JP2003008088A - Superconducting magnet unit for x-ray diffraction apparatus - Google Patents

Superconducting magnet unit for x-ray diffraction apparatus

Info

Publication number
JP2003008088A
JP2003008088A JP2001190810A JP2001190810A JP2003008088A JP 2003008088 A JP2003008088 A JP 2003008088A JP 2001190810 A JP2001190810 A JP 2001190810A JP 2001190810 A JP2001190810 A JP 2001190810A JP 2003008088 A JP2003008088 A JP 2003008088A
Authority
JP
Japan
Prior art keywords
ray
passage
superconducting magnet
ray diffraction
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190810A
Other languages
Japanese (ja)
Other versions
JP4038027B2 (en
Inventor
Kazunari Saito
一功 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MAGNET TECHNOL KK
Original Assignee
JAPAN MAGNET TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MAGNET TECHNOL KK filed Critical JAPAN MAGNET TECHNOL KK
Priority to JP2001190810A priority Critical patent/JP4038027B2/en
Publication of JP2003008088A publication Critical patent/JP2003008088A/en
Application granted granted Critical
Publication of JP4038027B2 publication Critical patent/JP4038027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnet unit for an X-ray diffraction having a small X-ray transmission attenuation rate. SOLUTION: The superconducting magnet unit for the X-ray diffraction comprises superconducting magnets 5a, 5b disposed at upper and lower stages in a vacuum heat insulation container 3, an X-ray incident passage S1, and an X-ray diffraction passage formed between the magnets of the upper and lower stages. The superconducting magnet unit further comprises an inner cylinder 3a formed toward a center of the magnets along a centerline of the container 3 to form an inside wall of the container 3 to dispose a sample for an X-ray diffraction disposed at a center of the upper and lower magnets from out of the container 3, a pair of sector spaces as the X-ray incident passage S1 and the X-ray diffraction passage spreading toward a peripheral wall 3b of the container 3 from the cylinder 3a, and a cover member 15 fixed airtightly to the container 3 and having X-ray passage windows 15b at outside surfaces of the sector spaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線回折用超電導磁石
装置に関するもので、特に、X線の減衰を最小限に抑え
る事の出来るX線回折装置用超電導磁石装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device for X-ray diffraction, and more particularly to a superconducting magnet device for an X-ray diffraction device which can minimize X-ray attenuation.

【0002】[0002]

【従来の技術】従来より、超電導磁石装置は、強力な磁
場を生成する事ができる事から種々の用途に適用する事
が提案され、現に、NMRや他の物性測定装置に使用さ
れている。
2. Description of the Related Art Conventionally, since a superconducting magnet device can generate a strong magnetic field, it has been proposed to be applied to various purposes, and is actually used for NMR and other physical property measuring devices.

【0003】係る従来の適用分野の内、X線回折装置に
超電導磁石装置を適用した例としては、特開平7−58
365号公報がある。この公報に記載の装置は、図5に
記載している様に、基台2に真空断熱容器3を保持さ
せ、該真空断熱容器3内に配置された輻射シールド4に
囲繞された真空空間内に、上下一対の超電導磁石5a,
5bと、これを保持する保持枠11と、ビスマス系金属
等の高温超電導材料で形成した電流リード6と、蓄冷式
冷凍機7の第1段冷却ステージ7a及び第2段冷却ステ
ージ7bとが配置された構造となっている。前記輻射シ
ールド4は、前記第1段冷却ステージ7aに熱的に接触
して固定されると共に、その内部の超電導磁石5a,5
b及び前記電流リード6への熱侵入を防止している。
尚、前記電流リード6は、リード12及び外部接続端子
13を介して、外部電源(図示せず)に接続されてい
る。
As an example in which a superconducting magnet device is applied to an X-ray diffractometer in the above-mentioned conventional application fields, Japanese Patent Application Laid-Open No. 7-58 is known.
There is a 365 publication. As shown in FIG. 5, the apparatus described in this publication has a vacuum heat insulation container 3 held on a base 2 and is surrounded by a radiation shield 4 arranged in the vacuum heat insulation container 3 in a vacuum space. A pair of upper and lower superconducting magnets 5a,
5b, a holding frame 11 for holding the same, a current lead 6 formed of a high-temperature superconducting material such as bismuth-based metal, a first-stage cooling stage 7a and a second-stage cooling stage 7b of the regenerative refrigerator 7. It has a structured structure. The radiation shield 4 is thermally contacted with and fixed to the first cooling stage 7a, and the superconducting magnets 5a, 5 inside the radiation shield 4 are fixed.
b is prevented from entering the current lead 6 and the current lead 6.
The current lead 6 is connected to an external power source (not shown) via the lead 12 and the external connection terminal 13.

【0004】超電導磁石5a,5bは、上部磁石5aと
下部磁石5bとからなり、夫々環状の巻枠9a,9bに
超電導コイルが巻着されたもので、その外周は伝熱性の
良好な銅製の保持枠11で保持されている。該保持枠1
1は、前記上下の超電導磁石5a,5bの外周面に配置
される側部枠体11aと、上部磁石5aの上面に配置さ
れて前記上部の超電導コイル巻枠9aと前記側部枠体1
1aとにボルト止めされる上部枠体11bと、下部磁石
5bの下面に配置されて前記下部の超電導コイル巻枠9
bと前記側部枠体11aとにボルト止めされる下部枠体
11cとからなっている。又、上下超電導磁石5a,5
bの間には、両磁石間に作用する電磁力(吸引力)を支
えるための銅製の支持部材8が介装されている。
The superconducting magnets 5a and 5b are composed of an upper magnet 5a and a lower magnet 5b, and superconducting coils are wound around annular winding frames 9a and 9b, respectively, and their outer circumferences are made of copper having good heat conductivity. It is held by the holding frame 11. The holding frame 1
1 is a side frame 11a arranged on the outer peripheral surfaces of the upper and lower superconducting magnets 5a and 5b, and a superconducting coil winding frame 9a and the side frame 1 arranged on the upper surface of the upper magnet 5a.
An upper frame 11b bolted to 1a and a lower superconducting coil winding frame 9 arranged on the lower surface of the lower magnet 5b.
b and a lower frame 11c bolted to the side frame 11a. Also, the upper and lower superconducting magnets 5a, 5
A copper support member 8 for supporting an electromagnetic force (attracting force) acting between both magnets is interposed between b.

