45. Okada N. SINEs: short interspersed repeated el
ements of theeukaryotic genome.TREE 1991a; 6: 358-3
61 46. Okada N. SINEs. Curr. Opin. Genet. Dev. 1991b;
1: 498-504 47. Okada N, Ohshima K. Evolution of tRNA-derived
SINEs. In Maraia RJ.ed; The impact of short inters
persed elements (SINEs) on the hostgenoine.Austi
n: RG Landes Co. 1995. p 62-79. 48. Okada N, Hamada M, Ogiwara I, Ohshima K. SINEs
and LINEs sharecommon 3 'sequences: a review. Ge
ne 1997; 205: 229-243 49. Waddel PJ, Okada N, Hasegawa M Towards resolvi
ng the interordinalrelationships of placental mamm
als. Syst. Biol. 1999; 48: 1-5 50. Rogers J. Retroposons defined. Nature 1983; 30
1: 460 51. Rokas A, Holland PWH. Rare molecular changes a
sa tool for phylogenetics. TREE (in press) 52. Sakagami M, Ohshima K, Mukoyama H, Yasue H, Ok
ada N. A novel tRNAspecies as an origin of short i
nterspersed repetitive elements (SINEs). Equine SIN
Es may have originated from tRNA (Ser). J. Mol. Bio
l. 1994; 239: 731-735 53. Schmid C. Alu: structure, origin, evolution, s
ignificance and function of one-tenth of human DNA.
Prog. Nucl. Acid Res. And Mol. Biol. 1996; 53: 283-3
19 54. Schmid CW, Maraia R. Transcriptional regulatio
n and transpositional selection of active SINE sequ
ences. Curr. Opin. Genet. Devel. 1992; 2: 874-882 55. Schmitz J, Ohxne M, Zischler H. SINE insertion
s in cladisticanalyses and the phylogenetic affili
ations of Tarsius bancanus toother Primates.Geneti
cs 2001 (in press) 56. Shedlock, AM., Okada N. SINE insertions: Power
ful tools for molecular systematics. BioEssays 200
0; 22: 148-160 57. Shedlock AM, Milinkovitch MC, Okada N. SINE ev
olution, missingdata, and the origin of whales. Sy
st. Biol. 2000; 49: 808-817 58. Shedlock AM, Takahashi K, Okada N. SINEs of sp
eciation: tracking the sorting of lineages with ret
roposons. TREE 2001 59. Shen MR, Batzer MA, Deininger PL. Evolution of
the Master Alu Gene (s). J. Mol. Evol. 1991; 33: 31
1-320 60. Sherry ST, Harpending HC, Batzer MA, Stoneking
M. Alu evolution inhuman populations: Using the c
oalescent to estimate effective population size. Ge
netics 1997; 147: 1977-1982 61. Shimamura M, Yasue H, Ohshima K, Abe H, Kato
H, Kishiro T, Goto M, Munechika I, Okada N. Molecul
ar evidence from retroposons thatwhales form a dad
e within even-toed ungulates. Nature 1997; 388: 666-
670 62. Shimamura M, Abe H, Nikaido M, Ohshima K, Okad
a N. Genealogy offamilies of SINEs in cetacean and
artiodactyls: The presence of ahuge superfamily o
f tRNAG1u-derived families of SINEs. Mol. Biol. Evo
l. 1999; 16: 1046-1060 63. Smit AFA, Toth G, Riggs AD, Jurka J. Ancestra
l, mammalian-widesubfamilies of LINE-i repetitive
sequences. J. Mol. Evol. 1995; 246: 401-417 64. Smit AFA, Riggs AD. MIR5 are classic, tRNA-der
ived SINEs thatamplified before the mammalian radi
ation. Nucleic Acids Res. 1995; 23: 98-102 65. Sprinzl M. Hartmann T, Meissner F, Moll J, Vor
derwiilbecke T. Compilation of tRNA sequences and s
sequences of tRNA genes. NucleicAcids Res. 1987; 15:
r53-r188 66. Stoneking M. et al. Alu insertion polymorphism
s and humanevolution: Evidence for a larger popula
tion size in Africa. GenomeRes. 1997; 7: 1061-1071 67. Surzycki SA, Belknap WR. Characterization of r
epetitive DNAelements in Arabidopsis. J. Mol. Bio
l. 1999; 48: 684-691 68. Takahashi K, Terai Y, Nishida M, Okada N. A no
vel family of shortinterspersed repetitive element
s (SINEs) from cichlids: thepattern of insertion o
f SINEs at orthologoous loci support theproposed m
onophyly of four major groups of cichlid fishes in
LakeTanganyika. Mol. Biol. Evol. 1998; 15: 391-407 69. Takasaki N, Murata 5, Saitoh M, Kobayashi T, P
ark L, Okada N. Species-specific amplification of t
RNA-derived short interspersed repetitive elements
(SINEs) by retroposition: A process of parasitizati
on of entire genoines during the evolution of salmo
nids. Proc. Natl. Acad. Sci. USA 1994; 91: 10153-10
157 70. Takasaki N, Park L, Kaeriyaina M, Gharrett AJ,
Okada N. Characterization of species-specifically
amplified SINEs in threesalmonid species-chum sa
lmon, pink salmon, and kokanee: thelocal enviromen
t of the genoine may be important for the generatio
n of a dominant source gene at a newly retroposed
locus. J. Mol. Evol. 1996; 42: 103-106 71. Terai Y, Takahashi K, Okada N. SINE Cousins: T
he 3'end tails of the two oldest and distantly re
lated families of SINEs aredescended from the 3 '
ends of LINEs with the same geneologicalorigin. Mo
l. Biol. Evol. 1998; 15: 1460-1471 72. Unsal K, Morgan GT. A novel group of families
of shortinterspersed repetitive elements (SINEs) i
n Xenopus: evidence of aspecific target site for D
NA-mediated transposition of inverted-repeat SINE
s. J. Mol. Biol. 1995; 248: 812-823 73. van der Vlugt HHJ, Lenstra JA. SINE elements o
f carnivores.Mammal. Genome 1995; 6: 49-51 74. Weiner A, Deininger PL, Efstratiadis A. Nonvir
al retroposons: genes, pseudogenes, and transposabl
e elements generated by thereverse flow of genetic
information. Ann. Rev. Biochem. 1986; 55: 631-661 75. Yoshioka Y, Matsumoto 5, Kojiina 5, Ohshima K,
Okada N, Machida Y. Molecular characterization of
a short interspersed repetitive element from tobacc
o that exhibits sequence homology to specific tRNA
5. Proc. Natl. Acad. Sci. USA 1993; 90: 6562-6566.

【0087】[0087]

