JP2003008168A - Board design method, method of implementing the same board design method, and board structure designed thereby - Google Patents

Board design method, method of implementing the same board design method, and board structure designed thereby

Info

Publication number
JP2003008168A
JP2003008168A JP2001185463A JP2001185463A JP2003008168A JP 2003008168 A JP2003008168 A JP 2003008168A JP 2001185463 A JP2001185463 A JP 2001185463A JP 2001185463 A JP2001185463 A JP 2001185463A JP 2003008168 A JP2003008168 A JP 2003008168A
Authority
JP
Japan
Prior art keywords
component
board
temperature
substrate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001185463A
Other languages
Japanese (ja)
Other versions
JP3888085B2 (en
Inventor
Kiyofumi Bessho
聖文 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2001185463A priority Critical patent/JP3888085B2/en
Publication of JP2003008168A publication Critical patent/JP2003008168A/en
Application granted granted Critical
Publication of JP3888085B2 publication Critical patent/JP3888085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid a problem that, when a board is heated to solder a part to the board, temperature variations on the board caused by a difference in thermal capacity or the like between parts is unknown, so that an excessive temperature increase causes one or ones of the parts are thermally damaged or an insufficient local temperature increase causes improper soldering. SOLUTION: Upon board design, a board temperature distribution (relation between distance from parts A and B and board temperature) in the vicinities of the parts is previously predicted on the basis of premeasured temperature data at the time of heating the board, a temperature change in a solder junction 14 of the other part B affected by the part A via a board C is calculated, and a distance C between the parts necessary to secure a heating temperature for good soldering is determined on the basis of the calculated result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線基板
などに対して表面実装部品の配置位置を決定する際の、
基板設計方法およびその実施手段ならびに基板設計方法
により設計された基板構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the arrangement position of surface mount components on a printed wiring board or the like.
The present invention relates to a board design method and its implementation means, and a board structure designed by the board design method.

【0002】[0002]

【従来の技術】表面実装部品(以下、部品)を基板には
んだ付けする工法として、リフロが使用されている。リ
フロ中の基板上の各部品は,熱容量や伝熱性の差などか
ら部品間で温度のばらつきが生じる。ばらつきが大きい
と部品の熱損傷やはんだ付け不良が発生し,製品の信頼
性や歩留まりに悪影響をおよぼす。
2. Description of the Related Art Reflow is used as a method for soldering surface mount components (hereinafter, components) to a substrate. The temperature of each component on the board during reflow varies due to differences in heat capacity and heat transfer. If the variation is large, heat damage to the parts and poor soldering will occur, which will adversely affect the product reliability and yield.

【0003】特に,近年使用され始めたPbフリーはん
だをリフロに使用すると,融点が高いために,許容でき
る温度ばらつきが小さくなる。このため,従来のはんだ
では問題なくリフロできる基板でも,部品の熱損傷やは
んだ付け不良が発生する可能性が高まる。
Particularly, when Pb-free solder, which has recently been used, is used for reflow, its allowable melting point is small because of its high melting point. For this reason, even if the board can be reflowed without problems with conventional solder, the possibility of thermal damage to components and defective soldering increases.

【0004】新商品の基板設計を行う際に、部品選定で
大型で大熱容量の部品や耐熱性の低い部品を選んだり、
部品レイアウトを試行錯誤で行ったりすると、基板の再
設計が必要になるなど、商品の開発期間や開発コストの
増大を招く。また、部品の熱損傷は検査で発見できない
ことが多く、市場に流出して故障の原因となりかねな
い。このため温度ばらつきを事前に予測し、リフロを容
易にする基板設計を実現することが望まれる。
When designing a board for a new product, select a large component having a large heat capacity or a component having low heat resistance in component selection,
If the component layout is carried out by trial and error, it is necessary to redesign the board, resulting in an increase in product development period and development cost. In addition, thermal damage to parts is often undetectable by inspection, and may leak to the market and cause failure. Therefore, it is desired to predict the temperature variation in advance and realize a board design that facilitates reflow.

【0005】表面実装部品の配置位置を決定する際の従
来の基板設計方法としては、例えば、信号遅延時間を抑
制するとともに電気的ノイズを低減するため、MPU
(超小型演算処理装置)とメモリ(記憶装置)とをなる
べく近くに配置するという方法がある。
As a conventional board designing method for determining the arrangement position of the surface mount component, for example, in order to suppress the signal delay time and reduce the electrical noise, the MPU is used.
There is a method of arranging the (ultra-compact processor) and the memory (storage device) as close as possible.

【0006】また、表面実装部品を配置する際の従来の
他の基板設計方法としては、加熱中の基板温度を逐次シ
ミュレートし、シミュレーションの結果から温度ばらつ
きを評価することによつて部品間隔を決定する方法(特
開平11−201647号公報の開示技術)がある。
Further, as another conventional board designing method when arranging the surface mount components, a board temperature during heating is sequentially simulated, and temperature variations are evaluated from the result of the simulation to determine the component spacing. There is a method of making a decision (disclosed technology in Japanese Patent Laid-Open No. 11-201647).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の前者の基板設計方法にあっては、部品をはんだ
付けするために基板を加熱する際、部品の熱容量の差な
どによって発生する基板表面上の温度ばらつきが不明で
あり、温度の過上昇によって一部の部品が熱的損傷を受
けたり、あるいは局所的に温度上昇が不十分ではんだ付
け不良が発生したりする危険性があるという問題点があ
った。
However, in the above-mentioned former board designing method of the related art, when the board is heated for soldering the components, the surface of the board is generated due to a difference in heat capacity of the components. The temperature variation is unknown, and there is a risk that some parts may be thermally damaged due to excessive temperature rise, or that the temperature rise may be insufficient and soldering failure may occur. was there.

【0008】また、従来の後者の基板設計方法にあって
は、解析モデルの作成に時間を要する上、加熱のシミュ
レーシヨンを実施した後に初めて加熱時の基板表面上の
温度ばらつきが評価できるため、部品間隔の決定にはシ
ミュレーシヨンによる試行錯誤が必要であるという問題
点があった。
Further, in the latter substrate designing method of the related art, it takes time to create an analytical model, and the temperature variation on the substrate surface during heating can be evaluated only after the simulation of heating is performed. There is a problem that trial and error by simulation is necessary to determine the component interval.

【0009】本発明は、上記の問題点に着目して成され
たものであって、その第1の目的とするところは、あら
かじめ測定した温度データに基づいて、加熱時における
部品からの距離と基板温度との関係(以下、部品周辺の
基板温度分布)を定量的に予測し、部品同士が互いのは
んだ付け温度を確保するために必要な部品間隔を基板設
計時に簡単な方法で算出できる基板設計方法を提供する
ことである。
The present invention has been made by paying attention to the above-mentioned problems, and its first object is to determine the distance from the component at the time of heating based on the temperature data measured in advance. A board that can quantitatively predict the relationship with the board temperature (hereinafter referred to as the board temperature distribution around the parts) and calculate the part spacing required to secure the soldering temperature of each part with a simple method during board design. It is to provide a design method.

【0010】また、本発明の第2の目的とするところ
は、良好なはんだ付けが得られる加熱温度の確保に必要
な部品間隔が適性であるか否かをチェックすることがで
きる基板設計方法の実施方法を提供することである。
A second object of the present invention is to provide a board designing method capable of checking whether or not the component intervals required for securing a heating temperature at which good soldering can be obtained are appropriate. It is to provide an implementation method.

【0011】また、本発明の第3の目的とするところ
は、部品の影響による基板温度の低下が大きい位置に耐
熱保証温度を越えやすい部品を配置することで、さらに
加熱時の温度ばらつきが小さい基板を設計できる基板構
造を提供することである。
A third object of the present invention is to arrange a component that easily exceeds the guaranteed heat resistance temperature at a position where the substrate temperature greatly decreases due to the influence of the component, so that the temperature variation during heating is further reduced. An object of the present invention is to provide a substrate structure capable of designing a substrate.

【0012】[0012]

【課題を解決するための手段】上記の第1の目的を達成
するために、本発明に係る基板設計方法は、基板設計時
において、あらかじめ測定した温度データに基づいて加
熱時における部品周辺の基板温度分布(部品からの距離
と基板温度との関係)を予測し、部品が基板を介して他
の部品のはんだ接合部におよぼす温度変化を計算するこ
とによつて、良好なはんだ付けが得られる加熱温度の確
保に必要な部品間隔を決定するようにした。
In order to achieve the above first object, a board design method according to the present invention is a board around a component at the time of heating based on temperature data measured in advance at the time of board design. Good soldering can be obtained by predicting the temperature distribution (the relationship between the distance from the component and the substrate temperature) and calculating the temperature change that the component exerts on the solder joint of another component through the substrate. The component interval required to secure the heating temperature was decided.

【0013】そして、温度データとして生基板温度と部
品周辺の基板温度分布を使用するようにしてもよく、温
度データは生基板や部品を限定して測定するようにして
もよい。
The raw substrate temperature and the substrate temperature distribution around the component may be used as the temperature data, and the temperature data may be measured by limiting the raw substrate and the component.

【0014】ここで、部品とは基板に搭載させる電子部
品であり、例えば、QFPなどのパッケージ部品、BG
Aなどである。また、生基板とは、部品が搭載されてい
ない基板である。また、部品間隔とは、例えば2つの部
品の対向する側端部間の間隔や2つの部品の中心同士の
間隔である。
Here, the component is an electronic component to be mounted on the substrate, for example, a package component such as QFP, BG.
For example, A. The raw board is a board on which no component is mounted. In addition, the component interval is, for example, the interval between the opposite side end portions of the two components or the interval between the centers of the two components.

【0015】したがって、リフロ条件を一定にした場合
の基板温度ばらつきのうち、部品による基板の温度低下
を予測可能とし、生基板の温度と部品による基板の温度
低下の許容値から、はんだ付け温度の確保に必要な部品
間隔を決定できるようになる。
Therefore, it is possible to predict the temperature drop of the board due to the component among the board temperature variations when the reflow condition is constant, and to determine the soldering temperature from the allowable value of the temperature of the raw board and the temperature drop of the board due to the component. It will be possible to determine the component interval required for securing.

【0016】また、温度上昇しにくい大型部品の影響に
よる隣接部品の温度低下と、部品間隔の関係を数値化す
ることが可能になる。このように、部品間隔を何mm以
上に設定すればよいかが具体的な数値でわかるため、リ
フロ温度に問題がないかどうか定量的な判断が可能にな
る。
Further, it becomes possible to quantify the relation between the temperature drop of the adjacent parts due to the influence of the large-sized parts whose temperature is hard to rise and the part spacing. In this way, it is possible to quantitatively determine whether or not there is a problem in the reflow temperature, since it is possible to know from a specific numerical value how many mm or more the component interval should be set.

【0017】また、本発明に係る基板設計方法は、上記
した本発明に係る基板設計方法において、部品が搭載さ
れていない生基板の温度と、いくつかの部品について加
熱時における、それぞれの部品周辺の基板温度の分布を
あらかじめ測定しておくことで、加熱時における部品周
辺の基板温度分布を、部品の種類やサイズおよび生基板
の厚さや層数や材質など、熱容量、比熱、熱伝導、熱伝
達、熱複写に影響する因子をパラメータとして数式化
し、部品周辺の基板温度分布を定量的に予測できるよう
にした。
Further, in the board designing method according to the present invention, in the board designing method according to the present invention described above, the temperature of the raw board on which no parts are mounted, and the periphery of each part when heating some parts. By measuring the substrate temperature distribution in advance, it is possible to determine the substrate temperature distribution around the component during heating, such as the type and size of the component, the thickness of the raw substrate, the number of layers and the material, heat capacity, specific heat, heat conduction, heat The factors that affect the transfer and thermal copying were made into parameters as mathematical expressions, so that the substrate temperature distribution around the parts could be quantitatively predicted.