【0005】又、前記真空断熱容器3には、その上下方
向の中心軸線に沿って該真空断熱容器3の内壁を形成し
て大気に連通する内筒部3aが、前記超電導磁石5a,
5bの中心を貫通する様に配置され、該内筒部3aの外
面を囲繞する様に、前記輻射シールドの内筒部4aが形
成された構造となっており、X線回折用の試料を、前記
内筒3a内の超電導磁石5a,5bの間の中心に、外部
から装入したり取り出したりできる様に構成されてい
る。
Further, in the vacuum heat insulating container 3, an inner cylindrical portion 3a which forms an inner wall of the vacuum heat insulating container 3 along the central axis of the vertical direction and communicates with the atmosphere is provided with the superconducting magnets 5a, 5a.
The inner cylinder portion 4a of the radiation shield is arranged so as to pass through the center of 5b so as to surround the outer surface of the inner cylinder portion 3a, and a sample for X-ray diffraction is The center of the inner cylinder 3a between the superconducting magnets 5a and 5b can be inserted and removed from the outside.

【0006】前記上下の超電導磁石5a,5bの間に配
置される支持部材8は、前記図5のA−A断面図である
図6に示されている様に、前記上下の超電導磁石5a,
5bとの間の全領域に配置されるものではなく、中心部
から角度αで扇形に広がる第1扇形空間S1と角度βで
扇形に広がる第2扇形空間S2とが形成され、これら両
扇形空間は、前記真空断熱容器3の外壁の一部を形成す
る側壁3b,3cによって該真空断熱容器3の外部に開
放された空間となっており、これら第1扇形空間S1及
び第2扇形空間S2は、夫々X線入射通路及びX線回折
通路を形成している。
The support member 8 disposed between the upper and lower superconducting magnets 5a and 5b has the upper and lower superconducting magnets 5a and 5a, as shown in FIG. 6 which is a sectional view taken along line AA of FIG.
5b is not arranged in the entire area, and a first fan-shaped space S1 fanned out from the center at an angle α and a second fan-shaped space S2 fanned out at an angle β are formed. Is a space opened to the outside of the vacuum heat insulating container 3 by side walls 3b and 3c forming part of the outer wall of the vacuum heat insulating container 3, and the first fan-shaped space S1 and the second fan-shaped space S2 are , X-ray entrance passages and X-ray diffraction passages are formed, respectively.

【0007】[0007]

【発明が解決しようとする課題】係る構造のX線回折装
置用超電導磁石装置においては、試料10は外部から前
記内筒部3a内の前記上下の超電導磁石5a,5bの中
心位置に挿入配置され、X線発生装置(図示せず)から
発せられたX線ビームは、大気空間であるX線入射通路
S1を経て試料10に照射され、該試料10で回折され
た回折X線は、大気中のX線回折通路S2を経てX線受
像装置(図示せず)にて受光する構成であり、X線は大
気を通過する間に減衰する事は避けられない。従って、
微妙な差異を問題とする様なX線回折の際には、必ずし
も充分な装置とは言えなかった。
In the superconducting magnet device for an X-ray diffractometer having such a structure, the sample 10 is inserted from the outside into the center position of the upper and lower superconducting magnets 5a and 5b in the inner cylindrical portion 3a. , An X-ray beam emitted from an X-ray generator (not shown) is applied to the sample 10 through an X-ray entrance passage S1 which is an atmospheric space, and the diffracted X-rays diffracted by the sample 10 are in the atmosphere. The X-ray image is received by an X-ray image receiving device (not shown) through the X-ray diffraction path S2, and it is inevitable that the X-rays are attenuated while passing through the atmosphere. Therefore,
It was not always a sufficient apparatus for X-ray diffraction in which a slight difference was a problem.

【0008】又、内筒部3a内における試料10の配置
位置の確認は、該内筒部3aの上部から目視観察する事
によって行われるが、狭い筒内での垂直方向からの目視
観察のみによる位置判断では、必ずしも常に適正な判断
がなされるとは限らず、多分に操作員の勘に頼らざるを
得ない問題があった。
The position of the sample 10 in the inner cylinder 3a is confirmed by visual observation from above the inner cylinder 3a, but only by visual observation from the vertical direction in a narrow cylinder. In position determination, an appropriate determination is not always always made, and there is a problem that the operator must rely on the intuition of the operator.

【0009】本発明は、係る問題点を解決するもので、
X線の減衰を最小限に止める様になす事を第1の目的と
し、更に、内筒部内における試料位置の正確な判断を行
える様になす事を第2の目的とするものである。
The present invention is to solve the above problems,
The first purpose is to minimize the attenuation of X-rays, and the second purpose is to enable accurate determination of the sample position in the inner cylindrical portion.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決するために成されたものであって、真空断熱容器内
に、上下2段に超電導磁石を配置し、該上下二段の超電
導磁石の間に、X線入射通路とX線回折通路とが形成さ
れてなるX線回折装置用超電導磁石装置において、前記
真空断熱容器の中心線に沿って前記超電導磁石の中心部
に向かって形成され該真空断熱容器の内側壁を形成する
と共に、X線回折用試料を該真空断熱容器外から前記上
下の超電導磁石の中心部に配置するための内筒部と、該
内筒部から前記真空断熱容器の周壁に向けて広がる前記
X線入射通路及びX線回折通路としての一対の扇形空間
と、該扇形空間の外側面の夫々に、前記真空断熱容器に
気密に固着され且つX線通過窓を有するカバー部材と、
を設けると共に、前記X線入射通路及びX線回折通路内
は、真空空間、又は前記真空断熱容器内と気密に区画さ
れて大気よりもX線透過減衰率の小さなガスが封入され
た空間となし、前記カバー部材のX線通過窓は、大気よ
りもX線透過減衰率の小さな金属材料又は高分子材料で
形成されていることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, in which a superconducting magnet is arranged in upper and lower two stages in a vacuum heat insulating container, and the upper and lower superconducting magnets are arranged in two stages. In a superconducting magnet device for an X-ray diffraction device, wherein an X-ray incident passage and an X-ray diffraction passage are formed between the magnets, the superconducting magnet is formed along a center line of the vacuum heat insulating container toward a central portion of the superconducting magnet. And an inner cylinder for forming an inner wall of the vacuum heat insulating container, and an X-ray diffraction sample from the outside of the vacuum heat insulating container to be placed in the central portion of the upper and lower superconducting magnets, and the vacuum from the inner cylinder. A pair of fan-shaped spaces serving as the X-ray incident passage and the X-ray diffraction passage that spread toward the peripheral wall of the heat insulating container, and an outer surface of the fan-shaped space are airtightly fixed to the vacuum heat insulating container and an X-ray passage window. A cover member having
In addition, the inside of the X-ray entrance passage and the X-ray diffraction passage is not a vacuum space or a space that is airtightly separated from the inside of the vacuum heat insulating container and is filled with a gas having a smaller X-ray transmission attenuation factor than the atmosphere. The X-ray passage window of the cover member is formed of a metal material or a polymer material having a smaller X-ray transmission attenuation factor than the atmosphere.

