JP2003009218A - Radio base station synchronization device - Google Patents

Radio base station synchronization device

Info

Publication number
JP2003009218A
JP2003009218A JP2001184320A JP2001184320A JP2003009218A JP 2003009218 A JP2003009218 A JP 2003009218A JP 2001184320 A JP2001184320 A JP 2001184320A JP 2001184320 A JP2001184320 A JP 2001184320A JP 2003009218 A JP2003009218 A JP 2003009218A
Authority
JP
Japan
Prior art keywords
radio base
base station
base stations
transmission
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001184320A
Other languages
Japanese (ja)
Inventor
Shigetaka Ehata
成隆 江幡
Naoyuki Hirai
直行 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2001184320A priority Critical patent/JP2003009218A/en
Publication of JP2003009218A publication Critical patent/JP2003009218A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a PHS system from occurring interference by synchronizing control channel transmission from a plurality of radio base stations in which a channel for control shares channels of the same frequency. SOLUTION: A PHS radio base station detects the voltage peak of a commercial power source with a peak detecting part 4, reads a delay time from a memory 7 in which different delay times are set in each of radio base stations, and stats to transmit a control channel to the radio base stations using the same commercial power source after the delay time elapses from the peak detection.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、PHSシステムに
おける複数の無線基地局からの制御チャネル送信時刻を
同期化するための無線基地局同期化装置に関するもので
ある。 【0002】 【従来の技術】図2に一般的な非同期方式のPHSデー
タ転送システムの例を示す。図2では、PHS用の無線
基地局CS1、CS2・・・CSnとn個の無線基地局
があり、無線基地局CS1の無線ゾーンには端末PS1
1、PS12、PS13と3台のPHS端末があり、無
線基地局CS2の無線ゾーンには端末PS21、PS2
2、PS23と3台のPHS端末がある。また、無線基
地局CSnの無線ゾーンには端末PSn1、PSn2、
PSn3と3台のPHS端末がある。もちろん各無線基
地局の無線ゾーンにいるPHS端末数は3台以上であっ
ても、3台以下であってもよい。パーソナルコンピュー
タで構成されたデータ端末PC1、PC2、・・・PC
nはLAN回線に接続されており、PHS端末とデータ
通信を行う。無線基地局CS1、CS2、・・・CSn
も同じLAN回線に接続されている。また、無線基地局
CS1、CS2、・・・CSnの電源は100Vの同じ
商用電源を使用しているものとする。 【0003】図2に示した複数の無線基地局で構成され
たPHSデータ転送システムでは、各PHS端末は無線
基地局を介して同じLANに接続されているデータ端末
とデータ通信を行なっている。例えばデータ端末PC1
とPHS端末PS11が通信を行うには、まず各無線基
地局CS1、CS2、・・・CSnから無線制御チャネ
ルを使用してPS11を呼出し、無線基地局CS1から
のPHS端末PS11の応答で、無線基地局CS1の通
信チャネルに切り換えてPC1とPS11で通信を行
う。この時に使用される制御チャネルは複数の無線基地
局で共通である。すなわち図2では無線基地局CS1、
CS2、・・・CSnで同じ周波数の制御チャネルを使
用している。これは、PHS端末がどの無線基地局のゾ
ーンにいても同じ制御チャネルで待機していることがで
きるためである。 【0004】 【発明が解決しようとする課題】しかしながら、同じ制
御チャネルを用いてPHS端末を呼び出すので、無線基
地局CS1、CS2、・・・CSnの位置が離れていな
い場合、各無線基地局の無線電波が相互に干渉するとい
う問題が発生する。すなわち無線基地局CS1と無線基
地局CS2が隣接していると、無線基地局CS1の電波
はCS1のゾーンにいるPHS端末PS11、PS1
2、PS13で受信できることは当然であるが、無線基
地局CS2のゾーンにいるPS21、PS22、PS2
3でも受信レベルは若干低下するがかなり強い電界強度
で受信できる場合が生じる。そのため、例えば、無線基
地局CS1が制御チャネルを送信していると同じ時間帯
重なる時間帯で無線基地局CS2が制御チャネルを送信
すると、無線基地局CS1とCS2の電波は相互に干渉
しあい、呼び出し等の制御情報が各PHS端末にとどか
ないこととなる。 【0005】この相互干渉を図3、図4を用いて説明す
る。各無線基地局では、同じ周波数の制御チャネルを使
用し、送信時間T秒で間欠的に電波が送信されているも
のとする。図3は各無線基地局間で同期がとられて制御
チャネルの信号が送信され、相互干渉がない場合の図で
ある。無線基地局CS1からは、まず時刻t0からt1
までの間隔T秒間だけ制御チャネルが送信され、次に時
刻tnからt(n+1)のT秒間だけ電波を送信すると
いうように送信周期nTで間欠送信している。無線基地
局CS2は無線基地局CS1の送信が停止したあとの、
時刻t1からt2までのT秒間送信し、無線基地局CS
3はつぎのt2からt3までのT秒間送信する。このよ
うに各無線基地局が互いに重ならないように送信時間を
ずらし、送信周期nTで間欠的に送信すれば相互干渉は
生じない。しかしながら無線基地局間で同期がとられて
いない非同期で送信を行うと、図4に示すように無線基
地局の送信電波が重なる場合が生じる。図4では無線基
地局CS1とCS2の送信電波は重なりを生じていない
が、無線基地局CS3の電波は時刻t0とt1の間から
送信を開始し、時刻t1とt2の間で送信を停止してい
るため、無線基地局CS1とCS2の双方の電波と重な
っている。各無線基地局間は同期がとられていないの
で、他の無線基地局の送信時間に無関係に送信を開始す
るため、図4のような重なりはさけがたい。各無線基地
局で同期がとられればよいが、従来のPHSの無線基地
局間には同期をとる方法がなく、送信電波の相互干渉が
問題であった。 【0006】本発明の目的は、このように非同期の無線
基地局で構成されるPHSシステムで、簡易な同期をと
り、図3に示すような送信を実現し、各無線基地局間で
の制御チャネル信号の重なりが生じないようにした無線
基地局同期化装置を提供することにある。 【0007】 【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、同一の商用電源を使用する複数のPH
S用無線基地局の各々に設けられた無線基地局同期化装
置であって、前記商用電源の電圧ピーク時刻を検出する
ピーク検出手段と、各無線基地局対応に定められた遅延
時間を格納したメモリと、前記ピーク検出手段が前記商
用電源の電圧ピークを検出した時刻から前記メモリに格
納された遅延時間が経過したときに当該無線基地局の制
御チャネル送信を開始するように制御する制御手段とか
らなることを特徴とする無線基地局同期化装置を提供す
る。 【0008】 【発明の実施の形態】図1は本発明の同期化装置を備え
た無線基地局のブロック図である。制御部1は無線部6
を制御しPHS端末と通信を行う。電源回路3はAC1
00V、50Hzの商用電源より電力を受け、必要な電
圧に変換し、AC/DCコンバータ2で直流電圧に変換