【0018】したがって、生基板の温度に対する部品の
影響による基板温度の変化と、その影響が及ぶ範囲が簡
単に評価できて、リフロ条件を一定にした場合の基板温
度ばらつきのうち、部品による基板の温度低下を予測可
能とし、生基板の温度と部品による基板の温度低下の許
容値から、はんだ付け温度の確保に必要な部品間隔を決
定できるようになる。
Therefore, the change of the substrate temperature due to the influence of the component on the temperature of the raw substrate and the range of the influence can be easily evaluated, and among the substrate temperature variations when the reflow condition is kept constant, the component due to the component The temperature drop can be predicted, and the component interval required to secure the soldering temperature can be determined from the temperature of the raw substrate and the allowable value of the temperature drop of the substrate due to the component.

【0019】そして、部品の種類をパラメータに用いて
部品周辺の基板温度分布を予測する場合には、部品の分
類は、測定した部品周辺の基板温度分布の違いに基づく
ようにしてもよい。
When the substrate temperature distribution around the component is predicted by using the type of the component as a parameter, the component classification may be based on the difference in the measured substrate temperature distribution around the component.

【0020】また、部品の分類に、部品の形状を用いる
ようにしてもよいし、部品の分類に、部品の内部構造を
用いるようにしてもよいし、部品の分類に、部品の材質
を用いるようにしてもよいし、部品の分類に、はんだ接
合部の位置を用いるようにしてもよい。
Further, the shape of the parts may be used for classifying the parts, the internal structure of the parts may be used for classifying the parts, and the material of the parts may be used for classifying the parts. Alternatively, the position of the solder joint may be used for classifying the parts.

【0021】また、部品のサイズをパラメータに用い
て、部品周辺の基板温度分布を予測する場合には、部品
サイズとして部品の長さと幅を使用するようにしてもよ
い。この際、部品の長さと幅は、端子部を除いたサイズ
でもよい。
When the substrate temperature distribution around the component is predicted by using the component size as a parameter, the length and width of the component may be used as the component size. At this time, the length and width of the component may be the size excluding the terminal portion.

【0022】そして、部品の長さ方向と幅方向に分けて
部品周辺の基板温度分布を予測するようにしてもよい。
また、部品サイズとして部品の厚さを使用するようにし
てもよい。この際、部品の厚さは、端子部を除いたサイ
ズでもよい。
Then, the substrate temperature distribution around the component may be predicted by dividing the component in the length direction and the width direction.
Further, the thickness of the component may be used as the component size. At this time, the thickness of the component may be the size excluding the terminal portion.

【0023】また、生基板の層数をパラメータに用いて
部品周辺の基板温度分布を予測する場合には、生基板の
層数として内層の有無に着目するようにしてもよい。
When the number of layers of the raw substrate is used as a parameter to predict the substrate temperature distribution around the component, the presence or absence of the inner layer may be focused on as the number of layers of the raw substrate.

【0024】また、本発明に係る基板設計方法は、上記
した本発明に係る基板設計方法において、部品周辺の基
板温度分布の予測結果に基づいて基板温度を大きく低下
させる部品を選択し、他の部品のはんだ接合部に及ぼす
温度低下を計算して、それぞれの部品がはんだ付け温度
を確保できる部品間隔を算出できるようにした。
Further, the board designing method according to the present invention is the board designing method according to the above-mentioned present invention, in which a component that greatly reduces the substrate temperature is selected based on the prediction result of the substrate temperature distribution around the component, and another component is selected. By calculating the temperature drop that affects the solder joints of the parts, it was possible to calculate the space between the parts that can secure the soldering temperature.

【0025】したがって、加熱時の基板温度をシミュレ
ーションする方法と比較して、良好なはんだ付けが得ら
れる加熱温度の確保に必要な部品間隔が試行錯誤なく、
短時間で簡単に決定できる。
Therefore, as compared with the method of simulating the substrate temperature at the time of heating, the component intervals necessary to secure the heating temperature at which good soldering is obtained can be obtained without trial and error.
Easy to make decisions in a short time.

【0026】そして、本発明に係る基板設計方法は、上
記した本発明に係る基板設計方法において、部品周辺の
基板温度分布は前記部品の中心を基準に求めるようにし
てもよいし、部品周辺の基板温度分布は部品中心に最も
近い部品端部を基準に求めるようにしてもよい。
The board design method according to the present invention may be such that, in the board design method according to the present invention described above, the board temperature distribution around the component is determined with reference to the center of the component. The substrate temperature distribution may be determined based on the end of the component closest to the center of the component.

【0027】また、部品周辺の基板温度分布は線形に近
似することが好ましい。または、部品周辺の基板温度分
布は曲線に近似することが好ましい。この場合、線形と
は、例えば直線である。曲線とは、例えば、2次、3次
などの多次式や、対数関数でもよい。
Further, it is preferable that the substrate temperature distribution around the component is approximate to a linear shape. Alternatively, it is preferable that the substrate temperature distribution around the component approximates a curve. In this case, linear is, for example, a straight line. The curve may be, for example, a quadratic or cubic polynomial expression or a logarithmic function.

【0028】また、あらかじめ測定した温度データに基
づいて基板温度への影響が小さく無視できると判断でき
る部品については、周辺の基板温度分布の予測を行わ
ず、生基板上の任意の位置に配置するようにしてもよい
し、また、部品周辺の基板温度分布を予測した結果、基
板温度への影響が小さく無視できると判断できる部品に
ついては、生基板上の任意の位置に配置するようにして
もよい。基板温度への影響が小さく無視できるとは、計
測誤差や炉の温度変化などを考慮して決定される。
Further, based on the temperature data measured in advance, the components which have a small influence on the substrate temperature and can be judged to be negligible are arranged at arbitrary positions on the raw substrate without predicting the peripheral substrate temperature distribution. Alternatively, as a result of predicting the substrate temperature distribution around the components, components that have a small influence on the substrate temperature and can be determined to be negligible may be arranged at arbitrary positions on the raw substrate. Good. The fact that the influence on the substrate temperature is small and can be neglected is determined in consideration of measurement errors and temperature changes in the furnace.

【0029】また、複数の部品による基板温度の低下を
重ね合わせて任意の位置における基板温度を予測し、良
好なはんだ付けが得られる加熱温度の確保に必要な部品
間隔を決定するようにしてもよい。
Further, it is also possible to predict the board temperature at an arbitrary position by superimposing a decrease in board temperature due to a plurality of parts, and to decide a part interval required to secure a heating temperature at which good soldering can be obtained. Good.

【0030】また、加熱時の前記基板温度に対する部品
の影響を、部品周辺の基板温度と生基板の温度との差で
評価し、個々の部品による影響を重ね合わせて部品のは
んだ接合の温度を予測することで、良好なはんだ付けが
得られる加熱温度の確保に必要な部品間隔を決定するよ
うにしてもよい。
Further, the influence of the component on the substrate temperature during heating is evaluated by the difference between the substrate temperature around the component and the temperature of the raw substrate, and the influence of the individual components is overlapped to determine the solder joint temperature of the component. You may make it possible to determine the component interval required for ensuring the heating temperature which can obtain favorable soldering by predicting.

【0031】また、ある一定の加熱条件の下での加熱時
における部品周辺の基板温度を予測するようにしてもよ
い。
Further, the substrate temperature around the component at the time of heating under a certain constant heating condition may be predicted.

【0032】また、複数の加熱条件の下での加熱時にお
ける部品周辺の基板温度を包括して平均値を予測するよ
うにしてもよい。
Further, the average value may be predicted inclusive of the substrate temperature around the component during heating under a plurality of heating conditions.

【0033】また、加熱条件による加熱時における部品
周辺の基板温度の違いを、測定データを追加することで
数式を修正して補正するようにしてもよい。
Further, the difference in the substrate temperature around the component at the time of heating depending on the heating condition may be corrected by correcting the mathematical formula by adding measurement data.

【0034】また、本発明に係る基板設計方法は、上記
した本発明に係る基板設計方法において、パソコンなど
の表計算ソフトウェアを使用して加熱時における部品周
辺の基板温度分布を算出するようにした。
Further, in the board design method according to the present invention, in the board design method according to the present invention described above, the board temperature distribution around the component during heating is calculated using spreadsheet software such as a personal computer. .

【0035】そして、パソコンなどの表計算ソフトウェ
アを使用して加熱時における部品間隔を算出するように
した。
Then, the interval between parts during heating is calculated by using spreadsheet software such as a personal computer.

【0036】したがって、本発明に係る基板設計方法を
簡単に使えるように、パソコンの表計算ソフトを使用し
てツール化し、設計者自身が基板の温度低下を予測して
部品をレイアウトできる。
Therefore, in order to easily use the board designing method according to the present invention, it is possible to make a tool by using spreadsheet software of a personal computer, and the designer himself can predict the temperature drop of the board and lay out components.

【0037】また、上記の第2の目的を達成するため
に、本発明に係る基板設計方法の実施方法は、基板設計
時において、あらかじめ測定した温度データに基づいて
加熱時における部品周辺の基板温度分布(部品からの距
離と基板温度との関係)を予測し、部品が基板を介して
他の部品のはんだ接合部におよぼす温度変化を計算する
ことによつて、良好なはんだ付けが得られる加熱温度の
確保に必要な部品間隔を決定し、部品間隔が適性である
か否かをチェックできる機能を有する。
In order to achieve the above-mentioned second object, the method for implementing the board designing method according to the present invention is such that the board temperature around the component at the time of heating is based on temperature data measured in advance at the board designing time. Heating that provides good soldering by predicting the distribution (the relationship between the distance from the part and the board temperature) and calculating the temperature change that the part will exert through the board to the solder joints of other parts It has the function of determining the component spacing required to secure the temperature and checking whether the component spacing is appropriate or not.

【0038】ここで、あらかじめ測定した温度データと
して生基板温度と部品周辺の基板温度分布を使用するよ
うにしてもよく、温度データは生基板や部品を限定して
測定するようにしてもよい。
Here, the raw substrate temperature and the substrate temperature distribution around the component may be used as the temperature data measured in advance, or the temperature data may be measured by limiting the raw substrate and the component.

【0039】また、部品配置後の基板で加熱時の予想最
低温度部と予想最高温度部のいずれか一方もしくは双方
が表示できるようにしてもよいし、また、加熱時の基板
全体の予想温度が表示できるようにしてもよい。
It is also possible to display either one or both of the predicted minimum temperature portion and the predicted maximum temperature portion during heating on the board after the components are arranged, and the predicted temperature of the entire board during heating is displayed. You may be able to display.

【0040】また、必要な部品間隔を確保できない領域
に部品を配置しようとした場合にその旨を表示するか、
あるいは部品が配置できない機能を有するようにしても
よい。
Further, when an attempt is made to place a component in an area where the necessary component spacing cannot be secured, a message to that effect is displayed,
Alternatively, the component may have a function that cannot be arranged.

【0041】したがって、チェック機能により、良好な
はんだ付けが得られる加熱温度の確保に必要な部品間隔
か否かをチェックすることができる。
Therefore, the check function makes it possible to check whether or not the component intervals are necessary to secure the heating temperature at which good soldering can be obtained.