【0011】係る構成を採用する事により、X線は、大
気中よりも減衰率が小さくなる様に形成された通路を通
って入射及び回折する事になるので、得られた回折デー
タは従来に比して分解能の高い精緻なものとなる。尚、
本発明で使用する大気よりもX線透過減衰率の小さな材
料としては、ベリリウム又はポリイミド樹脂が好まし
い。
By adopting such a configuration, X-rays are incident and diffracted through a passage formed so that the attenuation rate is smaller than that in the atmosphere. It has a high resolution and precision. still,
Beryllium or a polyimide resin is preferable as the material having a smaller X-ray transmission attenuation factor than the atmosphere used in the present invention.

【0012】更に、上記構成に加えて、前記上下2段の
超電導磁石の間であって、前記X線入射通路及びX線回
折通路とは独立して形成され且つ前記内筒部から前記真
空断熱容器の周壁に向かって形成された一対の筒状の試
料位置観測用X線透過通路を直線的に配置しておけば、
該X線透過通路を通してX線によって試料の設置状態を
観測する事が可能となり、これによって試料の適性配置
が極めて容易となる。
Further, in addition to the above structure, it is formed between the upper and lower superconducting magnets independently of the X-ray incident passage and the X-ray diffraction passage, and is vacuum insulated from the inner cylindrical portion. If a pair of cylindrical X-ray transmission passages for observing the sample position are linearly arranged toward the peripheral wall of the container,
It is possible to observe the installation state of the sample by X-rays through the X-ray transmission passage, which makes it extremely easy to properly place the sample.

【0013】尚、この試料設置状態観測用のX線透過通
路内も、前記X線入射通路や回折通路と同様に、真空に
したり大気よりもX線透過減衰率の小さなガスを封入し
たりする事も可能であるが、そこまでの精密さは要求さ
れないので、大気開放型のX線通路となす事も可能であ
る。
Incidentally, the inside of the X-ray transmission passage for observing the sample installation state is also evacuated or filled with a gas having a smaller X-ray transmission attenuation factor than the atmosphere, like the X-ray incident passage and the diffraction passage. Although it is possible to do so, since it is not required to be as precise as that, it is possible to use an X-ray passage open to the atmosphere.

【0014】[0014]

【発明の実施の態様】以下に本発明を実施例の図面を用
いて詳細に説明する。図1は、本発明に係るX線回折装
置用超電導磁石装置を示す要部断面図であり、図5の装
置と同一構成は同一符号を付している。同図において、
基台2に真空断熱容器3を保持させ、該真空断熱容器3
内に配置された輻射シールド4に囲繞された真空空間内
に、上下の超電導磁石5a,5bと、これを保持する保
持枠11と、蓄冷式冷凍機7の第1段冷却ステージ7a
及び第2段冷却ステージ7bとが配置された構造となっ
ており、又、前記輻射シールド4は、前記第1段冷却ス
テージ7aに、銅板或いは銅ワイヤ等の熱伝導性の高い
材料14によって熱的に接触して固定されると共に、そ
の内部の超電導磁石5等への外部からの輻射熱の侵入を
防止する様になっている。又、超電導磁石5は、上下一
対の超電導磁石5a,5bからなり、夫々環状の巻枠9
a,9bに超電導コイルが巻着されたもので、その外周
は伝熱性の良好な銅製の保持枠11で保持されており、
該保持枠11の構成は実質的に図5の場合と同一である
ので詳細説明は省略する。又、上下の超電導磁石の間に
は、両磁石間に作用する電磁力(吸引力)を支えるため
の銅製の支持部材8が介装されている点も、前記図5の
ものと基本的に同一である。尚、本発明の装置において
は、前記円筒部3aの上部に蓋部材22がボルト23に
よって該円筒部3aに対して着脱自在に配置され、更
に、円筒部3a内を脱気するための真空ポンプに接続可
能なノズル24が取り付けられている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings of the embodiments. FIG. 1 is a cross-sectional view of essential parts showing a superconducting magnet device for an X-ray diffraction device according to the present invention, and the same components as those of the device of FIG. 5 are designated by the same reference numerals. In the figure,
The vacuum heat insulating container 3 is held on the base 2, and the vacuum heat insulating container 3 is held.
Inside the vacuum space surrounded by the radiation shield 4, the upper and lower superconducting magnets 5a and 5b, a holding frame 11 for holding them, and a first stage cooling stage 7a of the regenerator 7
And the second cooling stage 7b are arranged, and the radiation shield 4 is heated by the material 14 having a high thermal conductivity such as a copper plate or a copper wire on the first cooling stage 7a. The radiant heat from the outside is prevented from entering the superconducting magnet 5 and the like inside thereof. The superconducting magnet 5 is composed of a pair of upper and lower superconducting magnets 5a and 5b, each of which has an annular winding frame 9a.
The superconducting coil is wound around a and 9b, and the outer periphery thereof is held by a holding frame 11 made of copper having good heat conductivity.
Since the structure of the holding frame 11 is substantially the same as that of the case of FIG. 5, detailed description thereof will be omitted. In addition, a point that a copper support member 8 for supporting an electromagnetic force (attracting force) acting between both magnets is interposed between the upper and lower superconducting magnets is basically the same as that of FIG. It is the same. In the apparatus of the present invention, the lid member 22 is detachably attached to the cylindrical portion 3a by the bolts 23 on the upper portion of the cylindrical portion 3a, and further, the vacuum pump for degassing the inside of the cylindrical portion 3a. Is attached to the nozzle 24.