し制御部1に供給している。電源回路3の交流電圧はピ
ーク検出部4に送られ、50Hzの交流電圧のピーク位
置を検出し、位置をパルスとして制御部1に送出する。
制御部1にはタイマ5とメモリ7が接続されている。商
用電源は50Hzであるのでピーク検出部4で検出した
ピーク位置の間隔は20msである。すなわち20ms
ごとに制御部1にピーク検出部4の出力としてパルス波
形が加わる。制御部1では、ピーク検出部4からのパル
スを受信し、商用電源のピーク時刻を知る。 【0009】以下、図6の動作フローを用いて制御部1
の動作を説明する。制御部1はピーク検出部4からのパ
ルスが来たかを見ている(STEP101でNOのルー
プ)。パルスが来ると(STEP101でYES)、タ
イマ5をリセットする(STEP102)。すなわちタ
イマの値を0にする。タイマ5は0にされた時刻からカ
ウントを開始している。制御部1のメモリ7には、その
無線基地局に与えられている遅延時間が記憶されてい
る。いま本発明により同期をとる無線基地局が4台とす
れば、無線基地局CS1には遅延時間として0ms、無
線基地局CS2には5ms、無線基地局CS3には10
ms、無線基地局CS4には15msを与えておく。制
御部1はタイマ5の値がメモリ7に記憶されている遅延
時間になったかを見ている(STEP103でNOのル
ープ)。無線基地局CS2ならば、メモリ7には5ms
の遅延時間が記憶されているので、タイマ5が5msに
なったかを見る。もしメモリ7に記憶されている遅延時
間になると(STEP103でYES)、制御部1は無
線部6を制御し、決められた時間だけ制御チャネル送信
を行う。このシステムでは、一回の送信時間は5msと
しているので、5msだけ送信を行い、PHS端末に必
要な情報を送信する。送信を行うと最初にもどり、ピー
ク検出部4からのパルスが来るのを再び待つ(STEP
101)。 【0010】無線基地局CS1、CS2、CS3、CS
4の4台で同期をとり送信している場合を図5に示す。
ピーク検出部4でのピーク検出時刻をt0とすると、こ
の時刻は無線基地局CS1〜CS4で同一電源のピーク
を検出しているから、完全に同期している。そして無線
基地局CS1は、遅延時間0で5msの間だけ送信し、
無線基地局CS2は遅延時間5msをとって、時刻t0
+5msの時点から5msだけ送信する。無線基地局C
S3は、遅延時間10msをとって、時刻t0+10m
sの時点から5msだけ送信し、無線基地局CS4は、
遅延時間15msをとって、時刻t0+15msの時点
から5msだけ送信する。ピーク検出部4での次のピー
ク検出時刻はt0+20msであるので、その時点か
ら、無線基地局CS1、CS2、CS3、CS4の各無
線基地局は順次、与えられた遅延時間経過後に5msだ
け送信を行う。このようにすると、各無線基地局は送信
周期20msごとに送信時間5msの間欠送信を、無線
基地局の送信電波の重なりがなく送信できることにな
る。すなわち、商用電源を利用して各無線基地局で簡単
に同期をとることが可能となる。 【0011】図5で明かなように、一回の無線基地局か
らの制御チャネル送信時間を5msとすると、50Hz
の電源を用いた場合には同期をとって送信電波が重なら
ないで送信できる無線基地局の数は4台である。5台目
の無線基地局CS5が存在すると、この無線基地局CS
5の送信時刻は、図5で示す無線基地局CS1、CS
2、CS3、CS4の送信時刻のどれかと必ず重なるこ
とになる。しかしながら、送信時刻が重なっても、両無
線基地局の距離が離れていれば送信電波の相互干渉は生
じない。すなわち無線基地局CS5の送信時刻を、無線
基地局CS5とは隣接しない無線基地局の送信時刻と同
じにすることで相互干渉を低減できる。図7に無線基地
局の配置例を示す。無線基地局CS1、CS2、CS
3、CS4、CS5が図7に示す配置であれば、無線基
地局CS5は、隣接無線基地局である無線基地局CS2
とCS4と異なる送信時刻、例えば、無線基地局CS1
の送信時刻で送信するようにすればよい。同一送信時刻
で送信する無線基地局CS1とCS5の間には無線基地
局CS2が入るので、同じ時刻に送信しても相互干渉は
少なくなる。二次元の平面的な無線基地局の配置の場
合、理論的には4つの重ならない送信時刻がとりうれ
ば、同じ送信時刻を持つ無線基地局の間に最低限一つの
無線基地局が入る構成がとれる。もちろん一次元の直線
的な無線基地局の配置であれば、間に3つの無線基地局
が入った構成が可能である。 【0012】商用電源の周波数が50Hzでなく60H
zの場合は、ピーク検出の時間間隔は、16.6msと
なるので、無線基地局での一回の送信時間が5msとす
ると、4台の無線基地局からの送信を重ならないように
は出来ない。3台の無線基地局で、間欠送信周期は1
6.6msとなる。4台目の無線基地局の送信時刻は割
り当てられた3台の無線基地局のどれかと同じ送信時刻
となるが、3つの異なる送信時刻しか得られなくても、
4台目の無線基地局の送信時刻を隣接の無線基地局とは
ことなる送信時刻とする構成は可能である。 【0013】以上詳細に述べたように、本発明はいまま
で同期送信が困難であったPHSシステムの無線基地局
間で、商用電源の周波数と同期をとるという簡便な方法
で同期化を可能とした。商用電源との同期であるため、
きわめて経済的に実現できる。 【0014】 【発明の効果】本発明により、以下の効果がある。 (1)経済的な無線基地局間同期装置が実現できる。 (2)制御チャネルの相互干渉の無い無線基地局の配置
が容易となる。 (3)PHS端末との信頼度の高い通信が可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio base station synchronization apparatus for synchronizing control channel transmission times from a plurality of radio base stations in a PHS system. is there. 2. Description of the Related Art FIG. 2 shows an example of a general asynchronous PHS data transfer system. In FIG. 2, there are n radio base stations such as PHS radio base stations CS1, CS2... CSn, and the terminal PS1 is located in the radio zone of the radio base station CS1.
There are three PHS terminals, namely, PS1, PS12 and PS13, and the terminals PS21 and PS2 are located in the wireless zone of the wireless base station CS2.
There are 2, PS23 and three PHS terminals. In the radio zone of the radio base station CSn, the terminals PSn1, PSn2,
There are PSn3 and three PHS terminals. Of course, the number of PHS terminals in the wireless zone of each wireless base station may be three or more, or three or less. Data terminals PC1, PC2,... PC constituted by personal computers
n is connected to the LAN line and performs data communication with the PHS terminal. Radio base stations CS1, CS2,... CSn
Are also connected to the same LAN line. Also, it is assumed that the power of the radio base stations CS1, CS2,... CSn uses the same commercial power of 100V. In the PHS data transfer system composed of a plurality of radio base stations shown in FIG. 2, each PHS terminal performs data communication with a data terminal connected to the same LAN via the radio base station. For example, data terminal PC1
In order for the PHS terminal PS11 to communicate, the radio base station CS1, CS2,..., CSn calls the PS11 using the radio control channel, and the radio base station CS1 responds to the PHS terminal PS11. Switching to the communication channel of the base station CS1 and communication between the PC1 and the PS11. The control channel used at this time is common to a plurality of radio base stations. That is, in FIG. 2, the radio base station CS1,
Control channels of the same frequency are used in CS2,... CSn. This is because the PHS terminal can be waiting on the same control channel regardless of the zone of any wireless base station. However, since PHS terminals are called using the same control channel, if the positions of the radio base stations CS1, CS2,. The problem that radio waves interfere with each other occurs. That is, when the radio base station CS1 and the radio base station CS2 are adjacent to each other, the radio waves of the radio base station CS1 are transmitted to the PHS terminals PS11 and PS1 in the zone of CS1.
2. It is natural that PS13 can receive, but PS21, PS22, PS2 in the zone of the radio base station CS2.
Even in the case of 3, the reception level is slightly lowered, but there may be a case where the signal can be received with a considerably high electric field strength. Therefore, for example, when the radio base station CS2 transmits the control channel in the same time zone as the radio base station CS1 transmitting the control channel, the radio waves of the radio base stations CS1 and CS2 interfere with each other and call And so on will not reach each PHS terminal. [0005] This mutual interference will be described with reference to FIGS. Each radio base station uses a control channel of the same frequency and intermittently transmits radio waves for a transmission time of T seconds. FIG. 3 is a diagram illustrating a case where the signals of the control channel are transmitted in synchronization with each of the radio base stations and there is no mutual interference. From the radio base station CS1, first, from time t0 to t1
The control channel is transmitted for an interval T seconds until the transmission interval, and then the radio wave is transmitted only for T seconds from time tn to t (n + 1). After the transmission of the radio base station CS1 stops, the radio base station CS2
The transmission is performed for T seconds from time t1 to t2, and the radio base station CS
3 is transmitted for the next T seconds from t2 to t3. As described above, if the transmission times are shifted so that the wireless base stations do not overlap with each other and the transmission is performed intermittently at the transmission period nT, no mutual interference occurs. However, if the transmission is performed asynchronously between the radio base stations without synchronization, the transmission radio waves of the radio base stations may overlap as shown in FIG. In FIG. 4, the transmission radio waves of the radio base stations CS1 and CS2 do not overlap, but the transmission of the radio wave of the radio base station CS3 starts between times t0 and t1, and stops transmission between times t1 and t2. Therefore, the radio waves of both the radio base stations CS1 and CS2 overlap. Since synchronization is not established between the radio base stations, transmission starts regardless of the transmission time of the other radio base stations. Therefore, it is difficult to avoid the overlap as shown in FIG. Synchronization may be achieved at each radio base station. However, there is no method for synchronizing between conventional PHS radio base stations, and there has been a problem of mutual interference of transmission radio waves. An object of the present invention is to provide a PHS system composed of asynchronous radio base stations as described above, achieve simple synchronization, realize transmission as shown in FIG. 3, and perform control between radio base stations. An object of the present invention is to provide a radio base station synchronizing apparatus in which overlapping of channel signals does not occur. [0007] In order to achieve the above object, the present invention provides a plurality of PHs using the same commercial power supply.
A radio base station synchronizer provided in each of the S radio base stations, wherein peak detection means for detecting a voltage peak time of the commercial power supply, and a delay time defined for each radio base station are stored. A memory, and control means for controlling to start control channel transmission of the radio base station when a delay time stored in the memory elapses from a time when the peak detection means detects a voltage peak of the commercial power supply. And a wireless base station synchronization device characterized by comprising: FIG. 1 is a block diagram of a radio base station provided with a synchronization device according to the present invention. The control unit 1 is a wireless unit 6
To communicate with the PHS terminal. Power supply circuit 3 is AC1
The power is received from a commercial power supply of 00 V, 50 Hz, converted into a required voltage, converted into a DC voltage by an AC / DC converter 2, and supplied to the control unit 1. The AC voltage of the power supply circuit 3 is sent to the peak detection unit 4 to detect the peak position of the 50 Hz AC voltage, and send the position to the control unit 1 as a pulse.
The timer 5 and the memory 7 are connected to the control unit 1. Since the commercial power supply is 50 Hz, the interval between the peak positions detected by the peak detection unit 4 is 20 ms. That is, 20 ms
Each time, a pulse waveform is added to the control unit 1 as an output of the peak detection unit 4. The control unit 1 receives the pulse from the peak detection unit 4 and knows the peak time of the commercial power supply. Hereinafter, the control unit 1 will be described with reference to the operation flow of FIG.
Will be described. The controller 1 checks whether a pulse from the peak detector 4 has arrived (NO in STEP 101). When a pulse comes (YES in STEP 101), the timer 5 is reset (STEP 102). That is, the value of the timer is set to 0. The timer 5 starts counting from the time when it is set to 0. The delay time given to the radio base station is stored in the memory 7 of the control unit 1. Assuming that four radio base stations are synchronized according to the present invention, the radio base station CS1 has a delay time of 0 ms, the radio base station CS2 has a delay time of 5 ms, and the radio base station CS3 has a delay time of 10 ms.
ms and 15 ms to the radio base station CS4. The controller 1 checks whether the value of the timer 5 has reached the delay time stored in the memory 7 (NO in STEP 103). In the case of the radio base station CS2, 5 ms is stored in the memory 7.
It is checked whether the timer 5 has reached 5 ms. If the delay time stored in the memory 7 has been reached (YES in STEP 103), the control unit 1 controls the radio unit 6 and performs control channel transmission for a determined time. In this system, one transmission time is set to 5 ms, so transmission is performed for 5 ms and necessary information is transmitted to the PHS terminal. When transmission is performed, the process returns to the beginning and waits again for a pulse from the peak detector 4 (STEP
101). [0010] Radio base stations CS1, CS2, CS3, CS
FIG. 5 shows a case where transmission is performed by synchronizing with four units 4.
Assuming that the peak detection time in the peak detection unit 4 is t0, this time is completely synchronized because the radio base stations CS1 to CS4 detect the peak of the same power supply. Then, the radio base station CS1 transmits for only 5 ms with a delay time of 0,
The radio base station CS2 takes a delay time of 5 ms and sets the time t0
Transmission is performed for 5 ms from the time of +5 ms. Radio base station C
At S3, the delay time is 10 ms, and the time t0 + 10m
5 ms from the time point s, and the radio base station CS4
With a delay time of 15 ms, transmission is performed for 5 ms from the time t0 + 15 ms. Since the next peak detection time in the peak detection unit 4 is t0 + 20 ms, from that point on, each of the radio base stations CS1, CS2, CS3, and CS4 sequentially transmits for 5 ms after a given delay time has elapsed. Do. In this way, each wireless base station can transmit the intermittent transmission for a transmission time of 5 ms every transmission cycle of 20 ms without overlapping the transmission radio waves of the wireless base station. That is, it is possible to easily synchronize each wireless base station using the commercial power supply. As is clear from FIG. 5, if the control channel transmission time from one radio base station is 5 ms, 50 Hz
When the power supply is used, the number of wireless base stations that can transmit without synchronizing transmission radio waves with each other is four. If a fifth wireless base station CS5 exists, this wireless base station CS5
5 are transmitted at the radio base stations CS1 and CS shown in FIG.
2, CS3, and CS4 always overlap with one of the transmission times. However, even if transmission times overlap, mutual interference of transmission radio waves does not occur if the distance between the two radio base stations is large. That is, mutual interference can be reduced by setting the transmission time of the radio base station CS5 to be the same as the transmission time of a radio base station that is not adjacent to the radio base station CS5. FIG. 7 shows an example of arrangement of wireless base stations. Radio base stations CS1, CS2, CS
3, CS4 and CS5 are arranged as shown in FIG. 7, the radio base station CS5 is a radio base station CS2 which is an adjacent radio base station.
And a transmission time different from CS4, for example, the radio base station CS1
May be transmitted at the transmission time. Since the radio base station CS2 is inserted between the radio base stations CS1 and CS5 transmitting at the same transmission time, mutual interference is reduced even when transmitting at the same time. In the case of a two-dimensional planar radio base station arrangement, if at least four non-overlapping transmission times can be taken, at least one radio base station is inserted between radio base stations having the same transmission time. Can be taken. Of course, with a one-dimensional linear wireless base station arrangement, a configuration in which three wireless base stations are interposed is possible. The frequency of the commercial power supply is 60H instead of 50Hz
In the case of z, the time interval for peak detection is 16.6 ms. Therefore, if one transmission time at the radio base station is 5 ms, transmission from four radio base stations can be prevented from overlapping. Absent. In three wireless base stations, the intermittent transmission cycle is 1
It becomes 6.6 ms. The transmission time of the fourth radio base station is the same as the transmission time of any of the three allocated radio base stations, but even if only three different transmission times are obtained,
A configuration is possible in which the transmission time of the fourth wireless base station is set to a transmission time different from that of the adjacent wireless base station. As described above in detail, the present invention makes it possible to perform synchronization between radio base stations of a PHS system, which has been difficult to transmit synchronously, by a simple method of synchronizing with the frequency of a commercial power supply. did. Because it is synchronized with commercial power,
It can be realized very economically. According to the present invention, the following effects can be obtained. (1) An economical inter-wireless base station synchronization device can be realized. (2) Arrangement of wireless base stations without mutual interference of control channels is facilitated. (3) Highly reliable communication with the PHS terminal is enabled.

【図面の簡単な説明】 【図1】本発明の同期化装置を備えた無線基地局のブロ
ック図である。 【図2】PHSシステムを用いたデータ転送システムの
構成図である。 【図3】複数無線基地局での同期送信の説明図である。 【図4】複数無線基地局での非同期送信の説明図であ
る。 【図5】本発明の電源同期の同期送信の説明図である。 【図6】本発明の動作フローである。 【図7】無線基地局の配置例である。 【符号の説明】 1 制御部 2 AC/DCコンバータ 3 電源回路 4 ピーク検出部 5 タイマ 6 無線部 7 メモリ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a radio base station provided with a synchronization device of the present invention. FIG. 2 is a configuration diagram of a data transfer system using a PHS system. FIG. 3 is an explanatory diagram of synchronous transmission in a plurality of radio base stations. FIG. 4 is an explanatory diagram of asynchronous transmission in a plurality of radio base stations. FIG. 5 is an explanatory diagram of synchronous transmission of power supply synchronization according to the present invention. FIG. 6 is an operation flow of the present invention. FIG. 7 is an example of arrangement of wireless base stations. [Description of Signs] 1 control unit 2 AC / DC converter 3 power supply circuit 4 peak detection unit 5 timer 6 radio unit 7 memory

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5K047 AA11 AA15 AA18 BB01 GG02 GG09 MM02 MM11 5K067 AA33 BB04 DD57 EE02 EE10 HH22 HH23 JJ13    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 5K047 AA11 AA15 AA18 BB01 GG02                       GG09 MM02 MM11                 5K067 AA33 BB04 DD57 EE02 EE10                       HH22 HH23 JJ13

Claims (1)

【特許請求の範囲】 【請求項1】 同一の商用電源を使用する複数のPHS
用無線基地局の各々に設けられた無線基地局同期化装置
であって、 前記商用電源の電圧ピーク時刻を検出するピーク検出手
段と、各無線基地局対応に定められた遅延時間を格納し
たメモリと、前記ピーク検出手段が前記商用電源の電圧
ピークを検出した時刻から前記メモリに格納された遅延
時間が経過したときに当該無線基地局の制御チャネル送
信を開始するように制御する制御手段とからなることを
特徴とする無線基地局同期化装置。
Claims: 1. A plurality of PHSs using the same commercial power supply
Wireless base station synchronizer provided in each of the wireless base stations, comprising: peak detecting means for detecting a voltage peak time of the commercial power supply; and a memory storing a delay time defined for each wireless base station. And control means for controlling to start the control channel transmission of the radio base station when the delay time stored in the memory elapses from the time when the peak detection means detects the voltage peak of the commercial power supply. A radio base station synchronization apparatus characterized in that:
JP2001184320A 2001-06-19 2001-06-19 Radio base station synchronization device Pending JP2003009218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184320A JP2003009218A (en) 2001-06-19 2001-06-19 Radio base station synchronization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184320A JP2003009218A (en) 2001-06-19 2001-06-19 Radio base station synchronization device

Publications (1)

Publication Number Publication Date
JP2003009218A true JP2003009218A (en) 2003-01-10

Family

ID=19024100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184320A Pending JP2003009218A (en) 2001-06-19 2001-06-19 Radio base station synchronization device

Country Status (1)

Country Link
JP (1) JP2003009218A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360431A (en) * 1991-06-07 1992-12-14 Kokusai Electric Co Ltd Network synchronization system for digital communication network
JPH09149459A (en) * 1995-11-24 1997-06-06 Oki Electric Ind Co Ltd Logical control channel transmission system
JPH1013925A (en) * 1996-06-27 1998-01-16 Matsushita Electric Works Ltd Circuit for changing transmission and reception timing
JPH10145847A (en) * 1996-11-08 1998-05-29 Mitsubishi Electric Corp Method and device for synchronizing frame
JP2000023265A (en) * 1998-06-26 2000-01-21 Kanda Tsushin Kogyo Co Ltd Connector for digital cordless telephone system
JP2000134143A (en) * 1998-10-23 2000-05-12 Fujitsu Ltd Radio relay system utilizing time division multiple access time division two-way transmission system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360431A (en) * 1991-06-07 1992-12-14 Kokusai Electric Co Ltd Network synchronization system for digital communication network
JPH09149459A (en) * 1995-11-24 1997-06-06 Oki Electric Ind Co Ltd Logical control channel transmission system
JPH1013925A (en) * 1996-06-27 1998-01-16 Matsushita Electric Works Ltd Circuit for changing transmission and reception timing
JPH10145847A (en) * 1996-11-08 1998-05-29 Mitsubishi Electric Corp Method and device for synchronizing frame
JP2000023265A (en) * 1998-06-26 2000-01-21 Kanda Tsushin Kogyo Co Ltd Connector for digital cordless telephone system
JP2000134143A (en) * 1998-10-23 2000-05-12 Fujitsu Ltd Radio relay system utilizing time division multiple access time division two-way transmission system

Similar Documents

Publication Publication Date Title
US4509199A (en) Power supply systems for use in radio communication systems
EP0200209B1 (en) Cordless telephone apparatus having means for synchronizing channel scanning of fixed and portable units
CN1057186C (en) Transmission control method of downgoing control signal in TDMA mobile communication system
JPH0374858B2 (en)
EP2624639A1 (en) Wireless communication system and wireless communication device
JPH0819041A (en) Communication method between slave sets in digital cordless telephone system and digital cordless telephone set
JPH0823568A (en) Radio frame synchronizing system
JPH03147430A (en) Battery saving system
JPS6313432A (en) Battery saving method for receiver in selecting calling signal system
JPH1118144A (en) Method and system for establishing synchronization between base stations
JP2003009218A (en) Radio base station synchronization device
JPH0775165A (en) Digital cordless telephone system
JPH07326998A (en) Intermittent receiver
JP2000048292A (en) Automatic meter-reading system
JP2978084B2 (en) Wireless communication device and base station
JP2000197111A (en) Synchronization control method for mobile communication system and controller for mobile communication
JP3254874B2 (en) Digital cordless telephone equipment
CN1820470B (en) Wireless communication system and communication method
JPS6070833A (en) Incoming signal transmission system of radio telephone equipment
KR100582568B1 (en) Synchronization control apparatus of the DECT system
JP2687403B2 (en) Mobile communication system
JP2011097296A (en) Communication equipment and communication system
JP2510034B2 (en) Connection control method for cordless phones
JP2007081501A (en) Reception control method of mobile terminal and apparatus thereof
JP3048930B2 (en) Digital cordless telephone equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608