【0042】また、上記の第3の目的を達成するため
に、本発明に係る回路基板構造は、基板設計時におい
て、あらかじめ測定した温度データに基づいて加熱時に
おける部品周辺の基板温度分布(部品からの距離と基板
温度との関係)を予測し、基板温度が低い部分に耐熱保
証温度を越えやすい部品を配置するようにした。
Further, in order to achieve the above-mentioned third object, the circuit board structure according to the present invention has a board temperature distribution (parts) around the parts at the time of heating based on temperature data previously measured at the time of board design. The relationship between the distance from the substrate temperature and the substrate temperature) was predicted, and the parts where the heat resistance guaranteed temperature was exceeded easily were placed in the parts where the substrate temperature was low.

【0043】そして、耐熱保証温度を越えやすい部品が
アルミ電解コンデンサであることが好ましい。また、耐
熱保証温度を越えやすい部品がLEDであることが好ま
しい。
It is preferable that the component that easily exceeds the guaranteed heat resistance temperature is an aluminum electrolytic capacitor. Further, it is preferable that the component that easily exceeds the heat-resistant guaranteed temperature is an LED.

【0044】したがって、部品の影響による基板温度の
低下が大きい位置にアルミ電解コンデンサなど耐熱保証
温度を越えやすい部品を配置することで、さらに加熱時
の温度ばらつきが小さい基板を設計できる。
Therefore, by disposing a component such as an aluminum electrolytic capacitor that easily exceeds the guaranteed heat resistance temperature at a position where the substrate temperature greatly decreases due to the influence of the component, it is possible to design a substrate with less temperature variation during heating.

【0045】[0045]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0046】リフロ時の基板温度ばらつきによって生じ
る問題は、部品の熱損傷とはんだ付け不良である。これ
らの問題が発生しないようにするには、部品のボディ温
度が耐熱温度(部品によって異なる)以下であり、端子
温度がはんだの融点以上であることが必要である。
The problems caused by variations in substrate temperature during reflow are thermal damage to components and poor soldering. In order to prevent these problems from occurring, it is necessary that the body temperature of the component is lower than the heat resistant temperature (depending on the component) and the terminal temperature is higher than the melting point of the solder.

【0047】リフロの温度プロファイルには、1枚の基
板に対して図1に示すように、最も温度の上がりやすい
部品のボディ温度と、最も温度が上昇しにくい部品の端
子温度との温度差が現れる。
In the reflow temperature profile, as shown in FIG. 1 for one substrate, the temperature difference between the body temperature of the component whose temperature rises the most and the terminal temperature of the component whose temperature rises the least is shown. appear.

【0048】このため、基板温度ばらつきΔT=(部品
ボディの最高温度)一(部品端子の最低温度)と定義す
ることができる。
Therefore, it can be defined that the substrate temperature variation ΔT = (maximum temperature of component body) − (minimum temperature of component terminal).

【0049】基板温度ばらつきΔTは図2(図1の丸で
囲った部分の拡大図)に示すように、部品を搭載してい
ない生基板をリフロ炉に流した場合のピーク温度を基準
として、特定の部品に見られる温度の過上昇ΔTh と、
大型部品の熱容量による温度低下ΔTl に分けて考える
ことができる。
As shown in FIG. 2 (enlarged view of the portion surrounded by a circle in FIG. 1), the substrate temperature variation ΔT is based on the peak temperature when a raw substrate on which no component is mounted is flown into a reflow furnace. The excessive temperature rise ΔT h seen in a particular part,
It can be considered separately by the temperature decrease ΔT l due to the heat capacity of the large-sized component.

【0050】基板全体でΔTの低減を考えると問題が複
雑だが、個々の部品について単独でΔTh とΔTl を評
価すれば、それぞれが最も大きい部品に着目すればよい
ことが分かる。
Although the problem is complicated when the reduction of ΔT is considered in the entire substrate, it can be understood that if ΔTh and ΔTl are individually evaluated for each component, the component having the largest size should be focused on.

【0051】ΔTh とΔTl のうち、ΔTh は他の部品
温度に影響をおよぼすことはない。これに対してΔTl
は、部品自身の端子温度の低下のみならず、その周辺の
基板温度まで影響する。そのため隣接する部品の端子温
度を低下させ、はんだ付け不良を引き起こしかねない。
したがって基板設計では、隣接する部品同士が互いのは
んだ付け性に影響しない間隔を確保する必要がある。
Of ΔT h and ΔT l , ΔT h does not affect the temperature of other components. On the other hand, ΔT l
Influences not only the terminal temperature of the component itself but also the substrate temperature around it. Therefore, the temperature of the terminal of the adjacent component may be lowered, which may cause soldering failure.
Therefore, in the board design, it is necessary to secure a space between adjacent components that does not affect the solderability of each other.

【0052】基板全体の基板温度ばらつきΔTを低減す
るには、ΔTh かΔTl の少なくとも一方を抑えればよ
いが、以上の事柄をふまえて、部品レイアウト技術では
ΔT l の低減を主体とする。
The substrate temperature variation ΔT of the entire substrate is reduced.
In order toh Or ΔTl At least one of
However, based on the above matters, in component layout technology
ΔT l Mainly to reduce

【0053】リフロ炉では、HA(Hot Air)
(熱風)とIR(InfraredRay)(赤外線)
などの異なる加熱原理の組み合わせで温度上昇させてお
り、温度プロファイルは加熱条件、部品の熱容量、吸
熱、伝熱、部品レイアウトなどの諸要因で相対的に決ま
る。
In the reflow oven, HA (Hot Air)
(Hot air) and IR (Infrared Ray) (infrared)
The temperature is raised by the combination of different heating principles, and the temperature profile is relatively determined by various factors such as heating conditions, heat capacity of components, heat absorption, heat transfer, and component layout.

【0054】したがって、基板温度ばらつきΔTもこれ
らの要因によって変化する。基板温度ばらつきΔTの要
因は、部品レイアウトに関するものとリフロ炉に関する
ものとの2つに大別できる。
Therefore, the substrate temperature variation ΔT also changes due to these factors. The factors of the substrate temperature variation ΔT can be broadly classified into those related to the component layout and those related to the reflow furnace.

【0055】リフロ炉に起因する項目は炉の型式や条件
設定によつて大きく変わる。リフロ炉の条件は、本来最
適状態に固定して用いることが理想的なので、予め汎用
最適の条件を求めて固定した。
The items caused by the reflow furnace greatly vary depending on the type of furnace and the condition settings. Since the conditions of the reflow furnace are ideally fixed and used in an optimal state, general-purpose optimum conditions were previously determined and fixed.

【0056】基板温度ばらつきΔTを低減するには、部
品の選択とレイアウトが重要である。このうち、使用部
品の変更は回路の機能上困難な場合が多い。したがっ
て、基板温度ばらつきΔTの低減に実効的な手段は部品
レイアウトである。
In order to reduce the substrate temperature variation ΔT, the selection and layout of parts are important. Of these, it is often difficult to change the parts used because of the function of the circuit. Therefore, a component layout is an effective means for reducing the substrate temperature variation ΔT.

【0057】従来、部品レイアウト時にはノイズ低減や
大電力部品の放熱性のほか、生産性が考慮されていた
が、基板温度ばらつきΔTは定量的に評価する手法がな
く考慮されていなかった。しかしながら、基板温度ばら
つきΔTは、基板実装の高密度化やPdフリーはんだの
導入などによって無視できない状況になっている。この
ため、ΔTl と図3に示す部品間隔Dとの関係を定量的
に予測評価し、設計段階でΔTl を決定できる手段が必
要である。なお、図3中A、Bは部品、Cは基板である
Conventionally, in the layout of components, noise reduction and heat dissipation of high-power components as well as productivity were taken into consideration, but the substrate temperature variation ΔT was not taken into consideration because there was no method for quantitatively evaluating it. However, the substrate temperature variation ΔT is in a situation that cannot be ignored due to high density mounting of the substrate and introduction of Pd-free solder. Therefore, it is necessary to have a means capable of quantitatively predicting and evaluating the relationship between ΔT l and the component spacing D shown in FIG. 3 and determining ΔT l at the design stage. In FIG. 3, A and B are components and C is a substrate.

【0058】部品には様々な種類があるため、部品を外
形や構造・材質など、リフロ温度に影響する項目で数種
類に分類し、図2に示すΔTl が大きい部品をまず明ら
かにした。
Since there are various kinds of parts, the parts are classified into several kinds according to the items that affect the reflow temperature, such as the outer shape, the structure and the material, and the parts having a large ΔT l shown in FIG. 2 are first clarified.

【0059】〔表1〕に示した項目で部品を分類するこ
とで、すべての部品の影響を個別に考えるのではなく、
熱的特性が近い部品の影響を一括して考える。かつ、リ
フロを困難にしやすい部品を重点的に検討した。
By classifying the parts by the items shown in [Table 1], the influence of all parts is not considered individually, but
Consider collectively the effects of parts with similar thermal characteristics. Also, we focused on the parts that make reflow difficult.

【0060】[0060]

【表1】 [Table 1]

【0061】ΔTl を正確に予測するため、まずΔTl
をデータベース化して、予測値の妥当性が裏付けできる
ようにした。実際の基板上には多数の部品が実装される
が、簡単化のため2つの部品A、Bだけを取り出して、
部品間隔Dとリフロ温度との関係について考える。
[0061] In order to accurately predict the ΔT l, first ΔT l
Was made into a database so that the validity of the predicted value could be supported. Many components are mounted on the actual board, but for simplification, only two components A and B are taken out,
Consider the relationship between the component spacing D and the reflow temperature.

【0062】リフロ加熱条件は上述の通り、あらかじめ
設定した標準加熱条件(代表的部品を搭載したテスト基
板で、基板温度ばらつきΔTをよく圧縮できるHAとI
Rの比率や風速・コンベア速度)に固定した。
As described above, the reflow heating conditions are the standard heating conditions set in advance (HA and I which can well compress the substrate temperature variation ΔT in the test substrate on which typical parts are mounted).
The ratio of R, wind speed, conveyor speed) was fixed.

【0063】本発明の基板設計方法では、「部品レイア
ウトのΔTへの影響は、部品同士が基板を介して温度を
低下しあう現象によって現れ、温度上昇しにくい大型部
品ほど周辺への影響も大きい」と考えて、部品温度その
ものではなく、「部品周辺の基板温度分布」に着目し
た。
According to the board designing method of the present invention, "the influence of ΔT of the component layout is caused by the phenomenon that the components are lowered in temperature through the substrate, and the larger the component is, the more difficult it is to raise the temperature, the greater the influence on the periphery. Therefore, we focused not on the component temperature itself, but on the “substrate temperature distribution around the component”.

【0064】評価対象を基板温度とすることで、一度測
定したデータは部品の組み合わせによらず使用できると
いう汎用性がある。例えば、部品A周辺の基板温度分布
は、部品Aと他部品(部品Aを含む)との部品間隔Dを
決定するときに使用できる。また、部品周辺の基板温度
は部品温度と同時に測定可能である。
By setting the substrate temperature as the evaluation target, there is versatility that the data once measured can be used regardless of the combination of parts. For example, the substrate temperature distribution around the component A can be used when determining the component spacing D between the component A and other components (including the component A). Also, the substrate temperature around the component can be measured at the same time as the component temperature.