【0015】次に、図2は、上下の超電導磁石間におけ
る断面である図1のQ−Q断面図であり、図3は、図2
のR−R矢視図である。両図に示されている様に、この
断面部分の構成は、前記図5,6に示した従来のものと
は全く異なっている。即ち、本発明に係る装置において
は、上下の超電導磁石間における前記真空断熱容器3の
構造は、円筒状の外周壁3bと、中心部の内筒部3a
と、所定の内角αの第1扇形空間S1を形成する半径方
向の一対の側壁3c及び該第1扇形空間S1の上下一対
の底壁3eと、同様に所定の内角βの第2扇形空間S2
を形成する半径方向の一対の側壁3d及び該第2扇形空
間の上下一対の底壁3fと、前記内筒部3aの両側で且
つ上記第1及び第2扇形空間S1,S2とは独立して直
線配置された一対の筒状空間(第1筒状空間T1及び第
2筒状空間T2)を形成するための円筒壁3g,3g’
とからなっている。又、上記第1,第2扇形空間S1,
S2の上下の底壁3e,3fは、共に内側から外側に向
けて上下方向の幅が広がる様に、ラッパ状に形成されて
いる。
Next, FIG. 2 is a Q-Q sectional view of FIG. 1 which is a cross section between the upper and lower superconducting magnets, and FIG.
FIG. As shown in both figures, the structure of this cross-section is completely different from the conventional one shown in FIGS. That is, in the device according to the present invention, the structure of the vacuum heat insulating container 3 between the upper and lower superconducting magnets has a cylindrical outer peripheral wall 3b and a central inner cylindrical portion 3a.
And a pair of radial side walls 3c forming a first fan-shaped space S1 having a predetermined inner angle α and a pair of upper and lower bottom walls 3e of the first fan-shaped space S1, and similarly a second fan-shaped space S2 having a predetermined inner angle β.
A pair of side walls 3d in the radial direction and a pair of upper and lower bottom walls 3f of the second fan-shaped space, both sides of the inner cylindrical portion 3a, and independently of the first and second fan-shaped spaces S1 and S2. Cylindrical walls 3g and 3g 'for forming a pair of linearly arranged cylindrical spaces (first cylindrical space T1 and second cylindrical space T2)
It consists of In addition, the first and second fan-shaped spaces S1,
The upper and lower bottom walls 3e and 3f of S2 are both formed in a trumpet shape so that the width in the vertical direction expands from the inside to the outside.

【0016】更に、前記第1,第2扇形空間S1,S2
の外周面には、夫々カバー部材15が、前記真空断熱容
器3の外面適所に配置されたブラケット16にボルト1
7によって固着され、これにより内部空間である前記両
扇形空間S1,S2は、夫々外気に対して気密構造とな
っている。又、前記カバー部材15は、図2のS−S矢
視図である図4に示されている様に、中央部にX線透過
窓となる開口15bを有するステンレス鋼材等で形成し
た支持板15aの周囲をボルト17によって前記ブラケ
ット16に固着される構造となっており、更に、前記中
央部の開口15bを含む全面を、X線透過減衰率が大気
よりも小さな材料で形成した薄板18で被覆されてお
り、これによって前記開口15bは気密に密閉されてい
る。
Furthermore, the first and second fan-shaped spaces S1 and S2.
A cover member 15 is attached to the outer peripheral surface of each of the bolts 1 by means of bolts 1 mounted on brackets 16 arranged at appropriate positions on the outer surface of the vacuum heat insulating container 3.
The two fan-shaped spaces S1 and S2, which are internal spaces, are fixed to each other by an airtight structure so as to have an airtight structure against the outside air. Further, the cover member 15 is a support plate formed of a stainless steel material or the like having an opening 15b serving as an X-ray transmission window in the central portion, as shown in FIG. 15a has a structure in which the periphery of 15a is fixed to the bracket 16 by a bolt 17, and the entire surface including the opening 15b in the central portion is a thin plate 18 formed of a material having an X-ray transmission attenuation factor smaller than that of the atmosphere. It is covered, whereby the opening 15b is hermetically sealed.

【0017】尚、本発明で使用する係るX線透過減衰率
が大気よりも小さな材料とは、ベリリウム又はポリイミ
ド樹脂が代表的な材料である。この材料の使用形態は、
図示の如く前記開口15bを含む前記支持板15aの全
面を覆う様に接着する他、これらの材料で形成した板材
を前記開口15bに気密に装着する方式も採用できる事
は言うまでもない。
The material used in the present invention having a lower X-ray transmission attenuation factor than the atmosphere is typically beryllium or a polyimide resin. The usage of this material is
It goes without saying that, as shown in the figure, in addition to bonding so as to cover the entire surface of the support plate 15a including the opening 15b, a plate member formed of these materials may be airtightly mounted in the opening 15b.

【0018】又、前記円筒部3aの前記第1,第2扇形
空間S1,S2との境界部21には開口が形成されてい
る。同様に、該円筒部3aの前記試料の設置位置観測の
ためのX線通路となる前記両筒状空間T1,T2との境
界部20にも開口が形成されており、該筒状空間T1,
T2の外側面には、窓部材19が外気に対して気密に装
着されている。これにより、円筒部3a内と前記第1,
第2扇形空間S1,S2及び前記筒状空間T1,T2と
は、互いに連通された構造となっている。
Further, an opening is formed in a boundary portion 21 of the cylindrical portion 3a with the first and second fan-shaped spaces S1 and S2. Similarly, an opening is also formed in the boundary portion 20 between the cylindrical space 3a and the cylindrical spaces T1 and T2 that serve as X-ray passages for observing the installation position of the sample.
A window member 19 is airtightly attached to the outside air on the outer side surface of T2. As a result, the inside of the cylindrical portion 3a and the first,
The second fan-shaped spaces S1 and S2 and the cylindrical spaces T1 and T2 have a structure in which they communicate with each other.

【0019】次に、本発明の装置により、試料のX線回
折分析を行う操作について説明すると、前記内筒部3a
の頂部の前記蓋部材22を外し、頂部開口から試料10
を挿入して前記両扇形空間S1,S2と同一平面に設置
する。
Next, the operation of carrying out the X-ray diffraction analysis of the sample by the apparatus of the present invention will be explained.
Remove the lid member 22 on the top of the sample 10 from the top opening.
And installed on the same plane as the two fan-shaped spaces S1 and S2.

【0020】次に、前記蓋部材22を円筒部3aの上部
開口に取り付けて密封し、続いて、該蓋部材22に配置
されている脱気ノズル24を真空ポンプ(図示せず)に
接続して該円筒部3a内を脱気する。すると、該円筒部
3に連通している前記筒状空間T1,T2及び扇形空間
S1,S2も同様に真空に脱気される。
Next, the lid member 22 is attached to the upper opening of the cylindrical portion 3a and hermetically sealed, and subsequently, the deaeration nozzle 24 arranged in the lid member 22 is connected to a vacuum pump (not shown). The inside of the cylindrical portion 3a is deaerated. Then, the cylindrical spaces T1 and T2 and the fan-shaped spaces S1 and S2 communicating with the cylindrical portion 3 are also deaerated to a vacuum.