【配列表】 SEQUENCE LISTING <110> Okada, Norihiro <120> Method of the identification of a certain species by a SINE metho d <130> 1013131 <140> JP 2000-999,999 <141> 2001-03-30 <160> 325 <170> PatentIn version 3.0 <210> 1 <211> 321 <212> DNA <213> Consensus Sequence. <220> <221> misc_feature <223> CHR-2 SINE General cons. <400> 1 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgctctagag cccgcgagcc acaactactg agcccacgtg ccacaactac 180 tgaagcccgc gtgcctagag cccgtgctcc gcaacaagag aagccaccgc aatgagaagc 240 ccgtgcaccg caacgaagag tagcccccgc tcaccgcaac tagagaaagc ctgcgcgcag 300 caacgaagac ccaacgcagc c 321 <210> 2 <211> 321 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE FL cons. <400> 2 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccaggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgctctagag cccgcgagcc acaactactg agcccacgtg ccacaactac 180 tgaagcccgc gcgcctagag cccgtgctcc gcaacaagag aagccaccgc aatgagaagc 240 ccgtgcaccg caacgaagag tagcccccgc tcgccgcaac tagagaaagc ccgcgcgcag 300 caacgaagac ccaacgcagc c 321 <210> 3 <211> 300 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE MDI cons. <400> 3 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gakccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg tgctctagag cccrsgagcc acaactactg aagcccacgt gcctagagcc 180 cgtgctccgc aacaagagaa gccaccgcaa tgagaagccc gcgcaccgca acgaagagta 240 gcccccgctc accgcaacta gagaaagccc tgcgcacagc aacgaagacc caacrcagcc 300 <210> 4 <211> 285 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE MDII cons. <400> 4 gggcttccct ggtggcgcag tggttgagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgtgcygcaa ctactgaagc ccgcgtgcct agagcccgtg ctccgcaaca 180 agagaagcca ccgcgatgag aagcccgtgc accrcaacga agagtagccc ccgatcaccg 240 caactagaga aagcccgcgc gcagcaacga agacccaacg cagcc 285 <210> 5 <211> 261 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE DT cons. <400> 5 ggacttcycy ggtggcgcag tggttaagaa tctgctgcca atgcagggga cacgggttyg 60 agccctggtc tgggaagatc ccacatgccg tggagcract aagcccatgc gccacaacta 120 ctgagcctgt gtgcctagag cccgtgctct gcaacaagag aagccaccac aataagaagc 180 ccgtgcaccg caacgaagag tagcccccac tcaccgcaac tagagaaagc ctgcgtgcag 240 caacgaagac ccaacacagc c 261 <210> 6 <211> 262 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE CD cons. <400> 6 gggcttccct ggtggcgcag tggttgagaa tctgcctgcc aatgcagggg acacgggttc 60 gagccctggt ctgggaagat cccacatgcc gcggagcaac taggcccgtg agccacaact 120 actgagcctg cgcgtctgga gcctgtgctc cgcaacaaga gaggccgcga tagtgagagg 180 cccgcgcacc gcgatgaaga gtggcccccg cttgccgcaa ctagagaaag ccctcgcaca 240 gaaacgaaga cccaacacag cc 262 <210> 7 <211> 194 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE CDO cons. <400> 7 gggcttccct ggtggcgcag tggttgagag tccgcctgcc gatgcagggg acacgggttc 60 gtgccccggt ccgggaagat cccacatgcc gcggagcggc tgggcccgtg agccatggcc 120 gctgagcctg tgcgtccgga gcctgtgctc cgcaacggga gaggccacaa cagtgagagg 180 cccgcgtacc gcaa 194 <210> 8 <211> 641 <212> DNA <213> Bando 1 Bottlenosed <400> 8 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tccacctgcc agtgcagagg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tactctagag cccacgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccac aacaagagta gccaccatga tgagaagccc acgcacctca atgacaagtg 420 gtccccgctc accacaacta gagaaagccc acgtgcagca acgaagaccc aacgcagcca 480 aaaattaatt aattaattga aaaaaattgg atagtgtgct tttggtgata ttcttataat 540 ttagagatta attcacttta agttgattct cctttaaaat ttaaatatcc cagtataaaa 600 attaataaac agaagtctct attaaaacag agtctggggg c 641 <210> 9 <211> 644 <212> DNA <213> Bando 1 Short-finned <400> 9 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtagatatc tcatcatggt 60 tttaatgcaa ttctctaatg actaatatta gaggatcttc tcatatgctt ttttaccatc 120 tgtgtacctt ctttggtgaa gtgtttctta aatcttttgc acatttaaga aattggattt 180 tgggacttcc ctggtggtgc agtggttgag aatccacctg ccagtgcagg ggacatgggt 240 tcgatccctg gtccaggaag atcccacatg ccacagagca actaagcccg tgtgccacaa 300 ctaccgagcc tgtactctag agcccacgag ccacaactac tgaagcccgt gcacctagag 360 cccatgctcc acaacaagag aagccaccat gatgagaagc ccacgcacct caatgtcaag 420 tggtccccgc tcaccacaac tagagaaagc ccacgtgcag caacgaagac ccaacgcagc 480 caaaaataaa ttaattaatt gaaaaaaaat tggaaagtgt gcttttggtg aaattcttat 540 aatttagaga ttaattcact ttaagttgat tctcctttaa aatttaaata tcccagtata 600 aaaattaata aacagaagcc tctattaaaa cagagtctgg gggc 644 <210> 10 <211> 637 <212> DNA <213> Bando 1 Dall's <400> 10 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaataa ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggcacag tggttgagaa tccacctgcc aatgcagggg acatgggttc 240 gatccctggt ccgggaagat cccacatgac acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcccatgc acctagagcc 360 catgctccac acaagagaag ccaccatgat gagaagccca cgcacctcaa tgacaagtgg 420 tccccactca ccacaactag agaaagccca cgtgcagcaa cgaagaccca acacagccaa 480 aaataaatta attgaaaaaa aattggatag tgtgcttttg gtgatattct tataatttag 540 agattaattc actttaagtt gattctcctt taaaatttaa atatcccagt ataaaaatta 600 ataaacagaa tcctctatta aaacagagtc tgggggc 637 <210> 11 <211> 639 <212> DNA <213> Bando 1 Narwhal <400> 11 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tccacctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccac aacaagagaa gccaccatga tgagaagccc acgcacctca atgacacgtg 420 gtccccgctc accacaacta gagaaagccc acgtgcagca acgaagaccc aacgcagcca 480 aaaataaatt aattgaaaaa aaattggata gtgtgctttt ggtgatgttc ttataattta 540 gagattaatt cactttaagt tgattctcct ttaaaattta aatatcccag tataaaaatt 600 aataaaacag aagcctctat taaaacagag tctgggggc 639 <210> 12 <211> 861 <212> DNA <213> Bando 1 Amazon <220> <221> CDO <222> (536)..(755) <400> 12 ttgtcaaggt gcttcgcttt agcaattcta ataggtgtgt agtgatatct catcatggtt 60 ttaatgcaat tctttaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 cgcaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 ggacttccct ggtggtgcag tggttgagaa tctgcctgtc aatgcagggg acatgggttc 240 aatccctggt ccaggaagat cccacatgcc acagagcaac taagcacgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccaa aacaagagaa gccacaatga tgagaagccc acgtacctca atgacgagtg 420 gcctccgctc gccacaacta gagaaagctc acgtgcagca acgaagaccc aacgcagcca 480 aaaataaatt aattaatttt aaaaaaatgg atggtgtgct tttggtgata ttcttttttt 540 ttttttcttt cggtacacgg gcctctcacc gttgtggtct ctcccgttgc tgagcacagg 600 ctctggacgt gcaggcccag cggccatggc tcacgggccc agccgccccg cggcatgtgg 660 gatcttcccg gaccggggca cgaacccgtg tcccctgcat cggcaggcgg acttccaacc 720 actgcgccac cagggaagcc cttggtgata ttcttataat ttagagatta attcacttta 780 agttgattct cctttaaaat ttaaatatcc cagtataaaa attaataaac agaagcctct 840 attaaaacag agtctggggg c 861 <210> 13 <211> 868 <212> DNA <213> Bando 1 La Plata <220> <221> CDO <222> (537)..(762) <400> 13 ttgtcaaggt gcttcgcttt agcaattcta ataggggtgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 cgtaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 gaatttccct ggtggtgcag tggttgaaaa tccgcttgcc aatgcaggga acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcctgtgc acctagagcc 360 catgctccac aacaagagaa gccaccagga tgtgaagccc acgcacctca atgatgagtg 420 gccactgctc gccacaacta gagaaagccc atgtgcagca acgaagaccc aatgcagcca 480 aagataaatt aattaattaa aaaaaaattg gatggtatgc ttttggtgat attctttttt 540 tttttttttt ttcccccctg tatgtgggcc tctcaccgtt gtggcctctc ccgttgtgga 600 ggacaggctc tggacgcaca ggcccagcag ccatggctca cgggcccagc cgctccacag 660 catgtgggat cctcccggac cggggcacga acccgtgtcc cctgcatcgg caggaggact 720 ccccaccact gcgccaccag ggaagccctt ggtgatattc ttataattta gagattaatt 780 cactttaagt tgattctcct ttaaaattta aatatcacag tataaaaatt aataaacaga 840 agcctctatt aaaacagagt ttgggggc 868 <210> 14 <211> 640 <212> DNA <213> Bando 1 Baiji <400> 14 ttgtcaaggt gcttcgcttt agcaattcta ataggtgtgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgccttt ttaccatctg 120 cgtaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 ggacttccct ggtggtgcag tggttgagaa tccgcctgcc aatgcagggg acacgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacacct 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac aacaagagaa gccaccataa tgagaagccc acgcacctca atgacgagtg 420 gcccccactc gccacaacga gaggaagccc acatgcagga acgaagaccc aacgcagcca 480 aaaatcaatt aattaattta aaaaattgga tagtgtgatc ttggtgatag tcttataatt 540 tagagattaa ttcactttaa gttgattctc ctttaaaatt taaataaccc agtataaaaa 600 ttaataaaca gaagcctcta ttaaaacaga gtctgggggc 640 <210> 15 <211> 627 <212> DNA <213> Bando 1 Beaked <400> 15 ttgtcaaggt gcttcgcttt agtgagtcta ataggtgtgt agtgatatct catcatggtt 60 ttaattctct aatgactaat attgaggatc ttctcatatg cttttttacc atctgcatac 120 cttctttggt gaagtgtttc tcaaatcttt tgcacattta aaaattggat tttgggactt 180 ccctggtggt gcagtggttg agaatctgcc tgccaatgca ggggacacgg gtttgatccc 240 tggtccagga agatcccaca tgccacagag cagctaagcc catgtgccac aactaccgag 300 cctgtgctct agagcccaca agccacaact actgaagccc gtgcacctag agcccatgct 360 ccacaacaag agaagccacc atgatgagaa gcccatgcac ctcaatgatg agtagccccc 420 gcttgccaca actagagaaa gcccacgtgc agcaaagacc caacacagcc aaaaataaat 480 taattttaaa aaattggata gtgtgctttt ggtgatattt ttataattta gagattaatt 540 cactttaagt tgattctcct ttaaaattta aatatcccag ctaaaaatta ataaacagaa 600 gcctctatta aaacagagtc tgggggc 627 <210> 16 <211> 680 <212> DNA <213> Bando 1 Ganges <400> 16 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt agtgatatct tgtcatggtt 60 ttaatgcaat tctctaatga ctaatactaa ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaaaaat ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tctgcctacc aatgcagggg acatgggttc 240 gagccctggt ccaggaagat cccacatgcc acagagcaac taagccggtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcctgtgc acctagagcc 360 catgctccac aacaagagaa gccaccatga tgagaagccc acgcacctca atgaagagta 420 gccctcgctc gccacaacta gagaaagcac acatgcagca acgaagaccc cctgctcgcc 480 acaactagag aaagcccacg tgcagcaacg aagacccaac gcagccaaaa ataaattgat 540 ttaaaaaaaa ttggatagtc tgcttttggt gatattctta taatttagag attcacttta 600 agttgattct cctttaaaat ttaaatatcc cagtataaaa attaataaac agaagcctct 660 attaaacaga gtctgggggc 680 <210> 17 <211> 657 <212> DNA <213> Bando 1 Sperm <400> 17 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt agtgatatgt catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt tttttttttt 120 tttttttttt ttaccatctg cgtaccttct ttggtgaagc gtttctcaaa tcttttgcac 180 atttaaaaaa ttggatctgg ggacttccct ggtggcacag tggttgagaa tccgcctgcc 240 aatgcagggg acacgagttc gatccctggt ccaggaagat cccacaggcc acagagcaac 300 taagcccgtg tgccacaacg actgagcctg tgctctagag cccatgagcc acaactactg 360 aagaccgtgc acctagagcc catgctccac aacaagagaa gccaccgtga tgagaagccc 420 acgcacgtca atgaagagca gcccccgctc gccacaacta gaaaaagccc acgtgcagca 480 acgaagaacc aatgcagcca aaaataaatt aattaaaaaa aattggatag tgtgcttttg 540 gtgatattct tataatttag agattaattc actttaagtt gattctcctc taaaatttaa 600 atatcccagt ataaaaatta ataaacagaa gcctctatta aaacagagtc tgggggc 657 <210> 18 <211> 684 <212> DNA <213> Bando 1 Humpback <400> 18 ttgtcaaggt gcttcgcttt aggatttcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgttttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag tggttgagaa ttcgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac agcaagagaa gccaccatga tgagaagccc acgcacctca atgaagagta 420 gcccccgctc gccacaacta gagaaagccc acgtgcagca gtgaagaccc cccgcttacc 480 acaactagag aaagcccatg tgcagcaacg aagacccaac gcagccaaaa ataaattaac 540 taaaaaaaat tggattgtgt gcttttggtg atattcttat aatttagaga ttaattcatt 600 ttaagttgat tctcctttaa aatttaaata tcccagtata aaaattaata aacagaagcc 660 tctattaaaa cagagtctgg gggc 684 <210> 19 <211> 685 <212> DNA <213> Bando 1 Fin <400> 19 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgctttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag gggttgagaa tttgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccatg tgccacaact 300 accgaacctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac agcaagagaa gccaccatga tgagaagccc acacacctca atgaagagta 420 gcccccgctc gccacaacta gagaaagccc acgtgcagca gtgaagatcc cccacttacc 480 acaactagag aaagcccatg tgcagcaacg aagacccaac gcagccaaaa ataaattaat 540 taaaaaaatt ggattgtgcg cttttggtga tattcttata atttagaaat taattcattt 600 taagttgatt ctcctttaaa atttaaatat ccctagtatc taaaattaat aaacagaagc 660 ctctattaaa acagagtctg ggggc 685 <210> 20 <211> 683 <212> DNA <213> Bando 1 Minke <400> 20 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgctttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag tggttgagaa ttcgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat ccacatgcca cagagcaact aagcccgtgt gccacaacta 300 ccgagcctgt gctctagagc ccatgagcca caactactga agcccgtgca cctaaagccc 360 atgctccaca gcaagagaag ccaccatgat gagaaaccca cgcacctcaa tgaagagtag 420 cccccgctcg ccacaactag agaaagccca cgtgcagcag tgaagacccc ctgcttacca 480 caactagaga aagcccatgt gcagcaacga agacccaacg cagccaaaaa taaattaatt 540 aaaaaaaatt ggattgtgtg cttttggtga tattcttata atttagagat taattcattt 600 taagttgatt ctcctttaaa atttaaatat cccagcataa aaattaataa acagaagcct 660 ctattaaaac agagtctggg ggc 683 <210> 21 <211> 303 <212> DNA <213> Bando 1 Hippo <400> 21 ttgtcaaggt gcttgcttta gtgattctaa taggtgagta gtgatatctc accatggttt 60 taatacaatt ctctaacaac taatactgag gatcctctca tatacttatt taccatctgt 120 gtatcttctt cggtgaaatg tttttcaaat cttttgcaca tttaaaaatt agattgtgtg 180 cttttggtga tattcttata atttagagat taattcattt taagttgatt cttctttaaa 240 atttataaat cccagtataa aaattaataa acagaaacct ctattaaaac agagtctggg 300 ggc 303 <210> 22 <211> 365 <212> DNA <213> Sp316 Bottlenosed <400> 22 agtgtggctt catatccctt ggcaattctc agcagcaatg agacagagta ctcaggatgc 60 cttctcgcat actcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gacaagctac ataatcggga cttccctggt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ctgggttcga tccctggtca gggaactaga tcccatatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 aacaccccat aattaaccac aaaattaact catatcataa aggtctgaat ttgactaaac 360 cccat 365 <210> 23 <211> 364 <212> DNA <213> Sp316 Short-finned <400> 23 agtgtggctt catatccctt ggcaattctc agcagcaatg agacagagta ctcaggatgc 60 cttctcgcat actcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gacaaactac ataattggga cttccctggt ggcccagtgg ctaattctcc 180 gcactcccaa tgcaaggggc ctgggttcga tccctggtca gggaactaga tcccatatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 acaccccaca attaaccacg aaattaactc atatcataaa gggctgaatt tgactaaacc 360 ccat 364 <210> 24 <211> 362 <212> DNA <213> Sp316 Dall's <400> 24 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cctccctggt ggcccagtgg ctaagtctct 180 gcactcccaa tgcagtgggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcacacaaa taaataagta aataaaacat caaaaaaaaa 300 aacccataat taaccacaaa attaactcat atcataaagg tctgaatttg actaaacccc 360 at 362 <210> 25 <211> 364 <212> DNA <213> SP316 Narwhal <400> 25 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagcgta ctcaggatgc 60 cttcttgcat attcatacaa aaacctaatt aagatgacaa taaaatagct ttagttggac 120 aaatgagcaa gtaaaaacta cataattggg acttccctgg tggcccagtg gctaagtctc 180 tgcactccca atgcaggggg cccgggttcg atccctggtc agggaactag atcccacatg 240 catgctgcaa ctaagagcca gtgcacacaa ataaataagt aaataaaaca tcaaaaaaaa 300 aaccccataa ttaaccacaa aattaactca tatcataaag gtctgaattt gactaaaccc 360 catg 364 <210> 26 <211> 363 <212> DNA <213> Sp316 Amazon <400> 26 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctcgt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 ccacccataa ttagtcacaa aattaactca tatcctaaag gtctgaattt gactaaaccc 360 cat 363 <210> 27 <211> 363 <212> DNA <213> Sp316 La Plata <400> 27 agtgtggctt catacccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcgtacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactat ataactggga cttccctggt ggcccagtgg ctaagtcgct 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagttccag tacagacaaa taaataagta aataaaacat aaaaaaaaaa 300 ccaaaaacca taattagcca caaaattaac tcatatccta aaggtctgaa tttgactaaa 360 ccc 363 <210> 28 <211> 362 <212> DNA <213> Sp316 Baiji <400> 28 agtgtggctt catatccctt ggcaattctc aatagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt gacccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggcca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat aaaaaaaaaa 300 acaccataat taaccacaaa attaactcat atcctaaagg tctgaatttg actaaacccc 360 at 362 <210> 29 <211> 359 <212> DNA <213> SP316 Beaked <400> 29 agtgtggctt catatgcctt ggcaattctc aacagcaatg agacagagta ctcagggtgc 60 cttcttgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccgg tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 accccataat taaccacaaa agtaacttat aacctaaagg tctgaatttg actaaaccc 359 <210> 30 <211> 348 <212> DNA <213> Sp316 Ganges <400> 30 agtgtggctt catatgcctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaaat aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac agaattggga cttccctggt ggcccagtgg ctaagtctcc 180 acactcccaa tgcagggggc ccgggtttga tccatggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccgg tgcagacaaa caaataagta aaataaaaca tcaaaaaaaa 300 aaccccataa ttaaccacaa aagtaactca tatcctaaag gtctgaat 348 <210> 31 <211> 354 <212> DNA <213> SP316 Sperm <400> 31 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacac aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca ggaaactaga tcccaaatgc 240 atgctgcatc taagagccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 ccccataatt aaccacaaaa gtaactcata tcctaaaggt ctgaatttga ctaa 354 <210> 32 <211> 361 <212> DNA <213> Sp316 Humpback <400> 32 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccaggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 cccataatta accacaaaag taactcatat cctaaaggtc tgaatttgac taaaccccat 360 g 361 <210> 33 <211> 360 <212> DNA <213> Sp316 Fin <400> 33 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgt 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 cccataatta accacaaaag taactcatat cctaaaggtc tgaatttgac taaaccccat 360 <210> 34 <211> 365 <212> DNA <213> Sp316 Minke <400> 34 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcagc taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 aaaaacccat aattaaccac aaaagtaact catatcctaa aggtctgaat ttgactaaac 360 cccat 365 <210> 35 <211> 198 <212> DNA <213> Sp316 Hippo <400> 35 agtgtggctt cataaaattt ggcaactctc aatagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa caaaataggt ttagttagac 120 agatgaacaa gaaaaaccat atggttaccc aaaaaagtaa ctcttatcct aaaggtctga 180 atttgactaa accccatg 198 <210> 36 <211> 493 <212> DNA <213> Mago 19 Bottlenosed <220> <221> CDO <222> (139)..(337) <400> 36 ctgcacagtt ttggctcaat cattacaact gctataggtt gagtggtgtc ccctgaaaag 60 atatgttgaa gtcctagggt tgtgagtgtt attttaaaat gggtctctaa agacataatc 120 attaaagatg aagtcctagg gctttcctgg tggcgcagtg gttgagagtc cgcctgccga 180 tgcaggggac acgggttcat gccccgatcc gggaggccca tgagccatgg ccgctgagcc 240 tgtgtgtccg gagcctgtgt ccgcaacggg agaggccacc acagtgagag gcccacgtac 300 cgcaaaaaaa aaaaaaaaaa aaaaagatga agtcctagag tgggctataa tccaatatgg 360 caggtttcct tattaaaaag agaaaaaaaa agacacagac agatatacac agaggaaaga 420 tgatgtgaag acatacgggg aaaacgtcat gtgatgagga agcagagaat aaagtgatct 480 tacacatgac cag 493 <210> 37 <211> 495 <212> DNA <213> Mago 19 Narwhal <220> <221> CDO <222> (140)..(338) <400> 37 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctagggc tgtgaatgtt atttgaaaat ggggtctcta cagacataat 120 cattaaagat gaagtcctag ggcttccctg gtggcgcagt ggttgagagt ccgcctgccg 180 atgcagggga cacgggttcg tgccccagtc cgggaggccc gtgagccatg gccgctgagc 240 ctgtgtgtcc ggagcctgtg tccgcaacgg gagaggccac cacagtgaga ggcccacgta 300 ccgcaaaaaa aaaaaagaaa aaaaaagatg aagtcctaga gtgggctata atccaatatg 360 gcaggtttcc ttattaaaaa gagaaaaaaa agacaccgac agatatacac aggggaaaga 420 tgatgtgaag acatacgggg aaaacgtcat gtgatgagga aggcagagaa taaagtgatg 480 cttacacatg accag 495 <210> 38 <211> 498 <212> DNA <213> Mago 19 Dall's <220> <221> CDO <222> (140)..(341) <400> 38 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctagggc tgtgaatgtt atttgaaaat ggggtctcta cagacataat 120 cattaaagat gaagtcctag ggcttccctg gtggtgcagt ggttgagagt ccgcctgccg 180 atatagggga cacgggttcg tgccccagtc cgggaggccc gtgagccatg gccgctgagc 240 ctgtgtgtcc agagcctgtg tccgcaacgg gagaggccat cacagtgaga ggcccacata 300 ccgcaaaaaa aaaaaaaaaa aaaaaaaaag atgaagtcct agagtgggct ataatccaat 360 atggcaggtt tccttattaa aaagagaaaa aaaagacacc gacagatata cacagaggaa 420 agattatgtg aagacatacg gggaaaacgt catgtgatga ggaaggcaga gaataaagtg 480 atgcttacac atgaccag 498 <210> 39 <211> 307 <212> DNA <213> Mago 19 Amazon <400> 39 ctgcacagtt ttggctcaat cattacagct gcttataggt tgagtggtgt cccctgagaa 60 gatatgttga agccctaacc ctcagtacct gtgaatgtta tttgaaaatg gggtctctac 120 agacataatc attaaagatg aagtcctaga gtgggctgta atccaatatg gcaggtttcc 180 ttattaaaaa gagaaagaaa aaagacacag acagatatac acagagaaaa gatgatgtga 240 aggcatacgg ggaaaacggc atgtgatgag aaaggcagag aataaagtga tgcttacaca 300 tgaccag 307 <210> 40 <211> 309 <212> DNA <213> Mago 19 La Plata <400> 40 ctgcacagtt ttggctcaat cattacagct gcttataggt tgagtggtgt cccctgagaa 60 gatatgttga agtcctaacc ctcagtacct gtgaatgtta tttgaaaatg gggtctctac 120 agacataatc attaaagatg aagtcctaga gtgggctgta atccaatatg gcaggtttct 180 tattaaaaag agaaaaaaaa aaaaagacac agacagatat acacagagga aagatgatgt 240 gaaggcatac gggggaaaca gcatgtgatg agaaaggcag aaaataaagt gatgcttaca 300 catgaccag 309 <210> 41 <211> 293 <212> DNA <213> Mago 19 Baiji <400> 41 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg ggtctctaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg caggtttcct 180 tattaaaaag agaaaaaaaa gacacagaca gaggaaagat gatgtgaaga catacgggga 240 aaacatcatg tgatgaggaa ggcagagaat aaagtgatgc ttcacatgac cag 293 <210> 42 <211> 311 <212> DNA <213> Mago 19 Beaked <400> 42 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagcacctg tgaatgttat ttgaaaatgg agtctctata 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaacatgg caggtttctt 180 tattaaaaag agaaagaaaa aagacacaga cagatataca cagaagaaag atgatgtgaa 240 gacatatggg gaaaacacat catcatgtga tgatgaaggc agagaataaa gtgatgctta 300 cacatgacca g 311 <210> 43 <211> 313 <212> DNA <213> Mago 19 Ganges <400> 43 ctgcacagtt ttggctcaat cactacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc ttagtacctg cgaatgttat ttgaaaatgg ggtctctaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa cccaatatgg caggtttcct 180 tcttaaaaag agaggaaaaa aaaaaacaaa acacagacag atatacacag aggaaagatg 240 atatgaagac atacggggaa aacgtcatat gatgattaag gcagagaata aagtgatgct 300 tacacatgac cag 313 <210> 44 <211> 304 <212> DNA <213> Mago 19 Sperm <400> 44 ctgcacagtt ttggctcaat cattgcagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa atcccaaccc tcagtacctg tgaacgttat ttgaaaatgg ggtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg caggtttcct 180 tattaaaaag agaaaaaaaa gacacagaca gatacacaca gaggaaagat gatgcgaaga 240 catacgggga agacgtcatg tgatgatgaa ggcagagaat aaagtgatgc ttacacatga 300 ccag 304 <210> 45 <211> 308 <212> DNA <213> Mago 19 Humpback <400> 45 ctgcacagtt ttggctcaat cattacaact gctatgagtt gagtggtatc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg agtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatga cagttttcct 180 tattaaaaag agggaaaaaa aagacacaaa gacagatata cacagaggaa agatgatgtg 240 aagacatacg gagaaaacat catgtgatga tgaaggcaga gaataaagtg atgcttacac 300 atgaccag 308 <210> 46 <211> 305 <212> DNA <213> Mago 19 Minke <400> 46 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg ggtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg cagggttcct 180 tattaaaaag agaaaaaaag acacaaagac agatatacac agagaaaaga tgatgtgaag 240 acatatggag aaaacatcat gtgatgatga aggcagagaa taaagtgatg cttacacatg 300 accag 305 <210> 47 <211> 594 <212> DNA <213> Ishi 14 Dall's <220> <221> CDO <222> (229)..(450) <400> 47 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa atgaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aacattatac 120 ttccaaatga agaataaaaa tattgcaatc actccccaac cctgagggtg aggttcctaa 180 aattttaagt tttcataaat gacaggggaa tttaagaact taaggtaggg gcttccctgg 240 tggmtcagtg gttgagagtt ggcctgccga tgcaggggac acgggtttgt gccccagtct 300 gggaagatcc catatgccgc agagcggctg ggcccgtgag ccataaccgc tgagcctgcg 360 cctccagagc ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cgcgtaccaa 420 aaaaaaaaga aaatgaagaa cttaaggtag ggtgtagaga agaagatgga tattcaccat 480 atgaaaatat ttatcattat aattttatta catacataaa aagaaaaaga gaatagcaga 540 ataaaaagaa agaaaataaa ttgcacccac atatcttaat gagtaataat gacc 594 <210> 48 <211> 518 <212> DNA <213> Ishi 14 Amazon <220> <221> CDO <222> (153)..(380) <400> 48 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa aagaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 atatgatagg ggaatttaag aacttaagct aggggcttcc ctggtggcgc agtggttgag 180 agtccgcctg ccgatgcagg ggacacgggt tcgtgcccca gtccgggagg atcccatatg 240 ccacagagca gctggacctg tgagccatgg ccactgagtc tgtgcatcca cagcctgtgc 300 tccgcaacgg gagaggccac aacagtgaga ggcctgcgta ccaaaaaaaa aaaaaaaaaa 360 aaaaaaagaa cttaaggtgg ggtgtagagc agaagatggt tattcaccat atgaaaatat 420 ttatcattat aattttatta catacataaa aagaaaaaga atagcagaat aaaaagaaag 480 gaaattgcac ccacatatct taatgggtaa taatgccc 518 <210> 49 <211> 288 <212> DNA <213> Ishi 14 Ganges <400> 49 ttcccctata ttctccatgg ttttattgta aagaggcatt gtagttccaa atgaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagtttttgt 120 aactaatagg ggaatttaag aacttaaggt agggtgtaga gaaggagatg gatattcaca 180 atatgaagat atttatcatt attttattac ataaaaagaa aaagagaata gcagaataaa 240 acgctgaaaa taaattgcac ccacatatct taatgagtaa taatgacc 288 <210> 50 <211> 293 <212> DNA <213> Ishi 14 Sperm <400> 50 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa ataaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 aaatgatagg ggaatttaag aacttaaggt agggtgtaaa gaagatggat attcaccata 180 tgaagatatt tatcattata attttattac atacataaaa agaaaaagag agtagcagaa 240 taaaaagaaa gaaaataaat tgcacccaca tatcttaatg agtaataatg acc 293 <210> 51 <211> 293 <212> DNA <213> Ishi 14 Humpback <400> 51 ttcccctata ttctccatgg ttttattgta aagagacatt atacttccaa atgaagaata 60 aaaatattgc aatcactccc cgaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 aaatgatagg ggaacttaag aacttaaggt agggtgtaga gaagaagatg gatattcacc 180 atatgaagat atttatcata attttattac atacataaaa agaaaaagag aatagcagaa 240 taaaaagaaa gaaaataaat tgcacccaca tatcttaatg agtaataatg acc 293 <210> 52 <211> 504 <212> DNA <213> Ishi 36 Bottlenosed <220> <221> CDO <222> (186)..(412) <400> 52 aaacccattt taactagcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaattaaa acatgctttt aatttttaca atttatataa aaattattgg 120 aagcaaacac tacttgaact tttctcatgt tttcaaataa ttattatcac taataaggtg 180 atcctgggct tccctggtgg cgcagtggtt gagagtccac ctgccgatgc aggggacacg 240 ggtttgtgcc ccggtccggg aagatacccc atgccgcgga gcggctgggc ccgtgaacca 300 tggccactgg gcctgcgcgt ccggagccgg tgctcgcaac gggagaggcc acaacagtga 360 gaggcccaag taccgcaaaa aaaaaaaaaa aaaaaaaaaa aaaggtgatt cttattatca 420 aactaccctt attaacagca aactatattt gataaatata taatatctat atacttctcc 480 cttcccaagt atatgaattg ttac 504 <210> 53 <211> 501 <212> DNA <213> Ishi 36 Short-finned <220> <221> CDO <222> (185)..(409) <400> 53 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaattaaaa catgctttta atttttacaa tttatataaa aattattgga 120 agcaaacact acttgaactt ttctcatgtt ttcaaataat tattatcact aataaggtga 180 tcctgggctt ccctggtggc gcagtggttg agagtccacc tgccgatgca ggggacacgg 240 gtttgtgccc cggtccggga agatcccaca tgccgcggag cggctgggcc cgtgaaccat 300 ggccgctggg cctgcgcgtc cggagccggt gctccgcaac gggagaggtc acaacagtga 360 gaggcccaag taccgcaaaa aaaaaaaaaa aaaaaaaaaa ggtgattctt attatcaaac 420 tacccttatt aacagcaaac tatatttgat aaatatataa tatctatata cttctccctt 480 cccaagtata tgaattgtta c 501 <210> 54 <211> 512 <212> DNA <213> Ishi 36 Dall's <220> <221> CDO <222> (190)..(420) <400> 54 aaacccattt taactgcaga gtacttaatt tttcccaaat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttcac atggtttcaa ataattataa tcactaataa 180 ggtgatcctg ggcttccctg gtggcagtgg ttgagagtcc gcctgccgat gcaggggaca 240 tgggttcgtg ccctggtcsg gaagatccca catgccgtgg agcggctggg cccgtgagcc 300 atggccgctg agcctgcgcg tcaggagcct gtgctccgcg acgggagagg ccacaacagt 360 gagaggtccg cgtatcgcaa aaaaaaaata ataataataa taaaaaaaaa aggtgatact 420 tattatcaaa ctactcttat taacagcaaa ctatatttga taaatatata atatctatat 480 acttctccct tcccaagtat atgaattgtt ac 512 <210> 55 <211> 515 <212> DNA <213> Ishi 36 Narwhal <220> <221> CDO <222> (190)..(423) <400> 55 gaacccattt taactgcaga gtactaaatt tttcccaaat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttcac atggtttcaa acaattataa tcactgataa 180 ggtgatcctg ggcttccctg gtggcgcagt ggttgagagt ccgcctgccg atgcagggga 240 catgggttcg tgcctcggtc cgggaagatc ccacatgccg tggagagtct gggcccgtga 300 gccatggccg ctgagcctgc gcgtcaggag cctgtgctcc gcgacgggag aggccacaac 360 agtgagaggc ccgcgtatcg caaaaaataa taatgataat aataaaaaaa ataaggtgat 420 ccttattatc aaactactct tattaacagc aaactatatt tgataaatat ataatatcta 480 tatacttctc ccttcccaag tatatgaatt gttac 515 <210> 56 <211> 504 <212> DNA <213> Ishi 36 Amazon <220> <221> CDO <222> (190)..(412) <400> 56 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttctc atggtttcaa ataattatta tcactaataa 180 ggtgatcctg ggcttccctg gtggcacagt ggttgagagt ctgcctgccg atgcagggga 240 cacgggttca tgccccggtc cgggaagatc ccacatgccg cggagcggct gggcccgtga 300 gccatggccg ctgagcctgc gcgtccggag cctgtgctcc acaacgggag aggccacaac 360 agtgagaggc ccgcgtacag caaaaaaata aataaataaa taaggtgatc cttattatca 420 aactaccctt attaacagca aactatattt gataaatata taatatctat acacttctcc 480 cttcccaagt atatgaattg ttac 504 <210> 57 <211> 501 <212> DNA <213> Ishi 36 La Plata <220> <221> CDO <222> (190)..(409) <400> 57 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaagtta 120 ttggaagtaa acactacttg aacttttctc atggtttcaa ataactatta tcactaataa 180 ggtgatcctg ggcttccatg gtggcacagt ggttgagagt ccgcctgccg attcagggga 240 cacgggttcg tgccccggtc cgggaagatc ccacgtgccg cagagcggct gggcccgtga 300 gccatggcaa ctgagcctgc gcatccggag cctgtgctcc gcaacgggag agaccacaac 360 agtgagaggc ccgcgtccgc aaaaaaaaaa aaaaaaaaaa ggtgatcctt attatcaaac 420 tacccttatt aacatcaaac tatatttgat aaatatataa tatctatata cttctccctt 480 cccaagtata tgaattgtta c 501 <210> 58 <211> 508 <212> DNA <213> Ishi 36 Baiji <220> <221> CDO <222> (189)..(419) <400> 58 aacccatttt aactgcagag tacttaattt ttcccatata acttatgtga ccaaataaca 60 caatttcttt aaataaaaac atgcttttaa tttttacaat ttaactagta taaaaattat 120 tggaagcaaa cactacttga acttttctta tggtttcaaa taattattat cactaataag 180 gtgatcctgg gcttccctgg tggcgcagtg gttgagagtc cgcctgccga tgcaggggac 240 acgggttcgt gccccagtct gggaggatcc cacatgccgc ggagcggctg ggcccgtgag 300 ccatggccac tgagcctgca cgtccggagc ctgtgctccg caacgggaga ggcacaacag 360 tgagaggccc gcgtccgcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ggtgatcctt 420 attatcaaac tacccttatt aacagcaaac tatatttgat aaatatatat ctatatactt 480 ctcccttccc aagtatatga attgttac 508 <210> 59 <211> 281 <212> DNA <213> Ishi 36 Beaked <400> 59 aaacccattt taactgcaga gtacttaatt ttttccatat aacttatgcg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa atactacttg aacttttctc atgatttcaa ataattatta tcactaataa 180 ggtgatcctt attatcaaac tacccttatt aacagcaaaa tatatttgat aaatatataa 240 tatctatata cttctccctt cccaagtata tgaattgtta c 281 <210> 60 <211> 283 <212> DNA <213> Ishi 36 Ganges <400> 60 taaacccatt ttaactgcag agtacttaat ttttccctta taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatctttaca atttaactag tataaaaatt 120 attggaagca aacactactt gaacttttct catggtttca aataattatt atcactaata 180 aggtgatcct tattatccaa ctacccttaa taacagcaaa ctatatttga tgaatatata 240 atatctatat acttctccct tcccaagtat atgaattgtt aca 283 <210> 61 <211> 281 <212> DNA <213> Ishi 36 Sperm <400> 61 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttctc atggtttcaa ataattatta tcactaataa 180 ggtgatcctt attatcaaac tacccttatt aacagcaaac tatatttgac aaatatataa 240 tatctatata cttctccctt cccaagtata tgaattgtta c 281 <210> 62 <211> 280 <212> DNA <213> Ishi 36 Humpback <400> 62 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa cactacttga actcttctca tggtttcaaa taattattat cactaataag 180 gtgatcctta ttatcaaact acccttatta acagcaaact atatttgata aatatataat 240 atctatatac ttctcccttc ccaagtatat gatttgttac 280 <210> 63 <211> 283 <212> DNA <213> Ishi 36 Minke <400> 63 taaacccatt ttaactgcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatttttaca atttaactag tataaaaatt 120 attggaagca aacactactt gaactcctct catggtttca aataattatt atcactaata 180 aggtgatcct tattatcaaa ctacccttat taacagcaaa ctatatttga taaatatata 240 atatctatat acttctccct tcccaagtat atgaattgtt aca 283 <210> 64 <211> 282 <212> DNA <213> Ishi 36 Fin <400> 64 taaacccatt ttaactgcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatttttgca atttaactag tataaaaatt 120 attggaagca aacactactt gaactcttct catggtttca aataattatt atcactaata 180 aggtgatcct tattatcaaa ctacccttat taacagcaaa ctatatttga taaatatata 240 atatctatat acttctccct tcccaagtat atgatttgtt ac 282 <210> 65 <211> 276 <212> DNA <213> Ishi 36 Hippo <400> 65 aaatccattt aactgtagag tacttaattt ttcccatata cttatgcgac caaatacaca 60 atttatttaa acaaaaacat gcttttaatc tttacaattt agctagtata aaaattactg 120 gaagcaaaca ctagttgaac ttttttcatg gtttcaaata attagtatca ttaataaaga 180 tccttattat caaactaccc ttattaatag caaactgtat ttgataaata tacaatatct 240 atattcttct cccttcccaa gtatatgaat tgttac 276 <210> 66 <211> 385 <212> DNA <213> Ishi 38 Bottlenosed <220> <221> CDO <222> (49)..(278) <400> 66 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacttgagg gcttccctgg 60 tggcgcagtg gttgagagtc tgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc gaagcagctg ggcccgtgag ccatggccgc tgagcctgcg 180 agtctggagc ctgtgctcca caacgggaga ggctacaaca gtgagaggcc cgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaacaaaaa acacctgagg ctgtttattc atttacagct 300 taaaaaagaa aaaggagtcc tgccccttga tatatataca tctcaaacaa atccttggtt 360 ccaatctgga ctttcatgtg tttat 385 <210> 67 <211> 393 <212> DNA <213> Ishi 38 Short-finned <220> <221> CDO <222> (49)..(286) <400> 67 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctgg 60 tggcgcagtg gttgagagtc tgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc gaagcggctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgcgcca caacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaacaaaaa aacaaaaaac acctgaggct gtttattcat 300 ttacagctta aaaaagaaaa aggagtcctg tcccttgata tatatacatc tcaaacaaat 360 ccttggttcc aatctggact ttcatgtgtt tat 393 <210> 68 <211> 390 <212> DNA <213> Ishi 38 Dall's <220> <221> CDO <222> (50)..(283) <400> 68 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag ggcttccctg 60 gtggcgcagt ggttgagagt ccgcctgcca atgcagggga cacgggttca tgccctggac 120 cgggaagatc ccacatgccg tgaagcggct gggcccgtga gccatggccg ctgagcctgc 180 gcgtctggag cctgtgctcc acaacgggag aggccacaac agtgagaggt ctgcgtaccg 240 caaaaacaaa acaaaacaaa aaaaaacaaa acaaaacacc tgaggctgtt tattcattta 300 cagccttaaa aagaaaaagg agtcctgccc cttgatatat atacatctca aacaaatcct 360 tggttccaat ctggactttc atgtgtttat 390 <210> 69 <211> 393 <212> DNA <213> Ishi 38 Narwhal <220> <221> CDO <222> (49)..(286) <400> 69 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctgg 60 tggcgcagtg gttgagagtc cgcctgccga tgcaggggac acgggttcat gccccggtcc 120 gggaagatcc cacatgccgc ggagtggctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgctcca caacgggaga ggccacaaca gtgagaggcc tgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaaacaaaa caaaaaaaac acctgaggct gtttattcat 300 ttacagcctt aaaaagaaaa aggagtcctg ccccttgata tatatacatc tcaaacaaat 360 ccttggttcc aatctggact ttcatgtgtt tat 393 <210> 70 <211> 369 <212> DNA <213> Ishi 38 Amazon <220> <221> CDO <222> (50)..(262) <400> 70 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag ggcttccctg 60 gtggtgcagc ggttgagagt ccgcctgccg atgcaggtga cacgggttca tgccctggac 120 cgggaagatc ccatatgccg cagagcgctg ggcccgtgag ccatggctgc tgagcctgcg 180 cgtccggagc ctgtgctcca cgacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aagaacacct gaggctgttt attcatttac agcttaaaaa agaaaaaggg 300 ggcctgcccc ttgatatata tacatctcaa acaaatcctt ggttccaatc tggactttca 360 tgtgtttat 369 <210> 71 <211> 367 <212> DNA <213> Ishi 38 La Plata <220> <221> CDO <222> (50)..(260) <400> 71 ttgaatcata agctctcgtc catgattttc ctagtaaaag aacacctgag ggcttccctg 60 gtggcgcagt ggttgagagt ccgcctgccg atgcaggtga cacgggttcg tgccctggac 120 cgggaagatc ccacatgcca cagagcggct gggcccgtga gccatggctg ctgagcctgc 180 gcgtcccgag cctgtgctcc acaacgggag aggccacaac agggagaggc ccgcgtaccg 240 ccaaaaaaaa gaacacctga ggctgtttat tcatttacag cttaaaaaag aaaaaggagt 300 cctgcccctt gatatatgta catctcaaac aaacccttgg ttccaatctg gactttcatg 360 tgtttat 367 <210> 72 <211> 388 <212> DNA <213> Ishi 38 Baiji <220> <221> CDO <222> (49)..(281) <400> 72 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctga 60 tggcgcagtg gttgagagtc cgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc ggagcagctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgctcca caatgggaga ggccacaaca gtgagaggcc cgtgtaccac 240 aaaaacaaaa caaaacaaaa caaaagaaac aaaacacctg aggctgttta ttcatttaca 300 gcttaaaaaa gaaaaaggac tcctgcccct tgatatatat acatctcaaa caaatccttg 360 gttccaatct ggactttcat gtgtttat 388 <210> 73 <211> 155 <212> DNA <213> Ishi 38 Beaked <400> 73 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaaagagtcc tgccccttga tatatataca tctcaaacaa 120 atccttggtt ccaatctgga ctttcatgtg tttat 155 <210> 74 <211> 159 <212> DNA <213> Ishi 38 Ganges <400> 74 ttgaatcata agctctcgtc catgattttc ctaattaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaaaaaagga gtcctgaccc ttgatatata tacatctcaa 120 acaaatcctt agttccaatc tggactttca tgtgtttat 159 <210> 75 <211> 156 <212> DNA <213> Ishi 38 Sperm <400> 75 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacact ttaaaaaaaa aaaaagagtc ctgccccttg atatatatac atctcaaaca 120 aatccttggt tccaatctgg actttcatgt gtttat 156 <210> 76 <211> 154 <212> DNA <213> Ishi 38 Humpback <400> 76 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaagagtcct gccccttgat atatatacat ctcaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 77 <211> 154 <212> DNA <213> Ishi 38 Fin <400> 77 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaagagtcct gccccttgat atatatacat ctcaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 78 <211> 152 <212> DNA <213> Ishi 38 Minke <400> 78 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa agagtcctgc cccttgatat atatacatct caaacaaatc 120 cttggttcca atctggactt tcatgtgttt at 152 <210> 79 <211> 154 <212> DNA <213> Ishi 38 Hippo <400> 79 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacttgag agtgtttatt 60 cattaggaat gaaggaggat gaaggagtcc tgccccttga tatatataaa tccaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 80 <211> 402 <212> DNA <213> Mago 32 Bottlenosed <220> <221> CDO <222> (62)..(282) <400> 80 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtagcaca gtggttgaga gtccgcctac caatgcaggg gacacgggtt 120 cgtgccccgg tctgggaaga tcccacatgc cacggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcatctgg agcctgtgct ccacaacggg agaggccaca gcggtgagag 240 gcccgcatac cgcaaaaaaa aaaaaaaaaa aaagtggaat tattctaaac attgaagtct 300 gaaacttgct tttcttcccc acataataaa ccagtgatat ctttctagga caacacatga 360 gctatttctc atggttttta atggctgcat tatgttccac tt 402 <210> 81 <211> 399 <212> DNA <213> Mago 32 Short-finned <220> <221> CDO <222> (61)..(279) <223> "n" means undetermined. <400> 81 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtgaatta 60 ggcttccctg gtagnacagt ggttgagagt ccgcctgcca atgcagggga cacgggtttg 120 tgccccggtc tgggaagatc ccaccatgcc ggagcggctg ggcccgtgag ccatggccgc 180 tgagcctgtg catctggagc ctgtgctcca caacgggaga ggccacagcg gtgagaggcc 240 cgcataccgc aaaaaaaaaa aaaaaaaaaa gtgggattat tctaaacatt aaagtctgaa 300 acttgctttt cttccccaca caataaacca gtgatatctt tctaggacaa cacatgagct 360 atttctcatg gtttttaatg gctgcattat gttccactt 399 <210> 82 <211> 400 <212> DNA <213> Mago 32 Dall's <220> <221> CDO <222> (61)..(280) <400> 82 actcattcat gtacacccag atacaaacat ctatatattt actttataaa agtggaatta 60 gggcttccct ggtggcgcag tggttgagag tccacctgcc aatgcagggg acatgggttc 120 gtgccccggt ccgggaagat ccaacatgct gcggagggct gggcccggga gccatggccg 180 ctgagcctgt gtgtctggag tctgtgctcc gcaacgggag aggccacagc ggtgagaggc 240 ccgcgtaccg caaaaaaaaa aaaaaaaaaa agtggaatta ttctaaacat taaagtctga 300 aacttgcttt tcttccccac ataataaacc agtgatatct ttctaggaca atacatgagc 360 tatttctcat ggtttttaat ggctgcatta tgttccactt 400 <210> 83 <211> 405 <212> DNA <213> Mago 32 Narwhal <220> <221> CDO <222> (61)..(285) <400> 83 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtggcgca gtggttgaga gtccacctgc caatgcaggg gacacgggtt 120 tgtgccccgg tccgggaaga tcccacatgc tgcggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcgtctgg agcctgtgct ccgcaacggg agaggccaca gcggtgagag 240 gccccgtacc gcaaaaaaaa aaaaaaaaaa aaaaaagtcg aattattcta aacattaaag 300 tctgaaactt gcttttcttc cccacataat aaaccagtga tatctttcta ggacaacaca 360 tgagctattt ctcatggttt ttaatggctg cattatgttc cactt 405 <210> 84 <211> 417 <212> DNA <213> Mago 32 Amazon <220> <221> CDO <222> (101)..(329) <400> 84 gtagtttggt acaatttcat tcctactctc tctcacattc actcattcat gcacacccag 60 atacaatcat ctatatattt actttataaa agtggaatta gggcttccct ggtggcgcag 120 tggttgagag tccacctgcc aatgcagggg acatgggttc gtgccccagt ccgggtaaga 180 tcccacgtgc cgtggagtgg ctgggcccat gagccatggc cgctgagcct gtgcgtccgg 240 agcctgtgct ccgcagtggg agaggccaca gaggtgagag gcccgcgtac cgcaaaaaaa 300 acaaaaaaca aaaaacaaaa gtggaattat tctaaacatc agagtccgaa acttgctttc 360 cttccccaca taataaacca gtgatatctt tctaggacaa cacatgagct atttcta 417 <210> 85 <211> 397 <212> DNA <213> Mago 32 La Plata <220> <221> CDO <222> (100)..(314) <400> 85 tagtttggta caatttcatt cctactctct ctcacattca ctcattcatg tacacccaga 60 tacaaacatc tatatattta ctttataaaa gtggaattag ggcttccttg gtggcgcagt 120 ggttgagagt ccgcctgcca atgcagggga cacgggttcg tgccccagtc cgggaagatc 180 ccacgtgccg tggagcggct gggcccatga gccatggccg ctgagcctgt gcgtccggag 240 cctgtgctcc gcaacgggag aggccacaac agtgagaggc ccgcgtacca caaaaaaaaa 300 caaaagtgga attattctaa acattagagt ctgaaacttg cttttcgtcc ccacataata 360 aaccagtgat atctttctag gacaacacat gagctat 397 <210> 86 <211> 401 <212> DNA <213> Mago 32 Baiji <220> <221> CDO <222> (62)..