【0065】本発明の基板設計方法では、k種類の部品
に対する温度測定回数はk×n回( k1 ×n)で済
み、部品が1種類追加されても追加測定はその部品に対
してのn回だけでよい。従来の手法と本発明の基板設計
方法(本手法)とでの、部品間隔Dの決定に必要な測定
回数の比較を〔表2〕に示す。
In the board designing method of the present invention, the number of times of temperature measurement for k kinds of parts is k × n times ( k C 1 × n), and even if one kind of part is added, additional measurement is performed for that part. Only n times is required. [Table 2] shows a comparison of the number of measurements required for determining the component spacing D between the conventional method and the board design method of the present invention (this method).

【0066】[0066]

【表2】 [Table 2]

【0067】なお、従来のΔT評価手法では、部品のリ
フロ温度だけを計測評価していた。このために、部品間
隔Dとリフロ温度の関係を得るには、部品間隔Dを変え
てリフロ温度を測定する必要があった。例えば、部品A
と部品Bについては、部品間隔Dを数回変えて、リフロ
温度を測定するといった要領であった。また、部品A同
士や部品B同士についても、同様の温度測定が必要であ
った。
In the conventional ΔT evaluation method, only the reflow temperature of the component was measured and evaluated. Therefore, in order to obtain the relationship between the component interval D and the reflow temperature, it is necessary to change the component interval D and measure the reflow temperature. For example, part A
For the component B, the reflow temperature was measured by changing the component interval D several times. Further, the same temperature measurement was required for the parts A and the parts B.

【0068】このような従来の手法では、k種類の部品
に対して k+12 ×x×n回(x:部品間隔Dの水準
数、n:繰り返し数)の温度定が必要であり、部品が1
種類追加されると(k+1)×x×n回の追加測定が必
要である。このため、データベースの構築やメンテナン
スが極めて困難であると考えられていた。
In such a conventional method, it is necessary to set the temperature to k + 1 parts C 2 × x × n times (x: the number of levels of the part distance D, n: the number of repetitions) for the k kinds of parts. Is 1
When the types are added, (k + 1) × x × n additional measurements are required. For this reason, it has been considered that the construction and maintenance of the database are extremely difficult.

【0069】本発明の基板設計方法では、まず上述のよ
うに分類した部品の種類ごとに、部品単体での周辺の基
板温度分布を測定した。その結果、部品周辺の基板温度
分布は直線に近似できることがわかった。
In the board designing method of the present invention, first, the peripheral board temperature distribution of each component is measured for each type of component classified as described above. As a result, it was found that the substrate temperature distribution around the component can be approximated to a straight line.

【0070】例として、部品としてのQFP(Quad
Flat Package)周辺の基板温度分布の様
子を図4の(1)に、実測データを図4の(2)にそれ
ぞれ示す。図4の(2)から測定データは近似直線とよ
く一致していることがわかる。また、ΔTl の大きさか
ら、その部品が周辺の基板温度におよぼす影響が評価で
きる。
As an example, QFP (Quad) as a component
The state of the substrate temperature distribution around the Flat Package) is shown in (1) of FIG. 4, and the actual measurement data is shown in (2) of FIG. It can be seen from (2) in FIG. 4 that the measured data are in good agreement with the approximate straight line. Further, the influence of the component on the surrounding substrate temperature can be evaluated from the magnitude of ΔT l .

【0071】そして、部品周辺の基板温度分布から、2
つの部品A、B間の基板温度分布が予測できれば、ΔT
l と部品間隔Dとの関係が定量化できる。そこで、図4
の(1)、(2)に示した部品周辺の基板温度分布をも
とに、2つの部品A、B間の基板温度を予測できるかを
検討した。
From the substrate temperature distribution around the parts, 2
If the board temperature distribution between the two parts A and B can be predicted, ΔT
The relationship between l and the part interval D can be quantified. Therefore, FIG.
Based on the substrate temperature distributions around the components shown in (1) and (2) above, whether or not the substrate temperature between the two components A and B can be predicted was examined.

【0072】その結果、個々の部品によるΔTl を重ね
合わせることで、2つの部品A、B間の基板温度を予測
できることを明確にした。例として、部品間隔Dを変え
てその中間の基板温度を測定し、個々の部品A、Bによ
る影響を重ね合わせた予測値と比較した結果を図5に示
す。
As a result, it was clarified that the substrate temperature between the two parts A and B can be predicted by superimposing ΔT l for each part. As an example, FIG. 5 shows a result obtained by measuring the substrate temperature in the middle while changing the component interval D, and comparing it with the predicted value obtained by superimposing the effects of the individual components A and B.

【0073】測定値と予測値との差は2〜3℃と測定誤
差の範囲内であった。2つの部品A、B2間の基板温度
は個々の部品によるΔTl を重ね合わせることで予測で
きることがわかる。
The difference between the measured value and the predicted value was 2-3 ° C., which was within the range of measurement error. It can be seen that the substrate temperature between the two components A and B2 can be predicted by superimposing ΔT l for each component.

【0074】したがって、生基板温度とはんだ付け性確
保に必要なΔTl の許容値を設定すれば、はんだ付け不
良が発生しない部品間隔Dが決定できる。また、ΔTl
の大きい部分にΔTh の大きい部品を配置すればΔTh
が低下し、さらにΔTを低減できる。
Therefore, by setting the raw substrate temperature and the allowable value of ΔT l necessary for ensuring solderability, the component interval D at which soldering failure does not occur can be determined. Also, ΔT l
[Delta] T h by arranging a large part of the [Delta] T h to a large portion of the
And ΔT can be further reduced.

【0075】すなわち、加熱時における部品周辺の基板
温度分布の様子を図6の(1)、(2)に示す。基板C
の上には端子部を除いた部品形状が正方形の部品Aが一
個搭載されている。
That is, the states of the substrate temperature distribution around the component during heating are shown in (1) and (2) of FIG. Board C
On top of that, one component A having a square component shape excluding the terminal portion is mounted.

【0076】図6の(2)のグラフは、部品Aの中心線
3上での加熱時の基板温度分布4を表している。部品A
の熱容量の影響によって、部品Aの近傍での加熱時の基
板温度5よりも低下し、部品Aの中心に最も近い位置6
で最低となるが、部品Aからの距離が大きくなるにした
がって、その影響は小さくなるため、基板温度は上昇
し、やがて生基板を加熱したときの温度5と等しくな
る。
The graph (2) in FIG. 6 shows the substrate temperature distribution 4 on the center line 3 of the component A during heating. Part A
Due to the influence of the heat capacity of the component A, the temperature of the substrate becomes lower than the substrate temperature 5 at the time of heating in the vicinity of the component A, and the position 6 which is closest to the center of the component A.
However, the influence becomes smaller as the distance from the component A becomes larger, so that the substrate temperature rises and eventually becomes equal to the temperature 5 when the raw substrate is heated.

【0077】基板温度分布4は直線(線形)で近似す
る。また、端子部を除いた部品形状が正方形の場合は、
部品周辺の基板温度は、部品Aを中心とする同心円7状
に分布する。なお、基板温度分布4は曲線で近似する場
合も存在する。
The substrate temperature distribution 4 is approximated by a straight line. Also, if the part shape excluding the terminals is square,
The substrate temperature around the component is distributed in the shape of a concentric circle 7 around the component A. The substrate temperature distribution 4 may be approximated by a curve.

【0078】図7の(1)、(2)は、部品間隔Dを決
定する方法の一事例を示す模式図である。図7の(1)
において、基板Cの上には、端子部を除いた部品形状が
正方形の部品Aと部品Bとが搭載されている。図7の
(1)において、10は部品Bの中心に最も近い位置で
あり、11は部品Bを中心とする同心円である。
(1) and (2) of FIG. 7 are schematic views showing an example of a method of determining the component interval D. (1) of FIG.
In FIG. 3, a component A and a component B having a square component shape excluding the terminal portion are mounted on the board C. In (1) of FIG. 7, 10 is the position closest to the center of the component B, and 11 is a concentric circle centered on the component B.

【0079】図7の(2)に示すように、部品Aと部品
Bとの間の基板温度分布12において、部品A側の温度
低下量Hは、生基板を加熱した時の温度5からの部品A
による温度低下量H1と、部品Bによる温度低下量H2
とを重ね合わせて与えられ、部品B側の温度低下量I
は、生基板を加熱した時の温度5からの部品Bによる温
度低下量I1と、部品Aによる温度低下量I2とを重ね
合わせて与えられる。
As shown in FIG. 7B, in the board temperature distribution 12 between the parts A and B, the temperature decrease amount H on the part A side is from the temperature 5 when the raw board is heated. Part A
Amount H1 of temperature decrease due to B and an amount H2 of temperature decrease due to component B
Is given by superimposing and
Is given by superimposing the temperature decrease amount I1 due to the component B from the temperature 5 when the raw substrate is heated and the temperature decrease amount I2 due to the component A.

【0080】したがって、部品Aのはんだ接合部13の
温度は、部品Bの影響によって低下するし、同様に、部
品Bのはんだ接合部14の温度は、部品Aの影響によっ
て低下する。
Therefore, the temperature of the solder joint portion 13 of the component A is lowered by the influence of the component B, and similarly, the temperature of the solder joint portion 14 of the component B is lowered by the influence of the component A.

【0081】部品間隔Dは、部品Aのはんだ接合部13
と部品Bのはんだ接合部14の温度が、それぞれ良好な
接合の確保に必要な最低加熱温度18以上になるように
決定する。なお、図7中9は部品B周辺の加熱時の基板
温度分布である。
The component spacing D is the solder joint 13 of the component A.
And the temperature of the solder joint portion 14 of the component B is determined to be equal to or higher than the minimum heating temperature 18 required for ensuring good joint. In addition, 9 in FIG. 7 is a substrate temperature distribution at the time of heating the periphery of the component B.

【0082】部品周辺の基板温度分布は、部品の種類の
みならず、部品サイズや基板の仕様によっても異なる。
そこで、QFPなどのパッケージ部品について、数サイ
ズの部品で温度測定を行い、部品サイズによって周辺の
基板温度分布がどのように変化するかを評価した。
The substrate temperature distribution around the component varies not only with the type of component but also with the component size and the specifications of the substrate.
Therefore, with respect to package components such as QFP, temperature measurements were performed on several size components, and it was evaluated how the peripheral substrate temperature distribution changes depending on the component size.

【0083】その結果、部品サイズと近似直線との関係
を一般化し、部品サイズからリフロ時の基板温度分布を
予測できるようにした。QFPのサイズと近似直線との
関係を一般化するのに使用したデータの一部を図8に示
す。
As a result, the relationship between the component size and the approximate straight line was generalized so that the substrate temperature distribution during reflow can be predicted from the component size. Some of the data used to generalize the relationship between the size of the QFP and the fitted line is shown in FIG.

【0084】図8において、測定値に基づく近似直線と
一般化した近似直線との誤差は3℃以下であり、一般化
した近似直線はほぼ妥当な値であると言える。
In FIG. 8, the error between the approximated straight line based on the measured values and the generalized approximated straight line is 3 ° C. or less, and it can be said that the generalized approximated straight line is a substantially appropriate value.

【0085】また、端子部を除いた部品形状が正方形の
部品での、ある加熱条件における部品の種類と基板温度
分布との関係を示す実験データの一事例を図9に、端子
部を除いた部品形状が正方形の部品での、ある加熱条件
における部品のサイズと基板温度分布との関係を示す実
験データの一事例を図10に示す。
In addition, FIG. 9 shows an example of experimental data showing the relationship between the type of a part and the substrate temperature distribution under a certain heating condition in the case where the part shape excluding the terminal part is a square part. FIG. 10 shows an example of experimental data showing the relationship between the component size and the substrate temperature distribution under a certain heating condition for a component having a square component shape.