【0021】この状態で、先ず、前記第1筒状空間T1
の外側に配置されたX線照射装置又は中性子照射装置
(図示せず)からX線或いは中性子線を前記試料10に
向けて照射し、他方の第2筒状空間T2の端部にX線或
いは中性子線受像装置を配置して、試料のX線映像を観
察する事により、試料が適性な位置に配置されているか
否かを観察する。適性位置になければ、内筒部3aの上
部蓋部材22を外して再度試料位置や向きを調整して適
性位置に配置する。
In this state, first, the first cylindrical space T1
The sample 10 is irradiated with X-rays or neutrons from an X-ray irradiator or neutron irradiator (not shown) disposed outside the second tubular space T2, and X-rays or By arranging a neutron image receiving device and observing an X-ray image of the sample, it is observed whether or not the sample is arranged at an appropriate position. If it is not in the proper position, the upper lid member 22 of the inner cylindrical portion 3a is removed and the sample position and orientation are adjusted again and the sample is placed in the proper position.

【0022】この様にして、試料10の適性配置が確認
されると、X線照射通路となる前記第1扇形空間S1の
前記カバー部材15のX線透過窓となる前記開口15b
の外側にX線照射装置(図示せず)を配置し、X線回折
通路となる第2扇形空間S2の前記カバー部材15の前
記開口15bの外側にX線受像装置(図示せず)を配置
し、所定のX線回折操作を行う事になる。
When the proper arrangement of the sample 10 is confirmed in this manner, the opening 15b serving as an X-ray transmission window of the cover member 15 in the first fan-shaped space S1 serving as an X-ray irradiation passage.
An X-ray irradiator (not shown) is arranged on the outside of the cover, and an X-ray image receiver (not shown) is arranged on the outside of the opening 15b of the cover member 15 in the second fan-shaped space S2 serving as an X-ray diffraction passage. Then, a predetermined X-ray diffraction operation is performed.

【0023】この様に、X線の照射通路S1と回折通路
S2とが、大気よりX線透過減衰率の低い真空状態に維
持されているので、両扇形空間S1,S2を通過する間
のX線の減衰は最小限に抑えられ、更に、X線が、照射
通路S1に照射される際及び受像される際に通過するカ
バー部材15のX線透過窓15bも、大気よりX線透過
減衰率の低い材料で形成されているので、この部分での
X線の減衰も抑えられる。従って、従来の如く、X線通
路が大気に開放されている場合に比してX線の全減衰率
を最小限に抑える事が可能となり、回折画像として一層
鮮明な画像を得る事が可能となる。
As described above, since the X-ray irradiation passage S1 and the diffraction passage S2 are maintained in a vacuum state in which the X-ray transmission attenuation rate is lower than that of the atmosphere, the X-axis between the two fan-shaped spaces S1 and S2 is maintained. The attenuation of the X-rays is minimized, and the X-ray transmission window 15b of the cover member 15 through which the X-rays are irradiated when the irradiation passage S1 is irradiated and when an image is received also has an X-ray transmission attenuation rate from the atmosphere. Since it is formed of a material having a low X, the attenuation of X-rays at this portion can also be suppressed. Therefore, it becomes possible to minimize the total attenuation rate of X-rays as compared with the conventional case where the X-ray passage is open to the atmosphere, and it is possible to obtain a clearer image as a diffraction image. Become.

【0024】ここで、本実施例では、上記第1,第2扇
形空間S1,S2内も、大気よりもX線透過減衰率の低
い真空状態に保持すると共に、該扇形空間S1,S2の
外側のカバー部材15のX線通過窓の部分にも、大気よ
りX線透過減衰率の小さなベリリウムやポリイミド樹脂
を配置している点に特徴を有しているが、本発明は、こ
れに限定されるものではなく、以下の如き種々の変形例
が存在する。
Here, in the present embodiment, the insides of the first and second fan-shaped spaces S1 and S2 are also maintained in a vacuum state in which the X-ray transmission attenuation rate is lower than that of the atmosphere, and outside the fan-shaped spaces S1 and S2. The cover member 15 is also characterized in that beryllium or a polyimide resin having a smaller X-ray transmission attenuation factor than the atmosphere is arranged also in the X-ray passage window portion, but the present invention is not limited to this. However, there are various modifications as described below.

【0025】先ず、上記扇形空間S1,S2及び円筒部
3a内を真空に形成する代わりに、該空間内に、大気よ
りもX線透過減衰率の小さなガス、例えばヘリウムガス
を封入しておく方式もある。この場合には、前記蓋部材
22に形成されたノズル24から該空間内を真空引きし
た後にヘリウムガスを供給する事になる。この方式の場
合には、前記扇形空間を真空状態にした際の前記カバー
部材15の開口部15bに作用する真空応力の作用時間
を短くする事ができ、該開口部15bに装着したベリリ
ウムやポリイミド樹脂の損傷を抑制する効果がある。
First, instead of forming a vacuum inside the fan-shaped spaces S1 and S2 and the cylindrical portion 3a, a gas having a smaller X-ray transmission attenuation factor than the atmosphere, such as helium gas, is enclosed in the space. There is also. In this case, the helium gas is supplied after the inside of the space is evacuated from the nozzle 24 formed in the lid member 22. In the case of this method, the action time of the vacuum stress acting on the opening 15b of the cover member 15 when the fan-shaped space is in a vacuum state can be shortened, and beryllium or polyimide attached to the opening 15b can be shortened. It has the effect of suppressing damage to the resin.

【0026】又、上記方式は、いずれも、試料10の出
し入れの際に、前記扇形空間S1,S2や筒状空間T
1,T2も真空にしたり、ヘリウムを供給したりせねば
ならないが、試料の出し入れに必要なのは、円筒部3a
のみであるので、該円筒部3aと両扇形空間S1,S2
との境界部21及び前記筒状空間T1,T2との境界部
20に、前述の大気よりもX線透過減衰率の低いベリリ
ウムやポリイミド樹脂を気密に配置して両扇形空間S
1,S2及び筒状空間T1,T2と円筒部3aとを気密
構造となし、該扇形空間S1,S2及び筒状空間T1,
T2内を、真空状態或いはヘリウムガス封入状態に常時
保持できる様にする事も可能である。この様になせば、
試料の出し入れの際には、円筒部3aに対してのみ、大
気に開放したり、脱気操作やヘリウムガスの封入操作を
行えばよいので、これらの操作時間が短縮化される効果
がある。
Further, in any of the above methods, the fan-shaped spaces S1 and S2 and the cylindrical space T when the sample 10 is taken in and out.
1 and T2 must be evacuated and helium must be supplied, but the cylindrical part 3a is necessary for taking in and out the sample.
Therefore, the cylindrical portion 3a and both fan-shaped spaces S1 and S2 are
Beryllium or a polyimide resin, which has a lower X-ray transmission attenuation factor than the atmosphere described above, is airtightly arranged in the boundary portion 21 with the space T1 and the boundary portion 20 with the cylindrical spaces T1 and T2.
1, S2 and the cylindrical spaces T1, T2 and the cylindrical portion 3a have an airtight structure, and the fan-shaped spaces S1, S2 and the cylindrical space T1,
It is also possible to always keep the inside of T2 in a vacuum state or a helium gas filled state. If you do like this,
When the sample is taken in and out, only the cylindrical portion 3a may be opened to the atmosphere, deaerated, or filled with helium gas, so that the operation time is shortened.