(281) <400> 86 cactcattca tgtacaccca gttacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtggcgca gtggttgaga gtccacctgc caatgcaggg gacacgggtt 120 ggtgccccag tccgggaaga tcccacatgc cgtggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcgtccgg agcctgtgct ccgcaatgag agaggccaca gtggtgagag 240 gcccgcgtac cacaaagaaa caaaaaacaa aagtggaatt attctaaaca ttagagtctg 300 aaacttgctt ttcttcccca cataataaac cagtgatatc tttctaggac aacacatgag 360 ctatttctca tggtttttaa tggctgcatt atgttccact t 401 <210> 87 <211> 184 <212> DNA <213> Mago 32 Beaked <400> 87 tatagtttgg tacaatttca ttcctactct cacactcact cattcatgta cacccagata 60 caaacatcta tatatttact ttataaaagt ggaattactc taaacattag aatctgaaac 120 ttgctttttt tccccacata ataaaccagt gatatctttc taggacaaca catgagctat 180 ttct 184 <210> 88 <211> 171 <212> DNA <213> Mago 32 Ganges <400> 88 ttcattccta ctctctctca ctcactcatt catgtatacc cagatacaaa catctataca 60 tttactttat aaaagtggaa ttattctaaa cattagagtc tgaaacttgc ttttttcccc 120 cacataataa accagtgata tctttccagg acaacacatg agctatttct a 171 <210> 89 <211> 188 <212> DNA <213> Mago 32 Sperm <400> 89 tatagtttgg tacaatttca ttcctactct ctctcacact cactgattca tgtacaccca 60 gatacaaaca tctatatatt tactttacaa aagtggaatt attctaaaca ctagagtctg 120 aaacttgctt ttttccccca cataataaac cagtgatatc tttctaggac aacacatgag 180 ctatttct 188 <210> 90 <211> 181 <212> DNA <213> Mago 32 Humpback <400> 90 cactcattca tgtacaccca gatacaaaca cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttctca tggtttttaa tggctgcatt atgttccact 180 t 181 <210> 91 <211> 148 <212> DNA <213> Mago 32 Fin <400> 91 cactcattca tgtacaccca gatacaaaca cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttct 148 <210> 92 <211> 181 <212> DNA <213> Mago 32 Minke <400> 92 cactcattca tgtacaccca gatacaaaga cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttctca tggtttttaa tggctgcatt atgttccact 180 t 181 <210> 93 <211> 190 <212> DNA <213> Mago 32 Hippo <400> 93 tatagtttgg tacaatttca ttcctactct gctccacact cactcactca tgcacaccct 60 agatactaaa catctgtaga tttattttac aaaaatggaa ttactcaaaa cattaaagtc 120 tgaaacttgc cttttttccc cacataatac accagtgata tctttctagg acaacacatg 180 agctatttct 190 <210> 94 <211> 405 <212> DNA <213> Mago 8 Short-finned <220> <221> CDO <222> (92)..(315) <400> 94 tgctaactct agattgcaat gaaccaaaat tgaaaggaaa agagaatctt atttccaggc 60 acactcttat gtatataaaa tgctatcatg ggggcttccc tggtggcgca gtggttgaga 120 gtccgcctgc cgatgcaggg gacatgggtc tgtgcctcat ccgggaagat cccacatgcc 180 gtggagcggc tgggcccgtg agccatggcc cctgagcctg cgcgtctgga gcctgtgctc 240 cgcaacggga gaggccacaa cagtgagagg cccgcatacc gcaaaaaaaa aaaaaaaaaa 300 aaaaagctat catggtctac aataaaaata atcaataagt tttatcaaat gctaccatgt 360 tcatggtact gtttatttag aaaggctcaa tcacgaaaaa ttccc 405 <210> 95 <211> 398 <212> DNA <213> Mago 8 Beaked <220> <221> CDO <222> (90)..(310) <400> 95 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agaatcttat ttccaggcac 60 attcttatgt atataaaatg ctatcatggg ggcttccctg gtggtgcagt ggttgagagt 120 ccgcctaccg atgcagggga cacgggttcg tgcccaggtc cgggaagatc ccacatgcgc 180 ggagcggctg ggcccgtgag ccatggccgc tgagcctgcg cgtctggagc ctgtgctccg 240 caatgggaga ggtcacaaca gtgagaggcc cacataccgc aaaaaaaaaa aaaacacaat 300 gctatcatgg tctacaatca aaaaatcagt atgttttatt aaatgctacc atgttcatgg 360 tgctgtttat ttagaaaggc tcaatcacga aaattccc 398 <210> 96 <211> 181 <212> DNA <213> Mago 8 Ganges <400> 96 tgctaactct agattgcaat gaaccaaaat taaaagaaaa agagaatctt atttccaggc 60 acattcttat gtatataaaa tgctatcatg gtctacaatc aaaataatca ataagtttta 120 ttaaatgtta ccacgttcat ggtactgttt atttagaaag gctcaatcac gaaaaattcc 180 c 181 <210> 97 <211> 182 <212> DNA <213> Mago 8 Sperm <400> 97 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agagaatctt atttccaggc 60 acattcttat gtatataaaa tgctatcatg tttacgatca aagtaatcaa taagttttat 120 ttaaatgcta ccatgttcat ggtactgttt atttagaaag gctcaatcac gaaaaaattc 180 cc 182 <210> 98 <211> 178 <212> DNA <213> Mago 8 Humpback <400> 98 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agagaatctt atttccaggc 60 acattgctta tgtatataaa atgctatcat ggtctacaat caaaataata agttttatta 120 aatgctacca tgttcatggt actgtttatt tagaaaggct caatcacgaa aaattccc 178 <210> 99 <211> 320 <212> DNA <213> Mago 13 Bottlenosed <220> <221> CDO <222> (50)..(268) <400> 99 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcacagt ggttgagggt ccgcctgccg atgcagggga cacgggttca tgccccagtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggcca gtgagcctgc 180 gcatccggag cctgtgctcc gccatgggag aggccacaac agtgagaggc ccgcgtaccg 240 caaaaaaaaa aaaaaaatag aggatctcca gctataaaac ctctaaataa agttgtaatg 300 ccagcaaaag tacagcccag 320 <210> 100 <211> 321 <212> DNA <213> Mago 13 Short-finned <220> <221> CDO <222> (50)..(270) <400> 100 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcacagt ggttgagggt ccgcctgccg atgcagggga cacgggttca tgccccagtc 120 cgggaagatc ccacatgccg cagagcgcta ggcccgtgag ccatggccag tgagcctgcg 180 cgtccggagc ctgtgctccg ccatgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aaaaaaaaat agaggatctc cagcataaaa cctctaaata aagttgtaat 300 gccagcaaaa gtacagccca g 321 <210> 101 <211> 342 <212> DNA <213> Mago 13 Dall's <220> <221> CDO <222> (50)..(289) <400> 101 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga catgggttcg tgccccggtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggccg gtgagcctgc 180 gcgtccggag cctgtgctcc acacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaata gaggatctcc tagctataaa 300 acctctaaat aaagttgtaa tgccagcaaa agtacagccc ag 342 <210> 102 <211> 317 <212> DNA <213> Mago 13 Narwhal <220> <221> CDO <222> (50)..(266) <400> 102 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga catgggttca tgccccggtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggccg gtgagcctgc 180 ccgtccagag cctgtgctct gccacgggag aggccacaac agtgagaggc ctgcgtaccg 240 caaaaaaaaa aaaaagagag gatctccagc ataaaacctt taaataaagt tgtaatgcca 300 gcaaaagtac agcccag 317 <210> 103 <211> 300 <212> DNA <213> Mago 13 Amazon <220> <221> CDO <222> (50)..(247) <400> 103 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtaggcgcag tggttgaggg tccgcctgcc aatgcagggg acatgggttc atgccccagt 120 ccgggagcag gtaggcccgt gagccatggc cactgagcct gcgcgtccgg agcctgtgct 180 ccacaacagg agaggccaca acagtgacag gtccgcgtac cgcaaaaaaa aaaaaaaaga 240 ggatctccag ctataaaacc tctaaataaa gttgtaatgc ctagcaaaag tacagcccag 300 <210> 104 <211> 308 <212> DNA <213> Mago 13 La Plata <220> <221> CDO <222> (50)..(255) <400> 104 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga cacgggttcg tgccccggtc 120 cgggagcggc taggcccgtg agccatggcc gctgagcctg cgcgtccgga gcctgtgctc 180 cgcaatggga gaggccacaa cagagaggtc cgcgtaccgc aaaaaaaaaa aaaaaaaaaa 240 aaaaaagagg atctccagct ataaaacctc taaataaagt tgtaatgcct agcaaaagta 300 cagcccag 308 <210> 105 <211> 293 <212> DNA <213> Mago 13 Baiji <220> <221> CDO <222> (50)..(242) <400> 105 aaaaaatgtt tctatcacta tatacaatat ttttaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccacctgccg atgcagggga cacgggttcg tgccccggtc 120 agggagtggc taggcccgtg agccatggcc actgagcctg cgcgtccgga gcctgtgctc 180 cgcaacggga gaggccacaa cagtgagagg tctgcgtacc gcaaaaaaaa atagaggatc 240 tccagcataa aacctctaaa taaagttgca atgccagcaa aagtacagcc cag 293 <210> 106 <211> 317 <212> DNA <213> Mago 13 Beaked <220> <221> CDO <222> (50)..(266) <400> 106 aaaaaatgtt tctatcacta tctacaatat ttaaaaaata gaggatctca ggcttctctg 60 gtggtgcagt ggttgagggt ccgcctgccg atgcagggga cacgggtttg tgccccggtc 120 cgggaagaat cccacatgcc gcagagcgct gggcccgtga gccatggccg ctgagcctgc 180 acatccggag cctgtgctcc gcaacgggag aggccacaac agtgagaggc ctgcgtacca 240 caaaaaaaaa aaaaaaagag gatctccagc ataaaacctc tgaataaagt tgtaatgcca 300 gcaaaagtac agcccag 317 <210> 107 <211> 100 <212> DNA <213> Mago 13 Ganges <400> 107 aaaaaatgtt tctatcacta tctacaatat ttttaaaata gaggctctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 108 <211> 100 <212> DNA <213> Mago 13 Sperm <400> 108 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 109 <211> 100 <212> DNA <213> Mago 13 Humpback <400> 109 aaaaaatgtt tctatcacta tctacaatac tttaaaaata gagaatctcc agcataaaac 60 ctctaagtaa agttgtaatg ccagcaaaag tacagcccag 100 <210> 110 <211> 100 <212> DNA <213> Mago 13 Fin <400> 110 aaaaaatgtt tctatcacta tctacaatac tttaaaaata gaggatctcc agcataaaac 60 ctctaagtaa agttgtaatg ccagcaaaag tacagcccag 100 <210> 111 <211> 100 <212> DNA <213> Mago 13 Minke <400> 111 aaaaaatgtt tctatcccta tctacaatac tttaaaaata gaggatctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 112 <211> 99 <212> DNA <213> Mago 13 Hippo <400> 112 aaaaatgttt ctatcactat ctacaatatt ttaaaaatag aggatctcca gcataaaacc 60 tctaaataaa gttgtaatgc cagcaaaagt acagcccag 99 <210> 113 <211> 370 <212> DNA <213> Mago 21 Short-finned <220> <221> CDO <222> (63)..(289) <400> 113 ccttcttcat caggttatta ggaagattcc gatagttaat ataaaatata taaagtattt 60 aggggcttcc ctggtggcgc agtggttgag agtccacctg ccgatgcagg ggacacaggt 120 tcgtgccctg gtccgggagg atgccacatg scgcagagca gctgggcccg tgagccatgg 180 ccgctgagcc tgagcatctg gagcctgtgc tccgcaatgg gagaggccac aacagtgaga 240 ggcccacgta ccgcaaaaaa aaaaaaatat atatatatat agtatttaga acagagttta 300 gaacacagta agtactatgt tagtgttagc ttttatagat gtgattatct agtgggattt 360 gttgatttcc 370 <210> 114 <211> 373 <212> DNA <213> Mago 21 La Plata <220> <221> CDO <222> (63)..(292) <400> 114 ccttcttcat caggttatta ggaagattcc gttagttcat ataaaatata taaagtattt 60 aggggcttcc ctcgtggtgc agtggttgag agtccgcctg ccgacgcagg ggacgtgggt 120 ccgggaagat cccacatgcc gtggagcggc tgggcccgtg agccatggcc gctgagcctg 180 agcgtccgga gcctgtgctc tgcaatggga gaggccacaa cagtgagagg cctgtgtacc 240 gcaaaaaaaa aaattttttt aataaacaaa tatatatata tatagtattt agaacagagt 300 ttagaacaca gtaagtacta tgttagtgtt agcttttata gatgtgatta tctagtggga 360 tttgttgatt tcc 373 <210> 115 <211> 406 <212> DNA <213> Mago 21 Ganges <220> <221> CDO <222> (63)..(325) <400> 115 ccttcttcat caggttatta ggaagattcc attagttaat ataaaatata taaagtattt 60 aggggcttct ctggtggcgc agtggttgag agtccacctg ccgatgcagg ggacacgggt 120 tcgtgccctg gtcccggaag atcccacatg tgcggagcag ctggtcccgt gagccacggc 180 cgctgagcct gcgcgtccgg agcctgtstc cgcaacggga aaggccacaa cagtgagagg 240 cccgcttacc gcaaaaaata aaacatacat acatatatac atatagatat agatgtagat 300 atagatagat agataaagta tttagaacag agtttagaac acagtaagta ctatgttagt 360 gttagttttt atagatgtga ttatctagtg ggatttgttg atttcc 406 <210> 116 <211> 143 <212> DNA <213> Mago 21 Sperm <400> 116 ccttcttcat caggttatta ggaagattcc gttagttaat agaaaatatg taaagtattt 60 aggacggagt ttagaacaca gtaagtacta tgttagtgtt agcttttata gatgtgatta 120 tctagtggga tttgttgatt tcc 143 <210> 117 <211> 144 <212> DNA <213> Mago 21 Humpback <400> 117 ccttcttcat caggttatta ggaagattcc gttagttaat gtaaaatata taaagtattt 60 agaacagagt ttagaacaca gtaagtacta tgttagtagt tagcttttac agatgtgatt 120 atgtagtggg atttgttgat ttcc 144 <210> 118 <211> 526 <212> DNA <213> Sperm 8 Dall's <220> <221> CD <222> (154)..(495) <400> 118 gccaatctct gtatttgttc atcaacagaa aaagggatat gaagtatgag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccacctt agtaacctcc 120 agtagatcat gtctacttat aaaaatttgt gttgggcttc cctggtggca cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 gccgcgaagc aactagggcc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctcctcaaca agagaggcca cgatagtgag aggcccgtgc accgcgatga agagtggccc 360 ctgcttgcca caactagaga aagccctcgc acagaaacaa agacccaaca cagccaaaaa 420 taaataaata aataaaaatt taaaaaagta acatgttcaa gtacaattgg tgtctttaaa 480 aaacaaatct atgtttttct atgtaagaca tgcaggtagg tggaca 526 <210> 119 <211> 533 <212> DNA <213> Sperm 8 Narwhal <220> <221> CD <222> (154)..(502) <400> 119 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccacctt agtaacctcc 120 agtagatcat gtctacttat aaaaatttgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct gggctgggaa gatcccacat 240 gcagcaaagc aactaggccc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctcctcaaca agagaggcca cgatagtgag aagcccgtgc accgcgatga agagtggccc 360 ccgcttgcca caactagaga aagccctcgc acagaaacga agacccaaca cagtgaaaga 420 taaataaata aattaattaa ttaataaaaa agtaacaaat gttcaagtac aattggtgtc 480 tttaaagaaa aaaatctgtg tttttctatg taagacatgc aggtaggtgg aca 533 <210> 120 <211> 545 <212> DNA <213> Sperm 8 Amazon <220> <221> CD <222> (154)..(514) <400> 120 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcacctcctt agtaacctcc 120 agtggatcat gtctacttac aaaaatttgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgagaa cataccacat 240 accacggagc aactaggccc gtgagccaca actgagcctg catgtctgga gcctgtgctc 300 tgcaacaaga gaggccacga tagtgacagg cccgtgcacc gcgatgaaga gtggcccccg 360 cttgccacaa ctagagaaag ccctctcaca gaaatgaaga cccaacacag ccaaaaataa 420 ataaataaat aaatataaat aaataaataa aatttaaaaa aaagtaacaa gtgttcaagt 480 acaattggtt tcttaaaaaa aaaaaatctg tgtttttcta tgtaagacat gcaggtaggt 540 ggaca 545 <210> 121 <211> 535 <212> DNA <213> Sperm 8 La Plata <220> <221> CD <222> (154)..(504) <400> 121 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcacctcctt agtaacctcc 120 agtagaccat gtctacttat aaaaatgtgt gttgggcttc cctggcggcg cagtggttga 180 gaatttgcct gccaatgcag gggacatggg ttcgagccct ggtctgggaa gatcccacat 240 accgcggagc aactaggacc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctccgcaaca agagaggcca cgatagtgag aggcccgtgc accgcgatga agagtggccc 360 ccgcttgcca caactacaga aagctctctc acagaaacga agacccaaca cagccaaaaa 420 taaataaata aataaataaa ttttttttaa aaagtaacaa atgttcaagt acaattggtg 480 acttaaaaaa aaaaaatctg tgtttttcta tgtaagacat gcaggtaggt ggaca 535 <210> 122 <211> 529 <212> DNA <213> Sperm 8 Baiji <220> <221> CD <222> (151)..(498) <400> 122 gccaatctct gtatttgttc atcaatagaa aaggatgtga agtgttagat aaaagatttc 60 tctaacttat ctactcattc ccctcctcca cactctctca cctccttagt aacctccagt 120 agatcatggc tacttataaa gatctgtgtt ggtctttcct ggtgatgcag tggttgagaa 180 tctgcctgcc aatgcagggg acacgggttc gagccctggt ctgggaagat cccacaagcc 240 gcggagcaac taggcccgtg agccacaact actgagcctg cgcgtctgga gcctgtgctc 300 cgcaacaaga caggccgcga tagtgagagg cccgcgcacc gcgatgaaga gtggcccccg 360 cttgccgcaa ctagagaaag ccctcgcaca gaaacgaaga cccaacacag ccaaaaataa 420 ataaattaat taattttttt aaaaaagtaa caaatgttca agtacaattg gtgtctttaa 480 aaaaaagaaa tctgtgtttt tctatgtaag acatgcaggt aggtggaca 529 <210> 123 <211> 539 <212> DNA <213> Sperm 8 Beaked <220> <221> CD <222> (154)..(508) <400> 123 gccaatcttt gtatttgttc atcaatagaa aaatggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt agtaacctcc 120 agtagatcat ggctacttat aaaaatctgt gttgggcttc cctggtggca cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 accgtggagc aactaggccc atgagccaca actactgagc ctgcgcgtct ggagcttgtg 300 ctctgcaaca agagaggctg cgatagggag aggcctgcgc accgtgatga agagtggccc 360 ccgctcgcca caactagaga aaaccctcgc acagaaatga agacccaaca cagccaaaaa 420 taaataaata aataaataaa taaataaaaa tttaaaaaag taacaaatgt tcaagtacaa 480 ttggtgtctt taaaaaaaaa tctgtgtttt tctatgtaag acatgcaggt aggtggaca 539 <210> 124 <211> 535 <212> DNA <213> Sperm 8 Ganges <220> <221> CD <222> (155)..(504) <400> 124 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt ggtaaacctc 120 cagtaggtca tggctactta taaaaatctg tgttgggctt ccctggtggc gcagtggttg 180 agaatcttcc tgccgatgca gggaacatgg gtttgagccg tgctctggga agatcccaca 240 tgccacggag caactaggcc cgtgagccac aattactgag cctgcgcgtc tggagcctgt 300 gctccacaac aagagaggcc gcgataatga gaggcccgcg catcgcgatg aagagtggcc 360 ctgctcgccg caactagaga aagccctcgc acagaaacga agacccaaaa cagccaaaaa 420 taaataaata aattttttaa aaaaagtaac aaatgttcaa gtacaattgg tgtctttttt 480 tttttttttt ttttaatctg tgtttttcta tgtaagacat gcaggtaggt ggaca 535 <210> 125 <211> 526 <212> DNA <213> Sperm 8 Sperm <220> <221> CD <222> (154)..(495) <400> 125 gccaatctct gtatttgttc atcaatagaa aaagggatat gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt agtaacctcc 120 aacagatcat ggctacttat aaaaatctgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gctaacgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 gccgcggagc aactagacac gtgagccaca actactgagc ctgcgcgtgt ggagcctgtg 300 ctccgcaaca agagaggccg cgatagtgag aggcccgcgc actgcgatga agagtggccc 360 ccgcttgcca caactagaga aagcccttgc acagaaacga agacccaaca cagcgataaa 420 taaataaata gttttttaaa aaaaagtaac aaatattcaa gtacaattgg tgtctttaaa 480 aaaaaaatct gtgtttttct atgtaagaca tgcaggtagg tggaca 526 <210> 126 <211> 184 <212> DNA <213> Sperm 8 Humpback <400> 126 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaatt tatctactca ctccccttct ccacactcta tcaccttctt agtaacctcc 120 agtagatcat ggctacttat aaaaatctgt gtttttctat gtaagacatg caggtaggtg 180 gaca 184 <210> 127 <211> 184 <212> DNA <213> Sperm 8 Fin <400> 127 gccaatcttt gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttccccttct ccacactctc tcaccttctt aggaacctcc 120 agtagatcat ggttacttat aaaaatctgt gtttttctat gtaagacatg caggtaggtg 180 gaca 184 <210> 128 <211> 185 <212> DNA <213> Sperm 8 Minke <400> 128 gcaatcctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttccccttct ccacactctc tcaccttctt aggaacctcc 120 agtagatcat ggctacttat aaaaatctag tgtttttcta tgtaagacat gcaggtaggt 180 ggaca 185 <210> 129 <211> 185 <212> DNA <213> Sperm 8 Hippo <400> 129 gccaatctct gtatttgttc atcaatagaa aacaggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct tcacactttc tcaccttctc agtaacatcc 120 agtagatcat ggctacttat aaaaatctag tgtttttcta cgtaagacat gcaggtgggt 180 ggaca 185 <210> 130 <211> 468 <212> DNA <213> Sperm 28 Bottlenosed <220> <221> CD <222> (71)..(365) <400> 130 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctttaaaatt cttttttaaa 60 aattaattca ggacttccct ggtggtgcag tggttgagaa tctgcctgcc aatgcagggg 120 acacgggttc gagccctggt ctgggaagat cccacatgct gcggaggaac tgggcccatg 180 agccacagct actgagcctg cgcgtctgga gcctgtggtc tgcaacaaga gaggccatga 240 tagtgagagg cccgcacaac gggatgaaga gtggtccccg ctcaccgcaa ctagagaaag 300 ccctcgcaca gaaacgaaga cccaacacat ccaaaaataa ataaataaat taaaaaatta 360 attcaatcac tgataagtgt ttattgaata catattatgt gtcagacatt gtgttgggtg 420 cttgaaataa tggtgctaag cttggggata attattgctg tagcaggc 468 <210> 131 <211> 411 <212> DNA <213> Sperm 28 Amazon <220> <221> CD <222> (57)..(353) <400> 131 tgtgacctct ttagcttttg cttaatctgt aaaattcttt ttttaaaatt aattcagggc 60 ttccctggtg gtgcagtggt tgagaatctg cctgccaatg caggggacac gggttcgagc 120 cctggtctgg gaagatccca catgccrcgg agcaactggg cccatgagcc acagctactg 180 agcctgcgtg tctggagcct gtgctccgca acaagagagg ctgtgatagt gagaggcctg 240 cgcaacggga tgaagagtgg tcccagctcg ccgcaactag agaaagccct caaacagaaa 300 ctaagaccca acacagccaa aaataaataa ataaatttaa aaaaattaat tcaatcactg 360 ttaagtgttt attgagtaca tattatatgt cagacattgt gtggggtgct a 411 <210> 132 <211> 414 <212> DNA <213> Sperm 28 Baiji <220> <221> CD <222> (58)..(355) <400> 132 agagaacctc ttttagcttt tgcttatctt taaaattctt ttttaaaaat taattcaggc 60 cttccctggt ggtgcagtgg ttgagaatct gcctgccaat gcaggggaca cgggttcgag 120 gcctggtctg ggaagatccc acatgccgtg gagcaactgg gcccatgagc cacagctact 180 gagtctgcgt gtctggagcc tgtgctctgc aacaagagaa gccgtgatag tgagaggccc 240 gcgcaacggg atgaagagtg gtccctgctc gccacaacta gagaaagccc tcgcacagaa 300 acgaagaccc aacacagcca aaaataaata aataaattaa aaaaaaatta attcaatcag 360 tgataaatgt ttattgagta catattatgt gtcagacatt gtgttggggt gcta 414 <210> 133 <211> 470 <212> DNA <213> Sperm 28 Beaked <220> <221> CD <222> (71)..(367) <400> 133 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctgtaaaatt ctttttttta 60 aattaattca gggcttccgt ggtggtgcag tggttgagaa tctgcctgcc aatgcggggg 120 acacgggttc gagccctggt ctgggaagac cccacatgcc acggagcaac tgggcccatg 180 ggccacagct actgagcctg cgcatctgga gcctgtgctc tgcaacaaga gaggccgcga 240 tagtgagagg cccgcgcacc gcaatgaaga gtggtccccg ctcaccgcaa ctagagaaag 300 tgctcgcaca gaaacgaaga cccaacacag ccaaaaataa ataaattaat ttaaaaaaat 360 taattcaatc actgataagt gtttattgag tacatattat gtgtcagaca ttgtgttggg 420 tgcttgaaat aatggtgcta agcttgggga taattattgc tgtagcaggc 470 <210> 134 <211> 470 <212> DNA <213> Sperm 28 Sperm <220> <221> CD <222> (71)..(368) <400> 134 gcttgtttag tggtggtgaa ctcttttagc ttttgcctat ctgtaaaatt ccttttttaa 60 aattaattca gggcttccct ggtggtgcag tggttgagaa tctgcctgcc aatgcagggg 120 acacaggttc aagccctggt ctgggaagat cccacatgcc gcagagcaac tgggcccgtg 180 agccacagct actgagcctg cacatctgga gcctgtgctc tgcaacaaga gaggccgcaa 240 tagtgagagg cccgcgcacc atgatgaaga gtggtccctg ctcaccgcaa ctagagaaag 300 ccctcgcaca gaaacgaaga tccaacacag ccaaaaataa ataaatacat ttttaaaaaa 360 ttaattcaat cactgataag tgtttactga gtacatatta tgtgtcagac attgtgttgg 420 gtgcttgaaa taatggtgtt aaacttggga taattattgc tgtagcaggc 470 <210> 135 <211> 172 <212> DNA <213> Sperm 28 Fin <400> 135 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctgtaaaagt ttttttttta 60 attaattcaa tcactgataa gtgtttattg agtacatatt atgtggcaga cattgtgttg 120 ggtgcttgaa ataatggtgc taagcttggg gataattatt gctgtagcag gc 172 <210> 136 <211> 539 <212> DNA <213> Sperm 47 Bottlenosed <220> <221> CD <222> (137)..(469) <400> 136 gggagaagga aatgaaaggc tttccctaaa actggacacc ccacccatta aggtgttaag 60 taattgcgtt cggtggggaa ctgctcagga tccaaggggg catcacgtgg aagccatgaa 120 tcaaatattt gcttaagggc ttccctggtg acgcagtggt tgagagtctg cctgccaatg 180 caggggacac gggttcgagc cctggtctgg gaggatccca catgccgcgg agcaactggg 240 cctgtgaacc ataactactg agcctgcgcg tctgaagcct gtaatccgca acaagagagg 300 ccgcgatagt gagaggcccg cgcaccgcga tggggagtgg cccccgctcg tcgcaactag 360 agaaagccct cgcacagaaa cgaaaaccca acgcagccat aaataaataa ataaatttta 420 aaaatgaaaa aaaaaggact acttaaaaaa tatatatata ttcgcttaag taagccaagg 480 gtctgagcgt ctaaatgacc ttcccaaagt catacaggaa catactggca cctccttca 539 <210> 137 <211> 530 <212> DNA <213> Sperm 47 Beaked <220> <221> CD <222> (137)..(461) <400> 137 gggagaagga aatgaaaggc cttccctaaa actggacacc ccacccatta aggtgctaag 60 taattgagtt cggtggggaa ctgctcagga tccagggggg catcacgtgg aagccatgaa 120 tcaaatattc gcttaagggc ttccctggtg gcgcagtggt tgagaatctg cctgctagtg 180 caggggacac gggttcgagc cctggtctgg gaggatccca catgctgcgg agcaactagg 240 cccgtgagcc acgactactg agcctgcatg tctggagcct ctgctccgca acaggagagg 300 ccggcgatag tgagaggccc gcacgccgca atggggagtg gcccctgctt gccacaacta 360 gagaaaccct cgcacagaaa cgaagaccca acgcagccat aaataaattt ttaaaattaa 420 aaaaaagtac tttaaatata tatatatata tattcgctta agtaagccaa gggtctgacc 480 gtctaaatga cttcccaaag tcatacagga acatactggc acctccttca 530 <210> 138 <211> 525 <212> DNA <213> Sperm 47 Ganges <220> <221> CD <222> (103)..(469) <400> 138 gacaccccac ccattaaggt gttaagtaat tgcgttcggt ggggaactgc tcaggatcca 60 ggggggcatc acgtggaagc catgaatcaa atattcactt cagggcttcc ctggtggcgt 120 agtggttgag aatctgcctg ccaatgcagg ggacacgggt tcgagcccta gtctgggaga 180 tccacatgtc gcagagcaac tgggccatga gccacactac tgagcctgcg catctggagc 240 ctgtactccg caacagagag gccgcgatag tgagaggccg cgcactacga tgaagagtgg 300 ccacgcttgc cacactagag aagccctcgc acagaaccga agacccaaca cagccataat 360 aataataata atttaaaatt aaaaaagact acttcaatat atatatatat atatatatat 420 atatattttt tttttttttt tttttttttt tttttttttt tttgcttaag taagccaagg 480 gtctgagcat ctaaatgact tcccaaagtc atacaggaac atact 525 <210> 139 <211> 544 <212> DNA <213> Sperm 47 Sperm <220> <221> CD <222> (136)..(475) <400> 139 gggagaagga aatgaaaggc cttccctaaa actggacacc ccacccatta aggtgttaag 60 taattgcatt cggtggggaa ctgctcagga tccaaggggg catcagctgg aagccatgaa 120 tcaatattca cttaagggct tccctggtgg cacagtggtc gagaatctgc ctgccgatgc 180 aggggacacg ggttcgagcc ctggtctggg gagatcccac atgccgcgga gcaactgggc 240 ccttgagccg caactgctga gcctgtgcgt ctggagcctg tgctccgcag caagagaggc 300 tgcgatagtg agaggcccac gcaccgcgat gaagagcggc caccgcttgc cacaactaga 360 gaaagccctc gcacagaaac gaagacccaa cacagccata aagaaagaaa gaaagaaatt 420 ttaaaaatta aaaataaaag gactacttta aaaaaaaaga aaacaattcg cttaagtaag 480 ccaagggtct gagcgtctaa atgacttccc aaagtcatac aggaacatac tggcacctcc 540 ttca 544 <210> 140 <211> 205 <212> DNA <213> Sperm 47 Fin <400> 140 gggagaagga aatgaaaggc cttccctaaa actggatacc ccacccatta aggtgttacg 60 taattgtgtt cggtggggaa ctgctcagga tccaaggggg catcacgtgg aagccatgaa 120 tcaaatattc gcttaagtaa accaagggtc tgagcgtcta aatgacttcc caaagtcata 180 caggaacata ctggcacctc cttca 205 <210> 141 <211> 216 <212> DNA <213> Amz 13 Bottlenosed <400> 141 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacaggc catttgcctt tcttctctct gtccctggca cctgacaaca aaaaagtgcc 120 caaataaacc tgcactttca gctacaggag ggtctgctgc aggagctact ggaacggcca 180 tgggggaact cagcaggagt catcagtggt ggagaa 216 <210> 142 <211> 442 <212> DNA <213> Amz 13 Amazon <220> <221> CDO <222> (122)..(347) <223> "n" means undetermined. <400> 142 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacagganaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtcccttgca cctgacaaca aaaaagtacc 120 cggcttgccc tggtggcgca gtggttgaga gccgcctgcc gatgcagggg acatgggttc 180 gtgctccggt ccgggaagat cccacatgcc gsrgcrgykg gcccgtgagc catggccgct 240 gagcctgcgc atccsgagym ygtgctccac aacgggagag gccacaacag tgagaggcct 300 gcttaccgca aaaaacagac aaaaaacaaa caaacaaaaa agtgcccaaa taaacctgtg 360 ttttcagcta caggagggtc tgttgcagga gctactggaa cggccatggg ggagctcagc 420 aggagtcatc agtggtggag aa 442 <210> 143 <211> 399 <212> DNA <213> Amz 13 La Plata <220> <221> CDO <222> (122)..(356) <400> 143 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtccctggca cctgacaaca aaaaagtgcc 120 cgggtttcac tggtggcgca gtggttgaga gtccgcctgc cgatgcaggg gacacgggtt 180 cgtgccccgg tccgggaaga tcccacatgc cgtggggcgt ctgggcccgt gagccatggc 240 tgctgagcct gtgcgtccgg agcctgtgct ccgcagcggg agaggccacg acagtgagag 300 gcccgcgtac cgcaaaaaca aaaaaacaaa cagaaaaaac agacaaaaaa gtgcccaaat 360 aaacctgtgt tttcagccac aggagggtct gttgcagga 399 <210> 144 <211> 105 <212> DNA <213> Amz 13 Baiji <400> 144 tgagaacaga ccatttgcct ttcttctctc tgtccctggc aactgacaac aaaaaagtgc 60 ccaaataaat ctgtgttttc agctacagga gggtctgttg cagga 105 <210> 145 <211> 217 <212> DNA <213> Amz 13 Humpback <400> 145 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtccctggca cctgacaaca gaaaagtgcc 120 caaataaacc tgtgttttca actagaggag cggtctgctg caggagctac tggaacggcc 180 atgggggaac tcagcaggag tcatcagtgg tggagaa 217 <210> 146 <211> 184 <212> DNA <213> Amz 11 Bottlenosed <400> 146 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt ggagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 147 <211> 400 <212> DNA <213> Amz 11 Amazon <220> <221> CDO <222> (95)..(309) <400> 147 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt atagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacggggctt ccctggtgcg cagtggttga 120 gagtccgcct gccgatgcag gggacacggg ctcgtgcccc gggccgggag gatcccacat 180 gctgcggaga ggctgggccc gtgagccatg gccgctgagc ctgtgcgtcc ggagcctgtg 240 ctctgcaacg ggagaggcac gatagtgaga ggccgcgtac cacaaaaaaa aaaaaaaaaa 300 ccacaaacgt aagctgtgaa aagccagaag cagagtgatg tctttcccct gatgcaaagg 360 tcactgcctg tttttttctc attcgttcca gctgaccaca 400 <210> 148 <211> 184 <212> DNA <213> Amz 11 La Plata <400> 148 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcagag 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 149 <211> 184 <212> DNA <213> Amz 11 Baiji <400> 149 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt aaagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcacag 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 150 <211> 184 <212> DNA <213> Amz 11 Sperm <400> 150 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacataagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 151 <211> 184 <212> DNA <213> Amz 11 Humpback <400> 151 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacataagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 152 <211> 579 <212> DNA <213> Tuti 24 Bottlenosed <400> 152 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aagtctcttc tctttgtgct ccatcttgca tagtttcttg 120 tattgtgttc gagtttatta atcttttctc ctgcaacgta caatctgttg gtaataccat 180 tcagtatatt gtaaatttca aatgttggat atttcatttc tagaaatttg atttgggtct 240 tttttaatat tcttcatgtc taaaaattat tttttaaatc tttcttctag cttattgaac 300 atatgaaata acattataat atttagttta atgtctttgt ttactagttc catcatctgt 360 atcatttctg agacaatttt atttgactga ttttcctcct cattgtgaat tatatttttg 420 tagttctttg caagcccagt tggattttga gttactttat tataaataca ttacaacatt 480 acataaagtt tggggaaatt gaaaaagcaa aatgatttat aagctttcca tgctaataac 540 tttcattttt gttttctcat ctacacttca tccacatcc 579 <210> 153 <211> 819 <212> DNA <213> Tuti 24 Meso. Sp. <220> <221> CDO <222> (360)..(595) <400> 153 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aattctcttc tctttgtgct ccatcttgca tagtttcttg 120 tattgtgttc aggtttacta atcttttctc ctgcagtgta caatctgttg gtaataccat 180 tcagtatatt ttaaatttca aatgttggat atttcatttc tagaaatttg atttgggtct 240 ttttttaata ttcttcatgt ctaaaaatta tttttaaaat ctttcttcta gcttactaaa 300 catatgaaat aacattataa taattagttt aatgtctttg tttactagtt ccatcatctg 360 ggcttccctg gtggtgcagt ggttgagagt ttgcctgccg atgcagggca cacgggtttg 420 tgccccagtc agggaagatc ccacatgcca tggagtggct gggcccgtga gccatggcca 480 ctgagcctgt gtgtccggag cctgtgctcc ataacaggag aggccacaac agtgagaggc 540 ccacgtacca caaaaaaaca aacaaacaaa aatcaaacaa attagttcca tcatctgtat 600 catttctaag acacttttat ttgactgatt ttcctcttca ttgtgaatta tatttttgta 660 gttctttgca agcccagttg gattttgagt cactttatta taaatacatt acaacattac 720 ataaagtttg ggaaaattga aaaagcaaaa tgatttataa gctttccatg ttaataactc 780 tcatttttat gttttctcat ctacacttca tccacatcc 819 <210> 154 <211> 817 <212> DNA <213> Tuti 24 Beaked. Part. <220> <221> CDO <222> (362)..(593) <223> "n" means undetermined. <400> 154 ctccttcagc aactccagtt acttgcatac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aattctcttt tctctttgtg ctccatcttg catagtttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcaatg tacaatctgt tggtaatacc 180 attaagtata ttttaaattt caagtgttgg atatttcatt tctagaaatt tgatttgggt 240 atttttttaa tattcttcat gtctaaaaat tattttttaa atctttcttc tagcttattg 300 aacatatgaa ataacattat aataattagt ttaatgtctt tgtttactag ttccatcatc 360 tgggcatccc tggtggtgca gtggttgann nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 420 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnat gagcatggca 480 ctgagctgtg tgtctggagc tgtgctcata acaggagagg ccacaacagt gagaggcccg 540 cgtaccacaa aaaaaacaaa caaacaaaaa tcaaacaaat tagttccatc atctgtatca 600 tttctaagac acttttattt gactgatttt cctcctcatt gtgaattata tttttgtagt 660 tctttgcaag cccaattgga ttttgagtta ctttattata gatacattac aacattacat 720 aaagtttggg gaaattgaaa aagcaaaatg atttataagc tttccatgtt aataactttc 780 atttttatgt tttctcatct acacttcatc cacatcc 817 <210> 155 <211> 585 <212> DNA <213> Tuti 24 Sperm <400> 155 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta gagtctcttt tctctttgtg ttccatcttg catagtttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcgaga catacaatct gttggtaata 180 ccattcagta tattttaaat ttcaaatgtt ggatatttca tttctagaaa tttgattcgg 240 gtctttttta atattcttca tgtctaaaaa ttatttttta aatctttctt ctagcttatt 300 gatcatatga aataacatta taataattag tttaatgtct ttgtttacta gttccatcat 360 ctgtatcatt tctgagacac ttttatttga ctgattttcc tcctcattgt gaattatatt 420 tttgtagttc tttgcaagtc cagttggatt ttgagttact ttattataaa tacattacaa 480 cattacataa agtttgggga aattgaaaaa gcaaagtgat ttataagctt tccatgctaa 540 taactctcat ttttatgttt tctcatctac acttcatcca catcc 585 <210> 156 <211> 583 <212> DNA <213> Tuti 24 Humpback <400> 156 ctccttcagc aactccagtt acttgcacac taagccactt accattgtcc cacagctcac 60 tgatactcta ttgtgcttta aagtctcttt tctctttgtg ttccatcttg cataatttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcgaca tataatctgt tggtaatacc 180 attcagtata ttttaaattt caaatgttgg atatttcatt tctagaaatt tgatttgggt 240 cttttctaat attcttcatg tctaaaattt attttttaaa tctttcttct agcttattga 300 acatatgaaa taacattata ataattagtt taatgtcttt gtttactagt tccatcatct 360 gtatcacttc tgagacactt ttatttgact gattttcctc ctcattgtga attatatttt 420 tgtagttctt tgcaagccca gtcggatttt gagttacttt attataaata cattacaaca 480 ttacataaag tttggggaaa ttgaaaaagc aaaatgattt ataagctttc catgctaata 540 actttcattt ttatgttttc tcatctacac ttcatccaca tcc 583 <210> 157 <211> 162 <212> DNA <213> Tuti 35 Bottlenosed <400> 157 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 158 <211> 162 <212> DNA <213> Tuti 35 Short-finned <400> 158 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaata 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 159 <211> 162 <212> DNA <213> Tuti 35 Dall's <400> 159 gccatactga ggcttaggca tgaattttgt tattttctgt ctgttgctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 160 <211> 161 <212> DNA <213> Tuti 35 Narwhal <400> 160 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa tatatgttac ttgccaacta tgtatgtagg g 161 <210> 161 <211> 158 <212> DNA <213> Tuti 35 Amazon <400> 161 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta tcaccaaaat 60 taatttgcta actcttacat aaaataatgt aacatttata gcctattttt aaaatgtttt 120 ttataagtat atgttacttg ccaactatgt atgtaggg 158 <210> 162 <211> 161 <212> DNA <213> Tuti 35 La Plata <400> 162 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaactctt acataacata atgtaacatt tatagtctat tttttaaatg 120 tttttataag tatatgttac ttgccaacta tgtatgtagg g 161 <210> 163 <211> 162 <212> DNA <213> Tuti 35 Baiji <400> 163 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 164 <211> 374 <212> DNA <213> Tuti 35 Beaked <220> <221> CDO <222> (111)..(326) <400> 164 gccatactga ggcttaggca tgaattttgt tattttctgt ttcttaatta tcaccaagat 60 taatttgcta attcttacat aaaataatgt aacatttata gtctattttt tttttttttg 120 gcggtacgtg ggcctctcac tgttgtggcc tctcccattg cggagcacag gccccggaca 180 cgcaggctca gtggtcatgg ttcacagacc cagccactcc gcggcatgtg agatcctccc 240 ggaccggggc acgaacccgt gacccttgca tcagcaggca gactctcaac cactgcacca 300 ccagggaagc cctatagtct attttttaaa tgttttttat aagtatatgt tacttgccaa 360 ctatgtatgt aggg 374 <210> 165 <211> 375 <212> DNA <213> Tuti 35 Meso.sp. <220> <221> CDO <222> (111)..(327) <400> 165 gccatactga ggcttaggca tgaattttgt tattttctgt ttcttaatta tcaccaaaag 60 taatttgcta attcttacat aaaataatgt aacatttata gtcttttttt tttttttttt 120 tgcggtacgc gggcctctca ctgttgtggc ctctcctgtt gtggagcaca ggctccggac 180 gcacaggctc agtggccatg gttcatgggc ctagccactc cgcagcatgt gagatcctcc 240 tggacagggg catgaaccca tgacccctgc atcggcaggc agactctcaa ccactgcacc 300 accagggaag ccctatagtc tattgttaaa atgtttttta taagtatatg ttacttgcca 360 actatgtatg taggg 375 <210> 166 <211> 163 <212> DNA <213> Tuti 35 Ganges <400> 166 gccatactga ggcttaggca tgaattttgt tattttctag tctgtttctt aattattacc 60 aaaattaatt tgctaattct tacataaaat aatgtaacat tcatagtcta tttttaaaat 120 gttttctgta agtatatgtt acttgccaac tatgtatgta ggg 163 <210> 167 <211> 162 <212> DNA <213> Tuti 35 Sperm <400> 167 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 gaattaattt gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 168 <211> 161 <212> DNA <213> Tuti 35 Humpback <400> 168 gccatactga ggttaggatg aattttgtta ttttctgtca tctttcttaa ttatcaccaa 60 aattaatttg ctaattctta cataaaataa cgtaacattt atagtctatt tttaaaatgt 120 tttttataag tatatgttac ttgccaacta tgtatgtagg g 161 <210> 169 <211> 162 <212> DNA <213> Tuti 35 Fin <400> 169 gccatactga ggcttaggca tgaattttgt tattatctgt ctgtttctta attatcacca 60 aaattaatct gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 170 <211> 162 <212> DNA <213> Tuti 35 Minke <400> 170 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctat tttttaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 171 <211> 160 <212> DNA <213> Tuti 35 Hippo <400> 171 gccatactga ggcttaggca tgaattttgt tattctgtct gtttcttaat tatcaccaaa 60 attaatttgc taattcttac ataaaataac gtaacattta tagtctattt tttaaatgtc 120 ttttataagt atacgttact tgccaactat gtatgtaggg 160 <210> 172 <211> 183 <212> DNA <213> Sp2 Bottlenosed <400> 172 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atacagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 173 <211> 183 <212> DNA <213> Sp2 Short-finned <400> 173 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataagag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag gataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 174 <211> 185 <212> DNA <213> Sp2 Dall's <400> 174 gagataaatg aaggcaccca tttaaaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaagctaa aagaaatgta ggaaacaaga atactagctc 120 ttgaaataaa gaataaactc aactaggata aaatataaac tgaaagtaga cagggaaaag 180 atcag 185 <210> 175 <211> 176 <212> DNA <213> Sp2 Narwhal <400> 175 gagataaatg aaggcaccca tttaaaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataagta atatgagaaa aaactaaaaa aaatgtagga aataagaata tagctcttga 120 aataataaac tcaacaggat aaaatataaa ctgaaagtag acagggaaaa gatcag 176 <210> 176 <211> 183 <212> DNA <213> Sp2 Amazon <400> 176 gagataaatg aaggcaccca tttaaaatca gtagaaaagc atgaaaaact aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga ttatagttct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 177 <211> 184 <212> DNA <213> Sp2 La Plata <400> 177 gagataaatg aaggcaccca tttagaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atagagctct 120 tgaaataaag aataaactcc actaggataa aatataaact gaaagtagac agggaaaaga 180 tcag 184 <210> 178 <211> 184 <212> DNA <213> Sp 2 Baiji <400> 178 gagataaatg aaggcaccca tttaaaatca gtaggaaagc aggaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cagt 184 <210> 179 <211> 184 <212> DNA <213> Sp 2 Beaked <400> 179 gagataaatg aaggcaccca tttaaaatta ataggaaagc atgaaaaaat aggcaggagt 60 gaaataatag gtaatatgag aaaaaaacta aaagaaatct aggaaataag aatatagctc 120 ttgaaataaa gaataaactc aacaggataa aatataaact gaaagtagac agggaaaagg 180 tcag 184 <210> 180 <211> 183 <212> DNA <213> Sp 2 Ganges <400> 180 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaagtaatag gtaatatgag aaaaaactaa atgaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 181 <211> 413 <212> DNA <213> Sp 2 Sperm <220> <221> CDO <222> (123)..(351) <400> 181 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaaaata aaagaaatct aggaaataag aatatagctc 120 ttgggcttcc ctggtggcgc agtggttggg agtccgcctg ccgatgcagg ggacatgggt 180 tcgtgccccg gtctgggagg atcccacatg ccgcggagtg gctgggcctg tgagccatgg 240 ccgctgagcc tgcgcatccg gagcctgtgc tctgcaacgg gagaggccac aacagtgaga 300 ggcccgcgta ccgccaaaaa aaaaaaaaaa aaaaaataga atatagctct tgaaataaag 360 aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat cag 413 <210> 182 <211> 183 <212> DNA <213> Sp 2 Hump <400> 182 gagataaatg aaggcaccca tttagaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acagtataaa atacaaactg aaagtagaca gggaaaagat 180 cag 183 <210> 183 <211> 183 <212> DNA <213> Sp 2 Fin <400> 183 gagataaatg aaggcaccca tttaaaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaatagtag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 184 <211> 183 <212> DNA <213> Sp 2 Minke <400> 184 gagataaatg aaggcaccca tttaaaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 185 <211> 183 <212> DNA <213> Sp 2 Hippo <400> 185 gagataaatg aaggcaccca tttaaaatca ataggaaaac atgaaaaaat aggcagaagt 60 gaaataatag gtagtatgaa aaagaactaa aagaaatcca ggaaataaga atatagcttt 120 tgaaacagaa tataactcaa caggataaaa tataaactga aagtagacag ggaaaagatc 180 agt 183 <210> 186 <211> 262 <212> DNA <213> Sp 9 Bottlenosed <400> 186 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggagt tccttctact tcagtggaat taaggctgtg 120 atcatttaag tctgacgtga atttaatttg atttaaacac aataaagaaa cgtgacattt 180 cttgcacgcc caaatttgta cttacagctt taaacctaac tagtggtgga tactatatac 240 gaagcagtgt taaacgagat gt 262 <210> 187 <211> 262 <212> DNA <213> Sp 9 Amazon <400> 187 ccattttctg ggctcaacat aaatcttcca gaccctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tccgtggaat taaggctggg 120 atcatttaag tctgacgtga atttaatttg atttaaacac aataaagaaa cgtgacattt 180 cttgcacacc caaatttgta cttacagctt taaacctaac tagtggtgga tactataatc 240 gaagcagtgt taaacgagat gt 262 <210> 188 <211> 262 <212> DNA <213> Sp 9 Beaked <400> 188 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tcagtggaat taaggctggg 120 ctcatttaag tctgaggtga atttaatttg atttaaacac gataaagaaa cgtgacattt 180 cttgcgcgcc caaatttgta cttacagctt taaacctaac tagtggtgga tactatatac 240 gaagcagtgt taaacgagat gt 262 <210> 189 <211> 486 <212> DNA <213> Sp 9 Sperm <220> <221> CDO <222> (178)..(401) <400> 189 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tcagtggaat taaggctggg 120 attatttaag tcggaggtga atgtaatttg atttaaacac aataaagaaa cgtgacaggg 180 cttacctggt ggcgcagtgg ttgagaatcc gcctgccgat gcaggggaca cgggttcgtg 240 ccccggtccg ggaagattcc cacatgccgc agagtggctg ggcccgtgag ccatggctgc 300 tgagcctscg catccggagc ctgtgctccg caacgggaga ggccacaaca gtgagaggcc 360 cgcgtaccgc aaaaaaaaaa aaaaaaaaaa gaaacgtgac atttcttgca tgcccaaatt 420 tgtacttaca gctttcaacc taactagtgg tggatactat atacgaagca gtgttaaacg 480 agatgt 486 <210> 190 <211> 262 <212> DNA <213> Sp 9 Humpback <400> 190 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaggaatgaa 60 gggaagccca gtgataactg ggattggatt tccttctact tcagtgaaat taaggttggg 120 atcatttaag tctgaggtga atttaatttg atttaaacac aataaagaat cgtgacattt 180 cttgcacacc caaatttgta cttacagctt taaacctagc tagtggtgga tactatattc 240 gaagcagtgt taaacgagat gt 262 <210> 191 <211> 376 <212> DNA <213> Hump 20 Bottlenosed <400> 191 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gctcgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttcaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggagaccctc ttggcattat ttattgggct tcagtgatat caacaggagg 360 atccaatttc ccttca 376 <210> 192 <211> 376 <212> DNA <213> Hump 20 Short-finned <400> 192 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaaataga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc atattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttcaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggagtccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 193 <211> 376 <212> DNA <213> Hump 20 Dall's <400> 193 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcgtgatg ctttaaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggaggccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 194 <211> 376 <212> DNA <213> Hump 20 Narwhal <400> 194 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttaaaatt acttatctca agcctatcat tatatacttc ttgttttcac 300 tggcggcatt ggaggccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 195 <211> 373 <212> DNA <213> Hump 20 Amazon <400> 195 atccacatat cagctggcat tacagtctgc caaagtatta acatgaatag agaaggaaat 60 gctttaacta gttttagctt taaaagttct ttaccacttt tatgtgattg cttactgcca 120 ttctacatgg gtagaacaga tgttggtgtt tgtttttaag aactagatct tccagagaag 180 gtcagcatag tgctctggga agcctccaga ttcattttag aggtcctaat gacttatttt 240 tgtggtgctt taaaattatt catctcaagc ctatcattat atacctcttg ttttcactgg 300 tggcattgga ggccctcttg gcattattta ttggtcttcg gtggtatcaa caggaggatc 360 caatttccct tca 373 <210> 196 <211> 376 <212> DNA <213> Hump 20 La Plata <400> 196 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagaggagga 60 aatgctttaa ctagttttag ctttaaaagt tcttcatcac ttttatgcga ttgcttactg 120 ccatcctaca cgggtagaac agatgttggt gtttgctttt aagaactaga tcttccagag 180 aaggtcagca gagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcgtggtg ccttaaaatg agtcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcgct ggaggccctc tcggcattgt ttattggtct tcggtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 197 <211> 373 <212> DNA <213> Hump 20 Baiji <400> 197 atccacatat cagctggcat tacagtctgc caaagtattc acatgaatag agaaggaaat 60 gctttaacta gttttagctt taaaagttct ttatcacttt tatgtgattg cttactgcca 120 ttctacatgg gtagaacaga tgttggtgtt tgcttttaag aactagatct tccagagaag 180 gtcagcatag tgctctggga agcctccaga ttcattttag aggtcctaat gactcttttt 240 cgtgttgctt taaaattatt catctcaagc ctatcattat atacctcttg ttttcaatgg 300 cggcattgga ggccctcttg gcattattta ttggtcttca gtggtatcaa caggaggatc 360 caatttccct tca 373 <210> 198 <211> 378 <212> DNA <213> Hump 20 Beaked <400> 198 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgtga ttgcttactg 120 ccattctgca tgggtagaac agatgttggt gtttgctttt aagaactaga tctcccagag 180 aaggtcagca ggtgctctgg gaagcctcca gattcatttt agagttccta atgactcttt 240 tttgtggtgc tttaaaatta ctcatctcaa gcttatcatt atatacctct tgttttcact 300 ggtggcattg gaggccctct tggcattatt tattgggctt cagtggtata cacaggagga 360 ggatccaatt tcccttca 378 <210> 199 <211> 365 <212> DNA <213> Hump 20 Ganges <400> 199 atccacatat cagctggcat tacagtgctg ccaaagtatt aacatgaata gagaaggaaa 60 tgctttaact agttttagct ttaactgttc tttatcactt ttatgtgatt gcttactgcc 120 attctacaga tgttggtgtt tgcttttaag aactagatct cccagagaag gccagcatag 180 tgctctggga agcctccaga ttcattttag aggtcctaat gactcttttt cgtggtgctt 240 taaaattact catctcaagc ctatcattat atactcttgt tttcactggt ggcattggag 300 gccctcttgg cattatttat tgggcttcag tggtatccac aggaggagga tccaatttcc 360 cttca 365 <210> 200 <211> 379 <212> DNA <213> Hump 20 Sperm <400> 200 cctatccaca tatcagctgg caatacagtc tgccaaagta ttaacatgaa gagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgtga ttgcttactg 120 ccattctacg tgggtagaac agatgttggt gtttgctttt aagaactaga tctcccagag 180 aaggtcagca tagagctctg ggaagcctcc agattccttt tagaggtcct aatgactctt 240 ttttgtggtg ctttaaaatt actcatctca agcctatcat tgtatacctc ttgttttcac 300 tggcgtcatt ggaggccctc gtggcattat ttattgggct tcagtggtat caataggagg 360 aggatccaat ttcccttca 379 <210> 201 <211> 764 <212> DNA <213> Hump 20 Humpback <220> <221> CD <222> (177)..