【0086】この実験データから部品サイズとして端子
部を除いた実装面積と厚さが基板温度分布に影響するこ
と、部品の種類で影響の程度が異なることが分かる。こ
のことから、部品の種類毎にいくつかのサイズでデータ
を測定すれば、部品の種類とサイズから部品周辺の基板
温度分布が予測できると言える。部品の分類は測定結果
に基づいて行ってもよいが、部品の形状や内部構造、材
質、はんだ接合部の位置などによって行ってもよい。
From this experimental data, it can be seen that the mounting area and thickness excluding the terminal portion as the component size influences the substrate temperature distribution, and the degree of influence differs depending on the type of component. From this fact, it can be said that the substrate temperature distribution around the component can be predicted from the component type and size by measuring the data in several sizes for each component type. The parts may be classified based on the measurement result, but may be classified according to the shape of the parts, the internal structure, the material, the position of the solder joint, and the like.

【0087】図11は、端子部を除いた部品形状が正方
形の部品がリフロ面にある場合の、ある加熱条件におけ
る部品周辺の基板温度分布との関係を示す実験データの
一事例である。生基板の温度は約230℃であり、部品
周辺の基板温度が低下していることと、部品周辺の基板
温度分布が直線近似できることがわかる。
FIG. 11 is an example of experimental data showing the relationship with the substrate temperature distribution around the component under a certain heating condition when the component shape excluding the terminal portion is square on the reflow surface. The temperature of the raw substrate is about 230 ° C., which shows that the substrate temperature around the component has decreased and that the substrate temperature distribution around the component can be approximated by a straight line.

【0088】図12は、端子部を除いた部品形状が長方
形の部品が裏面にある場合の、ある加熱条件における部
品周辺の基板温度分布との関係を示す実験データの一事
例である。この実験データから、長さ方向と幅方向で碁
板温度分布が異なるため、方向別に基板温度分布を求め
る必要があることが分かる。
FIG. 12 is an example of experimental data showing a relationship with the substrate temperature distribution around the component under a certain heating condition when the component having a rectangular component shape excluding the terminal portion is on the back surface. From this experimental data, it is understood that the board temperature distribution needs to be obtained for each direction because the board temperature distribution differs in the length direction and the width direction.

【0089】また、部品サイズと同様に、基板の仕様
(板厚・層数)による基板温度分布の違いをQFPによ
る実験で確認し、データを基に基板の仕様と近似直線と
の関係を一般化した。
Similarly to the component size, the difference in the substrate temperature distribution depending on the substrate specifications (plate thickness / number of layers) was confirmed by an experiment using QFP, and based on the data, the relationship between the substrate specifications and the approximate straight line was generally determined. Turned into

【0090】基板の仕様と近似直線との関係を一般化す
るのに使用したデータの一部を、図13に示す。図13
において、測定値に基づく近似直線と一般化した近似直
線との誤差は5℃以下であり、一般化した近似直線は図
8と同様にほぼ妥当な値であると言える。
Some of the data used to generalize the relationship between the board specifications and the approximation line are shown in FIG. FIG.
In, the error between the approximated straight line based on the measured value and the generalized approximated straight line is 5 ° C. or less, and it can be said that the generalized approximated straight line is a substantially appropriate value as in FIG. 8.

【0091】図14は、ある加熱条件での基板厚と部品
周辺の基板温度分布との関係を示す実験データの一事例
である。基板厚が増すほどに生基板の温度が低下するこ
とが分かる。
FIG. 14 shows an example of experimental data showing the relationship between the substrate thickness under certain heating conditions and the substrate temperature distribution around the components. It can be seen that the temperature of the raw substrate decreases as the substrate thickness increases.

【0092】図15は、ある加熱条件での基板の層数と
部品周辺の基板温度分布との関係を示す実験データの一
事例である。両面基板と多層基板では部品周辺の基板温
度分布の温度勾配が異なることが分かる。
FIG. 15 is an example of experimental data showing the relationship between the number of layers of the board and the board temperature distribution around the component under a certain heating condition. It can be seen that the temperature gradient of the substrate temperature distribution around the component is different between the double-sided substrate and the multilayer substrate.

【0093】図16は、加熱条件の違いによる部品周辺
の基板温度分布の違いを示すー事例である。同じ基板、
同じ部品でも、加熱条件によって部品周辺の基板温度分
布が異なることがわかる。部品の温度データを追加する
ことで、加熱条件の違いをによる基板温度分布の違いを
補正することができる。
FIG. 16 shows an example of the difference in the substrate temperature distribution around the component due to the difference in heating conditions. Same board,
It can be seen that even for the same component, the substrate temperature distribution around the component differs depending on the heating conditions. By adding the temperature data of the components, the difference in the substrate temperature distribution due to the difference in the heating conditions can be corrected.

【0094】図17は、市販のパソコン用表計算ソフト
ウェアによって部品間隔を算出する、本発明における基
板設計方法の実施手段の一事例である。
FIG. 17 shows an example of means for carrying out the board designing method of the present invention, which calculates the component interval by using a commercially available personal computer spreadsheet software.

【0095】図17において、19は入力部、20は基
板温度分布の近似式表示部、21は部品間隔表示部であ
る。
In FIG. 17, 19 is an input unit, 20 is an approximate expression display unit of the substrate temperature distribution, and 21 is a component interval display unit.

【0096】そして、入力部19に部品A、Bの種類
と、部品サイズ(長さ、幅、厚さ、リード長さ)と、基
板Cの厚さと層数と、生基板の温度と、良好なはんだ付
けを確保するための最低温度を入力することで、基板温
度分布の近似式表示部20で、2つの部品A、Bについ
て周辺の基板温度分布を予測し、部品間隔表示部21
で、部品A、Bの配置面に応じて最低必要な部品間隔D
を試行錯誤なく瞬時に算出することができる。ここで、
基板の材質を、ガラスエポキシ基板、セラミック基板、
フレキシブル基板など選択可能としてもよい。
Then, the type of the components A and B, the component size (length, width, thickness, lead length), the thickness and the number of layers of the substrate C, the temperature of the raw substrate, and the like are good in the input section 19. By inputting the minimum temperature for ensuring proper soldering, the board temperature distribution approximation unit 20 predicts the board temperature distribution around the two components A and B, and the component interval display unit 21
Then, the minimum required component spacing D according to the placement surface of the components A and B
Can be instantly calculated without trial and error. here,
The material of the board is glass epoxy board, ceramic board,
A flexible substrate or the like may be selectable.

【0097】このように、パソコンなどの表計算ソフト
ウェアを使用して加熱時における部品周辺の基板温度分
布を算出するようにし、また、パソコンなどの表計算ソ
フトウェアを使用して加熱時における部品間隔を算出す
るようにしたことにより、本発明に係る基板設計方法を
簡単に使えるようにツール化し、設計者自身が基板の温
度低下を予測して部品をレイアウトできる。
As described above, the spreadsheet software such as a personal computer is used to calculate the substrate temperature distribution around the component during heating, and the spreadsheet software such as the personal computer is used to calculate the component interval during heating. By performing the calculation, the board design method according to the present invention is made into a tool so that it can be easily used, and the designer himself can predict the temperature decrease of the board and lay out the components.

【0098】なお、あらかじめ測定した温度データに基
づいて基板温度への影響が小さく無視できると判断でき
る部品については、部品周辺の基板温度分布の予測を行
わず、生基板上の任意の位置に配置することは可能であ
るし、また、部品周辺の基板温度分布を予測した結果、
基板温度への影響が小さく無視できると判断できる部品
については、生基板上の任意の位置に配置することが可
能である。
For components which have a small influence on the substrate temperature and can be neglected based on temperature data measured in advance, the substrate temperature distribution around the components is not predicted, and the components are arranged at arbitrary positions on the raw substrate. Is also possible, and as a result of predicting the substrate temperature distribution around the component,
Parts that have a small influence on the substrate temperature and can be determined to be negligible can be placed at arbitrary positions on the raw substrate.

【0099】上記した本発明に係る基板設計方法の実施
形態によれば、リフロ条件を一定にした場合の基板温度
ばらつきのうち、部品による基板の温度低下を予測可能
とし、生基板の温度と部品による基板の温度低下の許容
値から、はんだ付け温度の確保に必要な部品間隔を決定
できるようになる。
According to the above-described embodiment of the board designing method of the present invention, it is possible to predict the temperature decrease of the board due to the component among the board temperature variations when the reflow condition is constant, and to estimate the temperature of the raw board and the component. It is possible to determine the component interval required to secure the soldering temperature from the allowable value of the temperature drop of the board due to.

【0100】また、温度上昇しにくい大型部品の影響に
よる隣接部品の温度低下と、部品間隔の関係を数値化す
ることが可能になる。このように、部品間隔を何mm以
上に設定すればよいかが具体的な数値でわかるため、リ
フロ温度に問題がないかどうか定量的な判断が可能にな
る。
Further, it becomes possible to quantify the relation between the temperature drop of the adjacent parts due to the influence of the large-sized parts which are hard to rise in temperature and the part interval. In this way, it is possible to quantitatively determine whether or not there is a problem in the reflow temperature, since it is possible to know from a specific numerical value how many mm or more the component interval should be set.

【0101】また、本発明に係る基板設計方法の実施の
形態によれば、部品が搭載されていない生基板の温度
と、いくつかの部品について加熱時における、それぞれ
の部品周辺の基板温度の分布をあらかじめ測定しておく
ことで、加熱時における部品周辺の基板温度分布をモデ
ル化し、部品の種類やサイズおよび生基板の厚さや層数
などをパラメータとして部品周辺の基板温度分布を定量
的に予測できるようにした。
Further, according to the embodiment of the board designing method of the present invention, the temperature of the raw board on which no component is mounted and the distribution of the board temperature around each component during heating of some components By pre-measurement, the substrate temperature distribution around the component during heating is modeled, and the substrate temperature distribution around the component is quantitatively predicted using the type and size of the component and the thickness and number of layers of the raw substrate as parameters. I made it possible.

【0102】したがって、生基板の温度に対する部品の
影響による基板温度の変化と、その影響が及ぶ範囲が簡
単に評価できて、リフロ条件を一定にした場合の基板温
度ばらつきのうち、部品による基板の温度低下を予測可
能とし、生基板の温度と部品による基板の温度低下の許
容値から、はんだ付け温度の確保に必要な部品間隔を決
定できるようになる。
Therefore, the change in the substrate temperature due to the influence of the component on the temperature of the raw substrate and the range of the influence can be easily evaluated, and among the substrate temperature variations due to the constant reflow condition, the component The temperature drop can be predicted, and the component interval required to secure the soldering temperature can be determined from the temperature of the raw substrate and the allowable value of the temperature drop of the substrate due to the component.

【0103】また、本発明に係る基板設計方法の実施の
形態によれば、部品周辺の基板温度分布の予測結果に基
づいて基板温度を大きく低下させる部品を選択し、他の
部品のはんだ接合部に及ぼす温度低下を計算して、それ
ぞれの部品がはんだ付け温度を確保できる部品間隔を算
出できるようにした。
Further, according to the embodiment of the board designing method of the present invention, based on the prediction result of the board temperature distribution around the parts, the parts which greatly reduce the board temperature are selected, and the solder joints of other parts are selected. It was made possible to calculate the temperature drop caused by the above, and to calculate the component interval that can secure the soldering temperature for each component.