【0027】尚、前記試料の設置位置観測のためのX線
通路となる前記両筒状空間T1,T2は、試料の位置確
認のためのX線通路であるので、その減衰率について
は、さほど考慮する必要がないから、大気に開放させて
いても問題はない。従って、前記円筒部3aの該筒状空
間T1,T2との境界部20には、前述のベリリウムや
ポリイミド樹脂で形成したX線透過窓を気密に装着し、
その外側端部は、大気に開放した構造となす事も可能で
ある。
Since the two cylindrical spaces T1 and T2, which are X-ray passages for observing the installation position of the sample, are X-ray passages for confirming the position of the sample, the attenuation rate is not so much. Since there is no need to consider it, there is no problem even if it is open to the atmosphere. Therefore, the X-ray transmission window made of beryllium or polyimide resin is hermetically attached to the boundary portion 20 of the cylindrical portion 3a with the cylindrical spaces T1 and T2,
It is also possible to make the outer end part of the structure open to the atmosphere.

【0028】更に、前記内筒部3aの内部は、試料の出
し入れのために大気に連通される事は避けられないが、
該内筒部3a内の空気層は前記両扇形空間S1,S2に
比して極めて短いので、大気開放のままでもX線の透過
減衰量は無視し得る。従ってX線の通過部分である前記
第1,第2扇形空間S1,S2との境界部21を前述の
如くベリリウムやポリイミド樹脂で気密に形成してお
き、両扇形空間S1,S2は、前述の通り真空あるいは
ヘリウムガス封入状態を常時維持できる様になす事も可
能である。特に、両扇形空間S1,S2或いは前記筒状
空間T1,T2を常時真空に保持する方式の場合には、
これらの空間を真空断熱容器3内と連通させておく事も
可能である。
Further, although it is inevitable that the inside of the inner cylindrical portion 3a is communicated with the atmosphere for loading and unloading the sample,
Since the air layer in the inner cylindrical portion 3a is extremely shorter than the fan-shaped spaces S1 and S2, the X-ray transmission attenuation amount can be ignored even when the atmosphere is open. Therefore, the boundary portion 21 with the first and second fan-shaped spaces S1 and S2, which is an X-ray passing portion, is formed airtightly with beryllium or polyimide resin as described above, and both fan-shaped spaces S1 and S2 are It is also possible to always maintain the vacuum state or the helium gas filled state. In particular, in the case of a system in which both fan-shaped spaces S1 and S2 or the cylindrical spaces T1 and T2 are constantly maintained in vacuum,
It is also possible to communicate these spaces with the inside of the vacuum heat insulating container 3.

【0029】[0029]

【発明の効果】以上詳述した如く、本発明によれば、X
線の通路となるX線照射通路或いはX線回折通路となる
両扇形空間S1,S2内を、真空或いは大気よりもX線
透過減衰率の小さなガスを充填させており、更に、これ
らX線通路となる扇形空間と外部とを画成するカバー部
材のX線通路となる開口部15bにも大気よりもX線透
過減衰率の小さなベリリウムやポリイミド樹脂を配置し
ているので、X線が照射され回折されて受像される間の
X線通路の殆どは大気よりもX線透過減衰率の小さな状
態となり、従来の大気中をX線通路とする方式に比して
大幅にX線の減衰が抑制される結果、一層精緻な回折デ
ータを得る事が可能となり、我が国の科学技術の進展に
大きく寄与する事が期待される。
As described above in detail, according to the present invention, X
Both the fan-shaped spaces S1 and S2, which are X-ray irradiation passages or X-ray diffraction passages that are passages for X-rays, are filled with a gas having a smaller X-ray transmission attenuation factor than vacuum or the atmosphere. Since a beryllium or a polyimide resin having a smaller X-ray transmission attenuation factor than the atmosphere is also arranged in the opening 15b serving as an X-ray passage of the cover member that defines the fan-shaped space and the outside, the X-ray is irradiated. Most of the X-ray passage while being diffracted and received has a smaller X-ray transmission attenuation factor than the atmosphere, and the X-ray attenuation is greatly suppressed compared to the conventional method using the atmosphere as the X-ray passage. As a result, it will be possible to obtain more precise diffraction data, and it is expected that this will greatly contribute to the progress of science and technology in Japan.

【0030】更に、前記X線照射通路及びX線回折通路
となる両扇形空間S1,S2とは独立して試料位置観察
用の直線状のX線透過通路T1,T2を形成しておけ
ば、該通路T1,T2からX線或いは中性子線を照射し
て試料の位置確認を行う事が可能となるので、最適なX
線回折画像の撮影が容易となる。
Further, if the linear X-ray transmission passages T1 and T2 for observing the sample position are formed independently of both the fan-shaped spaces S1 and S2 that are the X-ray irradiation passage and the X-ray diffraction passage, It is possible to confirm the position of the sample by irradiating X-rays or neutron rays from the passages T1 and T2.
It becomes easy to take a line diffraction image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るX線回折用超電導磁石装置の一例
を示す要部概略断面図である。
FIG. 1 is a schematic cross-sectional view of essential parts showing an example of a superconducting magnet device for X-ray diffraction according to the present invention.

【図2】図1のQ−Q断面図である。FIG. 2 is a sectional view taken along line QQ of FIG.

【図3】図2のS−S矢視図である。FIG. 3 is a view on arrow S-S in FIG.

【図4】図2のR−R矢視図である。FIG. 4 is a view on arrow RR in FIG.

【図5】従来のX線回折用超電導磁石装置の例を示す要
部概念図である。
FIG. 5 is a conceptual diagram of an essential part showing an example of a conventional superconducting magnet device for X-ray diffraction.

【図6】図5のA−A断面図である。6 is a cross-sectional view taken along the line AA of FIG.

【符号の説明】 3 真空断熱容器 3a 内筒部 4 輻射シールド 5 超電導磁石 7 蓄冷式冷却機 8 支持部材 9 巻枠 10 試料 11 保持枠 15 カバー部材 15b カバー部材の開口(X線透過窓) 19 筒状空間の窓部材 20 内筒部の筒状空間との境界部 21 内筒部の扇形空間との境界部 S1 第1扇形空間(X線照射通路) S2 第2扇形空間(X線回折通路) T1 第1筒状空間(試料位置観察用X線透過通路) T2 第2筒状空間(試料位置観察用X線透過通路)[Explanation of symbols] 3 vacuum insulation container 3a Inner tube part 4 Radiation shield 5 Superconducting magnet 7 Cold storage cooler 8 Support members 9 reels 10 samples 11 holding frame 15 Cover member 15b Cover member opening (X-ray transmission window) 19 Window member for cylindrical space 20 Boundary between the inner cylindrical part and the cylindrical space 21 Boundary of inner cylinder with fan-shaped space S1 First fan-shaped space (X-ray irradiation passage) S2 Second fan-shaped space (X-ray diffraction passage) T1 First cylindrical space (X-ray transmission passage for sample position observation) T2 Second cylindrical space (X-ray transmission passage for sample position observation)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 真空断熱容器(3)内に、上下2段に超
電導磁石(5a,5b)を配置し、該上下二段の超電導
磁石の間に、X線入射通路(S1)とX線回折通路(S
2)とが形成されてなるX線回折装置用超電導磁石装置
において、 前記真空断熱容器(3)の中心線に沿って前記超電導磁
石の中心部に向かって形成され該真空断熱容器(3)の
内側壁を形成すると共に、X線回折用試料(10)を該
真空断熱容器(3)外から前記上下の超電導磁石の中心
部に配置するための内筒部(3a)と、 該内筒部(3a)から前記真空断熱容器(3)の周壁
(3b)に向けて広がる前記X線入射通路(S1)及び
前記X線回折通路(S2)としての一対の扇形空間と、 該扇形空間の外側面の夫々に、前記真空断熱容器(3)
に気密に固着され且つX線通過窓(15b)を有するカ
バー部材(15)と、を設けると共に、 前記X線入射通路(S1)及び前記X線回折通路(S
2)内は、真空空間、又は前記真空断熱容器(3)内と
気密に区画されて大気よりもX線透過減衰率の小さなガ
スが封入された空間となし、 前記カバー部材(15)のX線通過窓(15b)は、大
気よりもX線透過減衰率の小さな金属材料又は高分子材
料で形成されていることを特徴とするX線回折装置用超
電導磁石装置。
1. Superconducting magnets (5a, 5b) are arranged in upper and lower two stages in a vacuum heat insulating container (3), and an X-ray entrance passage (S1) and an X-ray are provided between the upper and lower superconducting magnets. Diffraction path (S
2) in the superconducting magnet device for X-ray diffractometer, wherein the vacuum insulating container (3) is formed along the center line of the vacuum insulating container (3) toward the center of the superconducting magnet. An inner cylinder part (3a) for forming an inner wall and for disposing an X-ray diffraction sample (10) from the outside of the vacuum heat insulating container (3) in the central part of the upper and lower superconducting magnets, and the inner cylinder part. A pair of fan-shaped spaces as the X-ray incident passage (S1) and the X-ray diffraction passage (S2) extending from (3a) toward the peripheral wall (3b) of the vacuum heat insulating container (3), and the outside of the fan-shaped space. The vacuum insulation container (3) is provided on each of the side surfaces.
A cover member (15) that is airtightly fixed to the X-ray passage window (15b) and has the X-ray entrance passage (S1) and the X-ray diffraction passage (S).
The inside of 2) is a vacuum space or a space that is airtightly partitioned from the inside of the vacuum heat insulating container (3) and is filled with a gas having a smaller X-ray transmission attenuation factor than the atmosphere, and X of the cover member (15). The superconducting magnet device for an X-ray diffraction device, wherein the ray passage window (15b) is formed of a metal material or a polymer material having a smaller X-ray transmission attenuation factor than the atmosphere.
【請求項2】 前記X線通過窓(15b)が、ベリリウ
ム又はポリイミド樹脂で形成されている事を特徴とする
請求項1に記載のX線回折装置用超電導磁石装置。
2. The superconducting magnet device for an X-ray diffraction apparatus according to claim 1, wherein the X-ray passage window (15b) is made of beryllium or polyimide resin.
【請求項3】 前記X線入射通路(S1)及び前記X線
回折通路(S2)は、前記真空断熱容器(3)内とは気
密に画成された真空空間である事を特徴とする請求項1
又は2に記載のX線回折装置用超電導磁石装置。
3. The X-ray entrance passage (S1) and the X-ray diffraction passage (S2) are vacuum spaces that are hermetically defined from the inside of the vacuum heat insulating container (3). Item 1
Alternatively, the superconducting magnet device for an X-ray diffractometer according to item 2.
【請求項4】 前記X線入射通路(S1)及び前記X線
回折通路(S2)内にはヘリウムガスが封入されている
事を特徴とする請求項1又は2に記載のX線回折装置用
超電導磁石装置。
4. The X-ray diffraction apparatus according to claim 1, wherein the X-ray entrance passage (S1) and the X-ray diffraction passage (S2) are filled with helium gas. Superconducting magnet device.
【請求項5】 前記内筒部(3a)の前記X線入射通路
(S1)及び前記X線回折通路(S2)に面する部分に
X線透過窓を設け、該X線透過窓に前記大気よりもX線
透過減衰率の小さな金属材料又は高分子材料で形成され
た窓部材(21)を配置した事を特徴とする請求項1乃
至4のいずれかに記載のX線回折装置用超電導磁石装
置。
5. An X-ray transmission window is provided in a portion of the inner tubular portion (3a) facing the X-ray incidence passage (S1) and the X-ray diffraction passage (S2), and the atmosphere is provided in the X-ray transmission window. The superconducting magnet for an X-ray diffractometer according to any one of claims 1 to 4, wherein a window member (21) made of a metal material or a polymer material having a smaller X-ray transmission attenuation factor is arranged. apparatus.
【請求項6】 前記X線入射通路(S1)及び前記X線
回折通路(S2)は、内側から外側に向けてその高さ方
向の幅が広がる様に形成されている事を特徴とする請求
項1乃至5のいずれかに記載のX線回折装置用超電導磁
石装置。
6. The X-ray entrance passage (S1) and the X-ray diffraction passage (S2) are formed such that the width in the height direction thereof widens from the inside to the outside. Item 7. A superconducting magnet device for an X-ray diffraction device according to any one of items 1 to 5.
【請求項7】 前記上下2段の超電導磁石(5a,5
b)の間であって、前記X線入射通路(S1)及びX線
回折通路(S2)とは独立して形成され且つ前記内筒部
(3a)から前記真空断熱容器(3)の周壁(3b)に
向かって形成された一対の筒状の試料位置観測用X線透
過通路(T1,T2)を直線的に配置してなる事を特徴
とする請求項1乃至6のいずれかに記載のX線回折装置
用超電導磁石装置。
7. The superconducting magnets (5a, 5) in the upper and lower two stages.
b) between the X-ray entrance passage (S1) and the X-ray diffraction passage (S2) and between the inner cylindrical portion (3a) and the peripheral wall (3) of the vacuum heat insulating container (3). 7. A pair of cylindrical sample position observing X-ray transmission passages (T1, T2) formed toward 3b) are linearly arranged. Superconducting magnet device for X-ray diffractometer.
【請求項8】 前記X線透過通路(T1,T2)の外側
面には、該通路を外気に対して気密に装着された窓部材
(19)を有し、該X線透過通路(T1,T2)内は、
真空空間、又は前記真空断熱容器(3)内とは気密に区
画されて大気よりもX線透過減衰率の小さなガスが封入
された空間とされ、更に、前記窓部材(19)は、大気
よりもX線透過減衰率の小さな金属材料又は高分子材料
で形成されている事を特徴とする請求項7に記載のX線
回折装置用超電導磁石装置。
8. A window member (19) is provided on the outer surface of the X-ray transmission passage (T1, T2) so as to be airtight to the outside air, and the X-ray transmission passage (T1, T2) is provided. In T2),
A vacuum space or a space in which the inside of the vacuum heat insulating container (3) is airtightly sealed and a gas having a smaller X-ray transmission attenuation factor than the atmosphere is enclosed, and the window member (19) is separated from the atmosphere. The superconducting magnet device for an X-ray diffractometer according to claim 7, which is also formed of a metal material or a polymer material having a small X-ray transmission attenuation factor.
【請求項9】 前記窓部材(19)が、ベリリウム又は
ポリイミド樹脂で形成されている事を特徴とする請求項
8に記載のX線回折装置用超電導磁石装置。
9. The superconducting magnet device for an X-ray diffraction device according to claim 8, wherein the window member (19) is made of beryllium or polyimide resin.
【請求項10】 前記X線透過通路(T1,T2)は、
大気に連通されている事を特徴とする請求項7に記載の
X線回折装置用超電導磁石装置。
10. The X-ray transmission passages (T1, T2) are
The superconducting magnet device for an X-ray diffraction device according to claim 7, wherein the superconducting magnet device is in communication with the atmosphere.
【請求項11】 前記内筒部(3a)の前記X線透過通
路(T1,T2)に面する部分にX線透過窓を設け、該
X線透過窓に前記大気よりもX線透過減衰率の小さな金
属材料又は高分子材料で形成された窓部材(20)を配
置した事を特徴とする請求項7乃至10のいずれかに記
載のX線回折装置用超電導磁石装置。
11. An X-ray transmission window is provided in a portion of the inner cylindrical portion (3a) facing the X-ray transmission passages (T1, T2), and the X-ray transmission attenuation factor is higher than that of the atmosphere in the X-ray transmission window. The superconducting magnet device for an X-ray diffractometer according to any one of claims 7 to 10, characterized in that a window member (20) made of a metal material or a polymer material having a small size is arranged.
JP2001190810A 2001-06-25 2001-06-25 Superconducting magnet device for X-ray diffractometer Expired - Fee Related JP4038027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190810A JP4038027B2 (en) 2001-06-25 2001-06-25 Superconducting magnet device for X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190810A JP4038027B2 (en) 2001-06-25 2001-06-25 Superconducting magnet device for X-ray diffractometer

Publications (2)

Publication Number Publication Date
JP2003008088A true JP2003008088A (en) 2003-01-10
JP4038027B2 JP4038027B2 (en) 2008-01-23

Family

ID=19029526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190810A Expired - Fee Related JP4038027B2 (en) 2001-06-25 2001-06-25 Superconducting magnet device for X-ray diffractometer

Country Status (1)

Country Link
JP (1) JP4038027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255769A (en) * 2011-05-13 2012-12-27 Rigaku Corp Compound x-ray analysis apparatus
JP2013143478A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead used in the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255769A (en) * 2011-05-13 2012-12-27 Rigaku Corp Compound x-ray analysis apparatus
JP2013143478A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead used in the same

Also Published As

Publication number Publication date
JP4038027B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4341109B2 (en) MRI magnet assembly having a non-conductive inner wall
US7859374B2 (en) Annular magnet system for magnetic resonance spectroscopy
JP4908960B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US7126448B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JPH0711998B2 (en) Synchrotron radiation source
Leontowich et al. The lower energy diffraction and scattering side-bounce beamline for materials science at the Canadian Light Source
JP7486738B2 (en) Physics package, Physics package for optical lattice clocks, Physics package for atomic clocks, Physics package for atomic interferometers, and Physics package for quantum information processing devices
EP1715731B1 (en) Undulator
CN116491032A (en) Low-speed atomic beam generating device, physical package for optical crystal lattice clock, physical package for atomic interferometer, physical package for quantum information processing device, and physical package system
JP6267820B1 (en) Magnet and cryostat device and passive shimming method
JP2003008088A (en) Superconducting magnet unit for x-ray diffraction apparatus
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
CN115362606A (en) Physical package for optical crystal clock
JP4098690B2 (en) Scanning probe microscope
JP3362141B2 (en) Magnetic measuring device and cryogenic container
WO2021200908A1 (en) Optical lattice clock and magnetic field correction method for optical lattice clock
JP7506879B2 (en) Three-axis magnetic field correction coil, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atomic interferometer, physics package for quantum information processing device, and physics package system
JP7506880B2 (en) Optical lattice clock and magnetic field correction method for optical lattice clock
JP2991566B2 (en) Physical property measurement device under magnetic field
JP7506878B2 (en) Three-axis magnetic field correction coil, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atomic interferometer, physics package for quantum information processing device, and physics package system
JP4034223B2 (en) Superconducting magnet for NMR apparatus and NMR apparatus
JP7486737B2 (en) Magnetic field compensation module, physics package system, physics package system for optical lattice clocks, physics package system for atomic clocks, physics package system for atomic interferometers, and physics package system for quantum information processing devices
JP2744672B2 (en) Superconducting magnet device
JPH05128988A (en) Electron beam device
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees