JP2003008386A - Crystal oscillator with resonance frequency temperature characteristic display - Google Patents

Crystal oscillator with resonance frequency temperature characteristic display

Info

Publication number
JP2003008386A
JP2003008386A JP2001190532A JP2001190532A JP2003008386A JP 2003008386 A JP2003008386 A JP 2003008386A JP 2001190532 A JP2001190532 A JP 2001190532A JP 2001190532 A JP2001190532 A JP 2001190532A JP 2003008386 A JP2003008386 A JP 2003008386A
Authority
JP
Japan
Prior art keywords
temperature coefficient
order
temperature
resonance frequency
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190532A
Other languages
Japanese (ja)
Inventor
Noriyuki Watanabe
紀之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2001190532A priority Critical patent/JP2003008386A/en
Publication of JP2003008386A publication Critical patent/JP2003008386A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a crystal oscillator capable of displaying the numerical values of first to fifth temperature coefficients without increasing a displaying area. SOLUTION: By using the presence of strong correlation between a third order temperature coefficient and a fifth order temperature coefficient and between a second order temperature coefficient and a fourth order temperature coefficient when approximating the temperature variation characteristic of the resonance frequency of an AT cut crystal oscillator by a fifth order expression with respect to the ambient temperature, only first to third order temperature characteristics are displayed by laser marking on a package surface to obtain the residual fourth and fifth order temperature coefficients, thereby a space for displaying marking is economized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、共振周波数温度特
性の温度係数を表示した水晶振動子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal unit displaying a temperature coefficient of resonance frequency temperature characteristic.

【0002】[0002]

【従来の技術】ATカット型の水晶振動子はその共振周
波数の温度特性が図6に示すように近似的に3次の温度
特性を持っていることはよく知られている。一般にはA
Tカット型水晶振動子の共振周波数fの温度に対する変
化Δfは次式で与えられ、周囲温度Tに関する3次式で
近似できることは周知のことである。 Δf/f=A(T−25)+A(T−25)+A(T−25) ・・・(1) ここで、Tは周囲温度、A1は1次温度係数、A2は2
次温度係数、A3は3次温度係数を表し、(1)式全体
は3次曲線の変曲点が位置する周囲温度25℃に対して
基準化されている。
2. Description of the Related Art It is well known that an AT cut type crystal resonator has a temperature characteristic of its resonance frequency approximately having a third order temperature characteristic as shown in FIG. Generally A
It is well known that the change Δf of the resonance frequency f of the T-cut type crystal resonator with respect to temperature is given by the following equation and can be approximated by a cubic equation regarding the ambient temperature T. Δf / f = A 1 (T-25) + A 2 (T-25) 2 + A 3 (T-25) 3 (1) where T is ambient temperature, A1 is primary temperature coefficient, and A2 is Two
The secondary temperature coefficient, A3, represents the tertiary temperature coefficient, and the entire equation (1) is normalized with respect to the ambient temperature of 25 ° C. at which the inflection point of the cubic curve is located.

【0003】一般に、温度補償型水晶発振器を設計する
際、特に温度補償に対する要求性能が厳しいものについ
ては、個々の水晶振動子の共振周波数特性を温度補償回
路に反映させ、より高精度な温度補償を行うようにして
いる。例えば、水晶振動子の検査データとしてパッケー
ジに(1)式で示した1次〜3次温度係数A〜A
数値をコード化しレーザーマーキング等で表示する。そ
して、組み立て工程においてこれを自動的に読みとるよ
うにし、その内容を温度補償回路の組み立て及び調整に
自動的に反映させるようにしているのが通常である。
In general, when designing a temperature-compensated crystal oscillator, particularly for those having severe performance requirements for temperature compensation, the resonance frequency characteristics of each crystal oscillator are reflected in the temperature compensation circuit to provide more accurate temperature compensation. I'm trying to do. For example, as the inspection data of the crystal unit, the numerical values of the primary to tertiary temperature coefficients A 1 to A 3 shown in the equation (1) are coded and displayed on the package by laser marking or the like. Then, in the assembly process, this is automatically read, and the content is usually reflected in the assembly and adjustment of the temperature compensation circuit.

【0004】ところが、温度補償型水晶発振器の要求性
能が更に厳しいものになると、水晶振動子の共振周波数
の温度特性を(2)式に示す5次式で近似し、近似誤差
を更に抑える必要が生じる。 Δf/f=A(T−25)+A(T−25)+A(T−25) +A(T−25)+A(T−25)・・・(2) しかしながら、(2)式のような5次の近似式を用いる
ためには、水晶振動子のパッケージにA1〜A5の5つ
の温度係数をそれぞれコード化して表示しなければなら
ない。よって、温度係数を表示する面積が増加してしま
いパッケージを小型化するときの障害にもなっていた。
However, when the required performance of the temperature-compensated crystal oscillator becomes more severe, it is necessary to approximate the temperature characteristic of the resonance frequency of the crystal resonator by the quintic equation shown in the equation (2) to further suppress the approximation error. Occurs. Δf / f = A 1 (T-25) + A 2 (T-25) 2 + A 3 (T-25) 3 + A 4 (T-25) 4 + A 5 (T-25) 5 (2) However, In order to use a fifth-order approximation formula such as the formula (2), the five temperature coefficients A1 to A5 must be coded and displayed on the crystal unit package. Therefore, the area for displaying the temperature coefficient increases, which is an obstacle to miniaturizing the package.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたものであって、表示面積を増加
させることなく、1次〜5次の温度係数の数値を表示可
能な水晶振動子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and is a crystal capable of displaying the numerical values of the temperature coefficients of the first to fifth orders without increasing the display area. It is intended to provide a vibrator.

【0006】[0006]

【課題を解決しようとする手段】上記目的を解決するた
めに、本発明に係わる共振周波数温度特性表示付き水晶
振動子の請求項1記載の発明は、ATカット型水晶振動
子の共振周波数の温度変化特性を周囲温度に関する5次
式で近似し、前記5次近似式における温度係数の値をそ
れぞれコード化して該水晶振動子のパッケージ表面にマ
ーキング表示したATカット型水晶振動子において、前
記2次温度係数と4次温度係数との間の第1の相関関
係、及び前記3次温度係数と5次温度係数の間の第2の
相関関係に基づき、該パッケージ表面において該2次温
度係数或いは4次温度係数のいずれか一方、及び3次温
度係数或いは5次温度係数のいずれか一方の値のマーキ
ング表示を省略したものである。
In order to solve the above-mentioned object, the invention according to claim 1 of a crystal resonator with a resonance frequency temperature characteristic display according to the present invention is the temperature of the resonance frequency of an AT cut type crystal resonator. In the AT-cut type crystal unit in which the change characteristics are approximated by a quintic equation regarding the ambient temperature, and the values of the temperature coefficient in the quintic approximation formula are coded and displayed on the package surface of the crystal unit by the quadratic equation, Based on the first correlation between the temperature coefficient and the fourth-order temperature coefficient and the second correlation between the third-order temperature coefficient and the fifth-order temperature coefficient, the second-order temperature coefficient or 4 at the package surface. The marking display of either one of the next temperature coefficient and one of the third temperature coefficient and the fifth temperature coefficient is omitted.

【0007】本発明に係わる共振周波数温度特性表示付
き水晶振動子の請求項2記載の発明は、ATカット型水
晶振動子の共振周波数の温度変化特性を周囲温度に関す
る5次式で近似し、前記5次近似式における温度係数の
値をそれぞれコード化して該水晶振動子のパッケージ表
面にマーキング表示したATカット型水晶振動子におい
て、前記2次温度係数と4次温度係数との間の第1の相
関関係、前記3次温度係数と5次温度係数との間の第2
の相関関係、及び該水晶振動子の特定温度における共振
周波数の周波数偏差(Δf/f)と一次温度係数A1と
の関係をA1=Ea(定数)×Δf/f+Eb(変数)
と一次近似したとき生じる前記Ebと2次温度係数或い
は3次温度係数との第3の相関関係に基づき、前記Δf
/fとEb(変数)の値をそれぞれコード化しパッケー
ジ表面にマーキングすると共に、前記2次温度係数A2
或いは4次温度係数A4のいずれか一方をA2=Da
(定数)×Eb+Db(定数)×Eb+Dc(変数)
或いはA4=Da(定数)×Eb+Db(定数)×E
b+Dc(変数)と2次近似し、前記3次温度係数A3
或いは5次温度係数A5のいずれか一方をA3=Ca
(定数)×Eb+Cb(変数)或いはA5=Ca(定
数)×Eb+Cb(変数)と1次近似し、前記Dc(変
数)及びCb(変数)の値をそれぞれコード化し該パッ
ケージ表面にマーキングし、該パッケージ表面において
該2次温度係数或いは4次温度係数のいずれか一方、及
び3次温度係数或いは5次温度係数のいずれか一方の値
のマーキング表示を省略したものである。
The invention according to claim 2 of the crystal resonator with a resonance frequency temperature characteristic display according to the present invention is characterized in that the temperature variation characteristic of the resonance frequency of the AT-cut type crystal resonator is approximated by a quintic equation relating to the ambient temperature. In the AT-cut type crystal resonator in which the values of the temperature coefficient in the fifth-order approximation equation are coded and displayed on the package surface of the crystal resonator by marking, the first temperature coefficient between the second-order temperature coefficient and the fourth-order temperature coefficient is obtained. Correlation, the second between the third-order temperature coefficient and the fifth-order temperature coefficient
And the relationship between the frequency deviation (Δf / f) of the resonance frequency at a specific temperature of the crystal unit and the primary temperature coefficient A1 are A1 = Ea (constant) × Δf / f + Eb (variable)
Based on the third correlation between the Eb and the second-order temperature coefficient or the third-order temperature coefficient that occurs when the first-order approximation
The values of / f and Eb (variable) are coded and marked on the package surface, and the secondary temperature coefficient A2
Alternatively, set either one of the fourth-order temperature coefficient A4 to A2 = Da
(Constant) × Eb 2 + Db (Constant) × Eb + Dc (Variable)
Alternatively, A4 = Da (constant) × Eb 2 + Db (constant) × E
quadratic approximation with b + Dc (variable) to obtain the third-order temperature coefficient A3
Alternatively, set either one of the fifth-order temperature coefficient A5 to A3 = Ca
(Constant) × Eb + Cb (variable) or A5 = Ca (constant) × Eb + Cb (variable) is linearly approximated, and the values of Dc (variable) and Cb (variable) are coded and marked on the package surface. The marking display of the value of either the secondary temperature coefficient or the quaternary temperature coefficient and the value of the tertiary temperature coefficient or the quintic temperature coefficient is omitted on the package surface.

【0008】[0008]

【発明の実施の形態】以下図示した実施の形態例に基づ
いて本発明を詳細に説明する。図1はATカット型水晶
振動子の共振周波数の温度特性の実測値に対して(2)
式による5次の近似を行い、その1次〜5次の各温度係
数間の相関関係を統計的に示した図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on the illustrated embodiments. Figure 1 shows the measured temperature characteristic of the resonance frequency of the AT-cut type crystal unit (2)
It is the figure which statistically showed the correlation between each 1st-5th temperature coefficient which performed the 5th approximation by a formula.

【0009】当社にて確認した実測データによれば、A
Tカット型水晶振動子には図1(a)に示すように、2
次温度係数A2と4次温度係数A4との間に強い直線的
相関関係があることが判明した。更に図1(b)に示す
ように、3次温度係数A3と5次温度係数A5との間に
も強い直線的相関関係があることが判明した。従って、
水晶振動子のパッケージにA1〜A3までの温度係数さ
え表示すれば残りのA4、A5の温度係数を表示しなく
とも、事前に図1(a)(b)の一次近似式さえ入手し
ておけば4次と5次の温度係数を知ることができる。或
いは、A2とA4のいずれか一方、及びA3とA5のい
ずれか一方を表示するようにしても良い。
According to the actual measurement data confirmed by our company, A
As shown in FIG. 1 (a), the T-cut type crystal unit has 2
It was found that there is a strong linear correlation between the second-order temperature coefficient A2 and the fourth-order temperature coefficient A4. Further, as shown in FIG. 1B, it was found that there is a strong linear correlation also between the third-order temperature coefficient A3 and the fifth-order temperature coefficient A5. Therefore,
If only the temperature coefficients of A1 to A3 are displayed on the package of the crystal unit, even if the temperature coefficients of the remaining A4 and A5 are not displayed, even obtain the first-order approximation formula of FIG. 1 (a) (b) in advance. For example, it is possible to know the fourth and fifth temperature coefficients. Alternatively, either one of A2 and A4 and one of A3 and A5 may be displayed.

【0010】また、組み立て工程において、パッケージ
表面にコード化表示した温度係数A1〜A3を自動的に
読みとるようにしておき、更に読みとったデータからA
4、A5を自動的に計算するように設備をプログラムし
ておけばよい。このようにしておくと、パッケージに表
示するスペースを増加させることもなく、またパッケー
ジに表示するコードのフォーマットを変更する必要もな
いので、3次式近似或いは5次式近似のいずれに対して
も設備を共通化して対応できるので利点も大きいであろ
う。
In the assembly process, the temperature coefficients A1 to A3 coded and displayed on the package surface are automatically read, and A is read from the read data.
4, the equipment may be programmed to automatically calculate A5. By doing so, there is no need to increase the space displayed in the package, and it is not necessary to change the format of the code displayed in the package. Therefore, for both the cubic approximation and the quintic approximation, Since the equipment can be shared and supported, the advantages will be great.

【0011】次に第2の実施の形態について説明する。
図2はATカット水晶振動子の温度特性を示すものであ
り、個体によって温度特性の曲線がばらつく様子を示し
ている。ここである温度点、例えば+75℃に着目す
る。5次近似式の各係数とこの+75℃における周波数
偏差(Δf/f)との関係を調べたところ図3に示すよ
うに一次係数A1と相関(一次)があることが判明し
た。これを近似式で表すと、 A=E×(Δf/f)+E・・・(3) となる。
Next, a second embodiment will be described.
FIG. 2 shows the temperature characteristic of the AT-cut crystal unit, and shows how the curve of the temperature characteristic varies depending on the individual. Focus on a certain temperature point, for example, + 75 ° C. When the relationship between each coefficient of the fifth-order approximation formula and the frequency deviation (Δf / f) at + 75 ° C. was examined, it was found that there was a correlation (first-order) with the first-order coefficient A1 as shown in FIG. When this is expressed by an approximate expression, A 1 = E a × (Δf / f) + E b (3)

【0012】図3から明らかなように、(3)式の傾き
Eaはほぼ等しいものの、y軸切片Ebには個体差(ロ
ット差)が生じることが判る。よって、傾きEaを固定
値とし、Δf/f(+75℃)とy軸切片Ebを変数と
する。更に、この切片Ebと5次近似式の各温度係数と
の関係を調べたところ、図4(a)に示すように、2次
温度係数とは2次関数的な相関が見られ、また3次温度
係数とは1次関数的な相関が見られる。
As is apparent from FIG. 3, although the slope Ea of the equation (3) is almost the same, there is an individual difference (lot difference) in the y-axis intercept Eb. Therefore, the slope Ea is a fixed value, and Δf / f (+ 75 ° C.) and the y-axis intercept Eb are variables. Furthermore, when the relation between this intercept Eb and each temperature coefficient of the fifth-order approximation formula was investigated, as shown in FIG. 4A, a quadratic function-like correlation was found with the second-order temperature coefficient, and 3 A linear function correlation can be seen with the next temperature coefficient.

【0013】2次温度係数A2、及び3次温度係数A3
のそれぞれを近似式に表現すると、 A=D×E +D×E+D・・・(4) A=C×E +C・・・(5) となる。更に、図1に示したようにA2とA4、及びA
3とA5には一次関数的な相関が見られる。これを近似
式に表すと、 A=B×A+B・・・(6) A=A×A+A・・・(7) となる。
Secondary temperature coefficient A2 and tertiary temperature coefficient A3
When each of these is expressed as an approximate expression, A 2 = D a × E b 2 + D b × E b + D c ... (4) A 3 = C a × E b + C b ... (5) Further, as shown in FIG. 1, A2 and A4, and A
A linear function-like correlation is seen between 3 and A5. Expressing this approximate expression, and A 4 = B a × A 2 + B b ··· (6) A 5 = A a × A 3 + A b ··· (7).

【0014】ここで、Δf/f(+75℃)とEbとC
bとDcとを変数としてコード化してパッケージにレー
ザーマーキングをしておけば良い。他の係数である、E
a、Da、Db、Ca、Ba、Bb、Aa、Ab、Ac
は固定値として予め与えておくことで、1次から5次ま
での温度係数A1〜A5を求めることができる。なお、
第2の実施例の各温度係数をレーザーマーキングより求
める手順を図5に示したので以下説明する。まず、図5
においてパッケージにはΔf/f(+75℃)、Eb、
CbとDcの組合せ、の値がそれぞれコード化され全体
で3桁コードとして表示されている。そこで、1桁目と
2桁目のコードであるΔf/f(+75℃)とEbの値
を式(3)に代入し1次温度係数A1を求める。
Here, Δf / f (+ 75 ° C.), Eb and C
Laser marking may be performed on the package by coding b and Dc as variables. Another factor, E
a, Da, Db, Ca, Ba, Bb, Aa, Ab, Ac
Is given in advance as a fixed value, so that the temperature coefficients A1 to A5 of the first to fifth orders can be obtained. In addition,
A procedure for obtaining each temperature coefficient of the second embodiment from the laser marking is shown in FIG. 5, which will be described below. First, FIG.
In the package, Δf / f (+ 75 ° C), Eb,
The values of the combination of Cb and Dc are coded and displayed as a 3-digit code as a whole. Therefore, the values of Δf / f (+ 75 ° C.) and Eb, which are the codes of the first digit and the second digit, are substituted into the equation (3) to obtain the primary temperature coefficient A1.

【0015】次に、2桁目と3桁目のコードであるE
b、CbとDcの組合わせ、の値を式(4)に代入し2
次温度係数A2を求める。更に前記Eb、CbとDcの
組合わせ、の値を式(5)に代入し3次温度係数A3を
求める。次に式(4)で求めた2次温度係数A2の値を
式(6)に代入してA4を求め、式(5)で求めた3次
温度係数A3の値を式(7)に代入して5次温度係数A
5を求めることができる。以上、パッケージに表示した
3桁コードから1次〜5次温度係数を求める手順につい
て説明した。
Next, E, which is the code of the second and third digits
Substituting the value of b, the combination of Cb and Dc into equation (4), 2
Next temperature coefficient A2 is calculated. Further, the value of Eb, the combination of Cb and Dc, is substituted into the equation (5) to obtain the third-order temperature coefficient A3. Next, the value of the secondary temperature coefficient A2 obtained by the equation (4) is substituted into the equation (6) to obtain A4, and the value of the tertiary temperature coefficient A3 obtained by the equation (5) is substituted into the equation (7). And 5th temperature coefficient A
You can ask for 5. The procedure for obtaining the first to fifth order temperature coefficients from the 3-digit code displayed on the package has been described above.

【0016】尚、3次温度係数A3と、5次温度係数A
5とをそれぞれ一次式で近似したが図1(b)より若干
曲線的な振る舞いが見られるので、これらを2次近似す
ることで近似精度が向上することは言うまでもない。こ
の場合は、式(7)に代えて、 A=A×A +A×A+A・・・(8) を用いAa、Ab、Acを固定値として扱うことでより
正確な温度補償データを得ることができる。
The third temperature coefficient A3 and the fifth temperature coefficient A
5 and 5 are respectively approximated by a linear expression, but a slightly curvilinear behavior can be seen from FIG. 1B, and it is needless to say that the approximation accuracy is improved by quadratic approximating these. In this case, it is more accurate by treating Aa, Ab, and Ac as fixed values using A 5 = A a × A 3 2 + A b × A 3 + A c (8) instead of the formula (7). Various temperature compensation data can be obtained.

【0017】以上説明した、共振周波数温度特性表示付
き水晶振動子においては、1次〜3次の温度係数の情
報、或いは3桁のコードをパッケージにレーザーマーキ
ングしたが、本発明においてはこれに限らず、温度係数
の情報に加えて等価抵抗の抵抗温度係数等も表示するよ
うにしても構わない。本発明の実施例においては説明を
簡単にするため等価抵抗の温度特性の表示に関しては説
明を省略した。
In the crystal unit with the resonance frequency temperature characteristic display described above, the information on the first to third order temperature coefficients or the three-digit code is laser-marked on the package. However, the present invention is not limited to this. Instead of displaying the temperature coefficient information, the resistance temperature coefficient of the equivalent resistance may be displayed. In the embodiments of the present invention, the description of the display of the temperature characteristic of the equivalent resistance is omitted for simplification of the description.

【0018】[0018]

【発明の効果】本発明は以上説明したように、ATカッ
ト型水晶振動子の共振周波数の温度特性において、前記
温度特性を5次式近似したとき、3次温度係数と5次温
度係数との間、及び2次温度係数と4次温度係数との間
で強い相関関係があることを利用し、1次〜3次の温度
係数のみをパッケージに表示することで残りの4次、5
次の温度係数を入手できるようにし、4次、5次の温度
係数をパッケージに表示することを不要としたので、表
示スペースを節約できる温度特性表示付き水晶振動子を
提供する上で著効を奏す。
As described above, according to the present invention, in the temperature characteristic of the resonance frequency of the AT-cut type crystal unit, when the temperature characteristic is approximated by a quintic equation, the third-order temperature coefficient and the fifth-order temperature coefficient are , And the fact that there is a strong correlation between the second-order temperature coefficient and the fourth-order temperature coefficient, by displaying only the first- to third-order temperature coefficients on the package,
Since the following temperature coefficients are available and it is not necessary to display the 4th and 5th temperature coefficients on the package, it is extremely effective in providing a crystal unit with a temperature characteristic display that can save display space. Play.

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる温度特性表示付き水晶振動子に
おける各温度係数の相関関係を示した図。
FIG. 1 is a diagram showing the correlation of each temperature coefficient in a crystal unit with a temperature characteristic display according to the present invention.

【図2】本発明に係わる温度特性表示付き水晶振動子の
共振周波数温度特性のばらつきを示した図。
FIG. 2 is a diagram showing variations in resonance frequency temperature characteristics of the crystal unit with temperature characteristics display according to the present invention.

【図3】本発明に係わる温度特性表示付き水晶振動子の
1次温度係数と2次温度係数の相関関係を示した図。
FIG. 3 is a diagram showing a correlation between a primary temperature coefficient and a secondary temperature coefficient of a crystal unit with a temperature characteristic display according to the present invention.

【図4】本発明に係わる温度特性表示付き水晶振動子の
Ebと1次温度係数或いは2次温度係数の相関関係を示
した図。
FIG. 4 is a diagram showing a correlation between Eb and a first-order temperature coefficient or a second-order temperature coefficient of a crystal unit with a temperature characteristic display according to the present invention.

【図5】本発明に係わる温度特性表示付き水晶振動子に
係わる第2の実施例の手順を示した図。
FIG. 5 is a diagram showing a procedure of a second embodiment relating to a crystal unit with temperature characteristic display according to the present invention.

【図6】水晶振動子の共振周波数温度特性を示した図。FIG. 6 is a diagram showing a resonance frequency temperature characteristic of a crystal unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ATカット型水晶振動子の共振周波数の温
度変化特性を周囲温度に関する5次式で近似し、前記5
次近似式における温度係数の値をそれぞれコード化して
該水晶振動子のパッケージ表面にマーキング表示したA
Tカット型水晶振動子において、 前記2次温度係数と4次温度係数との間の第1の相関関
係、及び前記3次温度係数と5次温度係数の間の第2の
相関関係に基づき、該パッケージ表面において該2次温
度係数或いは4次温度係数のいずれか一方、及び3次温
度係数或いは5次温度係数のいずれか一方の値のマーキ
ング表示を省略したことを特徴とする共振周波数温度特
性表示付き水晶振動子。
1. A temperature change characteristic of a resonance frequency of an AT-cut type crystal resonator is approximated by a quintic equation relating to ambient temperature,
The temperature coefficient values in the following approximate equations were coded and marked on the package surface of the crystal unit A
In the T-cut type crystal resonator, based on a first correlation between the second-order temperature coefficient and the fourth-order temperature coefficient and a second correlation between the third-order temperature coefficient and the fifth-order temperature coefficient, Resonance frequency temperature characteristics characterized by omitting marking display of either the second-order temperature coefficient or the fourth-order temperature coefficient and the value of the third-order temperature coefficient or the fifth-order temperature coefficient on the package surface. Crystal unit with display.
【請求項2】ATカット型水晶振動子の共振周波数の温
度変化特性を周囲温度に関する5次式で近似し、前記5
次近似式における温度係数の値をそれぞれコード化して
該水晶振動子のパッケージ表面にマーキング表示したA
Tカット型水晶振動子において、 前記2次温度係数と4次温度係数との間の第1の相関関
係、前記3次温度係数と5次温度係数との間の第2の相
関関係、及び該水晶振動子の特定温度における共振周波
数の周波数偏差(Δf/f)と一次温度係数A1との関
係をA1=Ea(定数)×Δf/f+Eb(変数)と一
次近似したとき生じる前記Ebと2次温度係数或いは3
次温度係数との第3の相関関係に基づき、前記Δf/f
とEb(変数)の値をそれぞれコード化しパッケージ表
面にマーキングすると共に、前記2次温度係数A2或い
は4次温度係数A4のいずれか一方をA2=Da(定
数)×Eb+Db(定数)×Eb+Dc(変数)或い
はA4=Da(定数)×Eb+Db(定数)×Eb+
Dc(変数)と2次近似し、前記3次温度係数A3或い
は5次温度係数A5のいずれか一方をA3=Ca(定
数)×Eb+Cb(変数)或いはA5=Ca(定数)×
Eb+Cb(変数)と1次近似し、前記Dc(変数)及
びCb(変数)の値をそれぞれコード化し該パッケージ
表面にマーキングし、該パッケージ表面において該2次
温度係数或いは4次温度係数のいずれか一方、及び3次
温度係数或いは5次温度係数のいずれか一方の値のマー
キング表示を省略したことを特徴とする共振周波数温度
特性表示付き水晶振動子。
2. A temperature change characteristic of a resonance frequency of an AT-cut type crystal resonator is approximated by a quintic equation relating to ambient temperature,
The temperature coefficient values in the following approximate equations were coded and marked on the package surface of the crystal unit A
In a T-cut type crystal resonator, a first correlation between the second-order temperature coefficient and the fourth-order temperature coefficient, a second correlation between the third-order temperature coefficient and the fifth-order temperature coefficient, and The relationship between the frequency deviation (Δf / f) of the resonance frequency at a specific temperature of the crystal unit and the first-order temperature coefficient A1 is linearly approximated to A1 = Ea (constant) × Δf / f + Eb (variable), and Eb and quadratic Temperature coefficient or 3
Based on the third correlation with the next temperature coefficient, Δf / f
And the value of Eb (variable) are coded and marked on the package surface, and one of the secondary temperature coefficient A2 and the quaternary temperature coefficient A4 is A2 = Da (constant) × Eb 2 + Db (constant) × Eb + Dc. (Variable) or A4 = Da (constant) × Eb 2 + Db (constant) × Eb +
Dc (variable) is quadratic-approximated, and one of the third-order temperature coefficient A3 and the fifth-order temperature coefficient A5 is A3 = Ca (constant) × Eb + Cb (variable) or A5 = Ca (constant) ×
Eb + Cb (variable) is first-order-approximated, the values of Dc (variable) and Cb (variable) are coded and marked on the package surface, and either the secondary temperature coefficient or the quaternary temperature coefficient is marked on the package surface. On the other hand, a crystal unit with a resonance frequency temperature characteristic display, wherein the marking display of either one of the third temperature coefficient and the fifth temperature coefficient is omitted.
JP2001190532A 2001-06-25 2001-06-25 Crystal oscillator with resonance frequency temperature characteristic display Pending JP2003008386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190532A JP2003008386A (en) 2001-06-25 2001-06-25 Crystal oscillator with resonance frequency temperature characteristic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190532A JP2003008386A (en) 2001-06-25 2001-06-25 Crystal oscillator with resonance frequency temperature characteristic display

Publications (1)

Publication Number Publication Date
JP2003008386A true JP2003008386A (en) 2003-01-10

Family

ID=19029288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190532A Pending JP2003008386A (en) 2001-06-25 2001-06-25 Crystal oscillator with resonance frequency temperature characteristic display

Country Status (1)

Country Link
JP (1) JP2003008386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015767B2 (en) 2003-02-19 2006-03-21 Matsushita Electric Industrial Co., Ltd. Function generator and temperature compensated crystal oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015767B2 (en) 2003-02-19 2006-03-21 Matsushita Electric Industrial Co., Ltd. Function generator and temperature compensated crystal oscillator

Similar Documents

Publication Publication Date Title
US7441316B2 (en) Method for manufacturing electronic apparatus
US4484382A (en) Method of adjusting resonant frequency of a coupling resonator
US7193354B2 (en) Resonator, unit having resonator, oscillator having unit and electronic apparatus having oscillator
JP5015229B2 (en) Crystal oscillator
EP0161533B1 (en) resonator temperature transducer
JP4973718B2 (en) Pressure detection unit and pressure sensor
US9203135B2 (en) Method for manufacturing quartz crystal resonator
JP2001292030A (en) Crystal oscillation circuit and crystal resonator
US6707234B1 (en) Quartz crystal unit, its manufacturing method and quartz crystal oscillator
JP2003008386A (en) Crystal oscillator with resonance frequency temperature characteristic display
JP2011234094A (en) Piezoelectric oscillator, manufacturing method of piezoelectric oscillator and temperature compensation method of piezoelectric oscillator
US9209381B2 (en) Quartz crystal unit, quartz crystal oscillator and electronic apparatus
US20190222174A1 (en) Quartz crystal unit, quartz crystal oscillator and electronic apparatus
JPS6367364B2 (en)
US10199556B2 (en) Unit, oscillator and electronic apparatus
JPS63281033A (en) Pressure detector
JP3211134B2 (en) Calculation method of oscillation frequency of crystal unit
JPH04208871A (en) Device for measuring oscillating connection of piezoelectric vibrator
JP2002299957A (en) Method for correcting temperature characteristics of crystal oscillator
JPS59170737A (en) Temperature sensitive element of quartz
JPH02132905A (en) Quartz oscillator and electronic clock
JPS63269811A (en) Digital temperature compensated crystal oscillator
JPS58166229A (en) Crystal oscillator
JP4228686B2 (en) Piezoelectric vibrator manufacturing apparatus and manufacturing method thereof
JP6854646B2 (en) Systems and methods for operating mechanical resonators in electronic oscillators