【0104】したがって、加熱時の基板温度をシミュレ
ーションする方法と比較して、良好なはんだ付けが得ら
れる加熱温度の確保に必要な部品間隔が試行錯誤なく、
短時間で簡単に決定できる。
Therefore, as compared with the method of simulating the substrate temperature at the time of heating, the component intervals necessary for ensuring the heating temperature at which good soldering is obtained can be obtained without trial and error.
Easy to make decisions in a short time.

【0105】図18は、本発明における基板設計方法の
実施方法として、基板設計CADによって実施した一事
例を示す慨念図である。
FIG. 18 is a schematic diagram showing an example of the board designing method according to the present invention implemented by the board designing CAD.

【0106】設計画面上には部品Aとその周辺の基板温
度分布を示す同心円7および部品Bとその周辺の基板温
度分布を示す同心円11が表示されている。部品配置位
置確定後に自動または手動でチェックを掛けることで、
部品間隔Dが確保できているか確認できる。
On the design screen, a concentric circle 7 showing the substrate temperature distribution of the component A and its periphery and a concentric circle 11 showing the substrate temperature distribution of the component B and its periphery are displayed. By checking the parts placement position automatically or manually,
It is possible to confirm whether the component interval D is secured.

【0107】また、部品Aが配置してある基板Cに部品
Bを配置するときに、部品間隔Dが確保できない位置に
配置使用とした場合に注意を表示する、あるいは、配置
できないようにしてもよい。
Further, when the component B is placed on the board C on which the component A is placed, a warning is displayed when the component B is placed and used at a position where the component spacing D cannot be secured, or even if the component B cannot be placed. Good.

【0108】部品配置位置を確定した後には、基板全体
の予想温度分布、または温度の最高部と最低部の少なく
ともいずれか一方を表示できるようにしてもよい。
After the component placement position is determined, the expected temperature distribution of the entire substrate or at least one of the highest temperature portion and the lowest temperature portion may be displayed.

【0109】図19は、本発明における基板設計方法を
基板設計CADによって実施した他の一事例を示す概念
図である。
FIG. 19 is a conceptual diagram showing another example in which the board design method according to the present invention is carried out by board design CAD.

【0110】設計画面上には部品Aとその周辺の基板温
度分布を示す同心円7、部品Bとその周辺の基抜温度分
布を示す同心円11、部品Eとその周辺の基板温度分布
を示す同心円23が表示されている。部晶Aと部品Bの
配置位置がすでに決定している状態で新たに部品Eを配
置する場合で、部品Eの影響によって部品Aと部品Bの
少なくともいずれか一方のはんだ接合部が良好なはんだ
付けが得られる温度に達しなくなる位置に部品Eを配置
しようとした場合には、その旨の表示を行い、部品Eの
影響を考慮して部品Aと部品Bとの新たな部品間隔を算
出して、部品Aと部品Bが離れるようにする。あるい
は、そのような位置に部品Eを配置できなくしてもよ
い。
On the design screen, a concentric circle 7 showing the substrate temperature distribution of the component A and its periphery, a concentric circle 11 showing the basic temperature distribution of the component B and its periphery, and a concentric circle 23 showing the substrate temperature distribution of the component E and its periphery. Is displayed. In the case of newly arranging the component E in a state where the arrangement positions of the crystal A and the component B have already been determined, the solder joint of at least one of the component A and the component B has a good solder joint due to the influence of the component E. When the component E is to be placed at a position where the temperature at which the component can be obtained does not reach, a message to that effect is displayed, and a new component interval between the component A and the component B is calculated in consideration of the influence of the component E. So that the parts A and B are separated from each other. Alternatively, the component E may not be placed at such a position.

【0111】このように、本発明に係る基板設計方法の
実施方法では、良好なはんだ付けが得られる加熱温度の
確保に必要な部品間隔Dが適性であるか否かをチェック
できる機能を有する。
As described above, the method of implementing the board designing method according to the present invention has a function of checking whether or not the component spacing D necessary for ensuring the heating temperature at which good soldering is obtained is appropriate.

【0112】また、部品配置後の基板で加熱時の予想最
低温度部と予想最高温度部のいずれか一方もしくは双方
が表示できるようにしてもよいし、また、加熱時の基板
全体の予想温度が表示できるようにしてもよいし、ま
た、必要な部品間隔を確保できない領域に部品を配置し
ようとした場合にその旨を表示するか、あるいは部品が
配置できない機能を有するようにしてもよい。
It is also possible to display one or both of the predicted minimum temperature portion and the predicted maximum temperature portion during heating on the board after the components are placed, or the predicted temperature of the entire board during heating can be displayed. It may be displayed, or if a component is to be placed in an area where a required component interval cannot be secured, a message to that effect may be displayed, or the component may be placed.

【0113】したがって、チェック機能により、良好な
はんだ付けが得られる加熱温度の確保に必要な部品間隔
か否かをチェックすることができる。
Therefore, by the check function, it is possible to check whether or not the component intervals are necessary to secure the heating temperature at which good soldering can be obtained.

【0114】図20は、基板温度が低下する部分に耐熱
保証温度を超えやすい部品24を配置した本発明におけ
る基板設計方法を用いた基板構造の実施の形態例であ
る。
FIG. 20 shows an embodiment of a board structure using the board designing method of the present invention in which a component 24 that easily exceeds the guaranteed heat resistance temperature is arranged in a portion where the board temperature decreases.

【0115】この本発明に係る基板構造の実施の形態に
よれば、基板設計時において、あらかじめ測定した温度
データに基づいて加熱時における部品周辺の基板温度分
布(部品からの距離と基板温度との関係)を予測し、基
板温度が低い部分に耐熱保証温度を越えやすい部品を配
置するようにしてある。この場合、耐熱保証温度を越え
やすい部品はアルミ電解コンデンサやLEDである。
According to the embodiment of the board structure according to the present invention, the board temperature distribution around the part (the distance from the part and the board temperature) around the part at the time of heating is designed based on the temperature data measured in advance at the time of designing the board. (Relationship) is predicted, and parts that easily exceed the guaranteed heat resistance temperature are arranged in the portion where the substrate temperature is low. In this case, the parts that easily exceed the guaranteed temperature for heat resistance are aluminum electrolytic capacitors and LEDs.

【0116】したがって、部品の影響による基板温度の
低下が大きい位置にアルミ電解コンデンサなど耐熱保証
温度を越えやすい部品を配置することで、さらに加熱時
の温度ばらつきが小さい基板を設計できる。
Therefore, by disposing a component such as an aluminum electrolytic capacitor that easily exceeds the guaranteed heat resistance temperature at a position where the substrate temperature greatly decreases due to the influence of the component, it is possible to design a substrate with less temperature variation during heating.

【0117】[0117]

【発明の効果】以上説明したように、本発明に係る基板
設計方法によれば、リフロ条件を一定にした場合の基板
温度ばらつきのうち、部品による基板の温度低下を予測
可能とし、生基板の温度と部品による基板の温度低下の
許容値から、はんだ付け温度の確保に必要な部品間隔を
決定できるようになる。
As described above, according to the board designing method of the present invention, it is possible to predict the temperature drop of the board due to the component among the board temperature variations when the reflow condition is constant, and From the temperature and the allowable value of the temperature drop of the board due to the components, it becomes possible to determine the component interval required to secure the soldering temperature.

【0118】また、本発明に係る基板設計方法の実施方
法によれば、チェック機能により、良好なはんだ付けが
得られる加熱温度の確保に必要な部品間隔か否かをチェ
ックすることができる。
Further, according to the method of implementing the board designing method of the present invention, it is possible to check, by the check function, whether or not the component intervals are necessary to secure the heating temperature at which good soldering can be obtained.

【0119】また、本発明に係る基板構造によれば、部
品の影響による基板温度の低下が大きい位置にアルミ電
解コンデンサなど耐熱保証温度を越えやすい部品を配置
することで、さらに加熱時の温度ばらつきが小さい基板
を設計できる。
Further, according to the substrate structure of the present invention, by disposing a component such as an aluminum electrolytic capacitor that easily exceeds the guaranteed heat resistance temperature at a position where the substrate temperature greatly decreases due to the influence of the component, temperature variation during heating can be further increased. It is possible to design a board with a small size.

【図面の簡単な説明】[Brief description of drawings]

【図1】リフロ全体の温度プロファイルの説明図であ
る。
FIG. 1 is an explanatory diagram of a temperature profile of the entire reflow.

【図2】リフロ時の基板温度のばらつきΔTの定義の説
明図である。
FIG. 2 is an explanatory diagram of the definition of a substrate temperature variation ΔT during reflow.

【図3】部品間隔Dを説明するための基板構造の説明図
である。
FIG. 3 is an explanatory diagram of a substrate structure for explaining a component interval D.

【図4】(1)は部品周辺の基板温度分布の説明図であ
る。(2)はQFP周辺の基板温度分布の実測データの
グラフ図である。
FIG. 4A is an explanatory diagram of a substrate temperature distribution around a component. (2) is a graph of measured data of substrate temperature distribution around QFP.

【図5】部品間隔Dとその中間での部品の熱容量による
温度低下ΔTl との関係を示すグラフ図である。
FIG. 5 is a graph showing a relationship between a component distance D and a temperature decrease ΔT 1 due to the heat capacity of components in the middle thereof.

【図6】(1)は基板上における1つの部品周辺の基板
温度分布の説明図である。(2)は1つの部品周辺の基
板温度分布を温度と位置とで表現したグラフ図である。
FIG. 6A is an explanatory diagram of a substrate temperature distribution around one component on the substrate. (2) is a graph showing the substrate temperature distribution around one component by temperature and position.

【図7】(1)は基板上における2つの部品周辺の基板
温度分布の説明図である。(2)は2つの部品周辺の基
板温度分布を温度と位置とで表現したグラフ図である。
FIG. 7A is an explanatory diagram of a substrate temperature distribution around two components on the substrate. (2) is a graph showing the substrate temperature distribution around two components in terms of temperature and position.

【図8】QFP周辺の基板温度分布の実測データのグラ
フ図である。
FIG. 8 is a graph of measured data of substrate temperature distribution around QFP.

【図9】端子部を除いた部品形状が正方形の部品での、
ある加熱条件における部品の種類と基板温度分布との関
係を示す実験データを示すグラフ図である。
FIG. 9 shows a square-shaped component excluding the terminal portion,
It is a graph which shows the experimental data which shows the relationship between the kind of components on a certain heating condition, and substrate temperature distribution.

【図10】端子部を除いた部品形状が正方形の部品で
の、ある加熱条件における部品のサイズと基板温度分布
との関係を示す実験データを示すグラフ図である。
FIG. 10 is a graph showing experimental data showing a relationship between a component size and a substrate temperature distribution under a certain heating condition for a component having a square component shape excluding a terminal portion.

【図11】端子部を除いた部品形状が正方形の部品がリ
フロ面にある場合の、ある加熱条件における部品周辺の
基板温度分布との関係を示す実験データを示すグラフ図
である。
FIG. 11 is a graph showing experimental data showing a relationship with a substrate temperature distribution around a component under a certain heating condition when a component having a square component shape excluding a terminal portion is on the reflow surface.

【図12】端子部を除いた部品形状が長方形の部品が裏
面にある場合の、ある加熱条件における部品周辺の基板
温度分布との関係を示す実験データを示すグラフ図であ
る。
FIG. 12 is a graph showing experimental data showing a relationship with a substrate temperature distribution around a component under a certain heating condition when a component having a rectangular component shape excluding the terminal portion is on the back surface.

【図13】基板の仕様と近似直線との関係を一般化する
のに使用したデータのグラフ図である。
FIG. 13 is a graph of the data used to generalize the relationship between the board specifications and the approximate straight line.

【図14】基板厚と生基板の温度との関係を示すグラフ
図である。
FIG. 14 is a graph showing the relationship between substrate thickness and raw substrate temperature.

【図15】基板の層数と温度勾配との関係を示すグラフ
図である。
FIG. 15 is a graph showing the relationship between the number of layers on the substrate and the temperature gradient.

【図16】加熱条件の違いによる部品中心に最も近い部
品端からの距離と基板温度(生基板温度)の差との関係
の実測データを示すグラフ図である。
FIG. 16 is a graph showing the measured data of the relationship between the distance from the component end closest to the component center and the difference in substrate temperature (raw substrate temperature) due to the difference in heating conditions.

【図17】市販のパソコン用表計算ソフトウェアによっ
て部品間隔を算出する基板設計方法の実施手段の一事例
の説明図である。
FIG. 17 is an explanatory diagram of an example of an implementation means of a board design method for calculating a component interval by using commercially available personal computer spreadsheet software.

【図18】本発明における基板設計方法を基板設計CA
Dによって実施した一事例を示す慨念図である。
FIG. 18 is a circuit diagram of a board design method according to the present invention.
FIG. 6 is a concept diagram showing an example implemented by D.

【図19】本発明における基板設計方法を基板設計CA
Dによって実施した他の事例を示す慨念図である。
FIG. 19 is a circuit diagram of a board design method according to the present invention.
FIG. 8 is an enthusiasm diagram showing another example implemented by D.

【図20】基板温度が低下する部分に耐熱保証温度を超
えやすい部品を配置した基板構造の説明図である。
FIG. 20 is an explanatory diagram of a board structure in which components that easily exceed the guaranteed heat resistance temperature are arranged in a portion where the board temperature decreases.

【符号の説明】[Explanation of symbols]

A 部品 B 部品 C 基板 D 部品間隔 E 部品 3 部品の中心線 4 基板温度分布 5 生基板を加熱した時の温度 6 部品Aの中心に最も近い位置 7 部品Aを中心とする同心円 9 部品B周辺の加熱時の基板温度分布 10 部品Bの中心に最も近い位置 11 部品Bを中心とする同心円 12 部品Aと部品Bとの間の基板温度分布 13 部品Aのはんだ接合部 14 部品Bのはんだ接合部 18 最低加熱温度 19 入力部 20 基板温度分布の近似式表示部 21 部品間隔表示部 23 同心円 24 耐熱保証温度を超えやすい部品 A parts B parts C board D parts spacing E parts Center line of 3 parts 4 Substrate temperature distribution 5 Temperature when the raw board is heated 6 Position closest to the center of part A 7 Concentric circle centered on part A 9 Board temperature distribution during heating around component B 10 Position closest to the center of part B 11 Concentric circle centered on part B 12 Substrate temperature distribution between parts A and B 13 Solder joint of part A 14 Solder joint of component B 18 Minimum heating temperature 19 Input section 20 Substrate temperature distribution approximate expression display 21 Parts interval display 23 concentric circles 24 Parts that easily exceed the heat resistance guarantee temperature

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G06F 17/50 658 G06F 17/50 658A Fターム(参考) 5B046 AA08 BA05 5E319 AA03 AA06 AB05 AC01 CC33 CC58 CD04 CD26 CD51 GG03 GG11 GG15 5E336 AA04 AA11 AA12 AA16 BB02 CC31 CC53 CC57 EE03 GG01 GG05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // G06F 17/50 658 G06F 17/50 658A F term (reference) 5B046 AA08 BA05 5E319 AA03 AA06 AB05 AC01 CC33 CC58 CD04 CD26 CD51 GG03 GG11 GG15 5E336 AA04 AA11 AA12 AA16 BB02 CC31 CC53 CC57 EE03 GG01 GG05

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】 基板設計時において、あらかじめ測定し
た温度データに基づいて加熱時における部品周辺の基板
温度分布(部品からの距離と基板温度との関係)を予測
し、前記部品が前記基板を介して他の部品のはんだ接合
部におよぼす温度変化を計算することによつて、良好な
はんだ付けが得られる加熱温度の確保に必要な部品間隔
を決定するようにしたことを特徴とする基板設計方法。
1. When designing a board, the board temperature distribution around the component (the relationship between the distance from the component and the board temperature) at the time of heating is predicted based on temperature data measured in advance, and the component intervenes through the board. Board design method characterized in that the component interval required to secure the heating temperature for obtaining good soldering is determined by calculating the temperature change affecting the solder joints of other components. .
【請求項2】 前記部品が搭載されていない生基板の温
度と、いくつかの前記部品について加熱時における、そ
れぞれの前記部品周辺の前記基板温度分布をあらかじめ
測定しておくことで、加熱時における前記部品周辺の前
記基板温度分布を、前記部品の種類やサイズおよび前記
生基板の厚さや層数や材質などをパラメータとして数式
化し、前記部品周辺の前記基板温度分布を定量的に予測
できるようにした請求項1に記載の基板設計方法。
2. The temperature of a raw board on which the component is not mounted and the temperature distribution of the substrate around each of the components when some of the components are heated are measured in advance, whereby The substrate temperature distribution around the component is mathematically expressed as a parameter such as the type and size of the component and the thickness, the number of layers, and the material of the raw substrate, so that the substrate temperature distribution around the component can be quantitatively predicted. The board design method according to claim 1.
【請求項3】 前記部品周辺の前記基板温度分布の予測
結果に基づいて前記基板温度を大きく低下させる前記部
品を選択し、前記他の部品のはんだ接合部に及ぼす温度
低下を計算して、それぞれの部品がはんだ付け温度を確
保できる前記部品間隔を算出できるようにした請求項1
に記載の基板設計方法。
3. A component that significantly reduces the substrate temperature is selected based on a prediction result of the substrate temperature distribution around the component, and a temperature reduction exerted on a solder joint portion of the other component is calculated, 1. The component interval capable of ensuring the soldering temperature of the component of FIG. 1 can be calculated.
The board design method described in.
【請求項4】 前記温度データとして生基板温度と前記
部品周辺の前記基板温度分布を使用するようにした請求
項1乃至請求項3のいずれかに記載の基板設計方法。
4. The board design method according to claim 1, wherein the raw board temperature and the board temperature distribution around the component are used as the temperature data.
【請求項5】 前記温度データは前記生基板や前記部品
を限定して測定するようにした請求項1乃至請求項3の
いずれかに記載の基板設計方法。
5. The board design method according to claim 1, wherein the temperature data is measured by limiting the raw board and the component.
【請求項6】 加熱時が加熱中の最高温度の時点である
請求項1乃至請求項3のいずれかに記載の基板設計方
法。
6. The substrate designing method according to claim 1, wherein the heating time is a time point of the maximum temperature during heating.
【請求項7】 前記部品周辺の前記基板温度分布は前記
部品の中心を基準に求めるようにした請求項1乃至請求
項3のいずれかに記載の基板設計方法。
7. The substrate designing method according to claim 1, wherein the substrate temperature distribution around the component is determined with reference to the center of the component.
【請求項8】 前記部品周辺の前記基板温度分布は部品
中心に最も近い部品端部を基準に求めるようにした請求
項1乃至請求項3のいずれかに記載の基板設計方法。
8. The board designing method according to claim 1, wherein the board temperature distribution around the part is obtained based on the end of the part closest to the center of the part.
【請求項9】 前記部品周辺の前記基板温度分布を線形
に近似させる請求項1乃至請求項3のいずれかに記載の
基板設計方法。
9. The board designing method according to claim 1, wherein the board temperature distribution around the component is linearly approximated.
【請求項10】 前記部品周辺の前記基板温度分布を曲
線に近似させる請求項1乃至請求項3のいずれかに記載
の基板設計方法。
10. The board design method according to claim 1, wherein the board temperature distribution around the component is approximated to a curve.
【請求項11】 あらかじめ測定した前記温度データに
基づいて前記基板温度への影響が小さく無視できると判
断できる前記部品については、前記部品周辺の前記基板
温度分布の予測を行わず、前記生基板上の任意の位置に
配置するようにした請求項1乃至請求項3のいずれかに
記載の基板設計方法。
11. For the component that can be judged to have a small influence on the substrate temperature based on the temperature data measured in advance and can be ignored, the substrate temperature distribution around the component is not predicted and the raw substrate The board designing method according to any one of claims 1 to 3, wherein the board designing method is arranged at any position.
【請求項12】 前記部品周辺の前記基板温度分布を予
測した結果、前記基板温度への影響が小さく無視できる
と判断できる前記部品については、前記生基板上の任意
の位置に配置するようにした請求項1乃至請求項3のい
ずれかに記載の基板設計方法。
12. As a result of predicting the substrate temperature distribution around the component, the component which has a small influence on the substrate temperature and can be determined to be negligible is arranged at an arbitrary position on the raw substrate. The board designing method according to claim 1.
【請求項13】 前記部品の種類を前記パラメータに用
いて前記部品周辺の前記基板温度分布を予測する場合に
は、前記部品の分類は、測定した前記部品周辺の前記基
板温度分布の違いに基づく請求項2に記載の基板設計方
法。
13. When the substrate temperature distribution around the component is predicted using the type of the component as the parameter, the classification of the component is based on the difference in the measured substrate temperature distribution around the component. The board design method according to claim 2.
【請求項14】 前記部品の分類に、前記部品の形状を
用いるようにした請求項13に記載の基板設計方法。
14. The board design method according to claim 13, wherein the shape of the component is used for classifying the component.
【請求項15】 前記部品の分類に、前記部品の内部構
造を用いるようにした請求項13に記載の基板設計方
法。
15. The board design method according to claim 13, wherein an internal structure of the component is used for classifying the component.
【請求項16】 前記部品の分類に、前記部品の材質を
用いるようにした請求項13に記載の基板設計方法。
16. The board design method according to claim 13, wherein a material of the component is used for classifying the component.
【請求項17】 前記部品の分類に、前記はんだ接合部
の位置を用いるようにした請求項13に記載の基板設計
方法。
17. The board design method according to claim 13, wherein the position of the solder joint is used for classifying the parts.
【請求項18】 前記部品のサイズを前記パラメータに
用いて、前記部品周辺の前記基板温度分布を予測する場
合には、前記部品サイズとして前記部品の長さと幅を使
用するようにした請求項2に記載の基板設計方法。
18. The length and width of the component are used as the component size when predicting the substrate temperature distribution around the component using the size of the component as the parameter. The board design method described in.
【請求項19】 前記部品の長さ方向と幅方向に分けて
前記部品周辺の前記基板温度分布を予測するようにした
請求項18に記載の基板設計方法。
19. The board design method according to claim 18, wherein the board temperature distribution around the part is predicted by dividing the part into a length direction and a width direction.
【請求項20】 前記部品サイズとして前記部品の厚さ
を使用するようにした請求項18に記載の基板設計方
法。
20. The board design method according to claim 18, wherein the thickness of the component is used as the component size.
【請求項21】 前記生基板の層数を前記パラメータに
用いて前記部品周辺の前記基板温度分布を予測する場合
には、前記基板の層数として内層の有無に着目するよう
にした請求項2に記載の基板設計方法。
21. When the number of layers of the raw substrate is used as the parameter to predict the substrate temperature distribution around the component, attention is paid to the presence or absence of an inner layer as the number of layers of the substrate. The board design method described in.
【請求項22】 前記複数の部品による前記基板温度へ
の影響を重ね合わせて任意の位置における前記基板温度
を予測し、良好なはんだ付けが得られる加熱温度の確保
に必要な前記部品間隔を決定するようにした請求項1乃
至請求項3のいずれかに記載の基板設計方法。
22. The substrate temperature at an arbitrary position is predicted by superimposing influences of the plurality of components on the substrate temperature, and the component interval required to secure a heating temperature at which good soldering can be obtained is determined. The board designing method according to claim 1, wherein
【請求項23】 加熱時の前記基板温度に対する前記部
品の影響を、前記部品周辺の前記基板温度と前記生基板
の温度との差で表れ、前記個々の部品による影響を重ね
合わせて前記部品のはんだ接合部の温度を予測すること
で、良好なはんだ付けが得られる加熱温度の確保に必要
な前記部品間隔を決定するようにした請求項1乃至請求
項3のいずれかに記載の基板設計方法。
23. The influence of the component on the substrate temperature at the time of heating is expressed by the difference between the substrate temperature around the component and the temperature of the raw substrate, and the influence of the individual components is superposed to obtain the influence of the component. The board design method according to any one of claims 1 to 3, wherein by predicting a temperature of a solder joint portion, the component interval required to secure a heating temperature at which good soldering is obtained is determined. .
【請求項24】 ある一定の加熱条件の下での加熱時に
おける前記部品周辺の前記基板温度を予測するようにし
た請求項1乃至請求項3のいずれかに記載の基板設計方
法。
24. The board design method according to claim 1, wherein the board temperature around the component is predicted during heating under a certain heating condition.
【請求項25】 複数の加熱条件の下での加熱時におけ
る前記部品周辺の前記基板温度を包括して平均値を予測
するようにした請求項1乃至請求項3のいずれかに記載
の基板設計方法。
25. The board design according to claim 1, wherein an average value is predicted by including the board temperature around the component at the time of heating under a plurality of heating conditions. Method.
【請求項26】 加熱条件による加熱時における前記部
品周辺の前記基板温度の違いを補正できるようにした請
求項1乃至請求項3のいずれかに記載の基板設計方法。
26. The board designing method according to claim 1, wherein a difference in the board temperature around the component during heating under heating conditions can be corrected.
【請求項27】 測定データを追加することで前記部品
周辺の前記基板温度の違いを補正するようにした請求項
26に記載の基板設計方法。
27. The board design method according to claim 26, wherein the difference in the board temperature around the component is corrected by adding measurement data.
【請求項28】 パソコンなどの表計算ソフトウェアを
使用して加熱時における前記部品周辺の前記基板温度分
布を算出するようにした請求項1乃至請求項3のいずれ
かに記載の基板設計方法。
28. The board designing method according to claim 1, wherein the board temperature distribution around the component at the time of heating is calculated using spreadsheet software such as a personal computer.
【請求項29】 パソコンなどの表計算ソフトウェアを
使用して加熱時における前記部品間隔を算出するように
した請求項1乃至請求項3のいずれかに記載の基板設計
方法。
29. The board designing method according to claim 1, wherein the component interval at the time of heating is calculated by using a spreadsheet software such as a personal computer.
【請求項30】 基板設計時において、あらかじめ測定
した温度データに基づいて加熱時における部品周辺の基
板温度分布(部品からの距離と基板温度との関係)を予
測し、前記部品が前記基板を介して他の部品のはんだ接
合部におよぼす温度変化を計算することによつて、良好
なはんだ付けが得られる加熱温度の確保に必要な部品間
隔を決定し、この部品間隔が適性であるか否かをチェッ
クできる機能を有することを特徴とする基板設計方法の
実施方法。
30. When designing a board, predicting a board temperature distribution around the component (relationship between the distance from the component and the substrate temperature) at the time of heating based on temperature data measured in advance, and the component intervenes through the board. By calculating the temperature change over the solder joints of other parts, determine the part spacing required to secure the heating temperature for good soldering, and determine whether this part spacing is appropriate or not. A method of performing a board design method, which has a function of checking
【請求項31】 前記部品配置後の基板で加熱時の予想
最低温度部と予想最高温度部のいずれか一方もしくは双
方が表示できる請求項30に記載の基板設計方法の実施
方法。
31. The board designing method according to claim 30, wherein one or both of an expected minimum temperature portion and an expected maximum temperature portion at the time of heating can be displayed on the substrate after the component placement.
【請求項32】 加熱時の基板全体の予想温度が表示で
きる請求項31に記載の基板設計方法の実施方法。
32. The method of implementing a board design method according to claim 31, wherein an expected temperature of the entire board at the time of heating can be displayed.
【請求項33】 必要な前記部品間隔を確保できない領
域に前記部品を配置しようとした場合にその旨を表示す
るか、あるいは前記部品が配置できない機能を有する請
求項30に記載の基板設計方法の実施方法。
33. The board designing method according to claim 30, wherein when the component is to be arranged in an area where the necessary component interval cannot be secured, a message to that effect is displayed or the component cannot be arranged. Implementation method.
【請求項34】 基板設計時において、あらかじめ測定
した温度データに基づいて加熱時における部品周辺の基
板温度分布(部品からの距離と基板温度との関係)を予
測し、基板温度が低い部分に耐熱保証温度を越えやすい
部品を配置するようにした回路基板構造。
34. When designing a board, predicting a board temperature distribution around a component (relationship between the distance from the component and the board temperature) at the time of heating on the basis of temperature data measured in advance, and applying heat resistance to a portion where the board temperature is low. A circuit board structure in which parts that easily exceed the guaranteed temperature are placed.
【請求項35】 耐熱保証温度を越えやすい部品がアル
ミ電解コンデンサやLEDである請求項34に記載の回
路基板構造。
35. The circuit board structure according to claim 34, wherein the component that easily exceeds the guaranteed heat resistance temperature is an aluminum electrolytic capacitor or an LED.
JP2001185463A 2001-06-19 2001-06-19 Substrate design method, implementation method of the substrate design method, and substrate structure designed by the substrate design method Expired - Lifetime JP3888085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185463A JP3888085B2 (en) 2001-06-19 2001-06-19 Substrate design method, implementation method of the substrate design method, and substrate structure designed by the substrate design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185463A JP3888085B2 (en) 2001-06-19 2001-06-19 Substrate design method, implementation method of the substrate design method, and substrate structure designed by the substrate design method

Publications (2)

Publication Number Publication Date
JP2003008168A true JP2003008168A (en) 2003-01-10
JP3888085B2 JP3888085B2 (en) 2007-02-28

Family

ID=19025040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185463A Expired - Lifetime JP3888085B2 (en) 2001-06-19 2001-06-19 Substrate design method, implementation method of the substrate design method, and substrate structure designed by the substrate design method

Country Status (1)

Country Link
JP (1) JP3888085B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116451A1 (en) * 2006-03-30 2007-10-18 Fujitsu Limited Process for producing solder-joined product, solder joining apparatus, method of discriminating soldering condition, reflow apparatus and method of solder joining
JP2010111568A (en) * 2008-09-29 2010-05-20 Corning Inc Laser separation method of glass sheet
JP2011071532A (en) * 2010-11-09 2011-04-07 Fujitsu Ltd Method of manufacturing product to be solder-bonded, solder bonding device, solder condition determination method, reflow device and solder bonding method
CN102248308A (en) * 2011-06-24 2011-11-23 广东工业大学 Method for performing microprocessing by utilizing laser cavitation micro jet flow
JP2013058544A (en) * 2011-09-07 2013-03-28 Denso Corp Electronic device and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116451A1 (en) * 2006-03-30 2007-10-18 Fujitsu Limited Process for producing solder-joined product, solder joining apparatus, method of discriminating soldering condition, reflow apparatus and method of solder joining
JPWO2007116451A1 (en) * 2006-03-30 2009-08-20 富士通株式会社 Manufacturing method of solder bonded product, solder bonding apparatus, solder condition discrimination method, reflow apparatus, and solder bonding method
JP4724224B2 (en) * 2006-03-30 2011-07-13 富士通株式会社 Method for manufacturing solder bonded product, solder bonding apparatus, reflow apparatus, and solder bonding method
JP2010111568A (en) * 2008-09-29 2010-05-20 Corning Inc Laser separation method of glass sheet
JP2011071532A (en) * 2010-11-09 2011-04-07 Fujitsu Ltd Method of manufacturing product to be solder-bonded, solder bonding device, solder condition determination method, reflow device and solder bonding method
CN102248308A (en) * 2011-06-24 2011-11-23 广东工业大学 Method for performing microprocessing by utilizing laser cavitation micro jet flow
JP2013058544A (en) * 2011-09-07 2013-03-28 Denso Corp Electronic device and method for manufacturing the same

Also Published As

Publication number Publication date
JP3888085B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US6275750B1 (en) Apparatus for setting heating condition in heating furnace and thermal analyzer for object to be heated in heating furnace
Mertol Application of the Taguchi method on the robust design of molded 225 plastic ball grid array packages
US20020144228A1 (en) Method and apparatus for designing printed-circuit board
US9500693B2 (en) Electronic apparatus, measuring method, and monitoring apparatus
Chiang et al. Application of response surface methodology in describing the thermal performances of a pin-fin heat sink
US6911738B2 (en) Method and apparatus for improving defective solder joint detection using x-ray inspection of printed assemblies
JP2010223859A (en) Monitoring device and monitoring method
Lau et al. Optimization of the reflow soldering process with multiple quality characteristics in ball grid array packaging by using the grey‐based Taguchi method
US20090020588A1 (en) Method for manufacturing product involving solder joining, solder joining apparatus, soldering condition verification method, reflow apparatus, and solder joining method
CN111859723A (en) Simulation analysis method for stress damage of through hole plugging process of electronic component
Pape et al. Thermal transient modeling and experimental validation in the European project PROFIT
JP3888085B2 (en) Substrate design method, implementation method of the substrate design method, and substrate structure designed by the substrate design method
Pape et al. Generation and verification of boundary independent compact thermal models for active components according to the DELPHI/SEED methods
Sarvar et al. Effective modeling of the reflow soldering process: basis, construction, and operation of a process model
TWI391642B (en) Performance evaluation method for heat dissipation module
CN114239442A (en) Method, system, medium and device suitable for PCB hot spot investigation and heat dissipation simulation
Sarvar et al. A modelling tool for the thermal optimisation of the reflow soldering of printed circuit assemblies
US20210262959A1 (en) Non-transitory computer-readable recording medium and thermal analysis device
Van Steenberge et al. Analytical and finite element models of the thermal behavior for lead-free soldering processes in electronic assembly
TWI401455B (en) Thermal resistance evaluation method for heat dissipation module
Wohlrabe et al. Influences of SMD package and substrate warpage on quality and reliability–measurement, effects and counteractions
Goh et al. Novel thermal validation metrology based on non-uniform power distribution for Pentium (R) III Xeon/sup TM/cartridge processor design with integrated level two cache
Delétage et al. Reliability estimation of BGA and CSP assemblies using degradation law model and technological parameters deviations
Mitterhuber et al. TSEP-Sensitivity Study to Analyze the Soldering Process of a Power Diode
JP2004014932A (en) Temperature setting method of printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Ref document number: 3888085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

EXPY Cancellation because of completion of term