(398) <400> 201 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaactgt tctttatcag ttttatgtga ttgcttactg 120 ccattctaca tgggtagaac agatgttggt gtttgctttt aagaactaca tctcctgggc 180 ttccctggtg gcacagtggt tgagaatctg cctgccaatg caggggacat gggttcgagc 240 cctggtctgg gaagatccca catgccgcgg agcaactatg tccgtgagcc acaactactg 300 agcctgcgca tctggagcct gtgctccgca acaagagagg ccgcgatagt gagaggcccc 360 cgcaccgcga tgaagcgtgg cccccgcttg ccgcaactag agaaagcccc cgcacagaaa 420 cgaagaccca acacagccat aaataaataa ataaataaat aaataaataa cagtaggtct 480 ttcgataaat gaggggtcca agacaagaga accagaggtc cattggttta aaaaaaaaaa 540 aaaaaaaaaa ctagatctcc cagagaaggt cagcatagtg ctctgggaag cctccagatt 600 cattttagag gtcttaatga ctctttttca tgatgcttta aaattactca tctcaagcct 660 atcattatat acctcttgtt ttcactggag gcattggagg ccctcttggc attatttatt 720 gggcttcagt ggtatcaaaa ggaggaggat ccaatttccc ttca 764 <210> 202 <211> 762 <212> DNA <213> Hump 20 Fin <220> <221> CD <222> (177)..(398) <400> 202 cctatccaca tatcagctgg cattacagtc tgtcagagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaactgt tctttatcag ttttatgtga ttgcttactg 120 ccattctaca tgggtagaac agatgttggt gtttgctttt aagaactaga tctcctgggc 180 ttccctggtg gcacagtggt tgagaatctg cctgccaatg cagggggcat gggttcgagc 240 cctggtctgg gaagatccca catgccgcgg agcaactagg tccgtgagcc acaactactg 300 agcctgcgcg tctggagcct gcgctccgca acaagagagg ccgcaatggt gagaggccca 360 cgcatcgcga tgaagagtgg cccccagttg ccgcaactag agaaagccct tgcacagaaa 420 cgaagatcca acacagccat aaataaataa ataaataaat aaataaataa cagtaggtct 480 ttagataaat gaagggtcca agacaagaga accaggggtc cattggttta aaaaaaaaaa 540 acaaaaaact agatctccca gagaaggtca gcatagtgct ctgggaagcc tccagattca 600 ttttagaggt cttaatgact ctttttcgtg ctgctttaaa attactcatc tcaagcctat 660 cattatatac ctcttgtttt cactggcggc attggaggcc ctcttggcat tatttattgg 720 gcttcagtgg tatcaaaagg aggaggatcc aatttccctt ca 762 <210> 203 <211> 767 <212> DNA <213> Hump 20 Minke <220> <221> CD <222> (175)..(397) <400> 203 tatccacata tcagctggca ttacagtctg ccaaagtatt aacatgaata gagaaggaaa 60 tgctttaact agttttagct ttaactggtc tttatcagtt ttatgtggtt gcttactgcc 120 attctacatg ggtagaacag atgttggtgt tttcttttaa gaactagatc tcctgggctt 180 ccctggtggc acagtggttg agaatctgcc tgccaatgca gggggcatgg gttcgagccc 240 tggtctggga agatcccaca tgccgcggag caattatgtc cgtgagccac aactactgag 300 cctgcgcgtc tggaccctgt gctccgcaac aagagaggcc gcgatagtga gaggccccgg 360 gcaccacgat gaagagcggc ccccacttgc cgcaactaga gaaagccctc gcacagaaac 420 gaagacccaa cacagccata aataaataaa taaataaata aataaataaa taaaaaacag 480 taggtctttt gataaatgag gggtccaaga caacagaacc agaggtccat tggtttaaaa 540 aaaaaacaaa aaactagatc tctcagagaa ggtcagcata gtgctctggg aagcctccag 600 atccatttta gaggtcttaa tgactctttt tcgtgatgct ttaaaattac tcatctcaag 660 cctatcatta tatacctctt gttttcactg gcggcattgg agaccctctt ggcattattt 720 attgggcttc agtggtatca acaggaggag gatccaattt cccttca 767 <210> 204 <211> 381 <212> DNA <213> Hump 20 Hippo <400> 204 cctatccaca tatcagctgg cattacagcc tgccaaaggg tttgaacatg aatagagaag 60 gaaatgcttt aactagttgt agctttaact gttctttacc acttttatgt gatcgcttgc 120 agccattcta caaggctaga acagatgttg gtgtctactt ctaagaacta gatctcccag 180 agaaggtcag catagtgccc tgggaagcct ccagattcat tttagaggtc ctaatgactc 240 tttttcatgg tgctttaaaa tcactcatct cagacctatc attatgtacc tcttgttttc 300 actggcggca ttggaggccc tcttggcatt atttatgggg ctttggtggt atcaacagga 360 ggaggatcca atttcccttc a 381 <210> 205 <211> 100 <212> DNA <213> Hump 203 Bottlenosed <400> 205 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 206 <211> 100 <212> DNA <213> Hump 203 Amazon <400> 206 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 207 <211> 100 <212> DNA <213> Hump 203 Beaked <400> 207 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 208 <211> 100 <212> DNA <213> Hump 203 Sperm <400> 208 atacagtaca cttgggcagg aagttagtta ctctgtgtag tccaaactgg aatagtaggg 60 aattatgctc tacctccctg agggcagaat agcttcataa 100 <210> 209 <211> 403 <212> DNA <213> Hump 203 Humpback <220> <221> CD <222> (62)..(364) <400> 209 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaagg 60 ggggcttccc tggtggtgca gtggttgaga atctgcctgc caatgcaggg gacatgggtt 120 cgagccctgg tctgggaaga tcccacatgc cacggagcaa ctgggcccat gagccacaat 180 tactgagcct gcacgtctgg agcctgtgct ccgcaacaag agaggccatg atagtgagag 240 gcccgcgcac cacgatgaag agtggccccc gcttgccaca actagagaaa gctctcgcac 300 agaaacaaag accgaacaca gccaaaaata aataaataaa taaataaatt taaaatagta 360 gggaattatg ctctacctcc ctgagggcag aatagcttca taa 403 <210> 210 <211> 403 <212> DNA <213> Hump 203 Minke <220> <221> CD <222> (62)..(364) <400> 210 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaagg 60 ggggcttccc tggtggtgca gtggttgaga atctgcctgc caatgcaggg gacacgggtt 120 cgagccctgg tctgggaaga tcccacatgc cacggagcag ctaggcccgt gagccacaat 180 tactgagcct gcacgtctgg agcctgtgct ccgcaacagg aggggccatg atagtgagag 240 gcccgcgcac cgcgatgaag agtggccccc gcttgccgca actagagaaa gctctcgcac 300 agaaacgaag accgaacaca gccaaaaata aataaataaa taaataaatt taaaatagta 360 gggaattatg ctctacctcc ctgagggcag aatagcttca taa 403 <210> 211 <211> 390 <212> DNA <213> Mago 24 Bottlenosed <220> <221> CDO <222> (64)..(289) <400> 211 caaactgaac aagaatgtgg attgagtggc cagcatacct cttcatttaa aacagggttt 60 ctcgggcttc cctggtggca cagtggttga gagtctgcct gctgatgcag gggacacggg 120 ttcgtgcccc ggtccaggaa gatcccacat gccgcggact gggcccgtga gccatggccg 180 ctgagcctgc gcgtccggag cctgtgctcc gcaacaggag aggccacaac agtgagaggc 240 ccgcgtaccg caaaaaaaaa aaaaagaaaa aacaaaagca gcgtttctca cctcaacagt 300 attgacatct tgagccagat gatgcttttt ttttttggac tggagactgg gggacaccac 360 tgcttctccc tcttagatgc ctccccagat 390 <210> 212 <211> 390 <212> DNA <213> Mago 24 Short-finned <220> <221> CDO <222> (65)..(289) <400> 212 tcaaactgaa caagaatgtg gattgagtgg ccagcgtacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg agagtccgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtccggga agatcccaca tgccgcggac tgggcccgtg agccatggcc 180 gctgagcctg cgcgtccgga gcctgtgctc cgcaacggga gaggccacaa cagtgagagg 240 cccgcgtacc gcaaaaaaaa aaaaagaaaa aacaaaagca gcgtttctca cctcaacagt 300 attgacatct tgagccagat gatgcttttt ttttttggac tggagactgg gggacaccac 360 tgcttctccc tcttagatgc ctccccagat 390 <210> 213 <211> 396 <212> DNA <213> Mago 24 Dall's <220> <221> CDO <222> (65)..(295) <400> 213 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagct 60 tctcgggctt ccctggtggt gcagtggtta agagtctgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtctggga agatcccaca tgccgcggaa aggctgggcc catgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt ctccgcaatg ggagaggcca caacggtgag 240 aggcccggta ccgcaaaaaa aaaaaaaaac acaaaaaaca aaaacagtgt ttctcacctc 300 aacagtactg acatcttgag ccagatgatg cttttgtttt ttggactgga gattggggga 360 caccactgct tctccctctt agatgcctcc ccagat 396 <210> 214 <211> 391 <212> DNA <213> Mago 24 Narwhal <220> <221> CDO <222> (65)..(291) <400> 214 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagtt 60 tctcgggctt ccctggtggc gcagtggttg agagtctgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtccagga agatcccaca tgccacggaa aggctgggcc cgtgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt gctccgcaac gggagaggcc acaacagtga 240 gaggcccggt accgcaaaaa aaaaaaagaa aaaacaaaaa cagtgtttct cacctcaaca 300 gtactgacat cttgagccag atgatgcttt tttttttgga ctggagattg gtggacacca 360 ctgcttctcc ctcttagatg cctccccaga t 391 <210> 215 <211> 394 <212> DNA <213> Mago 24 Amazon <220> <221> CDO <222> (65)..(293) <400> 215 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg acagtccgcc tgtcaatgca ggggacacgg 120 gtttgtgccc cggtcctgga agatcccaca tgccgcggag cctgcgcccg tgagccatgg 180 ccgctgagcc tgtgcgtccg gagcctgtgc tccgcaacgg gagaggccac agtagtgaga 240 ggcctgcgta ccgcaaaaaa aaaaaaaaag aaaaaacaaa aacagggttt ctcacctcaa 300 cagtactgac atcttgagcc aggtgatgct tctttttttt ggactggaga ttgggggaca 360 ccactgcttc tccctcttag atgcctcccc agat 394 <210> 216 <211> 393 <212> DNA <213> Mago 24 La Plata <220> <221> CDO <222> (79)..(292) <400> 216 tcaaactgaa caagaatgtg gattgagtgg ccgggtacct cttcaattaa aacagggttt 60 ctcgggcttc cccggtggcg cagtggttga gagtccgcct gccaatgcag gggaaagggt 120 ttgtgccccg gtccgggaag atcccacatg ccccggagcg gctgggcccg tgagccatgg 180 ccgctgagcc tgcacgtccg gagcctgtgc tctgcaacgg gatgaggcca caacagtgag 240 aggcccgcat accgcaaaaa aaaaaaaaga aaaaacaaaa acagcgtttc tcacctcaac 300 agtactgaca tcttgagcca gatgatgctt ttttgttttg gactggagat tgggggacac 360 cactgcttct ccctcttaga tgcctcccca gat 393 <210> 217 <211> 391 <212> DNA <213> Mago 24 Baiji <220> <221> CDO <222> (65)..(289) <400> 217 tcaaactgaa caagaatgtg gattgagtgg ccagggaacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg agtgtccgcc tgccaatgca ggggacacgg 120 gttcgtgccc cggtccggga agatcccaca tgccgcggag cggctgggcc cgtgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt gctccgcaac gggagaggcc acaacagtga 240 gaggcccgcg taccgcaaaa aaaaagaaaa aacaaaaaca gcgtttctca cctcaacagt 300 actgacatct tgagccagat gatgcttttt tttttttgga ctggagattg ggggacacca 360 ctgcttctcc ctcttagatg cctccccaga t 391 <210> 218 <211> 164 <212> DNA <213> Mago 24 Beaked <400> 218 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagggtt 60 tctcacctca acagtactga catcttgagc caggtgatgc tttgtttttt ggactggaga 120 ttgggggaca ccacagcttc tccctcttag atgcctcccc agat 164 <210> 219 <211> 166 <212> DNA <213> Mago 24 Ganges <400> 219 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagtt 60 tctcacccca acagtactga catcttgagc cagatgatgc catttttttt ttggactgga 120 gattggggga caccactgct tctccctctt agatgcctcc ccagat 166 <210> 220 <211> 166 <212> DNA <213> Mago 24 Sperm <400> 220 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagtgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc ttttttgttt ttggactgga 120 gattggggga caccactgct tctccctctt agatgcctcc ccagat 166 <210> 221 <211> 167 <212> DNA <213> Mago 24 Humpback <400> 221 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagcgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc tttttttttt tttggacggg 120 agattggggg acaccactgc ttctccctct tagatgcctc cccagat 167 <210> 222 <211> 183 <212> DNA <213> Mago 24 Fin <400> 222 tcaaactgaa cagaatgtgg attgagtggc cagggtacct cttcatttaa aacagcgttt 60 ctcacctcaa cagtactgac atcttgagcc agatgatgct tttttttttt tttttttttt 120 tttttttttg gacgggagat tgggggacac cactgcttct ccctcttaga tgcctcccca 180 gat 183 <210> 223 <211> 172 <212> DNA <213> Mago 24 Minke <400> 223 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagcgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc tttttttttt tttttttggg 120 acgggagatt gggggacacc actgcttctc cctcttagat gcctccccag at 172 <210> 224 <211> 178 <212> DNA <213> Mago 24 Hippo <400> 224 tcaaactgaa caagaatgtg gattgagtgg ccagtgtatc ttttcattta aaaaagcatt 60 tcgtacctca atagtaccga catcttgagt cagacaaggt tttttgtttt ttttggtttt 120 ttttggactg gaaattgggg gataccactg cctctccctc ttagatgcct ccccagat 178 <210> 225 <211> 598 <212> DNA <213> Mago 26 Bottlenosed <220> <221> CDO <222> (99)..(320) <400> 225 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggtgcagta 120 gttgagagtc cgtctgccga tgcaggggac acgggttcgt gccccggtcc gggaggatcc 180 cacatgccat ggagcggctc tgggcccgtg agccatggcc actgggcctg tgcgtccaga 240 gcctgtgctc cgcaacggga gaggccgcaa cagtgagagg ctcacgaacc gaaaaaaaaa 300 aaaaaaaaaa aaaagatctg tattacgaat tccaaacaga gcacaaaaca agaaggaacg 360 accacaaaat tccaaatgta attaatatta gagtgctatt tctattagtt cagtaaatcc 420 tactctagtt gcaagtaaac gctgtcttct tcaaagcact ggtcccattg attggtttga 480 tcttggatct taaattgtca gtctcagctt tgatggccat attaaaatat ttttgctaga 540 agaaacatca cacttgcttt cacacattta cttggttcag gtgttgtctt gtgtaagg 598 <210> 226 <211> 591 <212> DNA <213> Mago 26 Short-finned <220> <221> CDO <222> (99)..(314) <400> 226 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaaca taacattaaa aagatctggg gcttccctgg tggtgcagta 120 gttgagagtc cgcctgccgg tgcaggggac acaggatcgt gccctggtcc aggaggatcc 180 cacatgccac ggagcggctg ggcccgtgag ccatggccac tgggcctgtg cgtccagagc 240 ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cacgaaccgc aaaaaaaaaa 300 aaaaaaaaga tctgtattac gaattccaaa cagagcacaa agcaagaagg aacgaccaca 360 aaattccaaa tgtaattaat attagagtgc tatttctatt agttcagtaa atcctactct 420 acttgcaagt aaacgctgtc ttcttcaaag cactggtccc attgattggt ttgatcttgg 480 atcttaaatt gtcagtctca gctttgatgg ccatattaag atatttttgc tagaagaaac 540 atcacacttg ctttcacaca tttacttggt tcaggtgttg tcttgtgtaa g 591 <210> 227 <211> 579 <212> DNA <213> Mago 26 Dall's <220> <221> CDO <222> (100)..(307) <400> 227 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ctttaagtga 60 taaaaaataa tctgtgaaac gtaacattaa aaagatctgg ggcttccctg gtgacgcagt 120 agttgagagt ccgcctgctg atgcagggga cgtgggttcg tgccccggtc taggaagatc 180 ccacatgcca cagagcggct gggcccgtga gccatggccg ctgagcctgc ccgtccggac 240 cctgtgctcc gcaacgggag aggtcacaac agtgagaggc ccacaaactg caaaaaaaaa 300 agatctgtat tacgaattcc aaacagcaca aaaaaggaac gaccacaaaa ttccaaatgt 360 aattaatatt agagtgctat ttctattggt tcagtaaatc ctactctagt tgcaagaaaa 420 cgctgtcttc ttcaaaacac tggtcccatt gattggtttg atcttagatc ttaaattgtc 480 agtctcagct ttgatggcca tattaaaata tctctgctag aagacacatc acacttgctt 540 ttgcacattt acttggttca ggtgttgtct tgtgtaagg 579 <210> 228 <211> 594 <212> DNA <213> MAgo 26 Narwhal <220> <221> CDO <222> (99)..(318) <400> 228 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttgaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tgacgcagta 120 gttgagagtc cgcctgccga tgcaggggac acgggttcgt gccccggtct gggaggatcc 180 cacatgccgc agagcggctg ggcccgtgag ccatggctgc tgagcctgcc cgtccggacc 240 ctgtgctccg caacaggaga ggtcacaaca gtgagaggcc cacagaccgc aaaaaaaaaa 300 aaaaaaaaaa aaaatctgta ttacggattc caaacagcac aaaacaaaaa ggaacgacca 360 caaaattcca aatgtaatta atattagagt gctatttcta ttggttcagt aaatcctact 420 ctagttgcaa gtaaacgctg tcttcttcaa agcactggtc ccattgattg gtttgatctt 480 agatcttaaa ttgtcagtct cagctttgat ggccatatta aaatatttct gctagaagaa 540 acatcacact tgcttttgca catttacttg gttcaggtgt tgtcttgtgt aagg 594 <210> 229 <211> 579 <212> DNA <213> Mago 26 Amazon <220> <221> CDO <222> (99)..(314) <400> 229 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggcgcagtg 120 gttgagagtc cgcctgccga tgcaggggat atgggttcgt gccccagtct gggaagatcc 180 cacatgccgc ggagtggctg ggcccgtgag ccatggccac tcggcctgcg tgtccggagc 240 ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cacgaaccac aaaaaaaaac 300 cccaaaaaga tctgtattac gaattccaaa cagagcacaa aacaagaagg aatgaccaca 360 aaattccaaa tgtaattaat attagagtgc tatttatatt ggttcagtaa atcctactct 420 agttgcaagt aaacactgtc ttcttcaaag cactggtccc atcttggatc ttaaattgtc 480 agtctcagct ttgatggcta tattaaaata tttttgctag aagaaacatc acacttgctt 540 tcgcacattt acttggttca ggtgttgtct tgtgtaagg 579 <210> 230 <211> 590 <212> DNA <213> Mago 26 La Plata <220> <221> CDO <222> (99)..(312) <400> 230 cacatacact ttgaaattac ttaccagtgt tttaaatata aattctcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggcgcagta 120 gttgagagtc cgcctgccga tgcacgggac acaggttcgt gccccggtcc gggaggatcc 180 cacgttccat ggagcggctg ggcccttgag ccatggccac tgggcctgcg catccagagc 240 ctgtgctccg caacaggaga ggccacaaca gtgagaggcc cgtgaaccgc aaaaaaaaaa 300 ggaagagatc tgtattatga attccaaaca gagcacaaaa caagaaggaa tgaccacaaa 360 attccaaatg taattaatat tagagttcta tttctattag ttcagtaaat cctactctag 420 ttgcaagtaa atgctgtctt cttcaaagca ctggtcccat tgataggttt gatcttggat 480 cttaaattgt cagtctcagc tttgatgacc atattaaaat atttttgcta gaggaagcat 540 cacacttgct ttgacacatt tacttggttc aggtgttgtc ttgtgtaagg 590 <210> 231 <211> 605 <212> DNA <213> Mago 26 Baiji <220> <221> CDO <222> (99)..(328) <400> 231 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaatg taacattaaa aagatctggg gcttccctgg tggcgcagta 120 ggtgagagtc cacctgccga tgcaggggac atgggttcgt gcccggtccg ggaggatccc 180 acatgccgca gagcggctgg gcccgtgagc catggccatt gggcctgcgc gtccagagcc 240 tgtgctccgc aacgggagag acccaacagt gagaggcccg cgtaccgcaa aaaaaaaaaa 300 aacaaaaaaa aacaacaaaa aaaatctgat tacgaattcc aaacagagca caaaacaaga 360 aggaacgacc acaaaattcc aaatgtaatt aatattagag tgctatttct actggttcag 420 taaatcctac tctagttgcg agtaaacgct gttttcttca aagcactagt cccattgatt 480 ggtttgatct tggatcttaa attgtcagtc tcagctttga tggccatatt aaaatatttt 540 tgctagaaga aacatcacac ttgctttcac acatttactt ggttcaggtg ttgtcttgtg 600 taagg 605 <210> 232 <211> 376 <212> DNA <213> Mago 26 Beaked <400> 232 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaatattc caaatgtaat taatattaga gtgctatttc 180 tattggttga gtaaatccta ctctagttgc aagtaaacgc tgtcttcttc aaagtactgg 240 tccgattcat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 taaaatattt ttgctagaag aaacatcaca cttgctttca cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 233 <211> 380 <212> DNA <213> Mago 26 Ganges <400> 233 cacatacact ttgaaattac ttaccagtat tttaagtata aattttcata tttttaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaactc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaattcct acactagttg caagtaaacg ctgtcttctt caaagcactg 240 gtcccattga ttggtttgtt cttggatctt aaattgtcag tctcagcttt gatggccata 300 ttaaaatatt tttgctagaa gaaacatcac acttgctttt gcactttcct tacttggttc 360 aggtgttgtc ttgtgtaagg 380 <210> 234 <211> 376 <212> DNA <213> Mago 26 Sperm <400> 234 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaacga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacaaattc caaacagagc 120 acaaaacaaa aaggaatgac caccaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaacac tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 tgaaatattt ttgctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 235 <211> 376 <212> DNA <213> Mago 26 Humpback <400> 235 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaacgc tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagcattg atggccatat 300 taatatattt tttctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 236 <211> 366 <212> DNA <213> Mago 26 Fin <400> 236 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact ttacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tatgggttca gcaaatccta ctctagttgc tagtaaacgc tgtcttcttc aaagcactgg 240 tctcattgat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 taaaatattt ttgctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtc 366 <210> 237 <211> 366 <212> DNA <213> Mago 26 Minke <400> 237 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaatgc tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagcattg atggccatat 300 taatatattt tttgtagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtc 366 <210> 238 <211> 372 <212> DNA <213> Mago 26 Hippo <400> 238 cacatacact ttgaaattac ttaccagtct tttaaatata attttcatat tttaaaagat 60 aaaaataatc tgtgaaattt aacattagaa agatctgtat tatgaaattc aaacagagca 120 aaaccaaaaa gcaacgacca cgaaattcca aatgtaatta ataataaggt gatacttcta 180 ttagttcagt aaatcctact cttgttgtca agtaaatgct ctcttcttca aagcactgat 240 cccattgatc agtttgttct tggatcttaa actgtcgatc tcagctttga tggccatatt 300 aaaatatttt tctagaaaac atcacacttg ctttcgcaca tttgcttggt tcaggtgttg 360 tcttgtgtaa gg 372 <210> 239 <211> 740 <212> DNA <213> Mago 22 Bottlenosed <220> <221> CDO <222> (349)..(570) <400> 239 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata atgatgtgaa acaacagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatt aaatgtggat gttttatttt aaaagaaatt 240 tgaagtattt tcattttaga gtaaattatt tttctagatg aagagaaact atatgtggaa 300 aaatgcaaaa aaaaaaaagt ggcattttaa ttaagaataa agaaattagg gcttccctgg 360 tggtgcagtg gttgagagtc cgcctgccaa tgcaggggac acagtttcgt gccccggtcc 420 gggaagatcc cacatgccgc agagcggctg ggcccgtgag ccatggccac tgagcctgtg 480 catctggaac ctgtgctccg cagcgggaga ggccacaaca gtgagaggcc cgcgtaccac 540 aaaaaaaaaa agaaagaaag gaagaaatta gaacaaaaac caaatctgtt tgcatagatg 600 tgaagaagat tcacctataa ataatcctga aactaatttc tctagagact attttctggc 660 catttgagat caaggcacaa tctcaattga gactaagaat gacaacaaat atagataagt 720 tgtctcattg aacaggaacc 740 <210> 240 <211> 743 <212> DNA <213> Mago 22 Short-finned <220> <221> CDO <222> (352)..(573) <400> 240 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaacagaaa atcctcaaat aaagagcaaa ttgtagtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatt aaatgtggat gttttatttt taaaagaaat 240 ttgaagtatt ttcattttag agtaaattat ttttctagat gaagagaaac tacatgtgga 300 caaatgcaaa aaaaaaaaaa agtggcattt taattaagaa taaagaaatt agggcttccc 360 tggtggtgca gtggttgaga gtccgcctgc cgatgcaggg gacacagttt cgtgccccgg 420 tccgggaaga tcccacatgc cgcagagcgg ctgggcccgt gagccatggc cactgagcct 480 gtgcatctgg aacctgtgct ccgcagcggg agaggccaca acagtgagag gcccgcgtac 540 cgcaaaaaaa gaaagaaaga aagaaagaaa ttagaacaaa aaccaaatct gtttgcatag 600 atgtgaagaa gattcaccta taaataatcc tgaaactaat ttctctagag actattttct 660 ggccatttga gatcaaggca caatctcaat tgagactaag aatgacaaca aatatagata 720 agttgtctca ttgaacagga acc 743 <210> 241 <211> 748 <212> DNA <213> Mago 22 Dall's <220> <221> CDO <222> (351)..(575) <400> 241 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aattaagaat aaagaaatta gggcttccct 360 ggtggtgcag tggttgagag tccgcctgcc gatgcagggg atacgggttc gtgccccggt 420 ctgggaagat cccacatgcc gcagagcggc tgggcctgtg agccatggcc actgagcctg 480 tgtgtccaga acctgtgctc cacagtggga gaggtcacaa cagtgagagg cccgtgcacc 540 gcaaaaaaaa aagaaagaaa gaaagaaaga aattagaaca aaaaccaaat ctgtttgcat 600 agatgtgaag gagaagattc acctataaat aatactgaaa ctaatttttc tagagactat 660 tttctggcca tttgagatca aggcacaatc tcaattgaga ctaagaatga caacaaatat 720 agataagttg tctcattgaa caggaacc 748 <210> 242 <211> 752 <212> DNA <213> Mago 22 Narwhal <220> <221> CDO <222> (349)..(579) <400> 242 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa attctcaaat aaagtagcaa attgtggtct 120 ttgttagaaa atgaaattat ttctatactt gttctgatta gttatttggt atgaactatt 180 gtttattatt tattataaaa ataaagagat ctaaatgtgg atgttttatt tttaaaagaa 240 atctgaagta ttttcatttt agagtaaatt atttttctag atgaagagaa actacatgtg 300 gaaaaatgca aaaaaaaagt ggcattttaa ttaagaataa agaaattagg gcttccctgg 360 tggtgcagtg gttgagagtc cgcctgccga tgcaggggac acgggttcgt gccctggtcc 420 gggaagatcc cacatgccgc gaagcggctg ggcctgtgag ccatggccac tgagcctgtg 480 cgtccagaac ctgtgctccg cagtgggaga ggccacaaca gtgagaggcc cgcgtaccgc 540 aaaaaaaaaa aagaaagaaa gaaagaaaga aagaaattag aacaaaaacc aaatctgtgt 600 gcatagatgt gaaggagaag attcacctat aaataatcct gaaactaatt tttctagaga 660 ctattttctg gccatttgag atcaaggcac aatctcaatt gagactaaga atgacaacaa 720 atatagataa gttgtctcat tgaacaggaa cc 752 <210> 243 <211> 734 <212> DNA <213> MAgo 22 Amazon <220> <221> CDO <222> (337)..(561) <400> 243 gcccactaaa tactactaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgca acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctgtacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctacg tgtggaaaaa tgcaaaaaaa 300 aaaaaagtgg cattttaatt aagaataaag aaattagggc ttccttggtg gtgcagtggt 360 tgagagtcca cctgccgatg caggggacac gggtttgtgc cccggtccgg gaagatccca 420 cgtgccgcag agcggctggg cccgtgagcc atggccgctg agcctgcgcg tccagagatt 480 gtgctccgca acgggagagg ccacaacagt gagaggccca cgtacagcaa aaaaaaaaaa 540 aaaaaaagaa taaagaaatt agaacaaaag ccaaatctgt ttgcatagat gtgaaggaga 600 agattcacct ataaataatc ctgaaactaa tttctctaga gactattttc tggccatttg 660 agatcaaggc acaatctcaa ttgagactaa gaatgacaac aaatatagat aagttgtctc 720 attgaacagg aacc 734 <210> 244 <211> 739 <212> DNA <213> Mago 22 La Plata <220> <221> CDO <222> (350)..(566) <400> 244 gcccactaaa tactattaca ctaaagcaat tagacttaac taagcctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaga ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagttt taaatctgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtag 300 aaaaatgcaa aaaaaaaaag tagcgtttta attaagaata aagaaattag ggcttccctg 360 gtggtgcagt ggttgagagt ccacctgccg aagcagggga cacgggttcg tgccccaatc 420 cgggaggatc ccacatgcca cggagcggct gggcccatgt gccgtggccg ctgagcctgc 480 gcgtccagag actgtgctct gcaacaggag aggccacaac agtgagaggc ccacgtaccg 540 caaaaaaaaa aagtataaag agattagaac aaaaaccaaa tctgtttgca tagatgtgaa 600 ggaaaagatt cacctataaa taatcgtgaa actaatttct ctagagacta ttttctggcc 660 atttgagatc aaggcacaat ctcaattgag actaagaatg acaacaaata tagataagtt 720 gtctcattga acaggaacc 739 <210> 245 <211> 734 <212> DNA <213> Mago 22 Baiji <220> <221> CDO <222> (344)..(561) <400> 245 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttagta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta cagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aataaagaaa ttagggcttc cctggtgatg 360 cggtggttga gagtccgcct gccgatgcag gggacgcggg ttcgggcccc ggtccgggaa 420 gatcccacat gccgcggagc ggctgggcct gtgagtcatg gctactgagc ccgtgcgtcc 480 agaacctgtg ctctgcagcg ggagaggcca caacagtgag aggcccgcgt accgcaaaaa 540 aaaaaaagaa taaagaaatt agaacaaaaa ccaaatctgt ttgcatagac gtgaaggaga 600 agattcacct ataaataatc ctgaaactaa tttctctaga gactgttttc tggccatttg 660 agatcaaggc acaatctcaa ttgagactaa gaatgtcaac aaatatagat aagttgtctc 720 attgaacagg aacc 734 <210> 246 <211> 740 <212> DNA <213> Mago 22 Beaked <220> <221> CDO <222> (349)..(567) <400> 246 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa accctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgatattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaagt ggcattttaa ttaagaataa agaaatcagg gcttccctgg 360 tggcacagtg tttgagagtc cacctgccga tgcaggggac acgggtttgt gccccggtcc 420 gggaagatcc cacatgcctc ggagcggcta ggcccatgag ccatggccac tgagcctgtg 480 cgtccggaac ctgtgctccg caatgggaga ggccacaaca gtgagaggcc cacgtactgc 540 aaaaaaaaaa aaagaataaa gaaattagaa caaaaaccaa atctgtttgc atagatgtga 600 aggagaagat tcacctataa ataatcctga aactaatttc tctagagact attttctggc 660 catttgagat caaggcacaa tctcaattga gactaagaat gacaacgaat atcgataagt 720 tgtctcattg aacaggaacc 740 <210> 247 <211> 752 <212> DNA <213> Mago 22 Ganges <220> <221> CDO <222> (352)..(579) <400> 247 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa gcagatgata 60 cgttagaata attatgtgaa acagtagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg tgctgattgg ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttca gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa agtggcattt taattaagaa taaagaaatt agggcttccc 360 tggtggtaca gtggttgaga gtctgcctgc cgatgcaggg gacgcgggtt cgtgccccgg 420 tccgggaaga tcccacaagc cgcagagcgg ctaggcccgt gagccatggc cgctgagcct 480 gcgcatctgc agcctgtgct ccacaacggg agaggccaca acagtgagaa tcccgcatac 540 ggcaaaaaaa aaaaaaaaaa aaaaagaata aagaaattgg aacaaaaacc aaatctgttt 600 gcacagatgt gaaggagaag attcacctat aaataatcct gaaactaatt tctctagaga 660 ctattttctg gccatttgag atcaaggcac aatctcaatt gagactaaga atgacaacaa 720 atatagataa gttgtctcat tgaacaggaa cc 752 <210> 248 <211> 523 <212> DNA <213> Mago 22 Sperm <400> 248 gcccactaaa tactattaca ctaaagcaat tagacttagc taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aattaagaat aaagaaatta gaacaaaaac 360 caaatctgtt tgcatagatg tgaaggagaa gattcaccta taaataatcc tgaaactaat 420 ttctctagag actattttct ggccatttgt gctcaaggca caatctcaat tgagactaag 480 aatgacaacg aatatagata agttgtctca ttgaacagga acc 523 <210> 249 <211> 525 <212> DNA <213> Mago 22 Humpback <400> 249 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtccaaa atagatgata 60 cattagaata attatgtgaa acagtagaaa atcctcaaat aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa aagtggcatt ttaattaaga ataaagaaat tattacaaaa 360 gccaaatctg tttgcataga tgtgaaggag aagattcacc cataaataat cctgaaacta 420 atttctctag agactatttt ctggccattt gagatcaagg cacaatctca attgagacta 480 agaatgacaa cgaatataga taagttgtct cattgaacag gaacc 525 <210> 250 <211> 523 <212> DNA <213> Mago 22 Fin <400> 250 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaagt aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tccatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcacttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaagaaaaaa gtggcatttt aattaagaat aaagaaatta ttacaaaagc 360 caaatctgtt tgcatagatg tgaaggagaa gattcaccta taaataatcc tgaaactaat 420 ttctctagag actattttct ggccatttga gatcaaggca caatctcagt tgagactaag 480 aatgacaacg aatatagata agttgtctca ttgaacagga acc 523 <210> 251 <211> 522 <212> DNA <213> Mago 22 Minke <400> 251 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acagtagaaa atcctcaaat aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaag tggcatttta actaagaata aagaaattat tacaaaagcc 360 aaatctgttt gcatagatgt gaaggagaag attcacctat aaataatcct gaaactaatt 420 tctctagaga ctattttctg gccatttgag atcaaagcac aatctcaatt gagactaaga 480 atgacaacga atatagataa gttgtctcat tgaacaggaa cc 522 <210> 252 <211> 518 <212> DNA <213> Mago 22 Hippo <400> 252 gcccactaaa tactattaca ctaaagcaac tagacttaac ttaggtaagt ctacaataga 60 taatacatta gaagaattca gtgaaacaat agaagatctt caaataaaga gcgtattgca 120 gtctttgtta gaaaatgaaa ttatctctgt acttgctcag gttagttatt tggtatgaac 180 tatggcttat tacttattat aaaaataaaa gaatctaaat gttggtgttt tatttttaga 240 agaaatttaa agcattttca ttttagagta aatgattttt ctagaggaaa agaaactaca 300 tgtgaaaaat gcaaaaaaag aaagcggcat tttaataaaa tataaagaaa ttggaacaaa 360 ttgtttgcat gaatatgaag gagaagattc acctataaat aatcttgaaa ttaatttctc 420 tagagactat tttctggcca tttgagatca aggcacaatc tcaattgaga ctaagaatga 480 caactaatat agataagttg tctcattgaa caggaacc 518 <210> 253 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHRS F Oligonucleotide for PCR <400> 253 gtggtctagt ggttaggayy yrg 23 <210> 254 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR R oligonucleotide for PCR <400> 254 cagttcccag accagggatt g 21 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type I CHR-1 F oligonucleotide for PCR <400> 255 gtggcacagt ggttaagaat ctg 23 <210> 256 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type I CHR-1 R oligonucleotide for PCR <400> 256 ctgcacagct tgtgggatc 19 <210> 257 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type II Type II F ologonucleotide for PCR and sequencing <400> 257 gcrgtccagt ggttaagact 20 <210> 258 <211> 21 <212> DNA <213> Artificial Sedquence <220> <221> misc_feature <223> CHR-1 Type II Type II R oligonucleotide for PCR and sequencing <400> 258 rcagcatgtg ggatcttagt t 21 <210> 259 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type II Type II Probe <400> 259 taagactctg hgcttccamt gcaggg 26 <210> 260 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III Probe <400> 260 aatgcagggg gcccrggttt ga 22 <210> 261 <211> 18 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III F oligonucleotide for PCR and sequencing <400> 261 gacttccctg gtggtcca 18 <210> 262 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III R oligonucleotide for PCR <400> 262 ctgaccaggg atcaaacccg 20 <210> 263 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III R SEQ oligonucleotide for sequencing <400> 263 cctgaccagg gatcaaacc 19 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 Full length CHR-2 F oligonucleotide for PCR <400> 264 gtggcacagt ggttaagaat ctg 23 <210> 265 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 Full length CHR-2 R oligonucleotide for PCR <400> 265 tgcgttgggt ctttgttgct 20 <210> 266 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD probe <400> 266 tctggagcct gtgctccgca 20 <210> 267 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD probe 2 <400> 267 caagagaggc cgcgatagtg a 21 <210> 268 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD prb2'R oligonucleotide for PCR <400> 268 gcctctcact atcgcggcct 20 <210> 269 <211> 20 <212> DNA <213> Artificial Sequuence <220> <221> misc_feature <223> CHR-2 CD subfamily M.Up oligonucleotide for PCR and sequencing <400> 269 ccctggtccg ggaagatccc 20 <210> 270 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily M.Down oligonucleotided for PCR and sequencing <400> 270 ggctgtgttg ggtcttcgt 19 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily #13 Up oligonucleotide for sequencing <400> 271 ctggtccggg aagatcccac 20 <210> 272 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily #13 Up(Anti) oligonucleotide for sequencing <400> 272 gtgggatctt cccggaccag 20 <210> 273 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily Bera-1 probe <400> 273 cgcaayrgga gaggccacaa 20 <210> 274 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily CDO F1 oligonucleotide for PCR and sequencing <400> 274 gcagtggttg agagtchgcc tg 22 <210> 275 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily CDO R2 oligonucleotide for PCR and sequencing <400> 275 ttgtggcctc tccyrttgcg 20 <210> 276 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Bando 1 Bando F1 PCR primer <400> 276 ttgtcaaggt gcttcgcttt ag 22 <210> 277 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Bando 1 Bando 1 R1 PCR primer <400> 277 gcccccagac tctgttttaa tag 23 <210> 278 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp316 Sp316 F1 PCR primer <400> 278 tcctccagtg tggcttcata 20 <210> 279 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp316 Sp316 R1 PCR primer <400> 279 ttactgcatg gggtttagtc aa 22 <210> 280 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm8 Sperm8 F1 PCR primer <400> 280 gccaatctct gtatttgttc atcaa 25 <210> 281 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm8 Sperm8 R1 PCR primer <400> 281 gtccacctac ctgcatgtct tac 23 <210> 282 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm28 Sperm28 F1 <400> 282 gtgaactctt ttagcttttg cttatct 27 <210> 283 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm28 Sperm28 R1 PCR primer <400> 283 agcacccaac acaatgtctg 20 <210> 284 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 F1 PCR primer <400> 284 gacaccccac ccattaaggt 20 <210> 285 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 F2 PCR primer <400> 285 gggagaagga aatgaaaggc 20 <210> 286 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 R1 PCR primer <400> 286 tgaaggaggt gccagtatgt t 21 <210> 287 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 R2 PCR primer <400> 287 agtatgttcc tgtatgactt tggga 25 <210> 288 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago21 Mago21 F2 PCR primer <400> 288 ccttcttcat caggttatta ggaa 24 <210> 289 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago21 Mago21 R2 PCR primer <400> 289 ggaaatcaac aaatcccact a 21 <210> 290 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago22 Mago22 F1 PCR primer <400> 290 gcccactaaa tactattaca ctaaagc 27 <210> 291 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago22 Mago22 R1 PCR primer <400> 291 ggttcctgtt caatgagaca acttatc 27 <210> 292 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago8 Mago8 F2 PCR primer <400> 292 gctaactcta gattgcaatg aacc 24 <210> 293 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago8 Mago8 R2 PCT primer <400> 293 gggaattttt cgtgattgag c 21 <210> 294 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mgo13 Mago13 F3 PCR primer <400> 294 aaaaaatgtt tctatcacta tctacaat 28 <210> 295 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago13 Mago13 R2 PCR primer <400> 295 ctgggctgta cttttgctgg 20 <210> 296 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago24 Mago24 F1 PCR primer <400> 296 tcaaactgaa caagaatgtg gatt 24 <210> 297 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago24 Mago24 R1 PCR primer <400> 297 atctggggag gcatctaaga g 21 <210> 298 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago26 Mago26 F3 PCR primer <400> 298 cacatacact ttgaaattac ttaccagt 28 <210> 299 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago26 Mago26 R2 PCR primer <400> 299 ccttacacaa gacaacacct gaac 24 <210> 300 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago32 Mago32 F2 PCR primer <400> 300 atagtttggt acaatttcat tcctac 26 <210> 301 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago32 Mago32 R2 PCR primer <400> 301 agaaatagct catgtgttgt cct 23 <210> 302 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi14 Isi14 F1 PCR primer <400> 302 ttcccctata ttctccatgg ttt 23 <210> 303 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi14 Isi14 R2 PCR primer <400> 303 ggtcattatt actcattaag atatgtgg 28 <210> 304 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi36 Isi36 F2 PCR primer <400> 304 aaacccattt taactgcaga gt 22 <210> 305 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi36 Isi36 R2 PCR primer <400> 305 gtaacaattc atatacttgg gaagg 25 <210> 306 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi38 Isi38 F1 PCR primer <400> 306 ttgaatcata agctctcgtc cat 23 <210> 307 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi38 Isi38 R1 PCR primer <400> 307 ataaacacat gaaagtccag attg 24 <210> 308 <211> 21 <212> DNA <213> Artificial Sequenc <220> <221> misc_feature <223> Mago19 Mago19 F1 PCR primer <400> 308 ctgcacagtt ttggctcaat c 21 <210> 309 <211> 23 <212> DNA <213> Artificial Sequnce <220> <221> misc_feature <223> Mago19 Mago19 R1 PCR primer <400> 309 ctggtcatgt gtaagcatca ctt 23 <210> 310 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz13 Amz13 F1 PCR primer <400> 310 aggtccatca taacagaata cttgtc 26 <210> 311 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz13 Amz13 R1 PCR primer <400> 311 ttctccacca ctgatgactc c 21 <210> 312 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz11 Amz11 F1 PCR primer <400> 312 gcatcatttg gctggttaga at 22 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz11 Amz11 R1 PCR primer <400> 313 tgtggtcagc tggaacgaat 20 <210> 314 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti24 Tuti24 F2 PCR primer <400> 314 ctccttcagc aactccagtt ac 22 <210> 315 <211> 22 <212> DNA <213> Artificial Sequenced <220> <221> misc_feature <223> Tuti24 Tuti24 R2 PCR primer <400> 3150 ggatgtggat gaagtgtaga tg 22 <210> 316 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti35 Tuti35 F1 PCR primer <400> 316 ccctacatac atagttggca agtaac 26 <210> 317 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti35 Tuti35 R1 PCR primer <400> 317 gccatactga ggcttaggca t 21 <210> 318 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp9 Sp9 F1 PCR primer <400> 318 ccattttctg ggctcaacat aa 22 <210> 319 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp9 Sp9 R1 PCR primer <400> 319 acatctcgtt taacactgct tcg 23 <210> 320 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp2 Sp2 F1 PCR primer <400> 320 gagataaatg aaggcaccca t 21 <210> 321 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp2 Sp2 F1 PCR primer <400> 321 tactgatctt ttccctgtct actttc 26 <210> 322 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump20 Hump20 up PCR primer <400> 322 cctatccaca tatcagctgg c 21 <210> 323 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump20 Hump20 down PCR primer <400> 323 tgaagggaaa ttggatcctc 20 <210> 324 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump203 Hump203 F1 PCR primer <400> 324 atacagtaca cttgggcagg aa 22 <210> 325 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump203 Hump203 R1 PCR primer <400> 325 ttatgaagct attctgccct ca 22[Sequence list]                             SEQUENCE LISTING <110> Okada, Norihiro <120> Method of the identification of a certain species by a SINE metho d <130> 1013131 <140> JP 2000-999,999 <141> 2001-03-30 <160> 325 <170> PatentIn version 3.0 <210> 1 <211> 321 <212> DNA <213> Consensus Sequence. <220> <221> misc_feature <223> CHR-2 SINE General cons. <400> 1 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgctctagag cccgcgagcc acaactactg agcccacgtg ccacaactac 180 tgaagcccgc gtgcctagag cccgtgctcc gcaacaagag aagccaccgc aatgagaagc 240 ccgtgcaccg caacgaagag tagcccccgc tcaccgcaac tagagaaagc ctgcgcgcag 300 caacgaagac ccaacgcagc c 321 <210> 2 <211> 321 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE FL cons. <400> 2 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccaggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgctctagag cccgcgagcc acaactactg agcccacgtg ccacaactac 180 tgaagcccgc gcgcctagag cccgtgctcc gcaacaagag aagccaccgc aatgagaagc 240 ccgtgcaccg caacgaagag tagcccccgc tcgccgcaac tagagaaagc ccgcgcgcag 300 caacgaagac ccaacgcagc c 321 <210> 3 <211> 300 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE MDI cons. <400> 3 gggcttccct ggtggcgcag tggttaagaa tccgcctgcc aatgcagggg acacgggttc 60 gakccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg tgctctagag cccrsgagcc acaactactg aagcccacgt gcctagagcc 180 cgtgctccgc aacaagagaa gccaccgcaa tgagaagccc gcgcaccgca acgaagagta 240 gcccccgctc accgcaacta gagaaagccc tgcgcacagc aacgaagacc caacrcagcc 300 <210> 4 <211> 285 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE MDII cons. <400> 4 gggcttccct ggtggcgcag tggttgagaa tccgcctgcc aatgcagggg acacgggttc 60 gagccctggt ccgggaagat cccacatgcc gcggagcaac taagcccgtg cgccacaact 120 actgagcctg cgtgcygcaa ctactgaagc ccgcgtgcct agagcccgtg ctccgcaaca 180 agagaagcca ccgcgatgag aagcccgtgc accrcaacga agagtagccc ccgatcaccg 240 caactagaga aagcccgcgc gcagcaacga agacccaacg cagcc 285 <210> 5 <211> 261 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE DT cons. <400> 5 ggacttcycy ggtggcgcag tggttaagaa tctgctgcca atgcagggga cacgggttyg 60 agccctggtc tgggaagatc ccacatgccg tggagcract aagcccatgc gccacaacta 120 ctgagcctgt gtgcctagag cccgtgctct gcaacaagag aagccaccac aataagaagc 180 ccgtgcaccg caacgaagag tagcccccac tcaccgcaac tagagaaagc ctgcgtgcag 240 caacgaagac ccaacacagc c 261 <210> 6 <211> 262 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE CD cons. <400> 6 gggcttccct ggtggcgcag tggttgagaa tctgcctgcc aatgcagggg acacgggttc 60 gagccctggt ctgggaagat cccacatgcc gcggagcaac taggcccgtg agccacaact 120 actgagcctg cgcgtctgga gcctgtgctc cgcaacaaga gaggccgcga tagtgagagg 180 cccgcgcacc gcgatgaaga gtggcccccg cttgccgcaa ctagagaaag ccctcgcaca 240 gaaacgaaga cccaacacag cc 262 <210> 7 <211> 194 <212> DNA <213> Consensus Sequence <220> <221> misc_feature <223> CHR-2 SINE CDO cons. <400> 7 gggcttccct ggtggcgcag tggttgagag tccgcctgcc gatgcagggg acacgggttc 60 gtgccccggt ccgggaagat cccacatgcc gcggagcggc tgggcccgtg agccatggcc 120 gctgagcctg tgcgtccgga gcctgtgctc cgcaacggga gaggccacaa cagtgagagg 180 cccgcgtacc gcaa 194 <210> 8 <211> 641 <212> DNA <213> Bando 1 Bottlenosed <400> 8 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tccacctgcc agtgcagagg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tactctagag cccacgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccac aacaagagta gccaccatga tgagaagccc acgcacctca atgacaagtg 420 gtccccgctc accacaacta gagaaagccc acgtgcagca acgaagaccc aacgcagcca 480 aaaattaatt aattaattga aaaaaattgg atagtgtgct tttggtgata ttcttataat 540 ttagagatta attcacttta agttgattct cctttaaaat ttaaatatcc cagtataaaa 600 attaataaac agaagtctct attaaaacag agtctggggg c 641 <210> 9 <211> 644 <212> DNA <213> Bando 1 Short-finned <400> 9 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtagatatc tcatcatggt 60 tttaatgcaa ttctctaatg actaatatta gaggatcttc tcatatgctt ttttaccatc 120 tgtgtacctt ctttggtgaa gtgtttctta aatcttttgc acatttaaga aattggattt 180 tgggacttcc ctggtggtgc agtggttgag aatccacctg ccagtgcagg ggacatgggt 240 tcgatccctg gtccaggaag atcccacatg ccacagagca actaagcccg tgtgccacaa 300 ctaccgagcc tgtactctag agcccacgag ccacaactac tgaagcccgt gcacctagag 360 cccatgctcc acaacaagag aagccaccat gatgagaagc ccacgcacct caatgtcaag 420 tggtccccgc tcaccacaac tagagaaagc ccacgtgcag caacgaagac ccaacgcagc 480 caaaaataaa ttaattaatt gaaaaaaaat tggaaagtgt gcttttggtg aaattcttat 540 aatttagaga ttaattcact ttaagttgat tctcctttaa aatttaaata tcccagtata 600 aaaattaata aacagaagcc tctattaaaa cagagtctgg gggc 644 <210> 10 <211> 637 <212> DNA <213> Bando 1 Dall's <400> 10 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaataa ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggcacag tggttgagaa tccacctgcc aatgcagggg acatgggttc 240 gatccctggt ccgggaagat cccacatgac acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcccatgc acctagagcc 360 catgctccac acaagagaag ccaccatgat gagaagccca cgcacctcaa tgacaagtgg 420 tccccactca ccacaactag agaaagccca cgtgcagcaa cgaagaccca acacagccaa 480 aaataaatta attgaaaaaa aattggatag tgtgcttttg gtgatattct tataatttag 540 agattaattc actttaagtt gattctcctt taaaatttaa atatcccagt ataaaaatta 600 ataaacagaa tcctctatta aaacagagtc tgggggc 637 <210> 11 <211> 639 <212> DNA <213> Bando 1 Narwhal <400> 11 ttgtcaaggt gcttcgcttt agcgattcta ataggtatgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaagaaa ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tccacctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccac aacaagagaa gccaccatga tgagaagccc acgcacctca atgacacgtg 420 gtccccgctc accacaacta gagaaagccc acgtgcagca acgaagaccc aacgcagcca 480 aaaataaatt aattgaaaaa aaattggata gtgtgctttt ggtgatgttc ttataattta 540 gagattaatt cactttaagt tgattctcct ttaaaattta aatatcccag tataaaaatt 600 aataaaacag aagcctctat taaaacagag tctgggggc 639 <210> 12 <211> 861 <212> DNA <213> Bando 1 Amazon <220> <221> CDO <222> (536) .. (755) <400> 12 ttgtcaaggt gcttcgcttt agcaattcta ataggtgtgt agtgatatct catcatggtt 60 ttaatgcaat tctttaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 cgcaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 ggacttccct ggtggtgcag tggttgagaa tctgcctgtc aatgcagggg acatgggttc 240 aatccctggt ccaggaagat cccacatgcc acagagcaac taagcacgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctagagcc 360 catgctccaa aacaagagaa gccacaatga tgagaagccc acgtacctca atgacgagtg 420 gcctccgctc gccacaacta gagaaagctc acgtgcagca acgaagaccc aacgcagcca 480 aaaataaatt aattaatttt aaaaaaatgg atggtgtgct tttggtgata ttcttttttt 540 ttttttcttt cggtacacgg gcctctcacc gttgtggtct ctcccgttgc tgagcacagg 600 ctctggacgt gcaggcccag cggccatggc tcacgggccc agccgccccg cggcatgtgg 660 gatcttcccg gaccggggca cgaacccgtg tcccctgcat cggcaggcgg acttccaacc 720 actgcgccac cagggaagcc cttggtgata ttcttataat ttagagatta attcacttta 780 agttgattct cctttaaaat ttaaatatcc cagtataaaa attaataaac agaagcctct 840 attaaaacag agtctggggg c 861 <210> 13 <211> 868 <212> DNA <213> Bando 1 La Plata <220> <221> CDO <222> (537) .. (762) <400> 13 ttgtcaaggt gcttcgcttt agcaattcta ataggggtgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt ttaccatctg 120 cgtaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 gaatttccct ggtggtgcag tggttgaaaa tccgcttgcc aatgcaggga acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcctgtgc acctagagcc 360 catgctccac aacaagagaa gccaccagga tgtgaagccc acgcacctca atgatgagtg 420 gccactgctc gccacaacta gagaaagccc atgtgcagca acgaagaccc aatgcagcca 480 aagataaatt aattaattaa aaaaaaattg gatggtatgc ttttggtgat attctttttt 540 tttttttttt ttcccccctg tatgtgggcc tctcaccgtt gtggcctctc ccgttgtgga 600 ggacaggctc tggacgcaca ggcccagcag ccatggctca cgggcccagc cgctccacag 660 catgtgggat cctcccggac cggggcacga acccgtgtcc cctgcatcgg caggaggact 720 ccccaccact gcgccaccag ggaagccctt ggtgatattc ttataattta gagattaatt 780 cactttaagt tgattctcct ttaaaattta aatatcacag tataaaaatt aataaacaga 840 agcctctatt aaaacagagt ttgggggc 868 <210> 14 <211> 640 <212> DNA <213> Bando 1 Baiji <400> 14 ttgtcaaggt gcttcgcttt agcaattcta ataggtgtgt agtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgccttt ttaccatctg 120 cgtaccttat ttggtgaagt gtttctcaaa tcttctgcac atttaaaaaa ttggatttta 180 ggacttccct ggtggtgcag tggttgagaa tccgcctgcc aatgcagggg acacgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacacct 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac aacaagagaa gccaccataa tgagaagccc acgcacctca atgacgagtg 420 gcccccactc gccacaacga gaggaagccc acatgcagga acgaagaccc aacgcagcca 480 aaaatcaatt aattaattta aaaaattgga tagtgtgatc ttggtgatag tcttataatt 540 tagagattaa ttcactttaa gttgattctc ctttaaaatt taaataaccc agtataaaaa 600 ttaataaaca gaagcctcta ttaaaacaga gtctgggggc 640 <210> 15 <211> 627 <212> DNA <213> Bando 1 Beaked <400> 15 ttgtcaaggt gcttcgcttt agtgagtcta ataggtgtgt agtgatatct catcatggtt 60 ttaattctct aatgactaat attgaggatc ttctcatatg cttttttacc atctgcatac 120 cttctttggt gaagtgtttc tcaaatcttt tgcacattta aaaattggat tttgggactt 180 ccctggtggt gcagtggttg agaatctgcc tgccaatgca ggggacacgg gtttgatccc 240 tggtccagga agatcccaca tgccacagag cagctaagcc catgtgccac aactaccgag 300 cctgtgctct agagcccaca agccacaact actgaagccc gtgcacctag agcccatgct 360 ccacaacaag agaagccacc atgatgagaa gcccatgcac ctcaatgatg agtagccccc 420 gcttgccaca actagagaaa gcccacgtgc agcaaagacc caacacagcc aaaaataaat 480 taattttaaa aaattggata gtgtgctttt ggtgatattt ttataattta gagattaatt 540 cactttaagt tgattctcct ttaaaattta aatatcccag ctaaaaatta ataaacagaa 600 gcctctatta aaacagagtc tgggggc 627 <210> 16 <211> 680 <212> DNA <213> Bando 1 Ganges <400> 16 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt agtgatatct tgtcatggtt 60 ttaatgcaat tctctaatga ctaatactaa ggatcttctc atatgctttt ttaccatctg 120 tgtaccttct ttggtgaagt gtttctcaaa tcttttgcac atttaaaaat ttggattttg 180 ggacttccct ggtggtgcag tggttgagaa tctgcctacc aatgcagggg acatgggttc 240 gagccctggt ccaggaagat cccacatgcc acagagcaac taagccggtg tgccacaact 300 accgagcctg tgctctagag cccacgagcc acaactactg aagcctgtgc acctagagcc 360 catgctccac aacaagagaa gccaccatga tgagaagccc acgcacctca atgaagagta 420 gccctcgctc gccacaacta gagaaagcac acatgcagca acgaagaccc cctgctcgcc 480 acaactagag aaagcccacg tgcagcaacg aagacccaac gcagccaaaa ataaattgat 540 ttaaaaaaaa ttggatagtc tgcttttggt gatattctta taatttagag attcacttta 600 agttgattct cctttaaaat ttaaatatcc cagtataaaa attaataaac agaagcctct 660 attaaacaga gtctgggggc 680 <210> 17 <211> 657 <212> DNA <213> Bando 1 Sperm <400> 17 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt agtgatatgt catcatggtt 60 ttaatgcaat tctctaatga ctaatattga ggatcttctc atatgctttt tttttttttt 120 tttttttttt ttaccatctg cgtaccttct ttggtgaagc gtttctcaaa tcttttgcac 180 atttaaaaaa ttggatctgg ggacttccct ggtggcacag tggttgagaa tccgcctgcc 240 aatgcagggg acacgagttc gatccctggt ccaggaagat cccacaggcc acagagcaac 300 taagcccgtg tgccacaacg actgagcctg tgctctagag cccatgagcc acaactactg 360 aagaccgtgc acctagagcc catgctccac aacaagagaa gccaccgtga tgagaagccc 420 acgcacgtca atgaagagca gcccccgctc gccacaacta gaaaaagccc acgtgcagca 480 acgaagaacc aatgcagcca aaaataaatt aattaaaaaa aattggatag tgtgcttttg 540 gtgatattct tataatttag agattaattc actttaagtt gattctcctc taaaatttaa 600 atatcccagt ataaaaatta ataaacagaa gcctctatta aaacagagtc tgggggc 657 <210> 18 <211> 684 <212> DNA <213> Bando 1 Humpback <400> 18 ttgtcaaggt gcttcgcttt aggatttcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgttttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag tggttgagaa ttcgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccgtg tgccacaact 300 accgagcctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac agcaagagaa gccaccatga tgagaagccc acgcacctca atgaagagta 420 gcccccgctc gccacaacta gagaaagccc acgtgcagca gtgaagaccc cccgcttacc 480 acaactagag aaagcccatg tgcagcaacg aagacccaac gcagccaaaa ataaattaac 540 taaaaaaaat tggattgtgt gcttttggtg atattcttat aatttagaga ttaattcatt 600 ttaagttgat tctcctttaa aatttaaata tcccagtata aaaattaata aacagaagcc 660 tctattaaaa cagagtctgg gggc 684 <210> 19 <211> 685 <212> DNA <213> Bando 1 Fin <400> 19 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgctttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag gggttgagaa tttgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat cccacatgcc acagagcaac taagcccatg tgccacaact 300 accgaacctg tgctctagag cccatgagcc acaactactg aagcccgtgc acctaaagcc 360 catgctccac agcaagagaa gccaccatga tgagaagccc acacacctca atgaagagta 420 gcccccgctc gccacaacta gagaaagccc acgtgcagca gtgaagatcc cccacttacc 480 acaactagag aaagcccatg tgcagcaacg aagacccaac gcagccaaaa ataaattaat 540 taaaaaaatt ggattgtgcg cttttggtga tattcttata atttagaaat taattcattt 600 taagttgatt ctcctttaaa atttaaatat ccctagtatc taaaattaat aaacagaagc 660 ctctattaaa acagagtctg ggggc 685 <210> 20 <211> 683 <212> DNA <213> Bando 1 Minke <400> 20 ttgtcaaggt gcttcgcttt agcgattcta ataggtgtgt ggtgatatct catcatggtt 60 ttaatgcaat tctctaatga ctaatgttga ggatcttctc gtatgctttt ttaccatctg 120 cgtaccttct ttggtgaagt gtttctcaaa acttttgcac atttaaaaaa ttggattgtg 180 ggatttccct ggtggtgcag tggttgagaa ttcgcctgcc aatgcagggg acatgggttc 240 gatccctggt ccaggaagat ccacatgcca cagagcaact aagcccgtgt gccacaacta 300 ccgagcctgt gctctagagc ccatgagcca caactactga agcccgtgca cctaaagccc 360 atgctccaca gcaagagaag ccaccatgat gagaaaccca cgcacctcaa tgaagagtag 420 cccccgctcg ccacaactag agaaagccca cgtgcagcag tgaagacccc ctgcttacca 480 caactagaga aagcccatgt gcagcaacga agacccaacg cagccaaaaa taaattaatt 540 aaaaaaaatt ggattgtgtg cttttggtga tattcttata atttagagat taattcattt 600 taagttgatt ctcctttaaa atttaaatat cccagcataa aaattaataa acagaagcct 660 ctattaaaac agagtctggg ggc 683 <210> 21 <211> 303 <212> DNA <213> Bando 1 Hippo <400> 21 ttgtcaaggt gcttgcttta gtgattctaa taggtgagta gtgatatctc accatggttt 60 taatacaatt ctctaacaac taatactgag gatcctctca tatacttatt taccatctgt 120 gtatcttctt cggtgaaatg tttttcaaat cttttgcaca tttaaaaatt agattgtgtgg 180 cttttggtga tattcttata atttagagat taattcattt taagttgatt cttctttaaa 240 atttataaat cccagtataa aaattaataa acagaaacct ctattaaaac agagtctggg 300 ggc 303 <210> 22 <211> 365 <212> DNA <213> Sp316 Bottlenosed <400> 22 agtgtggctt catatccctt ggcaattctc agcagcaatg agacagagta ctcaggatgc 60 cttctcgcat actcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gacaagctac ataatcggga cttccctggt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ctgggttcga tccctggtca gggaactaga tcccatatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 aacaccccat aattaaccac aaaattaact catatcataa aggtctgaat ttgactaaac 360 cccat 365 <210> 23 <211> 364 <212> DNA <213> Sp316 Short-finned <400> 23 agtgtggctt catatccctt ggcaattctc agcagcaatg agacagagta ctcaggatgc 60 cttctcgcat actcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gacaaactac ataattggga cttccctggt ggcccagtgg ctaattctcc 180 gcactcccaa tgcaaggggc ctgggttcga tccctggtca gggaactaga tcccatatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 acaccccaca attaaccacg aaattaactc atatcataaa gggctgaatt tgactaaacc 360 ccat 364 <210> 24 <211> 362 <212> DNA <213> Sp316 Dall's <400> 24 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cctccctggt ggcccagtgg ctaagtctct 180 gcactcccaa tgcagtgggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcacacaaa taaataagta aataaaacat caaaaaaaaa 300 aacccataat taaccacaaa attaactcat atcataaagg tctgaatttg actaaacccc 360 at 362 <210> 25 <211> 364 <212> DNA <213> SP316 Narwhal <400> 25 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagcgta ctcaggatgc 60 cttcttgcat attcatacaa aaacctaatt aagatgacaa taaaatagct ttagttggac 120 aaatgagcaa gtaaaaacta cataattggg acttccctgg tggcccagtg gctaagtctc 180 tgcactccca atgcaggggg cccgggttcg atccctggtc agggaactag atcccacatg 240 catgctgcaa ctaagagcca gtgcacacaa ataaataagt aaataaaaca tcaaaaaaaa 300 aaccccataa ttaaccacaa aattaactca tatcataaag gtctgaattt gactaaaccc 360 catg 364 <210> 26 <211> 363 <212> DNA <213> Sp316 Amazon <400> 26 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctcgt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 ccacccataa ttagtcacaa aattaactca tatcctaaag gtctgaattt gactaaaccc 360 cat 363 <210> 27 <211> 363 <212> DNA <213> Sp316 La Plata <400> 27 agtgtggctt catacccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcgtacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactat ataactggga cttccctggt ggcccagtgg ctaagtcgct 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagttccag tacagacaaa taaataagta aataaaacat aaaaaaaaaa 300 ccaaaaacca taattagcca caaaattaac tcatatccta aaggtctgaa tttgactaaa 360 ccc 363 <210> 28 <211> 362 <212> DNA <213> Sp316 Baiji <400> 28 agtgtggctt catatccctt ggcaattctc aatagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt gacccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggcca gggaactaga tcccacatgc 240 atgctgcaac taagagccag tgcagacaaa taaataagta aataaaacat aaaaaaaaaa 300 acaccataat taaccacaaa attaactcat atcctaaagg tctgaatttg actaaacccc 360 at 362 <210> 29 <211> 359 <212> DNA <213> SP316 Beaked <400> 29 agtgtggctt catatgcctt ggcaattctc aacagcaatg agacagagta ctcagggtgc 60 cttcttgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt ggcccagtgg ctaagtctcc 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccgg tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 accccataat taaccacaaa agtaacttat aacctaaagg tctgaatttg actaaaccc 359 <210> 30 <211> 348 <212> DNA <213> Sp316 Ganges <400> 30 agtgtggctt catatgcctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaaat aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac agaattggga cttccctggt ggcccagtgg ctaagtctcc 180 acactcccaa tgcagggggc ccgggtttga tccatggtca gggaactaga tcccacatgc 240 atgctgcaac taagagccgg tgcagacaaa caaataagta aaataaaaca tcaaaaaaaa 300 aaccccataa ttaaccacaa aagtaactca tatcctaaag gtctgaat 348 <210> 31 <211> 354 <212> DNA <213> SP316 Sperm <400> 31 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacac aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaactac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcga tccctggtca ggaaactaga tcccaaatgc 240 atgctgcatc taagagccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 ccccataatt aaccacaaaa gtaactcata tcctaaaggt ctgaatttga ctaa 354 <210> 32 <211> 361 <212> DNA <213> Sp316 Humpback <400> 32 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccaggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 cccataatta accacaaaag taactcatat cctaaaggtc tgaatttgac taaaccccat 360 g 361 <210> 33 <211> 360 <212> DNA <213> Sp316 Fin <400> 33 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgt 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcaac taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaac 300 cccataatta accacaaaag taactcatat cctaaaggtc tgaatttgac taaaccccat 360 <210> 34 <211> 365 <212> DNA <213> Sp316 Minke <400> 34 agtgtggctt catatccctt ggcaattctc aacagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa taaaatagat ttagttggac 120 aaatgagcaa gaaaaaccac ataattggga cttccctggt ggtccagtgg ctaagtctct 180 gcactcccaa tgcagggggc ccgggttcca tccctggtca gggaactaga tcccacatgc 240 atgctgcagc taagacccgg tgcagacaaa taaataagta aataaaacat caaaaaaaaa 300 aaaaacccat aattaaccac aaaagtaact catatcctaa aggtctgaat ttgactaaac 360 cccat 365 <210> 35 <211> 198 <212> DNA <213> Sp316 Hippo <400> 35 agtgtggctt cataaaattt ggcaactctc aatagcaatg agacagagta ctcaggatgc 60 cttctcgcat attcatacaa aaacctaatt aagatgacaa caaaataggt ttagttagac 120 agatgaacaa gaaaaaccat atggttaccc aaaaaagtaa ctcttatcct aaaggtctga 180 atttgactaa accccatg 198 <210> 36 <211> 493 <212> DNA <213> Mago 19 Bottlenosed <220> <221> CDO <222> (139) .. (337) <400> 36 ctgcacagtt ttggctcaat cattacaact gctataggtt gagtggtgtc ccctgaaaag 60 atatgttgaa gtcctagggt tgtgagtgtt attttaaaat gggtctctaa agacataatc 120 attaaagatg aagtcctagg gctttcctgg tggcgcagtg gttgagagtc cgcctgccga 180 tgcaggggac acgggttcat gccccgatcc gggaggccca tgagccatgg ccgctgagcc 240 tgtgtgtccg gagcctgtgt ccgcaacggg agaggccacc acagtgagag gcccacgtac 300 cgcaaaaaaa aaaaaaaaaa aaaaagatga agtcctagag tgggctataa tccaatatgg 360 caggtttcct tattaaaaag agaaaaaaaa agacacagac agatatacac agaggaaaga 420 tgatgtgaag acatacgggg aaaacgtcat gtgatgagga agcagagaat aaagtgatct 480 tacacatgac cag 493 <210> 37 <211> 495 <212> DNA <213> Mago 19 Narwhal <220> <221> CDO <222> (140) .. (338) <400> 37 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctagggc tgtgaatgtt atttgaaaat ggggtctcta cagacataat 120 cattaaagat gaagtcctag ggcttccctg gtggcgcagt ggttgagagt ccgcctgccg 180 atgcagggga cacgggttcg tgccccagtc cgggaggccc gtgagccatg gccgctgagc 240 ctgtgtgtcc ggagcctgtg tccgcaacgg gagaggccac cacagtgaga ggcccacgta 300 ccgcaaaaaa aaaaaagaaa aaaaaagatg aagtcctaga gtgggctata atccaatatg 360 gcaggtttcc ttattaaaaa gagaaaaaaa agacaccgac agatatacac aggggaaaga 420 tgatgtgaag acatacgggg aaaacgtcat gtgatgagga aggcagagaa taaagtgatg 480 cttacacatg accag 495 <210> 38 <211> 498 <212> DNA <213> Mago 19 Dall's <220> <221> CDO <222> (140) .. (341) <400> 38 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctagggc tgtgaatgtt atttgaaaat ggggtctcta cagacataat 120 cattaaagat gaagtcctag ggcttccctg gtggtgcagt ggttgagagt ccgcctgccg 180 atatagggga cacgggttcg tgccccagtc cgggaggccc gtgagccatg gccgctgagc 240 ctgtgtgtcc agagcctgtg tccgcaacgg gagaggccat cacagtgaga ggcccacata 300 ccgcaaaaaa aaaaaaaaaa aaaaaaaaag atgaagtcct agagtgggct ataatccaat 360 atggcaggtt tccttattaa aaagagaaaa aaaagacacc gacagatata cacagaggaa 420 agattatgtg aagacatacg gggaaaacgt catgtgatga ggaaggcaga gaataaagtg 480 atgcttacac atgaccag 498 <210> 39 <211> 307 <212> DNA <213> Mago 19 Amazon <400> 39 ctgcacagtt ttggctcaat cattacagct gcttataggt tgagtggtgt cccctgagaa 60 gatatgttga agccctaacc ctcagtacct gtgaatgtta tttgaaaatg gggtctctac 120 agacataatc attaaagatg aagtcctaga gtgggctgta atccaatatg gcaggtttcc 180 ttattaaaaa gagaaagaaa aaagacacag acagatatac acagagaaaa gatgatgtga 240 aggcatacgg ggaaaacggc atgtgatgag aaaggcagag aataaagtga tgcttacaca 300 tgaccag 307 <210> 40 <211> 309 <212> DNA <213> Mago 19 La Plata <400> 40 ctgcacagtt ttggctcaat cattacagct gcttataggt tgagtggtgt cccctgagaa 60 gatatgttga agtcctaacc ctcagtacct gtgaatgtta tttgaaaatg gggtctctac 120 agacataatc attaaagatg aagtcctaga gtgggctgta atccaatatg gcaggtttct 180 tattaaaaag agaaaaaaaa aaaaagacac agacagatat acacagagga aagatgatgt 240 gaaggcatac gggggaaaca gcatgtgatg agaaaggcag aaaataaagt gatgcttaca 300 catgaccag 309 <210> 41 <211> 293 <212> DNA <213> Mago 19 Baiji <400> 41 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg ggtctctaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg caggtttcct 180 tattaaaaag agaaaaaaaa gacacagaca gaggaaagat gatgtgaaga catacgggga 240 aaacatcatg tgatgaggaa ggcagagaat aaagtgatgc ttcacatgac cag 293 <210> 42 <211> 311 <212> DNA <213> Mago 19 Beaked <400> 42 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagcacctg tgaatgttat ttgaaaatgg agtctctata 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaacatgg caggtttctt 180 tattaaaaag agaaagaaaa aagacacaga cagatataca cagaagaaag atgatgtgaa 240 gacatatggg gaaaacacat catcatgtga tgatgaaggc agagaataaa gtgatgctta 300 cacatgacca g 311 <210> 43 <211> 313 <212> DNA <213> Mago 19 Ganges <400> 43 ctgcacagtt ttggctcaat cactacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc ttagtacctg cgaatgttat ttgaaaatgg ggtctctaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa cccaatatgg caggtttcct 180 tcttaaaaag agaggaaaaa aaaaaacaaa acacagacag atatacacag aggaaagatg 240 atatgaagac atacggggaa aacgtcatat gatgattaag gcagagaata aagtgatgct 300 tacacatgac cag 313 <210> 44 <211> 304 <212> DNA <213> Mago 19 Sperm <400> 44 ctgcacagtt ttggctcaat cattgcagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa atcccaaccc tcagtacctg tgaacgttat ttgaaaatgg ggtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg caggtttcct 180 tattaaaaag agaaaaaaaa gacacagaca gatacacaca gaggaaagat gatgcgaaga 240 catacgggga agacgtcatg tgatgatgaa ggcagagaat aaagtgatgc ttacacatga 300 ccag 304 <210> 45 <211> 308 <212> DNA <213> Mago 19 Humpback <400> 45 ctgcacagtt ttggctcaat cattacaact gctatgagtt gagtggtatc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg agtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatga cagttttcct 180 tattaaaaag agggaaaaaa aagacacaaa gacagatata cacagaggaa agatgatgtg 240 aagacatacg gagaaaacat catgtgatga tgaaggcaga gaataaagtg atgcttacac 300 atgaccag 308 <210> 46 <211> 305 <212> DNA <213> Mago 19 Minke <400> 46 ctgcacagtt ttggctcaat cattacagct gctataggtt gagtggtgtc ccctgagaag 60 atatgttgaa gtcctaaccc tcagtacctg tgaatgttat ttgaaaatgg ggtctttaca 120 gacataatca ttaaagatga agtcctagag tgggctgtaa tccaatatgg cagggttcct 180 tattaaaaag agaaaaaaag acacaaagac agatatacac agagaaaaga tgatgtgaag 240 acatatggag aaaacatcat gtgatgatga aggcagagaa taaagtgatg cttacacatg 300 accag 305 <210> 47 <211> 594 <212> DNA <213> Ishi 14 Dall's <220> <221> CDO <222> (229) .. (450) <400> 47 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa atgaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aacattatac 120 ttccaaatga agaataaaaa tattgcaatc actccccaac cctgagggtg aggttcctaa 180 aattttaagt tttcataaat gacaggggaa tttaagaact taaggtaggg gcttccctgg 240 tggmtcagtg gttgagagtt ggcctgccga tgcaggggac acgggtttgt gccccagtct 300 gggaagatcc catatgccgc agagcggctg ggcccgtgag ccataaccgc tgagcctgcg 360 cctccagagc ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cgcgtaccaa 420 aaaaaaaaga aaatgaagaa cttaaggtag ggtgtagaga agaagatgga tattcaccat 480 atgaaaatat ttatcattat aattttatta catacataaa aagaaaaaga gaatagcaga 540 ataaaaagaa agaaaataaa ttgcacccac atatcttaat gagtaataat gacc 594 <210> 48 <211> 518 <212> DNA <213> Ishi 14 Amazon <220> <221> CDO <222> (153) .. (380) <400> 48 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa aagaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 atatgatagg ggaatttaag aacttaagct aggggcttcc ctggtggcgc agtggttgag 180 agtccgcctg ccgatgcagg ggacacgggt tcgtgcccca gtccgggagg atcccatatg 240 ccacagagca gctggacctg tgagccatgg ccactgagtc tgtgcatcca cagcctgtgc 300 tccgcaacgg gagaggccac aacagtgaga ggcctgcgta ccaaaaaaaa aaaaaaaaaa 360 aaaaaaagaa cttaaggtgg ggtgtagagc agaagatggt tattcaccat atgaaaatat 420 ttatcattat aattttatta catacataaa aagaaaaaga atagcagaat aaaaagaaag 480 gaaattgcac ccacatatct taatgggtaa taatgccc 518 <210> 49 <211> 288 <212> DNA <213> Ishi 14 Ganges <400> 49 ttcccctata ttctccatgg ttttattgta aagaggcatt gtagttccaa atgaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagtttttgt 120 aactaatagg ggaatttaag aacttaaggt agggtgtaga gaaggagatg gatattcaca 180 atatgaagat atttatcatt attttattac ataaaaagaa aaagagaata gcagaataaa 240 acgctgaaaa taaattgcac ccacatatct taatgagtaa taatgacc 288 <210> 50 <211> 293 <212> DNA <213> Ishi 14 Sperm <400> 50 ttcccctata ttctccatgg ttttattgta aagaggcatt atacttccaa ataaagaata 60 aaaatattgc aatcactccc caaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 aaatgatagg ggaatttaag aacttaaggt agggtgtaaa gaagatggat attcaccata 180 tgaagatatt tatcattata attttattac atacataaaa agaaaaagag agtagcagaa 240 taaaaagaaa gaaaataaat tgcacccaca tatcttaatg agtaataatg acc 293 <210> 51 <211> 293 <212> DNA <213> Ishi 14 Humpback <400> 51 ttcccctata ttctccatgg ttttattgta aagagacatt atacttccaa atgaagaata 60 aaaatattgc aatcactccc cgaccctgag ggtgaggttc ctaaaatttt aagttttcat 120 aaatgatagg ggaacttaag aacttaaggt agggtgtaga gaagaagatg gatattcacc 180 atatgaagat atttatcata attttattac atacataaaa agaaaaagag aatagcagaa 240 taaaaagaaa gaaaataaat tgcacccaca tatcttaatg agtaataatg acc 293 <210> 52 <211> 504 <212> DNA <213> Ishi 36 Bottlenosed <220> <221> CDO <222> (186) .. (412) <400> 52 aaacccattt taactagcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaattaaa acatgctttt aatttttaca atttatataa aaattattgg 120 aagcaaacac tacttgaact tttctcatgt tttcaaataa ttattatcac taataaggtg 180 atcctgggct tccctggtgg cgcagtggtt gagagtccac ctgccgatgc aggggacacg 240 ggtttgtgcc ccggtccggg aagatacccc atgccgcgga gcggctgggc ccgtgaacca 300 tggccactgg gcctgcgcgt ccggagccgg tgctcgcaac gggagaggcc acaacagtga 360 gaggcccaag taccgcaaaa aaaaaaaaaa aaaaaaaaaa aaaggtgatt cttattatca 420 aactaccctt attaacagca aactatattt gataaatata taatatctat atacttctcc 480 cttcccaagt atatgaattg ttac 504 <210> 53 <211> 501 <212> DNA <213> Ishi 36 Short-finned <220> <221> CDO <222> (185) .. (409) <400> 53 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaattaaaa catgctttta atttttacaa tttatataaa aattattgga 120 agcaaacact acttgaactt ttctcatgtt ttcaaataat tattatcact aataaggtga 180 tcctgggctt ccctggtggc gcagtggttg agagtccacc tgccgatgca ggggacacgg 240 gtttgtgccc cggtccggga agatcccaca tgccgcggag cggctgggcc cgtgaaccat 300 ggccgctggg cctgcgcgtc cggagccggt gctccgcaac gggagaggtc acaacagtga 360 gaggcccaag taccgcaaaa aaaaaaaaaa aaaaaaaaaa ggtgattctt attatcaaac 420 tacccttatt aacagcaaac tatatttgat aaatatataa tatctatata cttctccctt 480 cccaagtata tgaattgtta c 501 <210> 54 <211> 512 <212> DNA <213> Ishi 36 Dall's <220> <221> CDO <222> (190) .. (420) <400> 54 aaacccattt taactgcaga gtacttaatt tttcccaaat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttcac atggtttcaa ataattataa tcactaataa 180 ggtgatcctg ggcttccctg gtggcagtgg ttgagagtcc gcctgccgat gcaggggaca 240 tgggttcgtg ccctggtcsg gaagatccca catgccgtgg agcggctggg cccgtgagcc 300 atggccgctg agcctgcgcg tcaggagcct gtgctccgcg acgggagagg ccacaacagt 360 gagaggtccg cgtatcgcaa aaaaaaaata ataataataa taaaaaaaaa aggtgatact 420 tattatcaaa ctactcttat taacagcaaa ctatatttga taaatatata atatctatat 480 acttctccct tcccaagtat atgaattgtt ac 512 <210> 55 <211> 515 <212> DNA <213> Ishi 36 Narwhal <220> <221> CDO <222> (190) .. (423) <400> 55 gaacccattt taactgcaga gtactaaatt tttcccaaat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttcac atggtttcaa acaattataa tcactgataa 180 ggtgatcctg ggcttccctg gtggcgcagt ggttgagagt ccgcctgccg atgcagggga 240 catgggttcg tgcctcggtc cgggaagatc ccacatgccg tggagagtct gggcccgtga 300 gccatggccg ctgagcctgc gcgtcaggag cctgtgctcc gcgacgggag aggccacaac 360 agtgagaggc ccgcgtatcg caaaaaataa taatgataat aataaaaaaa ataaggtgat 420 ccttattatc aaactactct tattaacagc aaactatatt tgataaatat ataatatcta 480 tatacttctc ccttcccaag tatatgaatt gttac 515 <210> 56 <211> 504 <212> DNA <213> Ishi 36 Amazon <220> <221> CDO <222> (190) .. (412) <400> 56 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttctc atggtttcaa ataattatta tcactaataa 180 ggtgatcctg ggcttccctg gtggcacagt ggttgagagt ctgcctgccg atgcagggga 240 cacgggttca tgccccggtc cgggaagatc ccacatgccg cggagcggct gggcccgtga 300 gccatggccg ctgagcctgc gcgtccggag cctgtgctcc acaacgggag aggccacaac 360 agtgagaggc ccgcgtacag caaaaaaata aataaataaa taaggtgatc cttattatca 420 aactaccctt attaacagca aactatattt gataaatata taatatctat acacttctcc 480 cttcccaagt atatgaattg ttac 504 <210> 57 <211> 501 <212> DNA <213> Ishi 36 La Plata <220> <221> CDO <222> (190) .. (409) <400> 57 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaagtta 120 ttggaagtaa acactacttg aacttttctc atggtttcaa ataactatta tcactaataa 180 ggtgatcctg ggcttccatg gtggcacagt ggttgagagt ccgcctgccg attcagggga 240 cacgggttcg tgccccggtc cgggaagatc ccacgtgccg cagagcggct gggcccgtga 300 gccatggcaa ctgagcctgc gcatccggag cctgtgctcc gcaacgggag agaccacaac 360 agtgagaggc ccgcgtccgc aaaaaaaaaa aaaaaaaaaa ggtgatcctt attatcaaac 420 tacccttatt aacatcaaac tatatttgat aaatatataa tatctatata cttctccctt 480 cccaagtata tgaattgtta c 501 <210> 58 <211> 508 <212> DNA <213> Ishi 36 Baiji <220> <221> CDO <222> (189) .. (419) <400> 58 aacccatttt aactgcagag tacttaattt ttcccatata acttatgtga ccaaataaca 60 caatttcttt aaataaaaac atgcttttaa tttttacaat ttaactagta taaaaattat 120 tggaagcaaa cactacttga acttttctta tggtttcaaa taattattat cactaataag 180 gtgatcctgg gcttccctgg tggcgcagtg gttgagagtc cgcctgccga tgcaggggac 240 acgggttcgt gccccagtct gggaggatcc cacatgccgc ggagcggctg ggcccgtgag 300 ccatggccac tgagcctgca cgtccggagc ctgtgctccg caacgggaga ggcacaacag 360 tgagaggccc gcgtccgcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ggtgatcctt 420 attatcaaac tacccttatt aacagcaaac tatatttgat aaatatatat ctatatactt 480 ctcccttccc aagtatatga attgttac 508 <210> 59 <211> 281 <212> DNA <213> Ishi 36 Beaked <400> 59 aaacccattt taactgcaga gtacttaatt ttttccatat aacttatgcg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa atactacttg aacttttctc atgatttcaa ataattatta tcactaataa 180 ggtgatcctt attatcaaac tacccttatt aacagcaaaa tatatttgat aaatatataa 240 tatctatata cttctccctt cccaagtata tgaattgtta c 281 <210> 60 <211> 283 <212> DNA <213> Ishi 36 Ganges <400> 60 taaacccatt ttaactgcag agtacttaat ttttccctta taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatctttaca atttaactag tataaaaatt 120 attggaagca aacactactt gaacttttct catggtttca aataattatt atcactaata 180 aggtgatcct tattatccaa ctacccttaa taacagcaaa ctatatttga tgaatatata 240 atatctatat acttctccct tcccaagtat atgaattgtt aca 283 <210> 61 <211> 281 <212> DNA <213> Ishi 36 Sperm <400> 61 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa acactacttg aacttttctc atggtttcaa ataattatta tcactaataa 180 ggtgatcctt attatcaaac tacccttatt aacagcaaac tatatttgac aaatatataa 240 tatctatata cttctccctt cccaagtata tgaattgtta c 281 <210> 62 <211> 280 <212> DNA <213> Ishi 36 Humpback <400> 62 aaacccattt taactgcaga gtacttaatt tttcccatat aacttatgtg accaaataac 60 acaatttctt taaataaaaa catgctttta atttttacaa tttaactagt ataaaaatta 120 ttggaagcaa cactacttga actcttctca tggtttcaaa taattattat cactaataag 180 gtgatcctta ttatcaaact acccttatta acagcaaact atatttgata aatatataat 240 atctatatac ttctcccttc ccaagtatat gatttgttac 280 <210> 63 <211> 283 <212> DNA <213> Ishi 36 Minke <400> 63 taaacccatt ttaactgcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatttttaca atttaactag tataaaaatt 120 attggaagca aacactactt gaactcctct catggtttca aataattatt atcactaata 180 aggtgatcct tattatcaaa ctacccttat taacagcaaa ctatatttga taaatatata 240 atatctatat acttctccct tcccaagtat atgaattgtt aca 283 <210> 64 <211> 282 <212> DNA <213> Ishi 36 Fin <400> 64 taaacccatt ttaactgcag agtacttaat ttttcccata taacttatgt gaccaaataa 60 cacaatttct ttaaataaaa acatgctttt aatttttgca atttaactag tataaaaatt 120 attggaagca aacactactt gaactcttct catggtttca aataattatt atcactaata 180 aggtgatcct tattatcaaa ctacccttat taacagcaaa ctatatttga taaatatata 240 atatctatat acttctccct tcccaagtat atgatttgtt ac 282 <210> 65 <211> 276 <212> DNA <213> Ishi 36 Hippo <400> 65 aaatccattt aactgtagag tacttaattt ttcccatata cttatgcgac caaatacaca 60 atttatttaa acaaaaacat gcttttaatc tttacaattt agctagtata aaaattactg 120 gaagcaaaca ctagttgaac ttttttcatg gtttcaaata attagtatca ttaataaaga 180 tccttattat caaactaccc ttattaatag caaactgtat ttgataaata tacaatatct 240 atattcttct cccttcccaa gtatatgaat tgttac 276 <210> 66 <211> 385 <212> DNA <213> Ishi 38 Bottlenosed <220> <221> CDO <222> (49) .. (278) <400> 66 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacttgagg gcttccctgg 60 tggcgcagtg gttgagagtc tgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc gaagcagctg ggcccgtgag ccatggccgc tgagcctgcg 180 agtctggagc ctgtgctcca caacgggaga ggctacaaca gtgagaggcc cgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaacaaaaa acacctgagg ctgtttattc atttacagct 300 taaaaaagaa aaaggagtcc tgccccttga tatatataca tctcaaacaa atccttggtt 360 ccaatctgga ctttcatgtg tttat 385 <210> 67 <211> 393 <212> DNA <213> Ishi 38 Short-finned <220> <221> CDO <222> (49) .. (286) <400> 67 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctgg 60 tggcgcagtg gttgagagtc tgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc gaagcggctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgcgcca caacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaacaaaaa aacaaaaaac acctgaggct gtttattcat 300 ttacagctta aaaaagaaaa aggagtcctg tcccttgata tatatacatc tcaaacaaat 360 ccttggttcc aatctggact ttcatgtgtt tat 393 <210> 68 <211> 390 <212> DNA <213> Ishi 38 Dall's <220> <221> CDO <222> (50) .. (283) <400> 68 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag ggcttccctg 60 gtggcgcagt ggttgagagt ccgcctgcca atgcagggga cacgggttca tgccctggac 120 cgggaagatc ccacatgccg tgaagcggct gggcccgtga gccatggccg ctgagcctgc 180 gcgtctggag cctgtgctcc acaacgggag aggccacaac agtgagaggt ctgcgtaccg 240 caaaaacaaa acaaaacaaa aaaaaacaaa acaaaacacc tgaggctgtt tattcattta 300 cagccttaaa aagaaaaagg agtcctgccc cttgatatat atacatctca aacaaatcct 360 tggttccaat ctggactttc atgtgtttat 390 <210> 69 <211> 393 <212> DNA <213> Ishi 38 Narwhal <220> <221> CDO <222> (49) .. (286) <400> 69 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctgg 60 tggcgcagtg gttgagagtc cgcctgccga tgcaggggac acgggttcat gccccggtcc 120 gggaagatcc cacatgccgc ggagtggctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgctcca caacgggaga ggccacaaca gtgagaggcc tgcgtaccgc 240 aaaaacaaaa caaaacaaaa caaaacaaaa caaaaaaaac acctgaggct gtttattcat 300 ttacagcctt aaaaagaaaa aggagtcctg ccccttgata tatatacatc tcaaacaaat 360 ccttggttcc aatctggact ttcatgtgtt tat 393 <210> 70 <211> 369 <212> DNA <213> Ishi 38 Amazon <220> <221> CDO <222> (50) .. (262) <400> 70 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag ggcttccctg 60 gtggtgcagc ggttgagagt ccgcctgccg atgcaggtga cacgggttca tgccctggac 120 cgggaagatc ccatatgccg cagagcgctg ggcccgtgag ccatggctgc tgagcctgcg 180 cgtccggagc ctgtgctcca cgacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aagaacacct gaggctgttt attcatttac agcttaaaaa agaaaaaggg 300 ggcctgcccc ttgatatata tacatctcaa acaaatcctt ggttccaatc tggactttca 360 tgtgtttat 369 <210> 71 <211> 367 <212> DNA <213> Ishi 38 La Plata <220> <221> CDO <222> (50) .. (260) <400> 71 ttgaatcata agctctcgtc catgattttc ctagtaaaag aacacctgag ggcttccctg 60 gtggcgcagt ggttgagagt ccgcctgccg atgcaggtga cacgggttcg tgccctggac 120 cgggaagatc ccacatgcca cagagcggct gggcccgtga gccatggctg ctgagcctgc 180 gcgtcccgag cctgtgctcc acaacgggag aggccacaac agggagaggc ccgcgtaccg 240 ccaaaaaaaa gaacacctga ggctgtttat tcatttacag cttaaaaaag aaaaaggagt 300 cctgcccctt gatatatgta catctcaaac aaacccttgg ttccaatctg gactttcatg 360 tgtttat 367 <210> 72 <211> 388 <212> DNA <213> Ishi 38 Baiji <220> <221> CDO <222> (49) .. (281) <400> 72 tgaatcataa gctctcgtcc atgattttcc taataaaaga acacctgagg gcttccctga 60 tggcgcagtg gttgagagtc cgcctgccga tgcaggtgac acgggttcat gccctggacc 120 gggaagatcc cacatgccgc ggagcagctg ggcccgtgag ccatggccgc tgagcctgcg 180 cgtctggagc ctgtgctcca caatgggaga ggccacaaca gtgagaggcc cgtgtaccac 240 aaaaacaaaa caaaacaaaa caaaagaaac aaaacacctg aggctgttta ttcatttaca 300 gcttaaaaaa gaaaaaggac tcctgcccct tgatatatat acatctcaaa caaatccttg 360 gttccaatct ggactttcat gtgtttat 388 <210> 73 <211> 155 <212> DNA <213> Ishi 38 Beaked <400> 73 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaaagagtcc tgccccttga tatatataca tctcaaacaa 120 atccttggtt ccaatctgga ctttcatgtg tttat 155 <210> 74 <211> 159 <212> DNA <213> Ishi 38 Ganges <400> 74 ttgaatcata agctctcgtc catgattttc ctaattaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaaaaaagga gtcctgaccc ttgatatata tacatctcaa 120 acaaatcctt agttccaatc tggactttca tgtgtttat 159 <210> 75 <211> 156 <212> DNA <213> Ishi 38 Sperm <400> 75 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacact ttaaaaaaaa aaaaagagtc ctgccccttg atatatatac atctcaaaca 120 aatccttggt tccaatctgg actttcatgt gtttat 156 <210> 76 <211> 154 <212> DNA <213> Ishi 38 Humpback <400> 76 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaagagtcct gccccttgat atatatacat ctcaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 77 <211> 154 <212> DNA <213> Ishi 38 Fin <400> 77 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa aaagagtcct gccccttgat atatatacat ctcaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 78 <211> 152 <212> DNA <213> Ishi 38 Minke <400> 78 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacctgag gctgtttatt 60 catttacagc ttaaaaaaaa agagtcctgc cccttgatat atatacatct caaacaaatc 120 cttggttcca atctggactt tcatgtgttt at 152 <210> 79 <211> 154 <212> DNA <213> Ishi 38 Hippo <400> 79 ttgaatcata agctctcgtc catgattttc ctaataaaag aacacttgag agtgtttatt 60 cattaggaat gaaggaggat gaaggagtcc tgccccttga tatatataaa tccaaacaaa 120 tccttggttc caatctggac tttcatgtgt ttat 154 <210> 80 <211> 402 <212> DNA <213> Mago 32 Bottlenosed <220> <221> CDO <222> (62) .. (282) <400> 80 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtagcaca gtggttgaga gtccgcctac caatgcaggg gacacgggtt 120 cgtgccccgg tctgggaaga tcccacatgc cacggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcatctgg agcctgtgct ccacaacggg agaggccaca gcggtgagag 240 gcccgcatac cgcaaaaaaa aaaaaaaaaa aaagtggaat tattctaaac attgaagtct 300 gaaacttgct tttcttcccc acataataaa ccagtgatat ctttctagga caacacatga 360 gctatttctc atggttttta atggctgcat tatgttccac tt 402 <210> 81 <211> 399 <212> DNA <213> Mago 32 Short-finned <220> <221> CDO <222> (61) .. (279) <223> "n" means undetermined. <400> 81 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtgaatta 60 ggcttccctg gtagnacagt ggttgagagt ccgcctgcca atgcagggga cacgggtttg 120 tgccccggtc tgggaagatc ccaccatgcc ggagcggctg ggcccgtgag ccatggccgc 180 tgagcctgtg catctggagc ctgtgctcca caacgggaga ggccacagcg gtgagaggcc 240 cgcataccgc aaaaaaaaaa aaaaaaaaaa gtgggattat tctaaacatt aaagtctgaa 300 acttgctttt cttccccaca caataaacca gtgatatctt tctaggacaa cacatgagct 360 atttctcatg gtttttaatg gctgcattat gttccactt 399 <210> 82 <211> 400 <212> DNA <213> Mago 32 Dall's <220> <221> CDO <222> (61) .. (280) <400> 82 actcattcat gtacacccag atacaaacat ctatatattt actttataaa agtggaatta 60 gggcttccct ggtggcgcag tggttgagag tccacctgcc aatgcagggg acatgggttc 120 gtgccccggt ccgggaagat ccaacatgct gcggagggct gggcccggga gccatggccg 180 ctgagcctgt gtgtctggag tctgtgctcc gcaacgggag aggccacagc ggtgagaggc 240 ccgcgtaccg caaaaaaaaa aaaaaaaaaa agtggaatta ttctaaacat taaagtctga 300 aacttgcttt tcttccccac ataataaacc agtgatatct ttctaggaca atacatgagc 360 tatttctcat ggtttttaat ggctgcatta tgttccactt 400 <210> 83 <211> 405 <212> DNA <213> Mago 32 Narwhal <220> <221> CDO <222> (61) .. (285) <400> 83 cactcattca tgtacaccca gatacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtggcgca gtggttgaga gtccacctgc caatgcaggg gacacgggtt 120 tgtgccccgg tccgggaaga tcccacatgc tgcggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcgtctgg agcctgtgct ccgcaacggg agaggccaca gcggtgagag 240 gccccgtacc gcaaaaaaaa aaaaaaaaaa aaaaaagtcg aattattcta aacattaaag 300 tctgaaactt gcttttcttc cccacataat aaaccagtga tatctttcta ggacaacaca 360 tgagctattt ctcatggttt ttaatggctg cattatgttc cactt 405 <210> 84 <211> 417 <212> DNA <213> Mago 32 Amazon <220> <221> CDO <222> (101) .. (329) <400> 84 gtagtttggt acaatttcat tcctactctc tctcacattc actcattcat gcacacccag 60 atacaatcat ctatatattt actttataaa agtggaatta gggcttccct ggtggcgcag 120 tggttgagag tccacctgcc aatgcagggg acatgggttc gtgccccagt ccgggtaaga 180 tcccacgtgc cgtggagtgg ctgggcccat gagccatggc cgctgagcct gtgcgtccgg 240 agcctgtgct ccgcagtggg agaggccaca gaggtgagag gcccgcgtac cgcaaaaaaa 300 acaaaaaaca aaaaacaaaa gtggaattat tctaaacatc agagtccgaa acttgctttc 360 cttccccaca taataaacca gtgatatctt tctaggacaa cacatgagct atttcta 417 <210> 85 <211> 397 <212> DNA <213> Mago 32 La Plata <220> <221> CDO <222> (100) .. (314) <400> 85 tagtttggta caatttcatt cctactctct ctcacattca ctcattcatg tacacccaga 60 tacaaacatc tatatattta ctttataaaa gtggaattag ggcttccttg gtggcgcagt 120 ggttgagagt ccgcctgcca atgcagggga cacgggttcg tgccccagtc cgggaagatc 180 ccacgtgccg tggagcggct gggcccatga gccatggccg ctgagcctgt gcgtccggag 240 cctgtgctcc gcaacgggag aggccacaac agtgagaggc ccgcgtacca caaaaaaaaa 300 caaaagtgga attattctaa acattagagt ctgaaacttg cttttcgtcc ccacataata 360 aaccagtgat atctttctag gacaacacat gagctat 397 <210> 86 <211> 401 <212> DNA <213> Mago 32 Baiji <220> <221> CDO <222> (62) .. (281) <400> 86 cactcattca tgtacaccca gttacaaaca tctatatatt tactttataa aagtggaatt 60 agggcttccc tggtggcgca gtggttgaga gtccacctgc caatgcaggg gacacgggtt 120 ggtgccccag tccgggaaga tcccacatgc cgtggagcgg ctgggcccgt gagccatggc 180 cgctgagcct gtgcgtccgg agcctgtgct ccgcaatgag agaggccaca gtggtgagag 240 gcccgcgtac cacaaagaaa caaaaaacaa aagtggaatt attctaaaca ttagagtctg 300 aaacttgctt ttcttcccca cataataaac cagtgatatc tttctaggac aacacatgag 360 ctatttctca tggtttttaa tggctgcatt atgttccact t 401 <210> 87 <211> 184 <212> DNA <213> Mago 32 Beaked <400> 87 tatagtttgg tacaatttca ttcctactct cacactcact cattcatgta cacccagata 60 caaacatcta tatatttact ttataaaagt ggaattactc taaacattag aatctgaaac 120 ttgctttttt tccccacata ataaaccagt gatatctttc taggacaaca catgagctat 180 ttct 184 <210> 88 <211> 171 <212> DNA <213> Mago 32 Ganges <400> 88 ttcattccta ctctctctca ctcactcatt catgtatacc cagatacaaa catctataca 60 tttactttat aaaagtggaa ttattctaaa cattagagtc tgaaacttgc ttttttcccc 120 cacataataa accagtgata tctttccagg acaacacatg agctatttct a 171 <210> 89 <211> 188 <212> DNA <213> Mago 32 Sperm <400> 89 tatagtttgg tacaatttca ttcctactct ctctcacact cactgattca tgtacaccca 60 gatacaaaca tctatatatt tactttacaa aagtggaatt attctaaaca ctagagtctg 120 aaacttgctt ttttccccca cataataaac cagtgatatc tttctaggac aacacatgag 180 ctatttct 188 <210> 90 <211> 181 <212> DNA <213> Mago 32 Humpback <400> 90 cactcattca tgtacaccca gatacaaaca cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttctca tggtttttaa tggctgcatt atgttccact 180 t 181 <210> 91 <211> 148 <212> DNA <213> Mago 32 Fin <400> 91 cactcattca tgtacaccca gatacaaaca cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttct 148 <210> 92 <211> 181 <212> DNA <213> Mago 32 Minke <400> 92 cactcattca tgtacaccca gatacaaaga cctatatatt tactttacaa aagtggaatt 60 attctaaaca ttagagtctg aaacttgctt tttttcccca cataataaac cagtgatatc 120 tttctaggac aacacatgag ctatttctca tggtttttaa tggctgcatt atgttccact 180 t 181 <210> 93 <211> 190 <212> DNA <213> Mago 32 Hippo <400> 93 tatagtttgg tacaatttca ttcctactct gctccacact cactcactca tgcacaccct 60 agatactaaa catctgtaga tttattttac aaaaatggaa ttactcaaaa cattaaagtc 120 tgaaacttgc cttttttccc cacataatac accagtgata tctttctagg acaacacatg 180 agctatttct 190 <210> 94 <211> 405 <212> DNA <213> Mago 8 Short-finned <220> <221> CDO <222> (92) .. (315) <400> 94 tgctaactct agattgcaat gaaccaaaat tgaaaggaaa agagaatctt atttccaggc 60 acactcttat gtatataaaa tgctatcatg ggggcttccc tggtggcgca gtggttgaga 120 gtccgcctgc cgatgcaggg gacatgggtc tgtgcctcat ccgggaagat cccacatgcc 180 gtggagcggc tgggcccgtg agccatggcc cctgagcctg cgcgtctgga gcctgtgctc 240 cgcaacggga gaggccacaa cagtgagagg cccgcatacc gcaaaaaaaa aaaaaaaaaa 300 aaaaagctat catggtctac aataaaaata atcaataagt tttatcaaat gctaccatgt 360 tcatggtact gtttatttag aaaggctcaa tcacgaaaaa ttccc 405 <210> 95 <211> 398 <212> DNA <213> Mago 8 Beaked <220> <221> CDO <222> (90) .. (310) <400> 95 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agaatcttat ttccaggcac 60 attcttatgt atataaaatg ctatcatggg ggcttccctg gtggtgcagt ggttgagagt 120 ccgcctaccg atgcagggga cacgggttcg tgcccaggtc cgggaagatc ccacatgcgc 180 ggagcggctg ggcccgtgag ccatggccgc tgagcctgcg cgtctggagc ctgtgctccg 240 caatgggaga ggtcacaaca gtgagaggcc cacataccgc aaaaaaaaaa aaaacacaat 300 gctatcatgg tctacaatca aaaaatcagt atgttttatt aaatgctacc atgttcatgg 360 tgctgtttat ttagaaaggc tcaatcacga aaattccc 398 <210> 96 <211> 181 <212> DNA <213> Mago 8 Ganges <400> 96 tgctaactct agattgcaat gaaccaaaat taaaagaaaa agagaatctt atttccaggc 60 acattcttat gtatataaaa tgctatcatg gtctacaatc aaaataatca ataagtttta 120 ttaaatgtta ccacgttcat ggtactgttt atttagaaag gctcaatcac gaaaaattcc 180 c 181 <210> 97 <211> 182 <212> DNA <213> Mago 8 Sperm <400> 97 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agagaatctt atttccaggc 60 acattcttat gtatataaaa tgctatcatg tttacgatca aagtaatcaa taagttttat 120 ttaaatgcta ccatgttcat ggtactgttt atttagaaag gctcaatcac gaaaaaattc 180 cc 182 <210> 98 <211> 178 <212> DNA <213> Mago 8 Humpback <400> 98 tgctaactct agattgcaat gaaccaaaat tgaaagaaaa agagaatctt atttccaggc 60 acattgctta tgtatataaa atgctatcat ggtctacaat caaaataata agttttatta 120 aatgctacca tgttcatggt actgtttatt tagaaaggct caatcacgaa aaattccc 178 <210> 99 <211> 320 <212> DNA <213> Mago 13 Bottlenosed <220> <221> CDO <222> (50) .. (268) <400> 99 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcacagt ggttgagggt ccgcctgccg atgcagggga cacgggttca tgccccagtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggcca gtgagcctgc 180 gcatccggag cctgtgctcc gccatgggag aggccacaac agtgagaggc ccgcgtaccg 240 caaaaaaaaa aaaaaaatag aggatctcca gctataaaac ctctaaataa agttgtaatg 300 ccagcaaaag tacagcccag 320 <210> 100 <211> 321 <212> DNA <213> Mago 13 Short-finned <220> <221> CDO <222> (50) .. (270) <400> 100 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcacagt ggttgagggt ccgcctgccg atgcagggga cacgggttca tgccccagtc 120 cgggaagatc ccacatgccg cagagcgcta ggcccgtgag ccatggccag tgagcctgcg 180 cgtccggagc ctgtgctccg ccatgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aaaaaaaaat agaggatctc cagcataaaa cctctaaata aagttgtaat 300 gccagcaaaa gtacagccca g 321 <210> 101 <211> 342 <212> DNA <213> Mago 13 Dall's <220> <221> CDO <222> (50) .. (289) <400> 101 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga catgggttcg tgccccggtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggccg gtgagcctgc 180 gcgtccggag cctgtgctcc acacgggaga ggccacaaca gtgagaggcc cgcgtaccgc 240 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaata gaggatctcc tagctataaa 300 acctctaaat aaagttgtaa tgccagcaaa agtacagccc ag 342 <210> 102 <211> 317 <212> DNA <213> Mago 13 Narwhal <220> <221> CDO <222> (50) .. (266) <400> 102 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga catgggttca tgccccggtc 120 cgggaagatc ccacatgccg cagagcggct aggcccgtga gccatggccg gtgagcctgc 180 ccgtccagag cctgtgctct gccacgggag aggccacaac agtgagaggc ctgcgtaccg 240 caaaaaaaaa aaaaagagag gatctccagc ataaaacctt taaataaagt tgtaatgcca 300 gcaaaagtac agcccag 317 <210> 103 <211> 300 <212> DNA <213> Mago 13 Amazon <220> <221> CDO <222> (50) .. (247) <400> 103 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtaggcgcag tggttgaggg tccgcctgcc aatgcagggg acatgggttc atgccccagt 120 ccgggagcag gtaggcccgt gagccatggc cactgagcct gcgcgtccgg agcctgtgct 180 ccacaacagg agaggccaca acagtgacag gtccgcgtac cgcaaaaaaa aaaaaaaaga 240 ggatctccag ctataaaacc tctaaataaa gttgtaatgc ctagcaaaag tacagcccag 300 <210> 104 <211> 308 <212> DNA <213> Mago 13 La Plata <220> <221> CDO <222> (50) .. (255) <400> 104 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccgcctgcca atgcagggga cacgggttcg tgccccggtc 120 cgggagcggc taggcccgtg agccatggcc gctgagcctg cgcgtccgga gcctgtgctc 180 cgcaatggga gaggccacaa cagagaggtc cgcgtaccgc aaaaaaaaaa aaaaaaaaaa 240 aaaaaagagg atctccagct ataaaacctc taaataaagt tgtaatgcct agcaaaagta 300 cagcccag 308 <210> 105 <211> 293 <212> DNA <213> Mago 13 Baiji <220> <221> CDO <222> (50) .. (242) <400> 105 aaaaaatgtt tctatcacta tatacaatat ttttaaaata gaggatctcg ggcttccctg 60 gtggcgcagt ggttgagggt ccacctgccg atgcagggga cacgggttcg tgccccggtc 120 agggagtggc taggcccgtg agccatggcc actgagcctg cgcgtccgga gcctgtgctc 180 cgcaacggga gaggccacaa cagtgagagg tctgcgtacc gcaaaaaaaa atagaggatc 240 tccagcataa aacctctaaa taaagttgca atgccagcaa aagtacagcc cag 293 <210> 106 <211> 317 <212> DNA <213> Mago 13 Beaked <220> <221> CDO <222> (50) .. (266) <400> 106 aaaaaatgtt tctatcacta tctacaatat ttaaaaaata gaggatctca ggcttctctg 60 gtggtgcagt ggttgagggt ccgcctgccg atgcagggga cacgggtttg tgccccggtc 120 cgggaagaat cccacatgcc gcagagcgct gggcccgtga gccatggccg ctgagcctgc 180 acatccggag cctgtgctcc gcaacgggag aggccacaac agtgagaggc ctgcgtacca 240 caaaaaaaaa aaaaaaagag gatctccagc ataaaacctc tgaataaagt tgtaatgcca 300 gcaaaagtac agcccag 317 <210> 107 <211> 100 <212> DNA <213> Mago 13 Ganges <400> 107 aaaaaatgtt tctatcacta tctacaatat ttttaaaata gaggctctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 108 <211> 100 <212> DNA <213> Mago 13 Sperm <400> 108 aaaaaatgtt tctatcacta tctacaatat tttaaaaata gaggatctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 109 <211> 100 <212> DNA <213> Mago 13 Humpback <400> 109 aaaaaatgtt tctatcacta tctacaatac tttaaaaata gagaatctcc agcataaaac 60 ctctaagtaa agttgtaatg ccagcaaaag tacagcccag 100 <210> 110 <211> 100 <212> DNA <213> Mago 13 Fin <400> 110 aaaaaatgtt tctatcacta tctacaatac tttaaaaata gaggatctcc agcataaaac 60 ctctaagtaa agttgtaatg ccagcaaaag tacagcccag 100 <210> 111 <211> 100 <212> DNA <213> Mago 13 Minke <400> 111 aaaaaatgtt tctatcccta tctacaatac tttaaaaata gaggatctcc agcataaaac 60 ctctaaataa agttgtaatg ccagcaaaag tacagcccag 100 <210> 112 <211> 99 <212> DNA <213> Mago 13 Hippo <400> 112 aaaaatgttt ctatcactat ctacaatatt ttaaaaatag aggatctcca gcataaaacc 60 tctaaataaa gttgtaatgc cagcaaaagt acagcccag 99 <210> 113 <211> 370 <212> DNA <213> Mago 21 Short-finned <220> <221> CDO <222> (63) .. (289) <400> 113 ccttcttcat caggttatta ggaagattcc gatagttaat ataaaatata taaagtattt 60 aggggcttcc ctggtggcgc agtggttgag agtccacctg ccgatgcagg ggacacaggt 120 tcgtgccctg gtccgggagg atgccacatg scgcagagca gctgggcccg tgagccatgg 180 ccgctgagcc tgagcatctg gagcctgtgc tccgcaatgg gagaggccac aacagtgaga 240 ggcccacgta ccgcaaaaaa aaaaaaatat atatatatat agtatttaga acagagttta 300 gaacacagta agtactatgt tagtgttagc ttttatagat gtgattatct agtgggattt 360 gttgatttcc 370 <210> 114 <211> 373 <212> DNA <213> Mago 21 La Plata <220> <221> CDO <222> (63) .. (292) <400> 114 ccttcttcat caggttatta ggaagattcc gttagttcat ataaaatata taaagtattt 60 aggggcttcc ctcgtggtgc agtggttgag agtccgcctg ccgacgcagg ggacgtgggt 120 ccgggaagat cccacatgcc gtggagcggc tgggcccgtg agccatggcc gctgagcctg 180 agcgtccgga gcctgtgctc tgcaatggga gaggccacaa cagtgagagg cctgtgtacc 240 gcaaaaaaaa aaattttttt aataaacaaa tatatatata tatagtattt agaacagagt 300 ttagaacaca gtaagtacta tgttagtgtt agcttttata gatgtgatta tctagtggga 360 tttgttgatt tcc 373 <210> 115 <211> 406 <212> DNA <213> Mago 21 Ganges <220> <221> CDO <222> (63) .. (325) <400> 115 ccttcttcat caggttatta ggaagattcc attagttaat ataaaatata taaagtattt 60 aggggcttct ctggtggcgc agtggttgag agtccacctg ccgatgcagg ggacacgggt 120 tcgtgccctg gtcccggaag atcccacatg tgcggagcag ctggtcccgt gagccacggc 180 cgctgagcct gcgcgtccgg agcctgtstc cgcaacggga aaggccacaa cagtgagagg 240 cccgcttacc gcaaaaaata aaacatacat acatatatac atatagatat agatgtagat 300 atagatagat agataaagta tttagaacag agtttagaac acagtaagta ctatgttagt 360 gttagttttt atagatgtga ttatctagtg ggatttgttg atttcc 406 <210> 116 <211> 143 <212> DNA <213> Mago 21 Sperm <400> 116 ccttcttcat caggttatta ggaagattcc gttagttaat agaaaatatg taaagtattt 60 aggacggagt ttagaacaca gtaagtacta tgttagtgtt agcttttata gatgtgatta 120 tctagtggga tttgttgatt tcc 143 <210> 117 <211> 144 <212> DNA <213> Mago 21 Humpback <400> 117 ccttcttcat caggttatta ggaagattcc gttagttaat gtaaaatata taaagtattt 60 agaacagagt ttagaacaca gtaagtacta tgttagtagt tagcttttac agatgtgatt 120 atgtagtggg atttgttgat ttcc 144 <210> 118 <211> 526 <212> DNA <213> Sperm 8 Dall's <220> <221> CD <222> (154) .. (495) <400> 118 gccaatctct gtatttgttc atcaacagaa aaagggatat gaagtatgag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccacctt agtaacctcc 120 agtagatcat gtctacttat aaaaatttgt gttgggcttc cctggtggca cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 gccgcgaagc aactagggcc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctcctcaaca agagaggcca cgatagtgag aggcccgtgc accgcgatga agagtggccc 360 ctgcttgcca caactagaga aagccctcgc acagaaacaa agacccaaca cagccaaaaa 420 taaataaata aataaaaatt taaaaaagta acatgttcaa gtacaattgg tgtctttaaa 480 aaacaaatct atgtttttct atgtaagaca tgcaggtagg tggaca 526 <210> 119 <211> 533 <212> DNA <213> Sperm 8 Narwhal <220> <221> CD <222> (154) .. (502) <400> 119 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccacctt agtaacctcc 120 agtagatcat gtctacttat aaaaatttgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct gggctgggaa gatcccacat 240 gcagcaaagc aactaggccc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctcctcaaca agagaggcca cgatagtgag aagcccgtgc accgcgatga agagtggccc 360 ccgcttgcca caactagaga aagccctcgc acagaaacga agacccaaca cagtgaaaga 420 taaataaata aattaattaa ttaataaaaa agtaacaaat gttcaagtac aattggtgtc 480 tttaaagaaa aaaatctgtg tttttctatg taagacatgc aggtaggtgg aca 533 <210> 120 <211> 545 <212> DNA <213> Sperm 8 Amazon <220> <221> CD <222> (154) .. (514) <400> 120 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcacctcctt agtaacctcc 120 agtggatcat gtctacttac aaaaatttgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgagaa cataccacat 240 accacggagc aactaggccc gtgagccaca actgagcctg catgtctgga gcctgtgctc 300 tgcaacaaga gaggccacga tagtgacagg cccgtgcacc gcgatgaaga gtggcccccg 360 cttgccacaa ctagagaaag ccctctcaca gaaatgaaga cccaacacag ccaaaaataa 420 ataaataaat aaatataaat aaataaataa aatttaaaaa aaagtaacaa gtgttcaagt 480 acaattggtt tcttaaaaaa aaaaaatctg tgtttttcta tgtaagacat gcaggtaggt 540 ggaca 545 <210> 121 <211> 535 <212> DNA <213> Sperm 8 La Plata <220> <221> CD <222> (154) .. (504) <400> 121 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcacctcctt agtaacctcc 120 agtagaccat gtctacttat aaaaatgtgt gttgggcttc cctggcggcg cagtggttga 180 gaatttgcct gccaatgcag gggacatggg ttcgagccct ggtctgggaa gatcccacat 240 accgcggagc aactaggacc gtgagccaca actactgagc ctgcgcgtct ggagcctgtg 300 ctccgcaaca agagaggcca cgatagtgag aggcccgtgc accgcgatga agagtggccc 360 ccgcttgcca caactacaga aagctctctc acagaaacga agacccaaca cagccaaaaa 420 taaataaata aataaataaa ttttttttaa aaagtaacaa atgttcaagt acaattggtg 480 acttaaaaaa aaaaaatctg tgtttttcta tgtaagacat gcaggtaggt ggaca 535 <210> 122 <211> 529 <212> DNA <213> Sperm 8 Baiji <220> <221> CD <222> (151) .. (498) <400> 122 gccaatctct gtatttgttc atcaatagaa aaggatgtga agtgttagat aaaagatttc 60 tctaacttat ctactcattc ccctcctcca cactctctca cctccttagt aacctccagt 120 agatcatggc tacttataaa gatctgtgtt ggtctttcct ggtgatgcag tggttgagaa 180 tctgcctgcc aatgcagggg acacgggttc gagccctggt ctgggaagat cccacaagcc 240 gcggagcaac taggcccgtg agccacaact actgagcctg cgcgtctgga gcctgtgctc 300 cgcaacaaga caggccgcga tagtgagagg cccgcgcacc gcgatgaaga gtggcccccg 360 cttgccgcaa ctagagaaag ccctcgcaca gaaacgaaga cccaacacag ccaaaaataa 420 ataaattaat taattttttt aaaaaagtaa caaatgttca agtacaattg gtgtctttaa 480 aaaaaagaaa tctgtgtttt tctatgtaag acatgcaggt aggtggaca 529 <210> 123 <211> 539 <212> DNA <213> Sperm 8 Beaked <220> <221> CD <222> (154) .. (508) <400> 123 gccaatcttt gtatttgttc atcaatagaa aaatggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt agtaacctcc 120 agtagatcat ggctacttat aaaaatctgt gttgggcttc cctggtggca cagtggttga 180 gaatctgcct gccaatgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 accgtggagc aactaggccc atgagccaca actactgagc ctgcgcgtct ggagcttgtg 300 ctctgcaaca agagaggctg cgatagggag aggcctgcgc accgtgatga agagtggccc 360 ccgctcgcca caactagaga aaaccctcgc acagaaatga agacccaaca cagccaaaaa 420 taaataaata aataaataaa taaataaaaa tttaaaaaag taacaaatgt tcaagtacaa 480 ttggtgtctt taaaaaaaaa tctgtgtttt tctatgtaag acatgcaggt aggtggaca 539 <210> 124 <211> 535 <212> DNA <213> Sperm 8 Ganges <220> <221> CD <222> (155) .. (504) <400> 124 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt ggtaaacctc 120 cagtaggtca tggctactta taaaaatctg tgttgggctt ccctggtggc gcagtggttg 180 agaatcttcc tgccgatgca gggaacatgg gtttgagccg tgctctggga agatcccaca 240 tgccacggag caactaggcc cgtgagccac aattactgag cctgcgcgtc tggagcctgt 300 gctccacaac aagagaggcc gcgataatga gaggcccgcg catcgcgatg aagagtggcc 360 ctgctcgccg caactagaga aagccctcgc acagaaacga agacccaaaa cagccaaaaa 420 taaataaata aattttttaa aaaaagtaac aaatgttcaa gtacaattgg tgtctttttt 480 tttttttttt ttttaatctg tgtttttcta tgtaagacat gcaggtaggt ggaca 535 <210> 125 <211> 526 <212> DNA <213> Sperm 8 Sperm <220> <221> CD <222> (154) .. (495) <400> 125 gccaatctct gtatttgttc atcaatagaa aaagggatat gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct ccacactctc tcaccttctt agtaacctcc 120 aacagatcat ggctacttat aaaaatctgt gttgggcttc cctggtggcg cagtggttga 180 gaatctgcct gctaacgcag gggacacggg ttcgagccct ggtctgggaa gatcccacat 240 gccgcggagc aactagacac gtgagccaca actactgagc ctgcgcgtgt ggagcctgtg 300 ctccgcaaca agagaggccg cgatagtgag aggcccgcgc actgcgatga agagtggccc 360 ccgcttgcca caactagaga aagcccttgc acagaaacga agacccaaca cagcgataaa 420 taaataaata gttttttaaa aaaaagtaac aaatattcaa gtacaattgg tgtctttaaa 480 aaaaaaatct gtgtttttct atgtaagaca tgcaggtagg tggaca 526 <210> 126 <211> 184 <212> DNA <213> Sperm 8 Humpback <400> 126 gccaatctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaatt tatctactca ctccccttct ccacactcta tcaccttctt agtaacctcc 120 agtagatcat ggctacttat aaaaatctgt gtttttctat gtaagacatg caggtaggtg 180 gaca 184 <210> 127 <211> 184 <212> DNA <213> Sperm 8 Fin <400> 127 gccaatcttt gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttccccttct ccacactctc tcaccttctt aggaacctcc 120 agtagatcat ggttacttat aaaaatctgt gtttttctat gtaagacatg caggtaggtg 180 gaca 184 <210> 128 <211> 185 <212> DNA <213> Sperm 8 Minke <400> 128 gcaatcctct gtatttgttc atcaatagaa aaagggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttccccttct ccacactctc tcaccttctt aggaacctcc 120 agtagatcat ggctacttat aaaaatctag tgtttttcta tgtaagacat gcaggtaggt 180 ggaca 185 <210> 129 <211> 185 <212> DNA <213> Sperm 8 Hippo <400> 129 gccaatctct gtatttgttc atcaatagaa aacaggatgt gaagtattag ataaaaagat 60 ttctctaact tatctactca ttcccctcct tcacactttc tcaccttctc agtaacatcc 120 agtagatcat ggctacttat aaaaatctag tgtttttcta cgtaagacat gcaggtgggt 180 ggaca 185 <210> 130 <211> 468 <212> DNA <213> Sperm 28 Bottlenosed <220> <221> CD <222> (71) .. (365) <400> 130 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctttaaaatt cttttttaaa 60 aattaattca ggacttccct ggtggtgcag tggttgagaa tctgcctgcc aatgcagggg 120 acacgggttc gagccctggt ctgggaagat cccacatgct gcggaggaac tgggcccatg 180 agccacagct actgagcctg cgcgtctgga gcctgtggtc tgcaacaaga gaggccatga 240 tagtgagagg cccgcacaac gggatgaaga gtggtccccg ctcaccgcaa ctagagaaag 300 ccctcgcaca gaaacgaaga cccaacacat ccaaaaataa ataaataaat taaaaaatta 360 attcaatcac tgataagtgt ttattgaata catattatgt gtcagacatt gtgttgggtg 420 cttgaaataa tggtgctaag cttggggata attattgctg tagcaggc 468 <210> 131 <211> 411 <212> DNA <213> Sperm 28 Amazon <220> <221> CD <222> (57) .. (353) <400> 131 tgtgacctct ttagcttttg cttaatctgt aaaattcttt ttttaaaatt aattcagggc 60 ttccctggtg gtgcagtggt tgagaatctg cctgccaatg caggggacac gggttcgagc 120 cctggtctgg gaagatccca catgccrcgg agcaactggg cccatgagcc acagctactg 180 agcctgcgtg tctggagcct gtgctccgca acaagagagg ctgtgatagt gagaggcctg 240 cgcaacggga tgaagagtgg tcccagctcg ccgcaactag agaaagccct caaacagaaa 300 ctaagaccca acacagccaa aaataaataa ataaatttaa aaaaattaat tcaatcactg 360 ttaagtgttt attgagtaca tattatatgt cagacattgt gtggggtgct a 411 <210> 132 <211> 414 <212> DNA <213> Sperm 28 Baiji <220> <221> CD <222> (58) .. (355) <400> 132 agagaacctc ttttagcttt tgcttatctt taaaattctt ttttaaaaat taattcaggc 60 cttccctggt ggtgcagtgg ttgagaatct gcctgccaat gcaggggaca cgggttcgag 120 gcctggtctg ggaagatccc acatgccgtg gagcaactgg gcccatgagc cacagctact 180 gagtctgcgt gtctggagcc tgtgctctgc aacaagagaa gccgtgatag tgagaggccc 240 gcgcaacggg atgaagagtg gtccctgctc gccacaacta gagaaagccc tcgcacagaa 300 acgaagaccc aacacagcca aaaataaata aataaattaa aaaaaaatta attcaatcag 360 tgataaatgt ttattgagta catattatgt gtcagacatt gtgttggggt gcta 414 <210> 133 <211> 470 <212> DNA <213> Sperm 28 Beaked <220> <221> CD <222> (71) .. (367) <400> 133 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctgtaaaatt ctttttttta 60 aattaattca gggcttccgt ggtggtgcag tggttgagaa tctgcctgcc aatgcggggg 120 acacgggttc gagccctggt ctgggaagac cccacatgcc acggagcaac tgggcccatg 180 ggccacagct actgagcctg cgcatctgga gcctgtgctc tgcaacaaga gaggccgcga 240 tagtgagagg cccgcgcacc gcaatgaaga gtggtccccg ctcaccgcaa ctagagaaag 300 tgctcgcaca gaaacgaaga cccaacacag ccaaaaataa ataaattaat ttaaaaaaat 360 taattcaatc actgataagt gtttattgag tacatattat gtgtcagaca ttgtgttggg 420 tgcttgaaat aatggtgcta agcttgggga taattattgc tgtagcaggc 470 <210> 134 <211> 470 <212> DNA <213> Sperm 28 Sperm <220> <221> CD <222> (71) .. (368) <400> 134 gcttgtttag tggtggtgaa ctcttttagc ttttgcctat ctgtaaaatt ccttttttaa 60 aattaattca gggcttccct ggtggtgcag tggttgagaa tctgcctgcc aatgcagggg 120 acacaggttc aagccctggt ctgggaagat cccacatgcc gcagagcaac tgggcccgtg 180 agccacagct actgagcctg cacatctgga gcctgtgctc tgcaacaaga gaggccgcaa 240 tagtgagagg cccgcgcacc atgatgaaga gtggtccctg ctcaccgcaa ctagagaaag 300 ccctcgcaca gaaacgaaga tccaacacag ccaaaaataa ataaatacat ttttaaaaaa 360 ttaattcaat cactgataag tgtttactga gtacatatta tgtgtcagac attgtgttgg 420 gtgcttgaaa taatggtgtt aaacttggga taattattgc tgtagcaggc 470 <210> 135 <211> 172 <212> DNA <213> Sperm 28 Fin <400> 135 gcttgtttag tggtggtgaa ctcttttagc ttttgcttat ctgtaaaagt ttttttttta 60 attaattcaa tcactgataa gtgtttattg agtacatatt atgtggcaga cattgtgttg 120 ggtgcttgaa ataatggtgc taagcttggg gataattatt gctgtagcag gc 172 <210> 136 <211> 539 <212> DNA <213> Sperm 47 Bottlenosed <220> <221> CD <222> (137) .. (469) <400> 136 gggagaagga aatgaaaggc tttccctaaa actggacacc ccacccatta aggtgttaag 60 taattgcgtt cggtggggaa ctgctcagga tccaaggggg catcacgtgg aagccatgaa 120 tcaaatattt gcttaagggc ttccctggtg acgcagtggt tgagagtctg cctgccaatg 180 caggggacac gggttcgagc cctggtctgg gaggatccca catgccgcgg agcaactggg 240 cctgtgaacc ataactactg agcctgcgcg tctgaagcct gtaatccgca acaagagagg 300 ccgcgatagt gagaggcccg cgcaccgcga tggggagtgg cccccgctcg tcgcaactag 360 agaaagccct cgcacagaaa cgaaaaccca acgcagccat aaataaataa ataaatttta 420 aaaatgaaaa aaaaaggact acttaaaaaa tatatatata ttcgcttaag taagccaagg 480 gtctgagcgt ctaaatgacc ttcccaaagt catacaggaa catactggca cctccttca 539 <210> 137 <211> 530 <212> DNA <213> Sperm 47 Beaked <220> <221> CD <222> (137) .. (461) <400> 137 gggagaagga aatgaaaggc cttccctaaa actggacacc ccacccatta aggtgctaag 60 taattgagtt cggtggggaa ctgctcagga tccagggggg catcacgtgg aagccatgaa 120 tcaaatattc gcttaagggc ttccctggtg gcgcagtggt tgagaatctg cctgctagtg 180 caggggacac gggttcgagc cctggtctgg gaggatccca catgctgcgg agcaactagg 240 cccgtgagcc acgactactg agcctgcatg tctggagcct ctgctccgca acaggagagg 300 ccggcgatag tgagaggccc gcacgccgca atggggagtg gcccctgctt gccacaacta 360 gagaaaccct cgcacagaaa cgaagaccca acgcagccat aaataaattt ttaaaattaa 420 aaaaaagtac tttaaatata tatatatata tattcgctta agtaagccaa gggtctgacc 480 gtctaaatga cttcccaaag tcatacagga acatactggc acctccttca 530 <210> 138 <211> 525 <212> DNA <213> Sperm 47 Ganges <220> <221> CD <222> (103) .. (469) <400> 138 gacaccccac ccattaaggt gttaagtaat tgcgttcggt ggggaactgc tcaggatcca 60 ggggggcatc acgtggaagc catgaatcaa atattcactt cagggcttcc ctggtggcgt 120 agtggttgag aatctgcctg ccaatgcagg ggacacgggt tcgagcccta gtctgggaga 180 tccacatgtc gcagagcaac tgggccatga gccacactac tgagcctgcg catctggagc 240 ctgtactccg caacagagag gccgcgatag tgagaggccg cgcactacga tgaagagtgg 300 ccacgcttgc cacactagag aagccctcgc acagaaccga agacccaaca cagccataat 360 aataataata atttaaaatt aaaaaagact acttcaatat atatatatat atatatatat 420 atatattttt tttttttttt tttttttttt tttttttttt tttgcttaag taagccaagg 480 gtctgagcat ctaaatgact tcccaaagtc atacaggaac atact 525 <210> 139 <211> 544 <212> DNA <213> Sperm 47 Sperm <220> <221> CD <222> (136) .. (475) <400> 139 gggagaagga aatgaaaggc cttccctaaa actggacacc ccacccatta aggtgttaag 60 taattgcatt cggtggggaa ctgctcagga tccaaggggg catcagctgg aagccatgaa 120 tcaatattca cttaagggct tccctggtgg cacagtggtc gagaatctgc ctgccgatgc 180 aggggacacg ggttcgagcc ctggtctggg gagatcccac atgccgcgga gcaactgggc 240 ccttgagccg caactgctga gcctgtgcgt ctggagcctg tgctccgcag caagagaggc 300 tgcgatagtg agaggcccac gcaccgcgat gaagagcggc caccgcttgc cacaactaga 360 gaaagccctc gcacagaaac gaagacccaa cacagccata aagaaagaaa gaaagaaatt 420 ttaaaaatta aaaataaaag gactacttta aaaaaaaaga aaacaattcg cttaagtaag 480 ccaagggtct gagcgtctaa atgacttccc aaagtcatac aggaacatac tggcacctcc 540 ttca 544 <210> 140 <211> 205 <212> DNA <213> Sperm 47 Fin <400> 140 gggagaagga aatgaaaggc cttccctaaa actggatacc ccacccatta aggtgttacg 60 taattgtgtt cggtggggaa ctgctcagga tccaaggggg catcacgtgg aagccatgaa 120 tcaaatattc gcttaagtaa accaagggtc tgagcgtcta aatgacttcc caaagtcata 180 caggaacata ctggcacctc cttca 205 <210> 141 <211> 216 <212> DNA <213> Amz 13 Bottlenosed <400> 141 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacaggc catttgcctt tcttctctct gtccctggca cctgacaaca aaaaagtgcc 120 caaataaacc tgcactttca gctacaggag ggtctgctgc aggagctact ggaacggcca 180 tgggggaact cagcaggagt catcagtggt ggagaa 216 <210> 142 <211> 442 <212> DNA <213> Amz 13 Amazon <220> <221> CDO <222> (122) .. (347) <223> "n" means undetermined. <400> 142 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacagganaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtcccttgca cctgacaaca aaaaagtacc 120 cggcttgccc tggtggcgca gtggttgaga gccgcctgcc gatgcagggg acatgggttc 180 gtgctccggt ccgggaagat cccacatgcc gsrgcrgykg gcccgtgagc catggccgct 240 gagcctgcgc atccsgagym ygtgctccac aacgggagag gccacaacag tgagaggcct 300 gcttaccgca aaaaacagac aaaaaacaaa caaacaaaaa agtgcccaaa taaacctgtg 360 ttttcagcta caggagggtc tgttgcagga gctactggaa cggccatggg ggagctcagc 420 aggagtcatc agtggtggag aa 442 <210> 143 <211> 399 <212> DNA <213> Amz 13 La Plata <220> <221> CDO <222> (122) .. (356) <400> 143 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtccctggca cctgacaaca aaaaagtgcc 120 cgggtttcac tggtggcgca gtggttgaga gtccgcctgc cgatgcaggg gacacgggtt 180 cgtgccccgg tccgggaaga tcccacatgc cgtggggcgt ctgggcccgt gagccatggc 240 tgctgagcct gtgcgtccgg agcctgtgct ccgcagcggg agaggccacg acagtgagag 300 gcccgcgtac cgcaaaaaca aaaaaacaaa cagaaaaaac agacaaaaaa gtgcccaaat 360 aaacctgtgt tttcagccac aggagggtct gttgcagga 399 <210> 144 <211> 105 <212> DNA <213> Amz 13 Baiji <400> 144 tgagaacaga ccatttgcct ttcttctctc tgtccctggc aactgacaac aaaaaagtgc 60 ccaaataaat ctgtgttttc agctacagga gggtctgttg cagga 105 <210> 145 <211> 217 <212> DNA <213> Amz 13 Humpback <400> 145 aggtccatca taacagaata cttgtctgcc ctcatgccaa cacgggacaa taaacttctt 60 gagaacagac catttgcctt tcttctctct gtccctggca cctgacaaca gaaaagtgcc 120 caaataaacc tgtgttttca actagaggag cggtctgctg caggagctac tggaacggcc 180 atgggggaac tcagcaggag tcatcagtgg tggagaa 217 <210> 146 <211> 184 <212> DNA <213> Amz 11 Bottlenosed <400> 146 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt ggagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 147 <211> 400 <212> DNA <213> Amz 11 Amazon <220> <221> CDO <222> (95) .. (309) <400> 147 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt atagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacggggctt ccctggtgcg cagtggttga 120 gagtccgcct gccgatgcag gggacacggg ctcgtgcccc gggccgggag gatcccacat 180 gctgcggaga ggctgggccc gtgagccatg gccgctgagc ctgtgcgtcc ggagcctgtg 240 ctctgcaacg ggagaggcac gatagtgaga ggccgcgtac cacaaaaaaa aaaaaaaaaa 300 ccacaaacgt aagctgtgaa aagccagaag cagagtgatg tctttcccct gatgcaaagg 360 tcactgcctg tttttttctc attcgttcca gctgaccaca 400 <210> 148 <211> 184 <212> DNA <213> Amz 11 La Plata <400> 148 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcagag 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 149 <211> 184 <212> DNA <213> Amz 11 Baiji <400> 149 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt aaagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacgtaagct gtgaaaagcc agaagcacag 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 150 <211> 184 <212> DNA <213> Amz 11 Sperm <400> 150 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacataagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 151 <211> 184 <212> DNA <213> Amz 11 Humpback <400> 151 gcatcatttg gctggttaga atttctgcca tttccctgtg gatcaagatt agagatgaac 60 tttcaggttc agtcatacat taaaaacaca aacataagct gtgaaaagcc agaagcagaa 120 tgatgtcttt cccctgatgc aaaggtcact gctgtttttt tctcattcgt tccagctgac 180 caca 184 <210> 152 <211> 579 <212> DNA <213> Tuti 24 Bottlenosed <400> 152 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aagtctcttc tctttgtgct ccatcttgca tagtttcttg 120 tattgtgttc gagtttatta atcttttctc ctgcaacgta caatctgttg gtaataccat 180 tcagtatatt gtaaatttca aatgttggat atttcatttc tagaaatttg atttgggtct 240 tttttaatat tcttcatgtc taaaaattat tttttaaatc tttcttctag cttattgaac 300 atatgaaata acattataat atttagttta atgtctttgt ttactagttc catcatctgt 360 atcatttctg agacaatttt atttgactga ttttcctcct cattgtgaat tatatttttg 420 tagttctttg caagcccagt tggattttga gttactttat tataaataca ttacaacatt 480 acataaagtt tggggaaatt gaaaaagcaa aatgatttat aagctttcca tgctaataac 540 tttcattttt gttttctcat ctacacttca tccacatcc 579 <210> 153 <211> 819 <212> DNA <213> Tuti 24 Meso. Sp. <220> <221> CDO <222> (360) .. (595) <400> 153 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aattctcttc tctttgtgct ccatcttgca tagtttcttg 120 tattgtgttc aggtttacta atcttttctc ctgcagtgta caatctgttg gtaataccat 180 tcagtatatt ttaaatttca aatgttggat atttcatttc tagaaatttg atttgggtct 240 ttttttaata ttcttcatgt ctaaaaatta tttttaaaat ctttcttcta gcttactaaa 300 catatgaaat aacattataa taattagttt aatgtctttg tttactagtt ccatcatctg 360 ggcttccctg gtggtgcagt ggttgagagt ttgcctgccg atgcagggca cacgggtttg 420 tgccccagtc agggaagatc ccacatgcca tggagtggct gggcccgtga gccatggcca 480 ctgagcctgt gtgtccggag cctgtgctcc ataacaggag aggccacaac agtgagaggc 540 ccacgtacca caaaaaaaca aacaaacaaa aatcaaacaa attagttcca tcatctgtat 600 catttctaag acacttttat ttgactgatt ttcctcttca ttgtgaatta tatttttgta 660 gttctttgca agcccagttg gattttgagt cactttatta taaatacatt acaacattac 720 ataaagtttg ggaaaattga aaaagcaaaa tgatttataa gctttccatg ttaataactc 780 tcatttttat gttttctcat ctacacttca tccacatcc 819 <210> 154 <211> 817 <212> DNA <213> Tuti 24 Beaked. Part. <220> <221> CDO <222> (362) .. (593) <223> "n" means undetermined. <400> 154 ctccttcagc aactccagtt acttgcatac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta aattctcttt tctctttgtg ctccatcttg catagtttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcaatg tacaatctgt tggtaatacc 180 attaagtata ttttaaattt caagtgttgg atatttcatt tctagaaatt tgatttgggt 240 atttttttaa tattcttcat gtctaaaaat tattttttaa atctttcttc tagcttattg 300 aacatatgaa ataacattat aataattagt ttaatgtctt tgtttactag ttccatcatc 360 tgggcatccc tggtggtgca gtggttgann nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 420 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnat gagcatggca 480 ctgagctgtg tgtctggagc tgtgctcata acaggagagg ccacaacagt gagaggcccg 540 cgtaccacaa aaaaaacaaa caaacaaaaa tcaaacaaat tagttccatc atctgtatca 600 tttctaagac acttttattt gactgatttt cctcctcatt gtgaattata tttttgtagt 660 tctttgcaag cccaattgga ttttgagtta ctttattata gatacattac aacattacat 720 aaagtttggg gaaattgaaa aagcaaaatg atttataagc tttccatgtt aataactttc 780 atttttatgt tttctcatct acacttcatc cacatcc 817 <210> 155 <211> 585 <212> DNA <213> Tuti 24 Sperm <400> 155 ctccttcagc aactccagtt acttgcacac taagccactt aacattgtcc cacagctcac 60 tgatactcta ttgtgcttta gagtctcttt tctctttgtg ttccatcttg catagtttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcgaga catacaatct gttggtaata 180 ccattcagta tattttaaat ttcaaatgtt ggatatttca tttctagaaa tttgattcgg 240 gtctttttta atattcttca tgtctaaaaa ttatttttta aatctttctt ctagcttatt 300 gatcatatga aataacatta taataattag tttaatgtct ttgtttacta gttccatcat 360 ctgtatcatt tctgagacac ttttatttga ctgattttcc tcctcattgt gaattatatt 420 tttgtagttc tttgcaagtc cagttggatt ttgagttact ttattataaa tacattacaa 480 cattacataa agtttgggga aattgaaaaa gcaaagtgat ttataagctt tccatgctaa 540 taactctcat ttttatgttt tctcatctac acttcatcca catcc 585 <210> 156 <211> 583 <212> DNA <213> Tuti 24 Humpback <400> 156 ctccttcagc aactccagtt acttgcacac taagccactt accattgtcc cacagctcac 60 tgatactcta ttgtgcttta aagtctcttt tctctttgtg ttccatcttg cataatttct 120 tgtattgtgt tcaagtttac taatcttttc tcctgcgaca tataatctgt tggtaatacc 180 attcagtata ttttaaattt caaatgttgg atatttcatt tctagaaatt tgatttgggt 240 cttttctaat attcttcatg tctaaaattt attttttaaa tctttcttct agcttattga 300 acatatgaaa taacattata ataattagtt taatgtcttt gtttactagt tccatcatct 360 gtatcacttc tgagacactt ttatttgact gattttcctc ctcattgtga attatatttt 420 tgtagttctt tgcaagccca gtcggatttt gagttacttt attataaata cattacaaca 480 ttacataaag tttggggaaa ttgaaaaagc aaaatgattt ataagctttc catgctaata 540 actttcattt ttatgttttc tcatctacac ttcatccaca tcc 583 <210> 157 <211> 162 <212> DNA <213> Tuti 35 Bottlenosed <400> 157 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 158 <211> 162 <212> DNA <213> Tuti 35 Short-finned <400> 158 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaata 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 159 <211> 162 <212> DNA <213> Tuti 35 Dall's <400> 159 gccatactga ggcttaggca tgaattttgt tattttctgt ctgttgctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 160 <211> 161 <212> DNA <213> Tuti 35 Narwhal <400> 160 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctaa ttttaaaatg 120 ttttttataa tatatgttac ttgccaacta tgtatgtagg g 161 <210> 161 <211> 158 <212> DNA <213> Tuti 35 Amazon <400> 161 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta tcaccaaaat 60 taatttgcta actcttacat aaaataatgt aacatttata gcctattttt aaaatgtttt 120 ttataagtat atgttacttg ccaactatgt atgtaggg 158 <210> 162 <211> 161 <212> DNA <213> Tuti 35 La Plata <400> 162 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaactctt acataacata atgtaacatt tatagtctat tttttaaatg 120 tttttataag tatatgttac ttgccaacta tgtatgtagg g 161 <210> 163 <211> 162 <212> DNA <213> Tuti 35 Baiji <400> 163 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 164 <211> 374 <212> DNA <213> Tuti 35 Beaked <220> <221> CDO <222> (111) .. (326) <400> 164 gccatactga ggcttaggca tgaattttgt tattttctgt ttcttaatta tcaccaagat 60 taatttgcta attcttacat aaaataatgt aacatttata gtctattttt tttttttttg 120 gcggtacgtg ggcctctcac tgttgtggcc tctcccattg cggagcacag gccccggaca 180 cgcaggctca gtggtcatgg ttcacagacc cagccactcc gcggcatgtg agatcctccc 240 ggaccggggc acgaacccgt gacccttgca tcagcaggca gactctcaac cactgcacca 300 ccagggaagc cctatagtct attttttaaa tgttttttat aagtatatgt tacttgccaa 360 ctatgtatgt aggg 374 <210> 165 <211> 375 <212> DNA <213> Tuti 35 Meso.sp. <220> <221> CDO <222> (111) .. (327) <400> 165 gccatactga ggcttaggca tgaattttgt tattttctgt ttcttaatta tcaccaaaag 60 taatttgcta attcttacat aaaataatgt aacatttata gtcttttttt tttttttttt 120 tgcggtacgc gggcctctca ctgttgtggc ctctcctgtt gtggagcaca ggctccggac 180 gcacaggctc agtggccatg gttcatgggc ctagccactc cgcagcatgt gagatcctcc 240 tggacagggg catgaaccca tgacccctgc atcggcaggc agactctcaa ccactgcacc 300 accagggaag ccctatagtc tattgttaaa atgtttttta taagtatatg ttacttgcca 360 actatgtatg taggg 375 <210> 166 <211> 163 <212> DNA <213> Tuti 35 Ganges <400> 166 gccatactga ggcttaggca tgaattttgt tattttctag tctgtttctt aattattacc 60 aaaattaatt tgctaattct tacataaaat aatgtaacat tcatagtcta tttttaaaat 120 gttttctgta agtatatgtt acttgccaac tatgtatgta ggg 163 <210> 167 <211> 162 <212> DNA <213> Tuti 35 Sperm <400> 167 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 gaattaattt gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 168 <211> 161 <212> DNA <213> Tuti 35 Humpback <400> 168 gccatactga ggttaggatg aattttgtta ttttctgtca tctttcttaa ttatcaccaa 60 aattaatttg ctaattctta cataaaataa cgtaacattt atagtctatt tttaaaatgt 120 tttttataag tatatgttac ttgccaacta tgtatgtagg g 161 <210> 169 <211> 162 <212> DNA <213> Tuti 35 Fin <400> 169 gccatactga ggcttaggca tgaattttgt tattatctgt ctgtttctta attatcacca 60 aaattaatct gctaattctt acataaaata atgtaacatt tatagtctat ttttaaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 170 <211> 162 <212> DNA <213> Tuti 35 Minke <400> 170 gccatactga ggcttaggca tgaattttgt tattttctgt ctgtttctta attatcacca 60 aaattaattt gctaattctt acataaaata atgtaacatt tatagtctat tttttaaatg 120 ttttttataa gtatatgtta cttgccaact atgtatgtag gg 162 <210> 171 <211> 160 <212> DNA <213> Tuti 35 Hippo <400> 171 gccatactga ggcttaggca tgaattttgt tattctgtct gtttcttaat tatcaccaaa 60 attaatttgc taattcttac ataaaataac gtaacattta tagtctattt tttaaatgtc 120 ttttataagt atacgttact tgccaactat gtatgtaggg 160 <210> 172 <211> 183 <212> DNA <213> Sp2 Bottlenosed <400> 172 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atacagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 173 <211> 183 <212> DNA <213> Sp2 Short-finned <400> 173 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataagag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag gataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 174 <211> 185 <212> DNA <213> Sp2 Dall's <400> 174 gagataaatg aaggcaccca tttaaaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaagctaa aagaaatgta ggaaacaaga atactagctc 120 ttgaaataaa gaataaactc aactaggata aaatataaac tgaaagtaga cagggaaaag 180 atcag 185 <210> 175 <211> 176 <212> DNA <213> Sp2 Narwhal <400> 175 gagataaatg aaggcaccca tttaaaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataagta atatgagaaa aaactaaaaa aaatgtagga aataagaata tagctcttga 120 aataataaac tcaacaggat aaaatataaa ctgaaagtag acagggaaaa gatcag 176 <210> 176 <211> 183 <212> DNA <213> Sp2 Amazon <400> 176 gagataaatg aaggcaccca tttaaaatca gtagaaaagc atgaaaaact aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga ttatagttct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 177 <211> 184 <212> DNA <213> Sp2 La Plata <400> 177 gagataaatg aaggcaccca tttagaatca gtaggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atagagctct 120 tgaaataaag aataaactcc actaggataa aatataaact gaaagtagac agggaaaaga 180 tcag 184 <210> 178 <211> 184 <212> DNA <213> Sp 2 Baiji <400> 178 gagataaatg aaggcaccca tttaaaatca gtaggaaagc aggaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cagt 184 <210> 179 <211> 184 <212> DNA <213> Sp 2 Beaked <400> 179 gagataaatg aaggcaccca tttaaaatta ataggaaagc atgaaaaaat aggcaggagt 60 gaaataatag gtaatatgag aaaaaaacta aaagaaatct aggaaataag aatatagctc 120 ttgaaataaa gaataaactc aacaggataa aatataaact gaaagtagac agggaaaagg 180 tcag 184 <210> 180 <211> 183 <212> DNA <213> Sp 2 Ganges <400> 180 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaagtaatag gtaatatgag aaaaaactaa atgaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 181 <211> 413 <212> DNA <213> Sp 2 Sperm <220> <221> CDO <222> (123) .. (351) <400> 181 gagataaatg aaggcaccca tttaaaatca ataggaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaaaata aaagaaatct aggaaataag aatatagctc 120 ttgggcttcc ctggtggcgc agtggttggg agtccgcctg ccgatgcagg ggacatgggt 180 tcgtgccccg gtctgggagg atcccacatg ccgcggagtg gctgggcctg tgagccatgg 240 ccgctgagcc tgcgcatccg gagcctgtgc tctgcaacgg gagaggccac aacagtgaga 300 ggcccgcgta ccgccaaaaa aaaaaaaaaa aaaaaataga atatagctct tgaaataaag 360 aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat cag 413 <210> 182 <211> 183 <212> DNA <213> Sp 2 Hump <400> 182 gagataaatg aaggcaccca tttagaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acagtataaa atacaaactg aaagtagaca gggaaaagat 180 cag 183 <210> 183 <211> 183 <212> DNA <213> Sp 2 Fin <400> 183 gagataaatg aaggcaccca tttaaaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaatagtag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 184 <211> 183 <212> DNA <213> Sp 2 Minke <400> 184 gagataaatg aaggcaccca tttaaaatca ataagaaagc atgaaaaaat aggcagaagt 60 gaaataatag gtaatatgag aaaaaactaa aagaaatcta ggaaataaga atatagctct 120 tgaaataaag aataaactca acaggataaa atataaactg aaagtagaca gggaaaagat 180 cag 183 <210> 185 <211> 183 <212> DNA <213> Sp 2 Hippo <400> 185 gagataaatg aaggcaccca tttaaaatca ataggaaaac atgaaaaaat aggcagaagt 60 gaaataatag gtagtatgaa aaagaactaa aagaaatcca ggaaataaga atatagcttt 120 tgaaacagaa tataactcaa caggataaaa tataaactga aagtagacag ggaaaagatc 180 agt 183 <210> 186 <211> 262 <212> DNA <213> Sp 9 Bottlenosed <400> 186 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggagt tccttctact tcagtggaat taaggctgtg 120 atcatttaag tctgacgtga atttaatttg atttaaacac aataaagaaa cgtgacattt 180 cttgcacgcc caaatttgta cttacagctt taaacctaac tagtggtgga tactatatac 240 gaagcagtgt taaacgagat gt 262 <210> 187 <211> 262 <212> DNA <213> Sp 9 Amazon <400> 187 ccattttctg ggctcaacat aaatcttcca gaccctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tccgtggaat taaggctggg 120 atcatttaag tctgacgtga atttaatttg atttaaacac aataaagaaa cgtgacattt 180 cttgcacacc caaatttgta cttacagctt taaacctaac tagtggtgga tactataatc 240 gaagcagtgt taaacgagat gt 262 <210> 188 <211> 262 <212> DNA <213> Sp 9 Beaked <400> 188 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tcagtggaat taaggctggg 120 ctcatttaag tctgaggtga atttaatttg atttaaacac gataaagaaa cgtgacattt 180 cttgcgcgcc caaatttgta cttacagctt taaacctaac tagtggtgga tactatatac 240 gaagcagtgt taaacgagat gt 262 <210> 189 <211> 486 <212> DNA <213> Sp 9 Sperm <220> <221> CDO <222> (178) .. (401) <400> 189 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaagaacgga 60 gggaagccca gtaataactg ggattggatt tccttctact tcagtggaat taaggctggg 120 attatttaag tcggaggtga atgtaatttg atttaaacac aataaagaaa cgtgacaggg 180 cttacctggt ggcgcagtgg ttgagaatcc gcctgccgat gcaggggaca cgggttcgtg 240 ccccggtccg ggaagattcc cacatgccgc agagtggctg ggcccgtgag ccatggctgc 300 tgagcctscg catccggagc ctgtgctccg caacgggaga ggccacaaca gtgagaggcc 360 cgcgtaccgc aaaaaaaaaa aaaaaaaaaa gaaacgtgac atttcttgca tgcccaaatt 420 tgtacttaca gctttcaacc taactagtgg tggatactat atacgaagca gtgttaaacg 480 agatgt 486 <210> 190 <211> 262 <212> DNA <213> Sp 9 Humpback <400> 190 ccattttctg ggctcaacat aaatcttcca gactctagtg catttctagg gaggaatgaa 60 gggaagccca gtgataactg ggattggatt tccttctact tcagtgaaat taaggttggg 120 atcatttaag tctgaggtga atttaatttg atttaaacac aataaagaat cgtgacattt 180 cttgcacacc caaatttgta cttacagctt taaacctagc tagtggtgga tactatattc 240 gaagcagtgt taaacgagat gt 262 <210> 191 <211> 376 <212> DNA <213> Hump 20 Bottlenosed <400> 191 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gctcgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttcaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggagaccctc ttggcattat ttattgggct tcagtgatat caacaggagg 360 atccaatttc ccttca 376 <210> 192 <211> 376 <212> DNA <213> Hump 20 Short-finned <400> 192 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaaataga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc atattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttcaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggagtccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 193 <211> 376 <212> DNA <213> Hump 20 Dall's <400> 193 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcgtgatg ctttaaaatt actcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcatt ggaggccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 194 <211> 376 <212> DNA <213> Hump 20 Narwhal <400> 194 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgaga ttgcttactg 120 ccattctaca tgggtagaac agacgttggt gcttgcattt aagaactaga tcttccagag 180 aaggtcagca tagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcatggtg ctttaaaatt acttatctca agcctatcat tatatacttc ttgttttcac 300 tggcggcatt ggaggccctc ttggcattat ttattgggct tcagtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 195 <211> 373 <212> DNA <213> Hump 20 Amazon <400> 195 atccacatat cagctggcat tacagtctgc caaagtatta acatgaatag agaaggaaat 60 gctttaacta gttttagctt taaaagttct ttaccacttt tatgtgattg cttactgcca 120 ttctacatgg gtagaacaga tgttggtgtt tgtttttaag aactagatct tccagagaag 180 gtcagcatag tgctctggga agcctccaga ttcattttag aggtcctaat gacttatttt 240 tgtggtgctt taaaattatt catctcaagc ctatcattat atacctcttg ttttcactgg 300 tggcattgga ggccctcttg gcattattta ttggtcttcg gtggtatcaa caggaggatc 360 caatttccct tca 373 <210> 196 <211> 376 <212> DNA <213> Hump 20 La Plata <400> 196 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagaggagga 60 aatgctttaa ctagttttag ctttaaaagt tcttcatcac ttttatgcga ttgcttactg 120 ccatcctaca cgggtagaac agatgttggt gtttgctttt aagaactaga tcttccagag 180 aaggtcagca gagtgctctg ggaagcctcc agattcattt tagaggtcct aatgactctt 240 tttcgtggtg ccttaaaatg agtcatctca agcctatcat tatatacctc ttgttttcac 300 tggcggcgct ggaggccctc tcggcattgt ttattggtct tcggtggtat caacaggagg 360 atccaatttc ccttca 376 <210> 197 <211> 373 <212> DNA <213> Hump 20 Baiji <400> 197 atccacatat cagctggcat tacagtctgc caaagtattc acatgaatag agaaggaaat 60 gctttaacta gttttagctt taaaagttct ttatcacttt tatgtgattg cttactgcca 120 ttctacatgg gtagaacaga tgttggtgtt tgcttttaag aactagatct tccagagaag 180 gtcagcatag tgctctggga agcctccaga ttcattttag aggtcctaat gactcttttt 240 cgtgttgctt taaaattatt catctcaagc ctatcattat atacctcttg ttttcaatgg 300 cggcattgga ggccctcttg gcattattta ttggtcttca gtggtatcaa caggaggatc 360 caatttccct tca 373 <210> 198 <211> 378 <212> DNA <213> Hump 20 Beaked <400> 198 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgtga ttgcttactg 120 ccattctgca tgggtagaac agatgttggt gtttgctttt aagaactaga tctcccagag 180 aaggtcagca ggtgctctgg gaagcctcca gattcatttt agagttccta atgactcttt 240 tttgtggtgc tttaaaatta ctcatctcaa gcttatcatt atatacctct tgttttcact 300 ggtggcattg gaggccctct tggcattatt tattgggctt cagtggtata cacaggagga 360 ggatccaatt tcccttca 378 <210> 199 <211> 365 <212> DNA <213> Hump 20 Ganges <400> 199 atccacatat cagctggcat tacagtgctg ccaaagtatt aacatgaata gagaaggaaa 60 tgctttaact agttttagct ttaactgttc tttatcactt ttatgtgatt gcttactgcc 120 attctacaga tgttggtgtt tgcttttaag aactagatct cccagagaag gccagcatag 180 tgctctggga agcctccaga ttcattttag aggtcctaat gactcttttt cgtggtgctt 240 taaaattact catctcaagc ctatcattat atactcttgt tttcactggt ggcattggag 300 gccctcttgg cattatttat tgggcttcag tggtatccac aggaggagga tccaatttcc 360 cttca 365 <210> 200 <211> 379 <212> DNA <213> Hump 20 Sperm <400> 200 cctatccaca tatcagctgg caatacagtc tgccaaagta ttaacatgaa gagagaagga 60 aatgctttaa ctagttttag ctttaaaagt tctttatcac ttttatgtga ttgcttactg 120 ccattctacg tgggtagaac agatgttggt gtttgctttt aagaactaga tctcccagag 180 aaggtcagca tagagctctg ggaagcctcc agattccttt tagaggtcct aatgactctt 240 ttttgtggtg ctttaaaatt actcatctca agcctatcat tgtatacctc ttgttttcac 300 tggcgtcatt ggaggccctc gtggcattat ttattgggct tcagtggtat caataggagg 360 aggatccaat ttcccttca 379 <210> 201 <211> 764 <212> DNA <213> Hump 20 Humpback <220> <221> CD <222> (177) .. (398) <400> 201 cctatccaca tatcagctgg cattacagtc tgccaaagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaactgt tctttatcag ttttatgtga ttgcttactg 120 ccattctaca tgggtagaac agatgttggt gtttgctttt aagaactaca tctcctgggc 180 ttccctggtg gcacagtggt tgagaatctg cctgccaatg caggggacat gggttcgagc 240 cctggtctgg gaagatccca catgccgcgg agcaactatg tccgtgagcc acaactactg 300 agcctgcgca tctggagcct gtgctccgca acaagagagg ccgcgatagt gagaggcccc 360 cgcaccgcga tgaagcgtgg cccccgcttg ccgcaactag agaaagcccc cgcacagaaa 420 cgaagaccca acacagccat aaataaataa ataaataaat aaataaataa cagtaggtct 480 ttcgataaat gaggggtcca agacaagaga accagaggtc cattggttta aaaaaaaaaa 540 aaaaaaaaaa ctagatctcc cagagaaggt cagcatagtg ctctgggaag cctccagatt 600 cattttagag gtcttaatga ctctttttca tgatgcttta aaattactca tctcaagcct 660 atcattatat acctcttgtt ttcactggag gcattggagg ccctcttggc attatttatt 720 gggcttcagt ggtatcaaaa ggaggaggat ccaatttccc ttca 764 <210> 202 <211> 762 <212> DNA <213> Hump 20 Fin <220> <221> CD <222> (177) .. (398) <400> 202 cctatccaca tatcagctgg cattacagtc tgtcagagta ttaacatgaa tagagaagga 60 aatgctttaa ctagttttag ctttaactgt tctttatcag ttttatgtga ttgcttactg 120 ccattctaca tgggtagaac agatgttggt gtttgctttt aagaactaga tctcctgggc 180 ttccctggtg gcacagtggt tgagaatctg cctgccaatg cagggggcat gggttcgagc 240 cctggtctgg gaagatccca catgccgcgg agcaactagg tccgtgagcc acaactactg 300 agcctgcgcg tctggagcct gcgctccgca acaagagagg ccgcaatggt gagaggccca 360 cgcatcgcga tgaagagtgg cccccagttg ccgcaactag agaaagccct tgcacagaaa 420 cgaagatcca acacagccat aaataaataa ataaataaat aaataaataa cagtaggtct 480 ttagataaat gaagggtcca agacaagaga accaggggtc cattggttta aaaaaaaaaa 540 acaaaaaact agatctccca gagaaggtca gcatagtgct ctgggaagcc tccagattca 600 ttttagaggt cttaatgact ctttttcgtg ctgctttaaa attactcatc tcaagcctat 660 cattatatac ctcttgtttt cactggcggc attggaggcc ctcttggcat tatttattgg 720 gcttcagtgg tatcaaaagg aggaggatcc aatttccctt ca 762 <210> 203 <211> 767 <212> DNA <213> Hump 20 Minke <220> <221> CD <222> (175) .. (397) <400> 203 tatccacata tcagctggca ttacagtctg ccaaagtatt aacatgaata gagaaggaaa 60 tgctttaact agttttagct ttaactggtc tttatcagtt ttatgtggtt gcttactgcc 120 attctacatg ggtagaacag atgttggtgt tttcttttaa gaactagatc tcctgggctt 180 ccctggtggc acagtggttg agaatctgcc tgccaatgca gggggcatgg gttcgagccc 240 tggtctggga agatcccaca tgccgcggag caattatgtc cgtgagccac aactactgag 300 cctgcgcgtc tggaccctgt gctccgcaac aagagaggcc gcgatagtga gaggccccgg 360 gcaccacgat gaagagcggc ccccacttgc cgcaactaga gaaagccctc gcacagaaac 420 gaagacccaa cacagccata aataaataaa taaataaata aataaataaa taaaaaacag 480 taggtctttt gataaatgag gggtccaaga caacagaacc agaggtccat tggtttaaaa 540 aaaaaacaaa aaactagatc tctcagagaa ggtcagcata gtgctctggg aagcctccag 600 atccatttta gaggtcttaa tgactctttt tcgtgatgct ttaaaattac tcatctcaag 660 cctatcatta tatacctctt gttttcactg gcggcattgg agaccctctt ggcattattt 720 attgggcttc agtggtatca acaggaggag gatccaattt cccttca 767 <210> 204 <211> 381 <212> DNA <213> Hump 20 Hippo <400> 204 cctatccaca tatcagctgg cattacagcc tgccaaaggg tttgaacatg aatagagaag 60 gaaatgcttt aactagttgt agctttaact gttctttacc acttttatgt gatcgcttgc 120 agccattcta caaggctaga acagatgttg gtgtctactt ctaagaacta gatctcccag 180 agaaggtcag catagtgccc tgggaagcct ccagattcat tttagaggtc ctaatgactc 240 tttttcatgg tgctttaaaa tcactcatct cagacctatc attatgtacc tcttgttttc 300 actggcggca ttggaggccc tcttggcatt atttatgggg ctttggtggt atcaacagga 360 ggaggatcca atttcccttc a 381 <210> 205 <211> 100 <212> DNA <213> Hump 203 Bottlenosed <400> 205 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 206 <211> 100 <212> DNA <213> Hump 203 Amazon <400> 206 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 207 <211> 100 <212> DNA <213> Hump 203 Beaked <400> 207 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaggg 60 aattatgctc cacctccctg agggcagaat agcttcataa 100 <210> 208 <211> 100 <212> DNA <213> Hump 203 Sperm <400> 208 atacagtaca cttgggcagg aagttagtta ctctgtgtag tccaaactgg aatagtaggg 60 aattatgctc tacctccctg agggcagaat agcttcataa 100 <210> 209 <211> 403 <212> DNA <213> Hump 203 Humpback <220> <221> CD <222> (62) .. (364) <400> 209 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaagg 60 ggggcttccc tggtggtgca gtggttgaga atctgcctgc caatgcaggg gacatgggtt 120 cgagccctgg tctgggaaga tcccacatgc cacggagcaa ctgggcccat gagccacaat 180 tactgagcct gcacgtctgg agcctgtgct ccgcaacaag agaggccatg atagtgagag 240 gcccgcgcac cacgatgaag agtggccccc gcttgccaca actagagaaa gctctcgcac 300 agaaacaaag accgaacaca gccaaaaata aataaataaa taaataaatt taaaatagta 360 gggaattatg ctctacctcc ctgagggcag aatagcttca taa 403 <210> 210 <211> 403 <212> DNA <213> Hump 203 Minke <220> <221> CD <222> (62) .. (364) <400> 210 atacagtaca cttgggcagg aagttagtta ctatgtgtag tccaaactaa aatagtaagg 60 ggggcttccc tggtggtgca gtggttgaga atctgcctgc caatgcaggg gacacgggtt 120 cgagccctgg tctgggaaga tcccacatgc cacggagcag ctaggcccgt gagccacaat 180 tactgagcct gcacgtctgg agcctgtgct ccgcaacagg aggggccatg atagtgagag 240 gcccgcgcac cgcgatgaag agtggccccc gcttgccgca actagagaaa gctctcgcac 300 agaaacgaag accgaacaca gccaaaaata aataaataaa taaataaatt taaaatagta 360 gggaattatg ctctacctcc ctgagggcag aatagcttca taa 403 <210> 211 <211> 390 <212> DNA <213> Mago 24 Bottlenosed <220> <221> CDO <222> (64) .. (289) <400> 211 caaactgaac aagaatgtgg attgagtggc cagcatacct cttcatttaa aacagggttt 60 ctcgggcttc cctggtggca cagtggttga gagtctgcct gctgatgcag gggacacggg 120 ttcgtgcccc ggtccaggaa gatcccacat gccgcggact gggcccgtga gccatggccg 180 ctgagcctgc gcgtccggag cctgtgctcc gcaacaggag aggccacaac agtgagaggc 240 ccgcgtaccg caaaaaaaaa aaaaagaaaa aacaaaagca gcgtttctca cctcaacagt 300 attgacatct tgagccagat gatgcttttt ttttttggac tggagactgg gggacaccac 360 tgcttctccc tcttagatgc ctccccagat 390 <210> 212 <211> 390 <212> DNA <213> Mago 24 Short-finned <220> <221> CDO <222> (65) .. (289) <400> 212 tcaaactgaa caagaatgtg gattgagtgg ccagcgtacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg agagtccgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtccggga agatcccaca tgccgcggac tgggcccgtg agccatggcc 180 gctgagcctg cgcgtccgga gcctgtgctc cgcaacggga gaggccacaa cagtgagagg 240 cccgcgtacc gcaaaaaaaa aaaaagaaaa aacaaaagca gcgtttctca cctcaacagt 300 attgacatct tgagccagat gatgcttttt ttttttggac tggagactgg gggacaccac 360 tgcttctccc tcttagatgc ctccccagat 390 <210> 213 <211> 396 <212> DNA <213> Mago 24 Dall's <220> <221> CDO <222> (65) .. (295) <400> 213 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagct 60 tctcgggctt ccctggtggt gcagtggtta agagtctgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtctggga agatcccaca tgccgcggaa aggctgggcc catgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt ctccgcaatg ggagaggcca caacggtgag 240 aggcccggta ccgcaaaaaa aaaaaaaaac acaaaaaaca aaaacagtgt ttctcacctc 300 aacagtactg acatcttgag ccagatgatg cttttgtttt ttggactgga gattggggga 360 caccactgct tctccctctt agatgcctcc ccagat 396 <210> 214 <211> 391 <212> DNA <213> Mago 24 Narwhal <220> <221> CDO <222> (65) .. (291) <400> 214 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagtt 60 tctcgggctt ccctggtggc gcagtggttg agagtctgcc tgccgatgca ggggacacgg 120 gttcgtgccc cggtccagga agatcccaca tgccacggaa aggctgggcc cgtgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt gctccgcaac gggagaggcc acaacagtga 240 gaggcccggt accgcaaaaa aaaaaaagaa aaaacaaaaa cagtgtttct cacctcaaca 300 gtactgacat cttgagccag atgatgcttt tttttttgga ctggagattg gtggacacca 360 ctgcttctcc ctcttagatg cctccccaga t 391 <210> 215 <211> 394 <212> DNA <213> Mago 24 Amazon <220> <221> CDO <222> (65) .. (293) <400> 215 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg acagtccgcc tgtcaatgca ggggacacgg 120 gtttgtgccc cggtcctgga agatcccaca tgccgcggag cctgcgcccg tgagccatgg 180 ccgctgagcc tgtgcgtccg gagcctgtgc tccgcaacgg gagaggccac agtagtgaga 240 ggcctgcgta ccgcaaaaaa aaaaaaaaag aaaaaacaaa aacagggttt ctcacctcaa 300 cagtactgac atcttgagcc aggtgatgct tctttttttt ggactggaga ttgggggaca 360 ccactgcttc tccctcttag atgcctcccc agat 394 <210> 216 <211> 393 <212> DNA <213> Mago 24 La Plata <220> <221> CDO <222> (79) .. (292) <400> 216 tcaaactgaa caagaatgtg gattgagtgg ccgggtacct cttcaattaa aacagggttt 60 ctcgggcttc cccggtggcg cagtggttga gagtccgcct gccaatgcag gggaaagggt 120 ttgtgccccg gtccgggaag atcccacatg ccccggagcg gctgggcccg tgagccatgg 180 ccgctgagcc tgcacgtccg gagcctgtgc tctgcaacgg gatgaggcca caacagtgag 240 aggcccgcat accgcaaaaa aaaaaaaaga aaaaacaaaa acagcgtttc tcacctcaac 300 agtactgaca tcttgagcca gatgatgctt ttttgttttg gactggagat tgggggacac 360 cactgcttct ccctcttaga tgcctcccca gat 393 <210> 217 <211> 391 <212> DNA <213> Mago 24 Baiji <220> <221> CDO <222> (65) .. (289) <400> 217 tcaaactgaa caagaatgtg gattgagtgg ccagggaacc tcttcattta aaacagggtt 60 tctcgggctt ccctggtggc gcagtggttg agtgtccgcc tgccaatgca ggggacacgg 120 gttcgtgccc cggtccggga agatcccaca tgccgcggag cggctgggcc cgtgagccat 180 ggccgctgag cctgcgcgtc cggagcctgt gctccgcaac gggagaggcc acaacagtga 240 gaggcccgcg taccgcaaaa aaaaagaaaa aacaaaaaca gcgtttctca cctcaacagt 300 actgacatct tgagccagat gatgcttttt tttttttgga ctggagattg ggggacacca 360 ctgcttctcc ctcttagatg cctccccaga t 391 <210> 218 <211> 164 <212> DNA <213> Mago 24 Beaked <400> 218 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagggtt 60 tctcacctca acagtactga catcttgagc caggtgatgc tttgtttttt ggactggaga 120 ttgggggaca ccacagcttc tccctcttag atgcctcccc agat 164 <210> 219 <211> 166 <212> DNA <213> Mago 24 Ganges <400> 219 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagagtt 60 tctcacccca acagtactga catcttgagc cagatgatgc catttttttt ttggactgga 120 gattggggga caccactgct tctccctctt agatgcctcc ccagat 166 <210> 220 <211> 166 <212> DNA <213> Mago 24 Sperm <400> 220 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagtgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc ttttttgttt ttggactgga 120 gattggggga caccactgct tctccctctt agatgcctcc ccagat 166 <210> 221 <211> 167 <212> DNA <213> Mago 24 Humpback <400> 221 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagcgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc tttttttttt tttggacggg 120 agattggggg acaccactgc ttctccctct tagatgcctc cccagat 167 <210> 222 <211> 183 <212> DNA <213> Mago 24 Fin <400> 222 tcaaactgaa cagaatgtgg attgagtggc cagggtacct cttcatttaa aacagcgttt 60 ctcacctcaa cagtactgac atcttgagcc agatgatgct tttttttttt tttttttttt 120 tttttttttg gacgggagat tgggggacac cactgcttct ccctcttaga tgcctcccca 180 gat 183 <210> 223 <211> 172 <212> DNA <213> Mago 24 Minke <400> 223 tcaaactgaa caagaatgtg gattgagtgg ccagggtacc tcttcattta aaacagcgtt 60 tctcacctca acagtactga catcttgagc cagatgatgc tttttttttt tttttttggg 120 acgggagatt gggggacacc actgcttctc cctcttagat gcctccccag at 172 <210> 224 <211> 178 <212> DNA <213> Mago 24 Hippo <400> 224 tcaaactgaa caagaatgtg gattgagtgg ccagtgtatc ttttcattta aaaaagcatt 60 tcgtacctca atagtaccga catcttgagt cagacaaggt tttttgtttt ttttggtttt 120 ttttggactg gaaattgggg gataccactg cctctccctc ttagatgcct ccccagat 178 <210> 225 <211> 598 <212> DNA <213> Mago 26 Bottlenosed <220> <221> CDO <222> (99) .. (320) <400> 225 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggtgcagta 120 gttgagagtc cgtctgccga tgcaggggac acgggttcgt gccccggtcc gggaggatcc 180 cacatgccat ggagcggctc tgggcccgtg agccatggcc actgggcctg tgcgtccaga 240 gcctgtgctc cgcaacggga gaggccgcaa cagtgagagg ctcacgaacc gaaaaaaaaa 300 aaaaaaaaaa aaaagatctg tattacgaat tccaaacaga gcacaaaaca agaaggaacg 360 accacaaaat tccaaatgta attaatatta gagtgctatt tctattagtt cagtaaatcc 420 tactctagtt gcaagtaaac gctgtcttct tcaaagcact ggtcccattg attggtttga 480 tcttggatct taaattgtca gtctcagctt tgatggccat attaaaatat ttttgctaga 540 agaaacatca cacttgcttt cacacattta cttggttcag gtgttgtctt gtgtaagg 598 <210> 226 <211> 591 <212> DNA <213> Mago 26 Short-finned <220> <221> CDO <222> (99) .. (314) <400> 226 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaaca taacattaaa aagatctggg gcttccctgg tggtgcagta 120 gttgagagtc cgcctgccgg tgcaggggac acaggatcgt gccctggtcc aggaggatcc 180 cacatgccac ggagcggctg ggcccgtgag ccatggccac tgggcctgtg cgtccagagc 240 ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cacgaaccgc aaaaaaaaaa 300 aaaaaaaaga tctgtattac gaattccaaa cagagcacaa agcaagaagg aacgaccaca 360 aaattccaaa tgtaattaat attagagtgc tatttctatt agttcagtaa atcctactct 420 acttgcaagt aaacgctgtc ttcttcaaag cactggtccc attgattggt ttgatcttgg 480 atcttaaatt gtcagtctca gctttgatgg ccatattaag atatttttgc tagaagaaac 540 atcacacttg ctttcacaca tttacttggt tcaggtgttg tcttgtgtaa g 591 <210> 227 <211> 579 <212> DNA <213> Mago 26 Dall's <220> <221> CDO <222> (100) .. (307) <400> 227 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ctttaagtga 60 taaaaaataa tctgtgaaac gtaacattaa aaagatctgg ggcttccctg gtgacgcagt 120 agttgagagt ccgcctgctg atgcagggga cgtgggttcg tgccccggtc taggaagatc 180 ccacatgcca cagagcggct gggcccgtga gccatggccg ctgagcctgc ccgtccggac 240 cctgtgctcc gcaacgggag aggtcacaac agtgagaggc ccacaaactg caaaaaaaaa 300 agatctgtat tacgaattcc aaacagcaca aaaaaggaac gaccacaaaa ttccaaatgt 360 aattaatatt agagtgctat ttctattggt tcagtaaatc ctactctagt tgcaagaaaa 420 cgctgtcttc ttcaaaacac tggtcccatt gattggtttg atcttagatc ttaaattgtc 480 agtctcagct ttgatggcca tattaaaata tctctgctag aagacacatc acacttgctt 540 ttgcacattt acttggttca ggtgttgtct tgtgtaagg 579 <210> 228 <211> 594 <212> DNA <213> MAgo 26 Narwhal <220> <221> CDO <222> (99) .. (318) <400> 228 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttgaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tgacgcagta 120 gttgagagtc cgcctgccga tgcaggggac acgggttcgt gccccggtct gggaggatcc 180 cacatgccgc agagcggctg ggcccgtgag ccatggctgc tgagcctgcc cgtccggacc 240 ctgtgctccg caacaggaga ggtcacaaca gtgagaggcc cacagaccgc aaaaaaaaaa 300 aaaaaaaaaa aaaatctgta ttacggattc caaacagcac aaaacaaaaa ggaacgacca 360 caaaattcca aatgtaatta atattagagt gctatttcta ttggttcagt aaatcctact 420 ctagttgcaa gtaaacgctg tcttcttcaa agcactggtc ccattgattg gtttgatctt 480 agatcttaaa ttgtcagtct cagctttgat ggccatatta aaatatttct gctagaagaa 540 acatcacact tgcttttgca catttacttg gttcaggtgt tgtcttgtgt aagg 594 <210> 229 <211> 579 <212> DNA <213> Mago 26 Amazon <220> <221> CDO <222> (99) .. (314) <400> 229 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggcgcagtg 120 gttgagagtc cgcctgccga tgcaggggat atgggttcgt gccccagtct gggaagatcc 180 cacatgccgc ggagtggctg ggcccgtgag ccatggccac tcggcctgcg tgtccggagc 240 ctgtgctccg caacgggaga ggccacaaca gtgagaggcc cacgaaccac aaaaaaaaac 300 cccaaaaaga tctgtattac gaattccaaa cagagcacaa aacaagaagg aatgaccaca 360 aaattccaaa tgtaattaat attagagtgc tatttatatt ggttcagtaa atcctactct 420 agttgcaagt aaacactgtc ttcttcaaag cactggtccc atcttggatc ttaaattgtc 480 agtctcagct ttgatggcta tattaaaata tttttgctag aagaaacatc acacttgctt 540 tcgcacattt acttggttca ggtgttgtct tgtgtaagg 579 <210> 230 <211> 590 <212> DNA <213> Mago 26 La Plata <220> <221> CDO <222> (99) .. (312) <400> 230 cacatacact ttgaaattac ttaccagtgt tttaaatata aattctcata ttttaaatga 60 taaaaataat ctgtgaaacg taacattaaa aagatctggg gcttccctgg tggcgcagta 120 gttgagagtc cgcctgccga tgcacgggac acaggttcgt gccccggtcc gggaggatcc 180 cacgttccat ggagcggctg ggcccttgag ccatggccac tgggcctgcg catccagagc 240 ctgtgctccg caacaggaga ggccacaaca gtgagaggcc cgtgaaccgc aaaaaaaaaa 300 ggaagagatc tgtattatga attccaaaca gagcacaaaa caagaaggaa tgaccacaaa 360 attccaaatg taattaatat tagagttcta tttctattag ttcagtaaat cctactctag 420 ttgcaagtaa atgctgtctt cttcaaagca ctggtcccat tgataggttt gatcttggat 480 cttaaattgt cagtctcagc tttgatgacc atattaaaat atttttgcta gaggaagcat 540 cacacttgct ttgacacatt tacttggttc aggtgttgtc ttgtgtaagg 590 <210> 231 <211> 605 <212> DNA <213> Mago 26 Baiji <220> <221> CDO <222> (99) .. (328) <400> 231 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaatg taacattaaa aagatctggg gcttccctgg tggcgcagta 120 ggtgagagtc cacctgccga tgcaggggac atgggttcgt gcccggtccg ggaggatccc 180 acatgccgca gagcggctgg gcccgtgagc catggccatt gggcctgcgc gtccagagcc 240 tgtgctccgc aacgggagag acccaacagt gagaggcccg cgtaccgcaa aaaaaaaaaa 300 aacaaaaaaa aacaacaaaa aaaatctgat tacgaattcc aaacagagca caaaacaaga 360 aggaacgacc acaaaattcc aaatgtaatt aatattagag tgctatttct actggttcag 420 taaatcctac tctagttgcg agtaaacgct gttttcttca aagcactagt cccattgatt 480 ggtttgatct tggatcttaa attgtcagtc tcagctttga tggccatatt aaaatatttt 540 tgctagaaga aacatcacac ttgctttcac acatttactt ggttcaggtg ttgtcttgtg 600 taagg 605 <210> 232 <211> 376 <212> DNA <213> Mago 26 Beaked <400> 232 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaatattc caaatgtaat taatattaga gtgctatttc 180 tattggttga gtaaatccta ctctagttgc aagtaaacgc tgtcttcttc aaagtactgg 240 tccgattcat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 taaaatattt ttgctagaag aaacatcaca cttgctttca cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 233 <211> 380 <212> DNA <213> Mago 26 Ganges <400> 233 cacatacact ttgaaattac ttaccagtat tttaagtata aattttcata tttttaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaactc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaattcct acactagttg caagtaaacg ctgtcttctt caaagcactg 240 gtcccattga ttggtttgtt cttggatctt aaattgtcag tctcagcttt gatggccata 300 ttaaaatatt tttgctagaa gaaacatcac acttgctttt gcactttcct tacttggttc 360 aggtgttgtc ttgtgtaagg 380 <210> 234 <211> 376 <212> DNA <213> Mago 26 Sperm <400> 234 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaacga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacaaattc caaacagagc 120 acaaaacaaa aaggaatgac caccaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaacac tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 tgaaatattt ttgctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 235 <211> 376 <212> DNA <213> Mago 26 Humpback <400> 235 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaacgc tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagcattg atggccatat 300 taatatattt tttctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtcttgt gtaagg 376 <210> 236 <211> 366 <212> DNA <213> Mago 26 Fin <400> 236 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact ttacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tatgggttca gcaaatccta ctctagttgc tagtaaacgc tgtcttcttc aaagcactgg 240 tctcattgat tggtttgttc ttggatctta aattgtcagt ctcagctttg atggccatat 300 taaaatattt ttgctagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtc 366 <210> 237 <211> 366 <212> DNA <213> Mago 26 Minke <400> 237 cacatacact ttgaaattac ttaccagtat tttaaatata aattttcata ttttaaatga 60 taaaaataat ctgtgaaact taacattaaa aagatctgta ttacgaattc caaacagagc 120 acaaaacaaa aaggaacgac cacaaaattc caaatgtaat taatattaga gtgctatttc 180 tattggttca gtaaatccta ctctagttgc aagtaaatgc tgtcttcttc aaagcactgg 240 tcccattgat tggtttgttc ttggatctta aattgtcagt ctcagcattg atggccatat 300 taatatattt tttgtagaag aaacatcaca cttgctttcg cacatttact tggttcaggt 360 gttgtc 366 <210> 238 <211> 372 <212> DNA <213> Mago 26 Hippo <400> 238 cacatacact ttgaaattac ttaccagtct tttaaatata attttcatat tttaaaagat 60 aaaaataatc tgtgaaattt aacattagaa agatctgtat tatgaaattc aaacagagca 120 aaaccaaaaa gcaacgacca cgaaattcca aatgtaatta ataataaggt gatacttcta 180 ttagttcagt aaatcctact cttgttgtca agtaaatgct ctcttcttca aagcactgat 240 cccattgatc agtttgttct tggatcttaa actgtcgatc tcagctttga tggccatatt 300 aaaatatttt tctagaaaac atcacacttg ctttcgcaca tttgcttggt tcaggtgttg 360 tcttgtgtaa gg 372 <210> 239 <211> 740 <212> DNA <213> Mago 22 Bottlenosed <220> <221> CDO <222> (349) .. (570) <400> 239 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata atgatgtgaa acaacagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatt aaatgtggat gttttatttt aaaagaaatt 240 tgaagtattt tcattttaga gtaaattatt tttctagatg aagagaaact atatgtggaa 300 aaatgcaaaa aaaaaaaagt ggcattttaa ttaagaataa agaaattagg gcttccctgg 360 tggtgcagtg gttgagagtc cgcctgccaa tgcaggggac acagtttcgt gccccggtcc 420 gggaagatcc cacatgccgc agagcggctg ggcccgtgag ccatggccac tgagcctgtg 480 catctggaac ctgtgctccg cagcgggaga ggccacaaca gtgagaggcc cgcgtaccac 540 aaaaaaaaaa agaaagaaag gaagaaatta gaacaaaaac caaatctgtt tgcatagatg 600 tgaagaagat tcacctataa ataatcctga aactaatttc tctagagact attttctggc 660 catttgagat caaggcacaa tctcaattga gactaagaat gacaacaaat atagataagt 720 tgtctcattg aacaggaacc 740 <210> 240 <211> 743 <212> DNA <213> Mago 22 Short-finned <220> <221> CDO <222> (352) .. (573) <400> 240 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaacagaaa atcctcaaat aaagagcaaa ttgtagtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatt aaatgtggat gttttatttt taaaagaaat 240 ttgaagtatt ttcattttag agtaaattat ttttctagat gaagagaaac tacatgtgga 300 caaatgcaaa aaaaaaaaaa agtggcattt taattaagaa taaagaaatt agggcttccc 360 tggtggtgca gtggttgaga gtccgcctgc cgatgcaggg gacacagttt cgtgccccgg 420 tccgggaaga tcccacatgc cgcagagcgg ctgggcccgt gagccatggc cactgagcct 480 gtgcatctgg aacctgtgct ccgcagcggg agaggccaca acagtgagag gcccgcgtac 540 cgcaaaaaaa gaaagaaaga aagaaagaaa ttagaacaaa aaccaaatct gtttgcatag 600 atgtgaagaa gattcaccta taaataatcc tgaaactaat ttctctagag actattttct 660 ggccatttga gatcaaggca caatctcaat tgagactaag aatgacaaca aatatagata 720 agttgtctca ttgaacagga acc 743 <210> 241 <211> 748 <212> DNA <213> Mago 22 Dall's <220> <221> CDO <222> (351) .. (575) <400> 241 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aattaagaat aaagaaatta gggcttccct 360 ggtggtgcag tggttgagag tccgcctgcc gatgcagggg atacgggttc gtgccccggt 420 ctgggaagat cccacatgcc gcagagcggc tgggcctgtg agccatggcc actgagcctg 480 tgtgtccaga acctgtgctc cacagtggga gaggtcacaa cagtgagagg cccgtgcacc 540 gcaaaaaaaa aagaaagaaa gaaagaaaga aattagaaca aaaaccaaat ctgtttgcat 600 agatgtgaag gagaagattc acctataaat aatactgaaa ctaatttttc tagagactat 660 tttctggcca tttgagatca aggcacaatc tcaattgaga ctaagaatga caacaaatat 720 agataagttg tctcattgaa caggaacc 748 <210> 242 <211> 752 <212> DNA <213> Mago 22 Narwhal <220> <221> CDO <222> (349) .. (579) <400> 242 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa attctcaaat aaagtagcaa attgtggtct 120 ttgttagaaa atgaaattat ttctatactt gttctgatta gttatttggt atgaactatt 180 gtttattatt tattataaaa ataaagagat ctaaatgtgg atgttttatt tttaaaagaa 240 atctgaagta ttttcatttt agagtaaatt atttttctag atgaagagaa actacatgtg 300 gaaaaatgca aaaaaaaagt ggcattttaa ttaagaataa agaaattagg gcttccctgg 360 tggtgcagtg gttgagagtc cgcctgccga tgcaggggac acgggttcgt gccctggtcc 420 gggaagatcc cacatgccgc gaagcggctg ggcctgtgag ccatggccac tgagcctgtg 480 cgtccagaac ctgtgctccg cagtgggaga ggccacaaca gtgagaggcc cgcgtaccgc 540 aaaaaaaaaa aagaaagaaa gaaagaaaga aagaaattag aacaaaaacc aaatctgtgt 600 gcatagatgt gaaggagaag attcacctat aaataatcct gaaactaatt tttctagaga 660 ctattttctg gccatttgag atcaaggcac aatctcaatt gagactaaga atgacaacaa 720 atatagataa gttgtctcat tgaacaggaa cc 752 <210> 243 <211> 734 <212> DNA <213> MAgo 22 Amazon <220> <221> CDO <222> (337) .. (561) <400> 243 gcccactaaa tactactaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgca acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctgtacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctacg tgtggaaaaa tgcaaaaaaa 300 aaaaaagtgg cattttaatt aagaataaag aaattagggc ttccttggtg gtgcagtggt 360 tgagagtcca cctgccgatg caggggacac gggtttgtgc cccggtccgg gaagatccca 420 cgtgccgcag agcggctggg cccgtgagcc atggccgctg agcctgcgcg tccagagatt 480 gtgctccgca acgggagagg ccacaacagt gagaggccca cgtacagcaa aaaaaaaaaa 540 aaaaaaagaa taaagaaatt agaacaaaag ccaaatctgt ttgcatagat gtgaaggaga 600 agattcacct ataaataatc ctgaaactaa tttctctaga gactattttc tggccatttg 660 agatcaaggc acaatctcaa ttgagactaa gaatgacaac aaatatagat aagttgtctc 720 attgaacagg aacc 734 <210> 244 <211> 739 <212> DNA <213> Mago 22 La Plata <220> <221> CDO <222> (350) .. (566) <400> 244 gcccactaaa tactattaca ctaaagcaat tagacttaac taagcctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaga ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagttt taaatctgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtag 300 aaaaatgcaa aaaaaaaaag tagcgtttta attaagaata aagaaattag ggcttccctg 360 gtggtgcagt ggttgagagt ccacctgccg aagcagggga cacgggttcg tgccccaatc 420 cgggaggatc ccacatgcca cggagcggct gggcccatgt gccgtggccg ctgagcctgc 480 gcgtccagag actgtgctct gcaacaggag aggccacaac agtgagaggc ccacgtaccg 540 caaaaaaaaa aagtataaag agattagaac aaaaaccaaa tctgtttgca tagatgtgaa 600 ggaaaagatt cacctataaa taatcgtgaa actaatttct ctagagacta ttttctggcc 660 atttgagatc aaggcacaat ctcaattgag actaagaatg acaacaaata tagataagtt 720 gtctcattga acaggaacc 739 <210> 245 <211> 734 <212> DNA <213> Mago 22 Baiji <220> <221> CDO <222> (344) .. (561) <400> 245 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttagta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta cagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aataaagaaa ttagggcttc cctggtgatg 360 cggtggttga gagtccgcct gccgatgcag gggacgcggg ttcgggcccc ggtccgggaa 420 gatcccacat gccgcggagc ggctgggcct gtgagtcatg gctactgagc ccgtgcgtcc 480 agaacctgtg ctctgcagcg ggagaggcca caacagtgag aggcccgcgt accgcaaaaa 540 aaaaaaagaa taaagaaatt agaacaaaaa ccaaatctgt ttgcatagac gtgaaggaga 600 agattcacct ataaataatc ctgaaactaa tttctctaga gactgttttc tggccatttg 660 agatcaaggc acaatctcaa ttgagactaa gaatgtcaac aaatatagat aagttgtctc 720 attgaacagg aacc 734 <210> 246 <211> 740 <212> DNA <213> Mago 22 Beaked <220> <221> CDO <222> (349) .. (567) <400> 246 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa accctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgatattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaagt ggcattttaa ttaagaataa agaaatcagg gcttccctgg 360 tggcacagtg tttgagagtc cacctgccga tgcaggggac acgggtttgt gccccggtcc 420 gggaagatcc cacatgcctc ggagcggcta ggcccatgag ccatggccac tgagcctgtg 480 cgtccggaac ctgtgctccg caatgggaga ggccacaaca gtgagaggcc cacgtactgc 540 aaaaaaaaaa aaagaataaa gaaattagaa caaaaaccaa atctgtttgc atagatgtga 600 aggagaagat tcacctataa ataatcctga aactaatttc tctagagact attttctggc 660 catttgagat caaggcacaa tctcaattga gactaagaat gacaacgaat atcgataagt 720 tgtctcattg aacaggaacc 740 <210> 247 <211> 752 <212> DNA <213> Mago 22 Ganges <220> <221> CDO <222> (352) .. (579) <400> 247 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa gcagatgata 60 cgttagaata attatgtgaa acagtagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg tgctgattgg ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttca gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa agtggcattt taattaagaa taaagaaatt agggcttccc 360 tggtggtaca gtggttgaga gtctgcctgc cgatgcaggg gacgcgggtt cgtgccccgg 420 tccgggaaga tcccacaagc cgcagagcgg ctaggcccgt gagccatggc cgctgagcct 480 gcgcatctgc agcctgtgct ccacaacggg agaggccaca acagtgagaa tcccgcatac 540 ggcaaaaaaa aaaaaaaaaa aaaaagaata aagaaattgg aacaaaaacc aaatctgttt 600 gcacagatgt gaaggagaag attcacctat aaataatcct gaaactaatt tctctagaga 660 ctattttctg gccatttgag atcaaggcac aatctcaatt gagactaaga atgacaacaa 720 atatagataa gttgtctcat tgaacaggaa cc 752 <210> 248 <211> 523 <212> DNA <213> Mago 22 Sperm <400> 248 gcccactaaa tactattaca ctaaagcaat tagacttagc taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaaat aaagagcaaa ttgtggtctt 120 tgttagaaaa tgaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattt attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa gtggcatttt aattaagaat aaagaaatta gaacaaaaac 360 caaatctgtt tgcatagatg tgaaggagaa gattcaccta taaataatcc tgaaactaat 420 ttctctagag actattttct ggccatttgt gctcaaggca caatctcaat tgagactaag 480 aatgacaacg aatatagata agttgtctca ttgaacagga acc 523 <210> 249 <211> 525 <212> DNA <213> Mago 22 Humpback <400> 249 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtccaaa atagatgata 60 cattagaata attatgtgaa acagtagaaa atcctcaaat aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaaa aagtggcatt ttaattaaga ataaagaaat tattacaaaa 360 gccaaatctg tttgcataga tgtgaaggag aagattcacc cataaataat cctgaaacta 420 atttctctag agactatttt ctggccattt gagatcaagg cacaatctca attgagacta 480 agaatgacaa cgaatataga taagttgtct cattgaacag gaacc 525 <210> 250 <211> 523 <212> DNA <213> Mago 22 Fin <400> 250 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acaatagaaa atcctcaagt aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tccatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcacttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaagaaaaaa gtggcatttt aattaagaat aaagaaatta ttacaaaagc 360 caaatctgtt tgcatagatg tgaaggagaa gattcaccta taaataatcc tgaaactaat 420 ttctctagag actattttct ggccatttga gatcaaggca caatctcagt tgagactaag 480 aatgacaacg aatatagata agttgtctca ttgaacagga acc 523 <210> 251 <211> 522 <212> DNA <213> Mago 22 Minke <400> 251 gcccactaaa tactattaca ctaaagcaat tagacttaac taagtctaaa atagatgata 60 cattagaata attatgtgaa acagtagaaa atcctcaaat aaagaacaaa ttgtggtctt 120 tgttagaaaa agaaattatt tctatacttg ttctgattag ttatttggta tgaactattg 180 tttattattc attataaaaa taaagagatc taaatgtgga tgttttattt ttaaaagaaa 240 tttgaagtat tttcatttta gagtaaatta tttttctaga tgaagagaaa ctacatgtgg 300 aaaaatgcaa aaaaaaaaag tggcatttta actaagaata aagaaattat tacaaaagcc 360 aaatctgttt gcatagatgt gaaggagaag attcacctat aaataatcct gaaactaatt 420 tctctagaga ctattttctg gccatttgag atcaaagcac aatctcaatt gagactaaga 480 atgacaacga atatagataa gttgtctcat tgaacaggaa cc 522 <210> 252 <211> 518 <212> DNA <213> Mago 22 Hippo <400> 252 gcccactaaa tactattaca ctaaagcaac tagacttaac ttaggtaagt ctacaataga 60 taatacatta gaagaattca gtgaaacaat agaagatctt caaataaaga gcgtattgca 120 gtctttgtta gaaaatgaaa ttatctctgt acttgctcag gttagttatt tggtatgaac 180 tatggcttat tacttattat aaaaataaaa gaatctaaat gttggtgttt tatttttaga 240 agaaatttaa agcattttca ttttagagta aatgattttt ctagaggaaa agaaactaca 300 tgtgaaaaat gcaaaaaaag aaagcggcat tttaataaaa tataaagaaa ttggaacaaa 360 ttgtttgcat gaatatgaag gagaagattc acctataaat aatcttgaaa ttaatttctc 420 tagagactat tttctggcca tttgagatca aggcacaatc tcaattgaga ctaagaatga 480 caactaatat agataagttg tctcattgaa caggaacc 518 <210> 253 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHRS F Oligonucleotide for PCR <400> 253 gtggtctagt ggttaggayy yrg 23 <210> 254 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR R oligonucleotide for PCR <400> 254 cagttcccag accagggatt g 21 <210> 255 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type I CHR-1 F oligonucleotide for PCR <400> 255 gtggcacagt ggttaagaat ctg 23 <210> 256 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type I CHR-1 R oligonucleotide for PCR <400> 256 ctgcacagct tgtgggatc 19 <210> 257 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type II Type II Fologonucleotide for PCR and sequencing <400> 257 gcrgtccagt ggttaagact 20 <210> 258 <211> 21 <212> DNA <213> Artificial Sedquence <220> <221> misc_feature <223> CHR-1 Type II Type II R oligonucleotide for PCR and sequencing <400> 258 rcagcatgtg ggatcttagt t 21 <210> 259 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type II Type II Probe <400> 259 taagactctg hgcttccamt gcaggg 26 <210> 260 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III Probe <400> 260 aatgcagggg gcccrggttt ga 22 <210> 261 <211> 18 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III F oligonucleotide for PCR and sequencing <400> 261 gacttccctg gtggtcca 18 <210> 262 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III R oligonucleotide for PCR <400> 262 ctgaccaggg atcaaacccg 20 <210> 263 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-1 Type III Type III R SEQ oligonucleotide for sequencing <400> 263 cctgaccagg gatcaaacc 19 <210> 264 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 Full length CHR-2 F oligonucleotide for PCR <400> 264 gtggcacagt ggttaagaat ctg 23 <210> 265 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 Full length CHR-2 R oligonucleotide for PCR <400> 265 tgcgttgggt ctttgttgct 20 <210> 266 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD probe <400> 266 tctggagcct gtgctccgca 20 <210> 267 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD probe 2 <400> 267 caagagaggc cgcgatagtg a 21 <210> 268 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily CD prb2'R oligonucleotide for PCR <400> 268 gcctctcact atcgcggcct 20 <210> 269 <211> 20 <212> DNA <213> Artificial Sequuence <220> <221> misc_feature <223> CHR-2 CD subfamily M. Up oligonucleotide for PCR and sequencing <400> 269 ccctggtccg ggaagatccc 20 <210> 270 <211> 19 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily M. Down oligonucleotided for PCR and sequencing <400> 270 ggctgtgttg ggtcttcgt 19 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily # 13 Up oligonucleotide for sequencing <400> 271 ctggtccggg aagatcccac 20 <210> 272 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CD subfamily # 13 Up (Anti) oligonucleotide for sequencing <400> 272 gtgggatctt cccggaccag 20 <210> 273 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily Bera-1 probe <400> 273 cgcaayrgga gaggccacaa 20 <210> 274 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily CDO F1 oligonucleotide for PCR and sequencing <400> 274 gcagtggttg agagtchgcc tg 22 <210> 275 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> CHR-2 CDO subfamily CDO R2 oligonucleotide for PCR and sequencing <400> 275 ttgtggcctc tccyrttgcg 20 <210> 276 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Bando 1 Bando F1 PCR primer <400> 276 ttgtcaaggt gcttcgcttt ag 22 <210> 277 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Bando 1 Bando 1 R1 PCR primer <400> 277 gcccccagac tctgttttaa tag 23 <210> 278 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp316 Sp316 F1 PCR primer <400> 278 tcctccagtg tggcttcata 20 <210> 279 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp316 Sp316 R1 PCR primer <400> 279 ttactgcatg gggtttagtc aa 22 <210> 280 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm8 Sperm8 F1 PCR primer <400> 280 gccaatctct gtatttgttc atcaa 25 <210> 281 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm8 Sperm8 R1 PCR primer <400> 281 gtccacctac ctgcatgtct tac 23 <210> 282 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm28 Sperm28 F1 <400> 282 gtgaactctt ttagcttttg cttatct 27 <210> 283 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm28 Sperm28 R1 PCR primer <400> 283 agcacccaac acaatgtctg 20 <210> 284 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 F1 PCR primer <400> 284 gacaccccac ccattaaggt 20 <210> 285 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 F2 PCR primer <400> 285 gggagaagga aatgaaaggc 20 <210> 286 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 R1 PCR primer <400> 286 tgaaggaggt gccagtatgt t 21 <210> 287 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sperm47 Sperm47 R2 PCR primer <400> 287 agtatgttcc tgtatgactt tggga 25 <210> 288 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago21 Mago21 F2 PCR primer <400> 288 ccttcttcat caggttatta ggaa 24 <210> 289 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago21 Mago21 R2 PCR primer <400> 289 ggaaatcaac aaatcccact a 21 <210> 290 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago22 Mago22 F1 PCR primer <400> 290 gcccactaaa tactattaca ctaaagc 27 <210> 291 <211> 27 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago22 Mago22 R1 PCR primer <400> 291 ggttcctgtt caatgagaca acttatc 27 <210> 292 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago8 Mago8 F2 PCR primer <400> 292 gctaactcta gattgcaatg aacc 24 <210> 293 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago8 Mago8 R2 PCT primer <400> 293 gggaattttt cgtgattgag c 21 <210> 294 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mgo13 Mago13 F3 PCR primer <400> 294 aaaaaatgtt tctatcacta tctacaat 28 <210> 295 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago13 Mago13 R2 PCR primer <400> 295 ctgggctgta cttttgctgg 20 <210> 296 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago24 Mago24 F1 PCR primer <400> 296 tcaaactgaa caagaatgtg gatt 24 <210> 297 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago24 Mago24 R1 PCR primer <400> 297 atctggggag gcatctaaga g 21 <210> 298 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago26 Mago26 F3 PCR primer <400> 298 cacatacact ttgaaattac ttaccagt 28 <210> 299 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago26 Mago26 R2 PCR primer <400> 299 ccttacacaa gacaacacct gaac 24 <210> 300 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago32 Mago32 F2 PCR primer <400> 300 atagtttggt acaatttcat tcctac 26 <210> 301 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Mago32 Mago32 R2 PCR primer <400> 301 agaaatagct catgtgttgt cct 23 <210> 302 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi14 Isi14 F1 PCR primer <400> 302 ttcccctata ttctccatgg ttt 23 <210> 303 <211> 28 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi14 Isi14 R2 PCR primer <400> 303 ggtcattatt actcattaag atatgtgg 28 <210> 304 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi36 Isi36 F2 PCR primer <400> 304 aaacccattt taactgcaga gt 22 <210> 305 <211> 25 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi36 Isi36 R2 PCR primer <400> 305 gtaacaattc atatacttgg gaagg 25 <210> 306 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi38 Isi38 F1 PCR primer <400> 306 ttgaatcata agctctcgtc cat 23 <210> 307 <211> 24 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Isi38 Isi38 R1 PCR primer <400> 307 ataaacacat gaaagtccag attg 24 <210> 308 <211> 21 <212> DNA <213> Artificial Sequenc <220> <221> misc_feature <223> Mago19 Mago19 F1 PCR primer <400> 308 ctgcacagtt ttggctcaat c 21 <210> 309 <211> 23 <212> DNA <213> Artificial Sequnce <220> <221> misc_feature <223> Mago19 Mago19 R1 PCR primer <400> 309 ctggtcatgt gtaagcatca ctt 23 <210> 310 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz13 Amz13 F1 PCR primer <400> 310 aggtccatca taacagaata cttgtc 26 <210> 311 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz13 Amz13 R1 PCR primer <400> 311 ttctccacca ctgatgactc c 21 <210> 312 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz11 Amz11 F1 PCR primer <400> 312 gcatcatttg gctggttaga at 22 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Amz11 Amz11 R1 PCR primer <400> 313 tgtggtcagc tggaacgaat 20 <210> 314 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti24 Tuti24 F2 PCR primer <400> 314 ctccttcagc aactccagtt ac 22 <210> 315 <211> 22 <212> DNA <213> Artificial Sequenced <220> <221> misc_feature <223> Tuti24 Tuti24 R2 PCR primer <400> 3150 ggatgtggat gaagtgtaga tg 22 <210> 316 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti35 Tuti35 F1 PCR primer <400> 316 ccctacatac atagttggca agtaac 26 <210> 317 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Tuti35 Tuti35 R1 PCR primer <400> 317 gccatactga ggcttaggca t 21 <210> 318 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp9 Sp9 F1 PCR primer <400> 318 ccattttctg ggctcaacat aa 22 <210> 319 <211> 23 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp9 Sp9 R1 PCR primer <400> 319 acatctcgtt taacactgct tcg 23 <210> 320 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp2 Sp2 F1 PCR primer <400> 320 gagataaatg aaggcaccca t 21 <210> 321 <211> 26 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Sp2 Sp2 F1 PCR primer <400> 321 tactgatctt ttccctgtct actttc 26 <210> 322 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump20 Hump20 up PCR primer <400> 322 cctatccaca tatcagctgg c 21 <210> 323 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump20 Hump20 down PCR primer <400> 323 tgaagggaaa ttggatcctc 20 <210> 324 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump203 Hump203 F1 PCR primer <400> 324 atacagtaca cttgggcagg aa 22 <210> 325 <211> 22 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> Hump203 Hump203 R1 PCR primer <400> 325 ttatgaagct attctgccct ca 22

【図面の簡単な説明】[Brief description of drawings]

【図1】SINEのレトロポジションに関する一般ダイ
アグラム。
1 is a general diagram of the SINE retro position.

【図2】図2(A)はマスター遺伝子モデルを表し、そ
して図2(B)は多数源遺伝子モデルを表す。
FIG. 2 (A) represents the master gene model and FIG. 2 (B) represents the multisource gene model.

【図3】SINEの進化の指標としての有用性を示す。FIG. 3 shows the utility of SINE as an indicator of evolution.

【図4】種A〜Dの系統樹モデルを表す。図4(C)はP
CRパターンを示す。
FIG. 4 represents a phylogenetic tree model of species AD. Figure 4 (C) shows P
Indicates a CR pattern.

【図5】選択された動物種由来の全ゲノムDNAからの
転写産物のいくつかのパターン例である。
FIG. 5 is an example of some patterns of transcripts from total genomic DNA from selected animal species.

【図6】CHR−2 SINEのtRNA様構造を示
す。
FIG. 6 shows the tRNA-like structure of CHR-2 SINE.

【図7】図7(A)はCHR−2 SINEのtRNA
様二次構造を示し、そして図7(B)はヒトtRNA
Gluの二次構造を示す。
FIG. 7 (A) is a tRNA of CHR-2 SINE.
FIG. 7 (B) shows human tRNA.
The secondary structure of Glu is shown.

【図8】CHR−2のいくつかの配列アラインメントか
らのCHR−2 SINEのコンセンサス配列の構築を
表す。
FIG. 8 depicts the construction of the consensus sequence for CHR-2 SINE from several sequence alignments of CHR-2.

【図9】tの時に増幅された古いSINEと、uの時に
増幅された若いSINEを含む系統分類樹。
FIG. 9: A phylogenetic tree containing old SINEs amplified at t and young SINEs amplified at u.

【図10】アラインメントによるSINEファミリーの
サブファミリーを表す特徴的なヌクレオチド又は可能な
欠失の同定を表す。
FIG. 10 represents the identification of the characteristic nucleotides or possible deletions representing a subfamily of the SINE family by alignment.

【図11】CHR−2 SINEファミリーのサブファ
ミリーのコンセンサス配列のアラインメントを示す。
FIG. 11 shows an alignment of consensus sequences for the CHR-2 SINE family subfamily.

【図12】CD,CDO,及び他のサブファミリーに特
異的なプローブを、それぞれ、用いたドット−ハイブリ
ダイゼーション実験の結果を示す。
FIG. 12 shows the results of dot-hybridization experiments using probes specific for CD, CDO, and other subfamilies, respectively.

【図13】フランキングSINE PCRの原理を模式
的に示す。
FIG. 13 schematically shows the principle of flanking SINE PCR.

【図14】フランキングPCR結果の1例を示す。ま
た、図14(B)と(C)に2つの異なるプローブを用
いた同一フィルターを用いて行ったハイブリダイゼーシ
ョン実験結果を同時に示す。
FIG. 14 shows an example of a flanking PCR result. Further, FIGS. 14B and 14C simultaneously show the results of the hybridization experiment conducted using the same filter using two different probes.

【図15】哺乳動物の系統発生樹を示す。FIG. 15 shows a phylogenetic tree of a mammal.

【図16】SINE法における実験の流れを示す。FIG. 16 shows the flow of experiments in the SINE method.

【図17】分子統計学的研究から提唱された系統樹(歯
鯨類の単系統性の問題をめぐる論争)を示す。
FIG. 17 shows a phylogenetic tree advocated from molecular statistical studies (a controversy over the problem of monophyly of whales).

【図18】CHR−2各サブファミリーのコンセンサス
配列のアラインメントを示す。
FIG. 18 shows an alignment of consensus sequences for each CHR-2 subfamily.

【図19】鯨目に共通にSINEの挿入があったことを示す
遺伝子座Bando1とSp316のバンドパターンを示す。
FIG. 19 shows band patterns of Bando1 and Sp316 loci showing that SINE was commonly inserted in Whale eyes.

【図20】遺伝子座Bando1のアラインメントの結
果を示す。
FIG. 20 shows the results of alignment of the locus Bando1.

【図21】遺伝子座Bando1のアラインメントの結
果を示す。
FIG. 21 shows the results of alignment of the locus Bando1.

【図22】遺伝子座Bando1のアラインメントの結
果を示す。
FIG. 22 shows the results of alignment of the Bando1 locus.

【図23】遺伝子座Sp316のアラインメントの結果
を示す。
FIG. 23 shows the results of the alignment of the locus Sp316.

【図24】イルカ上科4種(マイルカ科:コビレゴンド
ウ、バンドウイルカ;ネズミイルカ科:イシイルカ;イ
ッカク科:イッカク)に特異的なCDOの挿入があったこ
とを示す遺伝子座Mago19のバンドパターンを示す。この
遺伝子座はイルカ上科の単系統性を強く支持する。
FIG. 24 shows a band pattern of the locus Mago19 showing that there was a specific CDO insertion in four dolphin superfamily (Miluaceae: Coccinella vulgaris, Band dolphin; Muricidae: Dall's porpoise; narwhal: narwhal). This locus strongly supports the monophyly of the dolphin superfamily.

【図25】遺伝子座Mago19のアラインメントの結
果を示す。
FIG. 25 shows the results of alignment of the locus Mago19.

【図26】遺伝子座Mago19のアラインメントの結
果を示す。
FIG. 26 shows the results of alignment of the locus Mago19.

【図27】イルカ上科4種、南米カワイルカ2種アマゾ
ンカワイルカ、ラプラタカワイルカ及びヨウスコウカワ
イルカにCDOの挿入があったことを示す遺伝子座Isi14,
Isi36, Isi38のバンドパターンを示す。
FIG. 27: Loci Isi14, which indicates that CDO was inserted in 4 species of dolphin superfamily, 2 species of South American river dolphin, Amazon river dolphin, La Plata river dolphin, and White cormorant dolphin
The band patterns of Isi36 and Isi38 are shown.

【図28】イルカ上科4種、南米カワイルカ2種アマゾ
ンカワイルカ、ラプラタカワイルカ及びヨウスコウカワ
イルカにCDOの挿入があったことを示す遺伝子座Mago24,
Mago26, Mago32のバンドパターンを示す。
FIG. 28: Locus Mago24, which shows that CDO was inserted in 4 species of dolphin superfamily, 2 species of South American river dolphin, Amazon river dolphin, La Plata river dolphin, and White cormorant dolphin.
The band patterns of Mago26 and Mago32 are shown.

【図29】遺伝子座Ishi14のアラインメントの結
果を示す。
FIG. 29 shows the results of the alignment of the Ishi14 locus.

【図30】遺伝子座Ishi36のアラインメントの結
果を示す。
FIG. 30 shows the results of alignment of the Ishi36 locus.

【図31】遺伝子座Ishi36のアラインメントの結
果を示す。
FIG. 31 shows the results of alignment of the Ishi36 locus.

【図32】遺伝子座Ishi38のアラインメントの結
果を示す。
FIG. 32 shows the results of the alignment of the Ishi38 locus.

【図33】遺伝子座Ishi38のアラインメントの結
果を示す。
FIG. 33 shows the results of the alignment of the locus Ishi38.

【図34】遺伝子座Mago24のアラインメントの結
果を示す。
FIG. 34 shows the results of alignment of the locus Mago24.

【図35】遺伝子座Mago24のアラインメントの結
果を示す。
FIG. 35 shows the results of alignment of the locus Mago24.

【図36】遺伝子座Mago26のアラインメントの結
果を示す。
FIG. 36 shows the results of alignment of the locus Mago26.

【図37】遺伝子座Mago26のアラインメントの結
果を示す。
FIG. 37 shows the results of alignment of the locus Mago26.

【図38】遺伝子座Mago32のアラインメントの結
果を示す。
FIG. 38 shows the results of alignment of the locus Mago32.

【図39】遺伝子座Mago32のアラインメントの結
果を示す。
FIG. 39 shows the results of alignment of the locus Mago32.

【図40】Delphinidaとアカボウクジラ科に属する2種
ツチクジラ、オオギハクジラに特異的なCDOの挿入があ
ったことを示す遺伝子座Mago8, Mago13のバンドパター
ンを示す。
FIG. 40 shows band patterns of loci Mago8 and Mago13 indicating that CDO insertions specific to Delphinida and two whales belonging to the family Whale family, Great Gray Whale, were included.

【図41】遺伝子座Mago8のアラインメントの結果
を示す。
FIG. 41 shows the results of alignment of the locus Mago8.

【図42】遺伝子座Mago13のアラインメントの結
果を示す。
FIG. 42 shows the results of alignment of the locus Mago13.

【図43】Delphinida、アカボウクジラ科及びガンジス
カワイルカに特異的なCDOの挿入があったことを示す遺
伝子座Mago21, Mago22のバンドパターンを示す。
FIG. 43 shows banding patterns of loci Mago21 and Mago22 indicating that CDO-specific insertions in Delphinida, red whale, and scorpionfish have been performed.

【図44】遺伝子座Mago21のアラインメントの結
果を示す。
FIG. 44 shows the results of alignment of the Mago21 locus.

【図45】遺伝子座Mago22のアラインメントの結
果を示す。
FIG. 45 shows the results of alignment of the locus Mago22.

【図46】遺伝子座Mago22のアラインメントの結
果を示す。
FIG. 46 shows the results of alignment of the locus Mago22.

【図47】遺伝子座Mago22のアラインメントの結
果を示す。
FIG. 47 shows the results of alignment of the locus Mago22.

【図48】マッコウクジラも含めた歯鯨亜目全ての種で
共通にCDの挿入があったことを示す遺伝子座Sperm8, Sp
erm28, Sperm47のバンドパターンを示す。
[Fig. 48] A locus Sperm8, Sp indicating that CD insertion was common to all species of the subgenus Whale, including sperm whales.
The band patterns of erm28 and Sperm47 are shown.

【図49】遺伝子座Sperm8のアラインメントの結
果を示す。
FIG. 49 shows the results of alignment of the locus Sperm8.

【図50】遺伝子座Sperm8のアラインメントの結
果を示す。
FIG. 50 shows the results of the alignment of the locus Sperm8.

【図51】遺伝子座Sperm28のアラインメントの
結果を示す。
FIG. 51 shows the results of the alignment of the locus Sperm28.

【図52】遺伝子座Sperm47のアラインメントの
結果を示す。
FIG. 52 shows the results of the alignment of the locus Sperm47.

【図53】南米カワイルカ2種アマゾンカワイルカ、ラ
プラタカワイルカにおいて共通にCDOの挿入があったこ
とを示す遺伝子座Amz13, Bando1のバンドパターンを示
す。
FIG. 53 shows band patterns of Amz13 and Bando1 loci showing that CDO was commonly inserted in two species of river dolphins in South America, Amazon river dolphin and Laplata river dolphin.

【図54】遺伝子座Amz13のアラインメントの結果
を示す。
FIG. 54 shows the results of the alignment of the locus Amz13.

【図55】アマゾンカワイルカに特異的にCDOの挿入
があったことを示す遺伝子座Amz11のバンドパター
ンを示す。
FIG. 55 shows the band pattern of Amz11 locus showing that CDO was specifically inserted in Amazon dolphins.

【図56】遺伝子座Amz11のアラインメントの結果
を示す。
FIG. 56 shows the results of alignment of the locus Amz11.

【図57】アカボウクジラ科に特異的にCDOの挿入が
あったことを示す遺伝子座Tuti24, Tuti35のバンドパタ
ーンを示す。
FIG. 57 shows band patterns of Tuti24 and Tuti35 loci showing that CDO was specifically inserted in the Red Whale family.

【図58】遺伝子座Tuti24のアラインメントの結
果を示す。
FIG. 58 shows the results of alignment of the Tuti24 locus.

【図59】遺伝子座Tuti35のアラインメントの結
果を示す。
FIG. 59 shows the results of alignment of the Tuti35 locus.

【図60】遺伝子座Tuti35のアラインメントの結
果を示す。
FIG. 60 shows the results of alignment of the Tuti35 locus.

【図61】マッコウクジラ上科3種にCDOの挿入があ
ったことを示す遺伝子座Sp9、及びマッコウクジラ科に
特異的なSp2のバンドパターンを示す。
FIG. 61 shows the band patterns of the locus Sp9 indicating that CDO was inserted in three sperm whales and the sperm whale specific Sp2.

【図62】遺伝子座Sp2のアラインメントの結果を示
す。
FIG. 62 shows the result of the alignment of the locus Sp2.

【図63】遺伝子座Sp2のアラインメントの結果を示
す。
FIG. 63 shows the results of the alignment of the locus Sp2.

【図64】遺伝子座Sp9のアラインメントの結果を示
す。
FIG. 64 shows the results of the alignment of the locus Sp9.

【図65】ナガスクジラ科(又は髭鯨)に特異的なCDの
挿入があったことを示す遺伝子座Hump20, Hump203のバ
ンドパターンを示す。
FIG. 65 shows band patterns of Hump20 and Hump203 loci showing that there was a specific CD insertion in the fin whale (or whiskers).

【図66】遺伝子座Hump20のアラインメントの結
果を示す。
FIG. 66 shows the results of alignment of the locus Hump20.

【図67】遺伝子座Hump20のアラインメントの結
果を示す。
Figure 67 shows the results of the alignment of the Hump20 locus.

【図68】遺伝子座Hump20のアラインメントの結
果を示す。
FIG. 68 shows the results of alignment of the locus Hump20.

【図69】遺伝子座Hump203のアラインメントの
結果を示す。
FIG. 69 shows the results of the alignment of the locus Hump203.

【図70】SINEの挿入パターンをまとめたマトリックス
を示す。
FIG. 70 shows a matrix summarizing SINE insertion patterns.

【図71】図70に示すマトリックスに基づき推定され
る鯨目内部の系統発生樹を示す。
71 shows a phylogenetic tree in the whale order estimated based on the matrix shown in FIG. 70. FIG.

【図72】分子統計学的解析の結果(限界)を示す。FIG. 72 shows the results (limits) of molecular statistical analysis.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/566 G06F 17/30 170F G06F 17/30 170 C12N 15/00 ZNAA Fターム(参考) 2G045 AA40 BA11 BB50 CB01 DA13 FB02 JA01 4B024 AA11 AA20 CA01 CA20 HA11 HA20 4B063 QA13 QA18 QA20 QQ02 QQ42 QQ50 QR08 QR32 QR40 QR42 QR62 QS16 QS25 QS31 QS40 QX01 QX10 5B075 UU19 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 33/566 G06F 17/30 170F G06F 17/30 170 C12N 15/00 ZNAA F term (reference) 2G045 AA40 BA11 BB50 CB01 DA13 FB02 JA01 4B024 AA11 AA20 CA01 CA20 HA11 HA20 4B063 QA13 QA18 QA20 QQ02 QQ42 QQ50 QR08 QR32 QR40 QR42 QR62 QS16 QS25 QS31 QS40 QX01 QX10 5B075 UU19

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】 SINE法により動物の種を判別する方
法であって、以下のステップ:判別しようとする1以上
の動物種からそれぞれゲノムDNAライブラリーを作成
し;上記各ライブラリーから、上記動物種の中の少なく
とも1種において或るSINEファミリー又はサブファ
ミリーに属するSINEが特異的に挿入されているオル
ソロガス遺伝子座を含むクローンを単離し;上記遺伝子
座において上記SINEファミリー又はサブファミリー
の両側に位置するフランキング配列にアニールするPC
Rプライマーのセットを用いて、上記動物種のそれぞれ
について上記遺伝子座の配列をPCRにより増幅し;そ
して得られたPCR産物をゲル電気泳動して、上記SI
NEファミリー又はサブファミリー挿入遺伝子座の存在
を示すバンドの有無により、上記動物の種を判別する;
を含む、前記方法。
1. A method for discriminating animal species by the SINE method, comprising the steps of: preparing a genomic DNA library from each of one or more animal species to be discriminated; A clone containing an orthologous locus in which SINE belonging to a SINE family or subfamily is specifically inserted in at least one of the species is isolated; and located at both sides of the SINE family or subfamily at the locus. PC that anneals to flanking sequences
The sequences of the loci for each of the above animal species were amplified by PCR using a set of R primers; and the resulting PCR products were gel electrophoresed to yield the above SI
The species of the animal is discriminated by the presence or absence of a band indicating the presence of the NE family or subfamily insertion locus;
The method comprising:
【請求項2】 前記SINEファミリー又はサブファミ
リーが、配列番号1〜7から成る群から選ばれる配列を
有するDNA又は上記DNAとストリンジェント条件下
でハイブリダイズするSINE DNAである、請求項
1に記載の方法。
2. The SINE family or subfamily is DNA having a sequence selected from the group consisting of SEQ ID NOS: 1 to 7 or SINE DNA hybridizing with the DNA under stringent conditions. the method of.
【請求項3】 前記SINEサブファミリーが、配列番
号6に示すCD配列又は配列番号7に示すCDO配列を
有するDNAである、請求項2に記載の方法。
3. The method according to claim 2, wherein the SINE subfamily is a DNA having a CD sequence shown in SEQ ID NO: 6 or a CDO sequence shown in SEQ ID NO: 7.
【請求項4】 配列番号3〜7から成る群から選ばれる
配列を有するSINEファミリー又はサブファミリーD
NA又は上記DNAとストリンジェント条件下でハイブ
リダイズするSINE DNA。
4. A SINE family or subfamily D having a sequence selected from the group consisting of SEQ ID NOs: 3 to 7.
SINE DNA which hybridizes with NA or the above DNA under stringent conditions.
【請求項5】 前記オルソロガス遺伝子座が、配列番号
8〜21のいずれか1に示す配列に相当するBando
1である、請求項1に記載の方法。
5. A Bando in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 8 to 21.
The method of claim 1, wherein the method is 1.
【請求項6】 前記オルソロガス遺伝子座が、配列番号
22〜35のいずれか1に示す配列に相当するSp31
6である、請求項1に記載の方法。
6. The Sp31, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 22 to 35.
The method of claim 1, wherein the method is 6.
【請求項7】 前記オルソロガス遺伝子座が、配列番号
36〜46のいずれか1に示す配列に相当するMago
19である、請求項1に記載の方法。
7. The Mago in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 36 to 46.
The method of claim 1, wherein the method is 19.
【請求項8】 前記オルソロガス遺伝子座が、配列番号
47〜51のいずれか1に示す配列に相当するIshi
14である、請求項1に記載の方法。
8. The Ishi in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 47 to 51.
14. The method of claim 1, which is 14.
【請求項9】 前記オルソロガス遺伝子座が、配列番号
52〜65のいずれか1に示す配列に相当するIshi
36である、請求項1に記載の方法。
9. The Ishi in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 52 to 65.
The method of claim 1, wherein the method is 36.
【請求項10】 前記オルソロガス遺伝子座が、配列番
号66〜79のいずれか1に示す配列に相当するIsh
i38である、請求項1に記載の方法。
10. The Ish in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 66 to 79.
The method of claim 1, wherein the method is i38.
【請求項11】 前記オルソロガス遺伝子座が、配列番
号211〜224のいずれか1に示す配列に相当するM
ago24である、請求項1に記載の方法。
11. The M orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 211 to 224.
The method of claim 1, which is ago24.
【請求項12】 前記オルソロガス遺伝子座が、配列番
号225〜238のいずれか1に示す配列に相当するM
ago26である、請求項1に記載の方法。
12. The M corresponding to the sequence shown in any one of SEQ ID NOs: 225 to 238, wherein the orthologous locus is M.
The method according to claim 1, which is ago26.
【請求項13】 前記オルソロガス遺伝子座が、配列番
号80〜93のいずれか1に示す配列に相当するMag
o32である、請求項1に記載の方法。
13. A mag, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 80 to 93.
The method of claim 1, wherein the method is o32.
【請求項14】 前記オルソロガス遺伝子座が、配列番
号94〜98のいずれか1に示す配列に相当するMag
o8である、請求項1に記載の方法。
14. A mag, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 94 to 98.
The method of claim 1, wherein the method is o8.
【請求項15】 前記オルソロガス遺伝子座が、配列番
号99〜112のいずれか1に示す配列に相当するMa
go13である、請求項1に記載の方法。
15. The Ma, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 99 to 112.
The method of claim 1, which is go13.
【請求項16】 前記オルソロガス遺伝子座が、配列番
号113〜117のいずれか1に示す配列に相当するM
ago21である、請求項1に記載の方法。
16. The M corresponding to the sequence shown in any one of SEQ ID NOs: 113 to 117, wherein the orthologous locus is M.
The method according to claim 1, which is ago21.
【請求項17】 前記オルソロガス遺伝子座が、配列番
号239〜252のいずれか1に示す配列に相当するM
ago22である、請求項1に記載の方法。
17. The M corresponding to the sequence shown in any one of SEQ ID NOs: 239 to 252, wherein the orthologous locus is M.
The method according to claim 1, which is ago22.
【請求項18】 前記オルソロガス遺伝子座が、配列番
号118〜129のいずれか1に示す配列に相当するS
perm8である、請求項1に記載の方法。
18. The S corresponding to the sequence shown in any one of SEQ ID NOS: 118 to 129, wherein the orthologous locus is S.
The method according to claim 1, which is perm8.
【請求項19】 前記オルソロガス遺伝子座が、配列番
号130〜135のいずれか1に示す配列に相当するS
perm28である、請求項1に記載の方法。
19. The S corresponding to the sequence shown in any one of SEQ ID NOs: 130 to 135, wherein the orthologous locus is S.
The method according to claim 1, which is perm28.
【請求項20】 前記オルソロガス遺伝子座が、配列番
号136〜140のいずれか1に示す配列に相当するS
perm47である、請求項1に記載の方法。
20. The S or the orthologous locus corresponding to the sequence shown in any one of SEQ ID NOs: 136 to 140.
The method according to claim 1, which is perm47.
【請求項21】 前記オルソロガス遺伝子座が、配列番
号141〜145のいずれか1に示す配列に相当するA
mz13である、請求項1に記載の方法。
21. The A, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 141 to 145.
The method of claim 1, wherein the method is mz13.
【請求項22】 前記オルソロガス遺伝子座が、配列番
号146〜151のいずれか1に示す配列に相当するA
mz11である、請求項1に記載の方法。
22. A in which the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 146 to 151.
The method of claim 1, wherein the method is mz11.
【請求項23】 前記オルソロガス遺伝子座が、配列番
号152〜156のいずれか1に示す配列に相当するT
uti24である、請求項1に記載の方法。
23. The T-corresponding to the sequence shown in any one of SEQ ID NOs: 152 to 156, wherein the orthologous locus is
The method of claim 1, wherein the method is uti24.
【請求項24】 前記オルソロガス遺伝子座が、配列番
号157〜171のいずれか1に示す配列に相当するT
uti35である、請求項1に記載の方法。
24. The T corresponding to the sequence shown in any one of SEQ ID NOs: 157 to 171 in which the orthologous locus is expressed.
The method of claim 1, wherein the method is uti35.
【請求項25】 前記オルソロガス遺伝子座が、配列番
号172〜185のいずれか1に示す配列に相当するS
p2である、請求項1に記載の方法。
25. The orthologous locus corresponds to the sequence shown in any one of SEQ ID NOS: 172-185.
The method of claim 1, which is p2.
【請求項26】 前記オルソロガス遺伝子座が、配列番
号186〜190のいずれか1に示す配列に相当するS
p9である、請求項1に記載の方法。
26. The S orthologous locus corresponding to the sequence shown in any one of SEQ ID NOs: 186 to 190.
The method of claim 1, which is p9.
【請求項27】 前記オルソロガス遺伝子座が、配列番
号191〜204のいずれか1に示す配列に相当するH
ump20である、請求項1に記載の方法。
27. The H, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 191-204.
The method of claim 1, which is ump20.
【請求項28】 前記オルソロガス遺伝子座が、配列番
号205〜210のいずれか1に示す配列に相当するH
ump203である、請求項1に記載の方法。
28. The H, wherein the orthologous locus corresponds to the sequence shown in any one of SEQ ID NOs: 205 to 210.
The method of claim 1, which is ump203.
【請求項29】 配列番号8〜238のいずれか1に示
す配列を有するDNA又は上記DNAとストリンジェン
ト条件下でハイブリダイズするオルソロガスDNA。
29. A DNA having the sequence shown in any one of SEQ ID NOs: 8 to 238 or an orthologous DNA which hybridizes with the above DNA under stringent conditions.
【請求項30】 前記PCRプライマーが、配列番号2
76〜325から成る群から選ばれる、請求項1に記載
の方法。
30. The PCR primer is SEQ ID NO: 2.
The method of claim 1 selected from the group consisting of 76-325.
【請求項31】 前記動物が哺乳動物である、請求項1
に記載の方法。
31. The animal of claim 1, wherein the animal is a mammal.
The method described in.
【請求項32】 前記動物が鯨偶蹄目に属する、請求項
31に記載の方法。
32. The method of claim 31, wherein the animal belongs to the Artiodactyla.
【請求項33】 SINEサブファミリーのコンセンサ
ス配列の獲得方法であって、以下のステップ:インビト
ロにおける全ゲノム転写又は60kbpより大きなゲノ
ムDNAの自動配列決定により反復単位の多数コピーの
配列を決定し;数種由来の上記配列をアラインメントし
て、コンセンサス配列を得;RNAポリメラーゼIII
のための第2プロモーターのコンセンサス配列を見つけ
て、この配列を含むステム・ループ構造を作り;上記ス
テム領域から5’上流方向にある5塩基を1ユニットと
して、3’-PyPyPuPuPu-5’配列であることを確かめ;t
RNA構造のアンチコドン−ステム領域を形成する次の
5塩基を、他のユニットとみなし;tRNA構造のアン
チコドン−ループ領域を形成する次の7塩基を、さらに
他のユニットとみなし、ここで、その3’末端がAA残
基であり、かつ、5’末端が3’-TC-5’残基であること
を確認し;次の5塩基を他のユニットとみなし、アンチ
コドン−ステム領域に割り当てられた5塩基との塩基対
の形成を確認し、ここで、このユニットを正確に整列さ
せるために上記アンチコドン−ステムの3’側の第1塩
基の位置に欠失を配置し;このtRNA様構造のD領域
のためのステム・ループ構造を構築し、ここで、上記R
NAポリメラーゼIIIの第1プロモーター領域内の2
つのGの存在を確認し;上記配列とtRNAの間の配列
類似性を、DNAデータベースを用いて検索して、その
二次構造の類似性を確認し;複数の種由来の上記のよう
にして得られたSINEファミリー配列をアランメント
して、特徴的なヌクレオチド又は欠失の存在からSIN
Eサブファミリーを得;そして上記SINEサブファミ
リーのアラインメントからSINEサブファミリーのコ
ンセンサス配列を得る、前記方法。
33. A method of obtaining a consensus sequence of the SINE subfamily, the steps of: sequencing multiple copies of a repeat unit by whole genome transcription in vitro or automatic sequencing of genomic DNA larger than 60 kbp; Aligning the sequences from the species to obtain a consensus sequence; RNA polymerase III
Find the consensus sequence of the second promoter for and make a stem-loop structure containing this sequence; 3'-PyPyPuPuPu-5 'sequence with 5 bases 5'upstream from the stem region as one unit Make sure that there is; t
The next 5 bases forming the anticodon-stem region of the RNA structure are considered as other units; the next 7 bases forming the anticodon-loop region of the tRNA structure are considered as still other units, where the 3 It was confirmed that the'end was an AA residue and the 5'end was a 3'-TC-5 'residue; the next 5 bases were regarded as another unit and assigned to the anticodon-stem region. Confirmation of base pair formation with 5 bases, where a deletion was placed at the position of the first base 3'to the anticodon-stem to align this unit correctly; Construct a stem-loop structure for the D region, where R above
2 in the first promoter region of NA polymerase III
The presence of two G's; the sequence similarity between the sequence and the tRNA was searched using a DNA database to confirm its secondary structure similarity; as described above from multiple species. The resulting SINE family sequences are aligned and the presence of characteristic nucleotides or deletions results in SIN
Obtaining the E subfamily; and obtaining the SINE subfamily consensus sequence from the SINE subfamily alignment.
【請求項34】 前記SINEサブファミリーが、請求
項33に記載のSINEサブファミリーのコンセンサス
配列の獲得方法により得られたSINEサブファミリー
のコンセンサス配列を有するDNAである、請求項1に
記載の方法。
34. The method according to claim 1, wherein the SINE subfamily is a DNA having a SINE subfamily consensus sequence obtained by the method for obtaining a SINE subfamily consensus sequence according to claim 33.
【請求項35】 請求項33に記載のSINEサブファ
ミリーのコンセンサス配列の獲得方法により得られたS
INEサブファミリーのコンセンサス配列を有するDN
A。
35. An S obtained by the method for obtaining a consensus sequence of the SINE subfamily according to claim 33.
DN with consensus sequence of INE subfamily
A.
JP2001126667A 2001-04-24 2001-04-24 Animal species discrimination method by SINE method Expired - Fee Related JP3600891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001126667A JP3600891B2 (en) 2001-04-24 2001-04-24 Animal species discrimination method by SINE method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126667A JP3600891B2 (en) 2001-04-24 2001-04-24 Animal species discrimination method by SINE method

Publications (2)

Publication Number Publication Date
JP2003009866A true JP2003009866A (en) 2003-01-14
JP3600891B2 JP3600891B2 (en) 2004-12-15

Family

ID=18975661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126667A Expired - Fee Related JP3600891B2 (en) 2001-04-24 2001-04-24 Animal species discrimination method by SINE method

Country Status (1)

Country Link
JP (1) JP3600891B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108193A1 (en) 2006-03-16 2007-09-27 Japan Software Management Co., Ltd. Two stage methods for examining nucleic acid by using one and the same sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108193A1 (en) 2006-03-16 2007-09-27 Japan Software Management Co., Ltd. Two stage methods for examining nucleic acid by using one and the same sample

Also Published As

Publication number Publication date
JP3600891B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
CN107858373B (en) Construction method of endothelial cell conditional knockout CCR5 gene mouse model
AU2022203184A1 (en) Sequencing controls
Matsuda et al. Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other
CN109890424A (en) For treating the composition and method based on CRISPR/CAS9 of retinosis
CN101772578A (en) Genetic variants on CHR 5pl2 and 10q26 as markers for use in breast cancer risk assessment, diagnosis, prognosis and treatment
KR20170028383A (en) Methods and products for quantifying rna transcript variants
KR101816575B1 (en) Single nucleotide polymorphism probe for backcross analysis of Brassica rapa
CN110724735B (en) SNP locus and primer for rapidly identifying individual sex of fugu obscurus and method thereof
CA2520479A1 (en) Method and system for rapidly conferring a desired trait to an organism
JP2003009866A (en) Method for discriminating animal species by sine method
KR102155967B1 (en) Genetic Marker Composition for Discrimination of Lebbeus Groenlandicus Species Originated Mitochondria Insertion Markers and Diagnosing Method using the Same
DK2707497T3 (en) DETECTION OF THE BRACHYSPINA MUTATION
CN114085840A (en) Construction method of CAMTA2 gene-deleted zebra fish
JPH11164691A (en) Blastocyst cdna
CN113046427A (en) Method for high-throughput sequencing and structural feature analysis of chicken mitochondrial genome
CN108913761B (en) Kit for screening hereditary liver diseases
Li et al. A CR1 element is embedded in a novel tandem repeat (Hin fI repeat) within the chicken genome
Hejníčková et al. Exploring the W chromosome: accumulation of retrotransposons contributes to sex chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae)
CN106957907A (en) Genetic Detection for the liver copper accumulation in dog
KR101765690B1 (en) Composition for discrimination of chicken
Gu et al. Construction of a BAC contig for a 3 cM biologically significant region of mouse chromosome 1
US9049848B1 (en) Increased resistance to Enterobacteriaceae in bovines
KR20220159020A (en) Composition for discriminating Nanchukmacdon pork meat and use thereof
JP2005160359A (en) Method for determining whale species using insertion polymorphism of sine as index
Tong et al. Multiple source genes of HAmo SINE actively expanded and ongoing retroposition in cyprinid genomes relying on its partner LINE

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees