JP2003007394A - Method, structure and connector for connecting high voltage cable, and coaxial transmission line - Google Patents

Method, structure and connector for connecting high voltage cable, and coaxial transmission line

Info

Publication number
JP2003007394A
JP2003007394A JP2001189849A JP2001189849A JP2003007394A JP 2003007394 A JP2003007394 A JP 2003007394A JP 2001189849 A JP2001189849 A JP 2001189849A JP 2001189849 A JP2001189849 A JP 2001189849A JP 2003007394 A JP2003007394 A JP 2003007394A
Authority
JP
Japan
Prior art keywords
electric field
voltage cable
conductor
solid insulator
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001189849A
Other languages
Japanese (ja)
Other versions
JP4963332B2 (en
Inventor
Hiroyuki Shinkai
裕行 新開
Masafumi Yashima
政史 八島
Hisashi Goshima
久司 五島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001189849A priority Critical patent/JP4963332B2/en
Publication of JP2003007394A publication Critical patent/JP2003007394A/en
Application granted granted Critical
Publication of JP4963332B2 publication Critical patent/JP4963332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance dielectric strength and compactly connect a high voltage cable. SOLUTION: A high voltage cable connecting connector 6 is provided with an insulated connector 7 for connecting two opposite high voltage cables 1, 1 respectively having at least a conductor 2 and a solid insulator 3 for covering the conductor 2. A connecting part with the solid insulator 3 in the insulated connection 7 is provided with a reverse electric field part 4 that the travelling direction of discharge is the direction having a vector component reverse to the direction of the electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧ケーブル、
高電圧ケーブル接続用コネクタ並びに同軸伝送線路等の
高電圧を流す導体の電気的絶縁に関するものである。さ
らに詳述すると、本発明は、導体を被覆する固体絶縁物
における沿面放電及び絶縁破壊を防ぐための技術に関す
る。
TECHNICAL FIELD The present invention relates to a high voltage cable,
The present invention relates to electrical insulation of a high voltage cable connector and a conductor such as a coaxial transmission line through which a high voltage flows. More specifically, the present invention relates to a technique for preventing creeping discharge and dielectric breakdown in a solid insulator covering a conductor.

【0002】[0002]

【従来の技術】導体の周りを固体絶縁物で被覆したCV
ケーブルなどの高電圧ケーブル同士を接続する場合にお
いては、固体絶縁物の接続箇所での沿面(表面)放電の
発生が絶縁上の最大の弱点となる。電気的絶縁破壊に伴
う放電の進展方向は電界の向きに依存する。これは固体
絶縁物の表面に沿って起こる沿面放電についても同様で
ある。そこで、従来の固体絶縁物の沿面放電の絶縁耐力
向上方策としては、沿面距離を大きくすることで絶縁耐
力の向上を図るのが一般的である。例えば、図6に示す
ように、接続すべき各ケーブル101の端を尖らせるよ
うに固体絶縁物103を削って導体102を露出させ、
その導体102,102同士を突き合わせて接合し、当
該導体102,102及び削られた固体絶縁物103の
周囲を樹脂等の絶縁物によるモールド104で固めるこ
とでケーブル101,101同士を接続させるようにし
ている。尚、接続面105において高電圧側(導体10
2)から低電圧側(固体絶縁物104の外側)に至るま
での距離を沿面距離Lと呼ぶ。
2. Description of the Related Art CV in which a conductor is covered with a solid insulator
When connecting high-voltage cables such as cables, generation of creeping (surface) discharge at the connection point of solid insulators is the greatest weak point in insulation. The direction of electric discharge that accompanies electrical breakdown depends on the direction of the electric field. This also applies to the creeping discharge that occurs along the surface of the solid insulator. Therefore, as a conventional measure for improving the dielectric strength of creeping discharge of a solid insulator, it is common to increase the creeping distance to improve the dielectric strength. For example, as shown in FIG. 6, the solid insulator 103 is shaved so that the conductor 102 is exposed so that the end of each cable 101 to be connected is sharpened.
The conductors 102, 102 are butt-joined to each other, and the conductors 102, 102 and the shaved solid insulator 103 are solidified by a mold 104 made of an insulator such as resin so that the cables 101, 101 are connected to each other. ing. Incidentally, on the connection surface 105, the high voltage side (conductor 10
The distance from 2) to the low voltage side (outside the solid insulator 104) is called the creepage distance L.

【0003】ところで、GIS(Gas Insulated Switch
gear、ガス絶縁開閉装置)やGIL(Gas Insulated tr
ansmission Line、管路気中送高電圧ケーブル)におい
ては、内部導体106と電気絶縁性に優れるSF(六
フッ化硫黄ガス)ガス107と外部導体108とにより
構成される図7に示すような構造の同軸伝送線路109
が使用される。内部導体106は不純物の付着を防ぐ絶
縁性の塗料でコーティングされる。このような同軸伝送
線路109においても内部導体106,106同士を接
続することが行われるが、SFの絶縁性が十分に高い
ため、絶縁破壊上記ケーブル101の接続のような沿面
放電の心配は少ない。
By the way, GIS (Gas Insulated Switch)
gear, gas insulated switchgear) and GIL (Gas Insulated tr)
In an ansmission line, a high voltage cable for air transmission in a pipeline), as shown in FIG. 7, the inner conductor 106, SF 6 (sulfur hexafluoride gas) gas 107 having excellent electrical insulation and the outer conductor 108 are used. Structure of coaxial transmission line 109
Is used. The inner conductor 106 is coated with an insulating paint that prevents adhesion of impurities. Even in such a coaxial transmission line 109, the internal conductors 106 and 106 are connected to each other, but since the insulation property of SF 6 is sufficiently high, there is no concern about creeping discharge such as the connection of the cable 101. Few.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ケーブル101の接続法では、沿面距離Lを長くとるこ
とにより絶縁耐力の向上を図ってきたが、沿面距離Lを
長くする程には絶縁耐力は向上せず、絶縁耐力を上げよ
うとすれば、勢い接続部が全体に大きくなる問題を有し
ている。逆に接続部の大きさが限られるような場合に
は、絶縁耐力の向上が望めない。
However, in the conventional method of connecting the cable 101, the dielectric strength has been improved by increasing the creepage distance L. However, as the creepage distance L is increased, the dielectric strength is increased. If the dielectric strength is not improved and the dielectric strength is increased, there is a problem that the momentum connection portion becomes large as a whole. On the contrary, when the size of the connecting portion is limited, improvement of the dielectric strength cannot be expected.

【0005】一方、GISやGILで使用される同軸伝
送線路109にいても、SFが電気絶縁性に優れると
いっても、絶縁性を確保するためには内外の導体間にそ
れなりの空隙が必要であり、その分だけ外部導体の管径
が大きくなる問題を有している。また、この同軸伝送線
路における絶縁破壊はSFの絶縁性に大きく影響され
ている。しかしながら、SFは地球温暖化の一因とな
るガスと指摘されおり、純窒素などの代替ガスの使用が
考えられている。しかし、代替ガスはいずれもSF
りも絶縁性が劣る。そこで、代替ガス110の使用によ
る絶縁耐力の大幅な低下の対策として、図8に示すよう
に、固体絶縁物111により内部導体106を被覆する
同軸伝送線路109’が考えられる。ところが、この場
合は、固体絶縁物111,111の接続箇所112が弱
点となり、高電圧側である内部導体106から低電圧側
である外部導体108に向かう沿面放電及び絶縁破壊が
懸念される(図8中矢印A参照)。そうすると、絶縁耐
力を上げようとすれば代替ガス110で満たされる空隙
(空間)を大きくする必要があり、結果として同軸伝送
線路109’全体が大きくなってしまう、逆に同軸伝送
線路109’の大きさが限定されるような場合には絶縁
耐力の向上は望めないというCVケーブルと同様の問題
が生じる。
On the other hand, even in the coaxial transmission line 109 used in GIS or GIL, although SF 6 has excellent electric insulation, there is a certain amount of space between the inner and outer conductors in order to ensure insulation. It is necessary, and there is a problem that the pipe diameter of the outer conductor is increased accordingly. The insulation breakdown of this coaxial transmission line is greatly affected by the insulation of SF 6 . However, SF 6 has been pointed out as a gas that contributes to global warming, and it is considered to use an alternative gas such as pure nitrogen. However, each of the alternative gases is inferior in insulation property to SF 6 . Therefore, as a measure against a large decrease in dielectric strength due to the use of the alternative gas 110, a coaxial transmission line 109 'in which the inner conductor 106 is covered with a solid insulator 111 is considered as shown in FIG. However, in this case, the connection point 112 of the solid insulators 111 and 111 becomes a weak point, and there is a concern of creeping discharge and dielectric breakdown from the inner conductor 106 on the high voltage side to the outer conductor 108 on the low voltage side (Fig. 8 middle arrow A). Then, in order to increase the dielectric strength, it is necessary to increase the gap (space) filled with the alternative gas 110, and as a result, the entire coaxial transmission line 109 ′ becomes large. Conversely, the size of the coaxial transmission line 109 ′ is large. In the case where the thickness is limited, a problem similar to that of the CV cable arises in that the improvement of the dielectric strength cannot be expected.

【0006】そこで本発明は、絶縁耐力を向上できしか
もコンパクトに接続することができる高電圧ケーブルの
接続方法及び接続構造並びに高電圧ケーブル接続用コネ
クタ及び同軸伝送線路を提供することを目的とする。
Therefore, an object of the present invention is to provide a high-voltage cable connecting method and a connecting structure, a high-voltage cable connecting connector, and a coaxial transmission line which can improve the dielectric strength and can be connected in a compact manner.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
め、請求項1記載の発明は、導体の周りを固体絶縁物で
被覆してなり、固体絶縁物の接続箇所で沿面放電及び絶
縁破壊を生じるおそれのある高電圧ケーブルの接続方法
において、固体絶縁物の他の絶縁物との接続面に、放電
の進行方向を電界方向とは逆のベクトル成分を有する方
向とする逆電界部を設けるようにしている。
In order to achieve such an object, the invention according to claim 1 is such that a conductor is covered with a solid insulator to prevent a creeping discharge and a dielectric breakdown at a connection point of the solid insulator. In a method of connecting a high-voltage cable which may occur, a reverse electric field portion is provided on the connection surface of the solid insulator with another insulator so that the discharge progressing direction has a vector component opposite to the electric field direction. I have to.

【0008】また、請求項2記載の発明は、導体の周り
を固体絶縁物で被覆してなり、固体絶縁物の接続箇所で
沿面放電及び絶縁破壊を生じるおそれのある高電圧ケー
ブルの接続構造において、固体絶縁物の他の絶縁物との
接続面に、放電の進行方向を電界方向とは逆のベクトル
成分を有する方向とする逆電界部を設けるようにしてい
る。
Further, the invention according to claim 2 is a connection structure for a high-voltage cable, which comprises a conductor and a solid insulator surrounding the conductor, which may cause creeping discharge and dielectric breakdown at a connection point of the solid insulator. The reverse electric field portion is provided on the connection surface of the solid insulator with other insulators so that the discharge progressing direction is a direction having a vector component opposite to the electric field direction.

【0009】したがって、電界の向き即ち固体絶縁物の
外側に向かって、固体絶縁物同士の接続される面に沿っ
て進行する沿面放電は、固体絶縁物内部を貫通して固体
絶縁物の外側に出るよりは、逆電界部に沿って固体絶縁
物の外側に出る方が電気的には進行し易いことから、接
続箇所に設けられた逆電界部において、電界方向とは逆
のベクトル成分を有する方向即ち電界の向きに逆らった
方向に進展する。このため、絶縁耐力が向上する。しか
も、逆電界部の存在により、総沿面距離は、始点と終点
を直線で結んだ場合の沿面距離と比較して長くなる。こ
れによっても絶縁耐力が向上する。依って、接続部を大
きくすることなく絶縁耐力を増やすことができる。
Therefore, the creeping discharge which proceeds along the surface where the solid insulators are connected to each other toward the direction of the electric field, that is, the outside of the solid insulators, penetrates the inside of the solid insulators to the outside of the solid insulators. Since it is easier to electrically move to the outside of the solid insulator along the reverse electric field portion than to appear, the reverse electric field portion provided at the connection portion has a vector component opposite to the electric field direction. Direction, that is, the direction opposite to the direction of the electric field. Therefore, the dielectric strength is improved. Moreover, the existence of the reverse electric field portion makes the total creepage distance longer than the creepage distance when the start point and the end point are connected by a straight line. This also improves the dielectric strength. Therefore, the dielectric strength can be increased without enlarging the connection portion.

【0010】また、請求項3記載の発明は、請求項2記
載の高電圧ケーブルの接続構造において、逆電界部はね
じ構造によって構成されるものとしている。この場合、
ねじ山の一方の斜面が逆電界部として機能し、かつそれ
が繰り返し形成されるので、絶縁耐力が更に向上する。
しかも、総沿面距離は、始点と終点を直線で結んだ場合
の沿面距離と比較してはるかに長くなる。これによって
も絶縁耐力が更に向上する。
According to a third aspect of the invention, in the high-voltage cable connection structure according to the second aspect, the reverse electric field portion is formed of a screw structure. in this case,
Since one slope of the screw thread functions as a reverse electric field portion and is repeatedly formed, the dielectric strength is further improved.
Moreover, the total creepage distance is much longer than the creepage distance when the start point and the end point are connected by a straight line. This also improves the dielectric strength.

【0011】また、請求項4記載の高電圧ケーブル接続
用コネクタは、導体の周りを固体絶縁物で被覆した高電
圧ケーブル同士を接続するためのコネクタにおいて、対
向する高電圧ケーブルの固体絶縁物を機械的に接続する
ための絶縁性接続部と、導体を電気的に接続するための
導通部とを備え、絶縁性接続部と固体絶縁物との接続箇
所に、放電の進行方向を電界方向とは逆のベクトル成分
を有する方向とする逆電界部を設けるようにしている。
According to another aspect of the present invention, there is provided a connector for connecting high voltage cables, wherein conductors are covered with a solid insulator to connect high voltage cables to each other. An insulating connecting portion for mechanically connecting and a conducting portion for electrically connecting a conductor are provided, and a connecting portion between the insulating connecting portion and the solid insulator has a discharge progress direction as an electric field direction. Is provided with a reverse electric field portion having a direction having a reverse vector component.

【0012】この場合にも、コネクタの絶縁性接続部と
高電圧ケーブルの固体絶縁物との接続箇所に形成される
逆電界部において電界方向と逆らった方向に放電を進展
させるため、絶縁耐力が向上する。また、逆電界部によ
り総沿面距離が、始点と終点を直線で結んだ場合の沿面
距離と比較して長くなることによっても絶縁耐力が向上
する。したがって、接続部を大きくすることなく絶縁耐
力を増やすことができる。
Also in this case, since the discharge progresses in the direction opposite to the electric field direction in the reverse electric field portion formed at the connection portion between the insulating connection portion of the connector and the solid insulator of the high voltage cable, the dielectric strength is increased. improves. Further, the reverse electric field portion also increases the total creepage distance as compared with the creepage distance when the start point and the end point are connected by a straight line, thereby improving the dielectric strength. Therefore, the dielectric strength can be increased without increasing the size of the connecting portion.

【0013】また、請求項5記載の発明は、請求項4記
載の高電圧ケーブル接続用コネクタにおいて、逆電界部
はねじ構造によって構成され、一方の高電圧ケーブルを
接続するためのねじと他方の高電圧ケーブルを接続する
ためのねじとが逆ねじとして構成されるようにしてい
る。
According to a fifth aspect of the present invention, in the high-voltage cable connecting connector according to the fourth aspect, the reverse electric field portion is constituted by a screw structure, and a screw for connecting one high-voltage cable and another The screw for connecting the high voltage cable is configured as a reverse screw.

【0014】この場合、高電圧ケーブルそのものを回転
させずに、コネクタを一方向に回転させるだけでケーブ
ルを接続し、また逆方向に回転させるだけでケーブルの
接続を切り離すことができる。
In this case, the cable can be connected only by rotating the connector in one direction without rotating the high voltage cable itself, and can be disconnected by rotating the connector in the opposite direction.

【0015】また、請求項6記載の発明は、内部導体
と、該内部導体との間に空間を設けて同軸に配置される
外部導体と、空間に満たされる絶縁性ガスとを備える同
軸伝送線路において、内部導体の周りを固体絶縁物で被
覆すると共に固体絶縁物同士の接続箇所に、放電の進行
方向を電界方向とは逆のベクトル成分を有する方向とす
る逆電界部を設けるようにしている。
According to a sixth aspect of the present invention, the coaxial transmission line includes an inner conductor, an outer conductor coaxially arranged with a space provided between the inner conductor, and an insulating gas filled in the space. In the above, the inner electric conductor is covered with a solid insulator, and a reverse electric field portion is provided at a connection portion between the solid insulators so that the discharge progressing direction is a direction having a vector component opposite to the electric field direction. .

【0016】この場合、絶縁上の最大の弱点である接続
箇所での沿面放電が逆電界部を設けて絶縁耐力を上げる
ことにより防がれた固体絶縁によって、内部導体と外部
導体との間の絶縁耐力が向上される。依って、従来通り
SFを用いる場合には、内外の導体間の空隙を小さく
できる。
In this case, the creeping discharge at the connection point, which is the weakest point in the insulation, is prevented by providing the reverse electric field portion and increasing the dielectric strength, so that the solid insulation between the inner conductor and the outer conductor is prevented. Dielectric strength is improved. Therefore, when SF 6 is used as usual, the gap between the inner and outer conductors can be reduced.

【0017】更に、請求項7記載の同軸伝送線路は、絶
縁性ガスとしてSFの代替ガスを用いるようにしてい
る。
Furthermore, in the coaxial transmission line according to the seventh aspect of the present invention, SF 6 alternative gas is used as the insulating gas.

【0018】この場合、SFよりも絶縁耐力が劣るS
代替ガスを使用していても、固体絶縁物によって内
部導体と外部導体との間の絶縁耐力不足が補われ、かつ
固体絶縁物同士の接続箇所において心配される沿面放電
も逆電界部を設けることによる絶縁耐力の増大によって
防がれるので、SFを用いる場合と同様の絶縁性が得
られる。
[0018] S in this case, the dielectric strength than SF 6 inferior
Even when the F 6 alternative gas is used, the solid insulator compensates for the lack of dielectric strength between the inner conductor and the outer conductor, and creeping discharge, which is a concern at the connection between the solid insulators, also causes the reverse electric field portion. Since it is prevented by the increase of the dielectric strength due to the provision, the same insulation property as that when SF 6 is used can be obtained.

【0019】[0019]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施形態に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The structure of the present invention will be described below in detail based on the embodiments shown in the drawings.

【0020】図1に本発明の高電圧ケーブルの接続方法
を実現する高電圧ケーブル接続用コネクタを用いた高電
圧ケーブル接続構造の一実施形態を示す。この高電圧ケ
ーブル接続用コネクタ(以下、単に「コネクタ」と呼
ぶ)6は、主に高電圧ケーブル1の固体絶縁物3部分を
機械的に連結する絶縁性接続部7と、導体2の電気的接
続を図る接点11とから構成されている。
FIG. 1 shows an embodiment of a high-voltage cable connecting structure using a high-voltage cable connecting connector for realizing the high-voltage cable connecting method of the present invention. This high-voltage cable connecting connector (hereinafter simply referred to as “connector”) 6 mainly comprises an insulating connecting portion 7 for mechanically connecting the solid insulator 3 portion of the high-voltage cable 1 and an electrical connection of the conductor 2. It is composed of a contact point 11 for connection.

【0021】絶縁性接続部7は、コネクタ6の本体を構
成するもので、ケーブル同士を連結するに十分な機械的
強度を有し電気絶縁性に優れる材質、例えばセラミック
スや固体絶縁物3と同一の絶縁性材料などによって成形
されている。本実施形態の場合、固体絶縁物3の端部と
それぞれ嵌合しこれらを機械的に接続するねじ構造の取
付部8を両端に有し、2本の高電圧ケーブル1を一直線
に連結するスリーブナット状に形成されている。即ち、
絶縁性接続部7の円筒状に形成するようにし、雌ねじか
ら成る取付部8,8を形成するようにしている(以下、
取付部8を雌ねじとも呼ぶ)。そして、接続しようとす
る高電圧ケーブル1の固体絶縁物3の端部にも、当該雌
ねじ8と噛み合う雄ねじ5が設けられている。ここで、
両端の雌ねじ8は逆ねじとなるようにすることが好まし
い。この場合には、ケーブル1を一切回転させずにコネ
クタ6を回転させるだけで、ねじ5、8を締め付けたり
緩めたりすること、即ちケーブル1同士を連結したり切
り離したりすることができる。また、絶縁性接続部7は
固体絶縁物3の外径と略同一の外径を有する円筒状に形
成することが好ましい。この場合には、コネクタ6と接
続されるケーブル1との間に段差が無く一直線に連結で
きる。さらに、本実施形態では、ねじ構造による取付部
8を用いた場合について主に説明しているが、これに特
に限られるものではなく、軸方向において係合し得るあ
らゆる連結手段を必要に応じて適用できることはいうま
でもない。
The insulative connection portion 7 constitutes the main body of the connector 6, and is made of a material having sufficient mechanical strength to connect the cables to each other and excellent electrical insulation, such as ceramics or the solid insulator 3. It is molded with an insulating material such as. In the case of the present embodiment, a sleeve for connecting the two high-voltage cables 1 in a straight line is provided, having at both ends mounting portions 8 of a screw structure for respectively fitting with the ends of the solid insulator 3 and mechanically connecting them. It is shaped like a nut. That is,
The insulating connecting portion 7 is formed into a cylindrical shape, and the mounting portions 8 and 8 formed of female threads are formed (hereinafter,
The mounting portion 8 is also called a female screw). Further, a male screw 5 that meshes with the female screw 8 is also provided at the end of the solid insulator 3 of the high-voltage cable 1 to be connected. here,
The female threads 8 on both ends are preferably reverse threads. In this case, the screws 5 and 8 can be tightened or loosened, that is, the cables 1 can be connected or disconnected by simply rotating the connector 6 without rotating the cable 1. Moreover, it is preferable that the insulating connection portion 7 is formed in a cylindrical shape having an outer diameter substantially the same as the outer diameter of the solid insulator 3. In this case, there is no step between the connector 6 and the cable 1 to be connected, and they can be connected in a straight line. Furthermore, in the present embodiment, the case where the mounting portion 8 having a screw structure is used is mainly described, but the present invention is not particularly limited to this, and any connecting means that can engage in the axial direction may be used as necessary. It goes without saying that it can be applied.

【0022】絶縁性接続部7における固体絶縁物3との
接続箇所には、放電の進行方向を電界方向とは逆のベク
トル成分を有する方向とする逆電界部4が設けるように
している。放電の進展方向を、電界方向とは逆のベクト
ル成分を有する方向とするには、例えば絶縁性接続部7
と固体絶縁物3との接続面を導体2側に少なくとも一度
折り返すような形状とすれば良い。換言すれば、絶縁性
接続部7と固体絶縁物3との接続面を、縦断面において
交互に折れ曲がった線を描くように形成すれば良い。こ
れにより、導体2から固体絶縁物3の外側に出るまでの
放電の経路の中に、放電の進行方向を電界方向とは逆の
ベクトル成分を有する方向とする逆電界部4が設けられ
る。なお、「電界方向とは逆のベクトル成分を有する方
向」とは、放電の進行方向が電界方向の逆方向と一致し
ている場合のほか、例えば電界方向の逆方向に向かって
斜めに進行する場合も含む意味である。
A reverse electric field portion 4 is provided at the connection portion of the insulating connection portion 7 with the solid insulator 3 so that the discharge progressing direction is a direction having a vector component opposite to the electric field direction. In order to make the progressing direction of the discharge have a vector component opposite to the electric field direction, for example, the insulating connecting portion 7
The connection surface between the solid insulator 3 and the solid insulator 3 may be formed so as to be folded back toward the conductor 2 at least once. In other words, the connecting surface between the insulative connecting portion 7 and the solid insulator 3 may be formed so as to draw alternate bent lines in the vertical cross section. As a result, the reverse electric field portion 4 is provided in the discharge path from the conductor 2 to the outside of the solid insulator 3 so that the discharge progress direction is a direction having a vector component opposite to the electric field direction. The "direction having a vector component opposite to the direction of the electric field" means that the direction of discharge is the same as the direction opposite to the direction of the electric field, or the direction diagonally advances toward the opposite direction of the electric field. It is meant to include cases.

【0023】本実施形態では、逆電界部4をねじ構造に
よって構成するようにしている。即ち、絶縁性接続部7
の取付部を成す雌ねじ8とこれと噛み合うケーブル1側
の固体絶縁物3に切られた雄ねじ5との間で逆電界部4
を構成するようにしている。ねじ山の一方の斜面は、絶
縁性接続部7と固体絶縁物3との接続面を導体2側に折
り返すこととなり逆電界部4として機能する。しかも、
それはねじ山の数だけ繰り返し形成される。絶縁耐力が
更に向上する。しかも、総沿面距離は、始点と終点を直
線で結んだ場合の沿面距離と比較してはるかに長くな
る。
In this embodiment, the reverse electric field portion 4 is constructed by a screw structure. That is, the insulating connecting portion 7
The reverse electric field portion 4 is formed between the female screw 8 forming the mounting portion of the above and the male screw 5 cut by the solid insulator 3 on the side of the cable 1 which meshes with the female screw 8.
Is configured. One slope of the screw thread turns the connection surface between the insulating connection portion 7 and the solid insulator 3 back to the conductor 2 side, and functions as the reverse electric field portion 4. Moreover,
It is repeatedly formed by the number of threads. Dielectric strength is further improved. Moreover, the total creepage distance is much longer than the creepage distance when the start point and the end point are connected by a straight line.

【0024】また、本実施形態では、対向する導体2,
2を良好に電気的に接続するために、雌ねじ8,8間を
貫通する孔には導通部材9とコンタクトフィンガー(弾
性接触子)10から成る接点11が備えられている。連
結されるケーブル1の導体2はそれぞれコンタクトフィ
ンガー10によって把持され確実に電気的に接続される
と共に、導通部材9を介して導通がとられている。な
お、コンタクトフィンガー10と媒介導体9とは場合よ
っては一体成形するようにしても良い。コンタクトフィ
ンガー10は、例えば銅等の導電性材料より成り、導体
2と接触することで変形する弾性接触部を備えるように
構成される。例えば本実施形態では、有底円筒状のコン
タクトフィンガー10の端部を内側に折り返すようにし
て、確実に導体2と接触し変形する弾性接触部・板ばね
を形成するようにしている。なお、有底円筒状のコンタ
クトフィンガー10の内面に導体2と接触し変形する凸
部を連続的または間欠的に設けるようにしても良い。勿
論、上述した構造以外の異なる構造の接点11を介在さ
せても良いし、接点11を介在させずに導体2同士を直
接突き合わせることによって電気的接続を確保する構造
としても良い。
Further, in this embodiment, the opposing conductors 2,
In order to satisfactorily electrically connect the two, the holes penetrating between the female screws 8 and 8 are provided with contacts 11 made up of a conducting member 9 and contact fingers (elastic contacts) 10. The conductors 2 of the cables 1 to be connected are respectively held by the contact fingers 10 to be surely electrically connected and electrically connected via the conducting member 9. The contact fingers 10 and the intermediate conductor 9 may be integrally molded depending on the case. The contact finger 10 is made of a conductive material such as copper, and is configured to have an elastic contact portion that is deformed by coming into contact with the conductor 2. For example, in the present embodiment, the end of the bottomed cylindrical contact finger 10 is folded back inward to form an elastic contact portion / leaf spring that reliably contacts and deforms the conductor 2. It should be noted that the inner surface of the bottomed cylindrical contact finger 10 may be provided with a convex portion that comes into contact with the conductor 2 and deforms continuously or intermittently. Of course, a contact 11 having a different structure other than the above-mentioned structure may be interposed, or the conductors 2 may be directly abutted without interposing the contact 11 to secure the electrical connection.

【0025】本実施形態の高電圧ケーブル1は一般にC
Vケーブルと呼ばれるもので、導体2と、この周りを被
覆する例えば架橋ポリエチレンやポリ塩化ビニル等の樹
脂製絶縁性材料よりなる固体絶縁物3とで構成されてい
る。また、固体絶縁物3の端部には、コネクタ6の取付
部8たる雌ねじと螺合する雄ねじ5が設けられている。
この雄ねじ5は、逆電界部4を効果的に形成するため、
ピッチを短く(リードを短く)かつねじ山高さを高くす
る切られることが好ましい。また、本実施形態では導体
2の端部は、固体絶縁物3の端部から僅かに突出してコ
ネクタ6の接点11と確実に電気的に接続されるように
露出させて設けられている。
The high voltage cable 1 of this embodiment is generally C
It is called a V cable, and is composed of a conductor 2 and a solid insulator 3 covering the periphery of the conductor 2 and made of a resin insulating material such as cross-linked polyethylene or polyvinyl chloride. Further, at the end of the solid insulator 3, a male screw 5 that is screwed with a female screw that is a mounting portion 8 of the connector 6 is provided.
Since this male screw 5 effectively forms the reverse electric field portion 4,
It is preferable to cut the pitch to be short (short lead) and the thread height to be high. Further, in the present embodiment, the end portion of the conductor 2 is provided so as to be slightly projected from the end portion of the solid insulator 3 and exposed so as to be reliably electrically connected to the contact 11 of the connector 6.

【0026】以上のように構成されるコネクタ6及び高
電圧ケーブル1によれば、接続すべき高電圧ケーブル
1,1同士をコネクタ6を介して突き合わせ、コネクタ
6をねじを締める方向に回転させれば、両高電圧ケーブ
ル1,1の雄ねじ5,5とコネクタ6の雌ねじ8が同時
に噛み合って、各雄ねじ5,5がコネクタ6内部を同時
に進み、やがて各導体2,2がコンタクトフィンガー1
0に接続して、両高電圧ケーブル1,1が電気的かつ機
械的に良好に接続される。
According to the connector 6 and the high voltage cable 1 configured as described above, the high voltage cables 1 and 1 to be connected are butted against each other via the connector 6, and the connector 6 is rotated in the direction of tightening the screw. For example, the male screws 5 and 5 of both high-voltage cables 1 and 1 and the female screw 8 of the connector 6 mesh at the same time, the male screws 5 and 5 simultaneously advance inside the connector 6, and eventually the conductors 2 and 2 contact the contact fingers 1.
By connecting to 0, both high voltage cables 1 and 1 are connected well electrically and mechanically.

【0027】そして、噛み合ったねじ5,8の間で絶縁
性接続部7と固体絶縁物3との接続面を導体2側に折り
返す逆電界部4を繰り返しねじ山の分だけ構成する。し
たがって、沿面放電が生じようとするとき、放電は導体
2から固体絶縁物3とコネクタ6の絶縁性接続部7との
境界面・接続面に沿って進展することになるが、縦断面
において交互に折れ曲がった線を描くようになる(図2
中の矢印参照)。このため、絶縁耐力が向上するのであ
る。さらに、ジグザグ経路による総沿面距離は、始点と
終点を直線で結んだ場合の沿面距離と比較して長距離と
なる。これによっても絶縁耐力が向上する。
Then, the reverse electric field portion 4 for folding back the connection surface between the insulative connection portion 7 and the solid insulator 3 to the conductor 2 side between the engaged screws 5 and 8 is repeatedly formed by the number of threads. Therefore, when a creeping discharge is about to occur, the discharge progresses from the conductor 2 along the boundary surface / connecting surface between the solid insulator 3 and the insulative connecting portion 7 of the connector 6, but alternates in the longitudinal section. To draw a bent line (Fig. 2
See the arrow inside). Therefore, the dielectric strength is improved. Furthermore, the total creepage distance by the zigzag route is longer than the creepage distance when the start point and the end point are connected by a straight line. This also improves the dielectric strength.

【0028】依って、この実施形態のコネクタ接続構造
によれば、高電圧ケーブル1,1間の接続部を大きくす
ることなく、沿面放電を防止するに十分な絶縁耐力が得
られる。また、ねじによる接続は、従来のモールドによ
る接続と比較して引張りに対する機械的強度にも優れる
という利点もある。
Therefore, according to the connector connection structure of this embodiment, sufficient dielectric strength can be obtained to prevent creeping discharge without increasing the size of the connection between the high voltage cables 1 and 1. In addition, the connection by screw has an advantage that it is superior in mechanical strength against pulling as compared with the connection by the conventional mold.

【0029】また、図3にコネクタ6を用いずに本発明
方法を実現する実施形態を示す。この実施形態のケーブ
ル接続構造は、各高電圧ケーブル1の固体絶縁物3の一
方の端部に雄ねじ5を、他方の端部に雌ねじ5’をそれ
ぞれねじ切り等によって形成し、ケーブル1とケーブル
1とをねじ5,5’のねじ込みによって直接連結するも
のである。この場合にも、固体絶縁物3の接続箇所に
は、逆電界部4が雌雄のねじ5,5’によって構成され
ることとなる。尚、本実施形態のケーブル接続構造によ
る場合、単純に導体2同士を突き合わせるようにしても
良いが、導体2の熱膨張などに起因する導通不良を防ぐ
ための調整部材を介在させることが好ましい。例えば、
図3に示すように、一方のケーブル1の導体2を固体絶
縁物3から僅か突出させると共に、他方のケーブル12
の導体2を固体絶縁物3から僅か引っ込め、一方のケー
ブル1の導体2を他方のケーブル1の固体絶縁物3の中
に嵌め込むようにし、更に導体2と接触することで変形
する弾性接触部を備えるコンタクトフィンガー12を介
在させて連結することが好ましい。このコンタクトフィ
ンガー12とこれを収めるケーブル1側の固体絶縁物3
の端面より引っ込んだ導体2とは固着されており、コン
タクトフインガー12に嵌め込まれる一方のケーブル1
の導体2側が摺接するように設けられている。
FIG. 3 shows an embodiment for realizing the method of the present invention without using the connector 6. In the cable connection structure of this embodiment, a male screw 5 is formed at one end of the solid insulator 3 of each high-voltage cable 1 and a female screw 5 ′ is formed at the other end thereof by threading or the like, so that the cable 1 and the cable 1 And are directly connected by screwing screws 5 and 5 '. Also in this case, the reverse electric field portion 4 is formed by the male and female screws 5 and 5 ′ at the connection point of the solid insulator 3. In the case of the cable connection structure of the present embodiment, the conductors 2 may be simply abutted against each other, but it is preferable to interpose an adjusting member for preventing conduction failure due to thermal expansion of the conductors 2 or the like. . For example,
As shown in FIG. 3, the conductor 2 of one cable 1 is slightly projected from the solid insulator 3, and the other cable 12 is
2 is slightly retracted from the solid insulator 3, the conductor 2 of one cable 1 is fitted into the solid insulator 3 of the other cable 1, and the conductor 2 is deformed by contacting the conductor 2. It is preferable to interpose the contact fingers 12 provided with. This contact finger 12 and the solid insulator 3 on the side of the cable 1 in which it is housed
Is fixed to the conductor 2 which is retracted from the end face of the one end of the cable 1 which is fitted into the contact finger 12.
The conductor 2 side is provided so as to be in sliding contact.

【0030】また、逆電界部4は、放電の進行方向を電
界方向とは逆のベクトル成分を有する方向とするもので
あれば良く、必ずしもねじ構造によって構成されるもの
に限られない。また、コネクタ6等のような着脱自在な
連結手段を用いずに絶縁性の樹脂モールドを用いて接続
するようにしても良い。このような実施形態を図4に示
す。この実施形態のケーブル接続構造は、固体絶縁物3
の端部に逆電界部4を構成するような円環状の溝14を
少なくとも一つ以上形成したケーブル1同士を各導体2
が直接接触するように突き合わせ、これらを樹脂モール
ド13で固めて接合するものである。ケーブル1は、導
体2の突き合わせ部分が樹脂モールド13によって固め
られ、かつ固体絶縁物3の溝14内に形成されるフラン
ジ15部分と溝14との係合によって、一直線に連結さ
れる。なお、溝14の数、大きさ(深さ、幅)、勾配等
は逆電界部4が有効に構成されるものであれば良く、特
定のものに限定されるものではない。例えば図4の例で
は、固体絶縁物3の周方向に環状の三つの溝を軸方向に
並べて設けている。この場合も、固体絶縁物3とモール
ド13との接続面に、逆電界部4が形成され、絶縁耐力
が向上する。また、この場合、固体絶縁物3の3つの溝
14とこれに嵌るモールド13のフランジ部15とで軸
方向に係合するので、引っ張りに対する機械的強度が高
い接続構造が得られる。
The reverse electric field portion 4 is not limited to the one having the screw structure as long as it has a direction in which the discharge progresses has a vector component opposite to the electric field direction. Alternatively, the connection may be made by using an insulating resin mold without using a detachable connecting means such as the connector 6. Such an embodiment is shown in FIG. The cable connection structure of this embodiment has a solid insulator 3
Each of the conductors 2 is formed by connecting the cables 1 in which at least one annular groove 14 is formed at the end of the
Are abutted against each other so as to be in direct contact with each other, and these are solidified with a resin mold 13 and joined. The cable 1 is connected in a straight line by engagement of the groove 15 with the flange 15 portion formed in the groove 14 of the solid insulator 3 in which the abutting portion of the conductor 2 is fixed by the resin mold 13. The number, size (depth, width), gradient, etc. of the grooves 14 are not limited to particular ones as long as the reverse electric field portion 4 is effectively configured. For example, in the example of FIG. 4, three annular grooves are provided side by side in the axial direction in the circumferential direction of the solid insulator 3. Also in this case, the reverse electric field portion 4 is formed on the connection surface between the solid insulator 3 and the mold 13, and the dielectric strength is improved. Further, in this case, since the three grooves 14 of the solid insulator 3 and the flange portion 15 of the mold 13 fitted therein are axially engaged, a connection structure having high mechanical strength against pulling can be obtained.

【0031】また、本発明は、上述のCVケーブルに限
られず、少なくとも導体とこれを被覆する固体絶縁物と
を有する高電圧ケーブルについて広く適用することがで
きる。例えば、GISやGILで使用される同軸伝送線
路について適用できる。この同軸伝送線路20は、絶縁
性ガス23を使用すると共に、内部導体22を固体絶縁
物25により被覆するようにしたものである。即ち、図
5に示すように、内部導体22と、その周りを被覆する
架橋ポリエチレン等の固体絶縁物25と、内部導体22
と同軸に配置され固体絶縁物25との間に絶縁のための
空間を形成する外部導体24と、その空間を満たすSF
あるいはその代替ガス例えば高圧純窒素ガス23とか
ら構成される。この同軸伝送線路の固体絶縁物25の接
続箇所21には、放電の進行方向を電界方向とは逆のベ
クトル成分を有する方向とする逆電界部4が設けられて
いる。例えば、図5の拡大図に示すように、対向する固
体絶縁物25の端部に断面鉤状のオーバーハング付きフ
ランジ27とこれに噛み合うフランジ26を設け、これ
らの嵌合によって固体絶縁物25同士を連結すると共に
逆電界部4を構成するようにする。この同軸伝送線路2
0の場合、絶縁性ガスの絶縁耐力に固体絶縁物25の絶
縁耐力が付加され、更に固体絶縁物25で絶縁すること
の最大の弱点である接続箇所21での沿面放電を逆電界
部4を設けることにより解消するようにしているので、
代替ガス23で満たされる絶縁のための空間を大きくす
ることなく、即ち同軸伝送線路20自体を大きくするこ
となく、必要な絶縁耐力を確保することができる。した
がって、絶縁ガスとしてSFを用いるだけの従来の同
軸伝送線路よりも、絶縁耐力に優れるので、外部導体2
4の管径を小さくして、伝送線路としてのサイズを小型
化できる。また、SFよりも絶縁耐力に劣る代替ガス
23を使用する場合にも、代替ガス23を採用すること
により生ずる絶縁耐力の低下を固体絶縁物25で補うの
で、SFを用いる従来の同軸伝送線路と同様の絶縁
性、即ち同軸伝送線路20自体を大きくすることなく、
必要な絶縁耐力を確保することができる。
The present invention is not limited to the CV cable described above, but can be widely applied to high voltage cables having at least a conductor and a solid insulator covering the conductor. For example, it can be applied to a coaxial transmission line used in GIS or GIL. This coaxial transmission line 20 uses an insulating gas 23 and covers the inner conductor 22 with a solid insulator 25. That is, as shown in FIG. 5, the inner conductor 22, the solid insulator 25 such as cross-linked polyethylene covering the inner conductor 22, and the inner conductor 22.
And an external conductor 24 which is arranged coaxially with the solid insulator 25 and forms a space for insulation between the solid insulator 25 and the SF.
6 or its substitute gas, for example, high pressure pure nitrogen gas 23. At the connection point 21 of the solid insulator 25 of the coaxial transmission line, there is provided the reverse electric field portion 4 which makes the traveling direction of the discharge have a vector component opposite to the electric field direction. For example, as shown in the enlarged view of FIG. 5, a flange 27 with an overhang having a hook-shaped cross section and a flange 26 that meshes with the flange 27 are provided at the ends of the opposing solid insulators 25. And the reverse electric field section 4 is configured. This coaxial transmission line 2
In the case of 0, the dielectric strength of the solid insulator 25 is added to the dielectric strength of the insulating gas, and the creeping discharge at the connection point 21, which is the greatest weakness of insulation with the solid insulator 25, is reduced to the reverse electric field portion 4. Since we are trying to eliminate it by providing it,
The necessary dielectric strength can be secured without increasing the space for insulation filled with the alternative gas 23, that is, without increasing the coaxial transmission line 20 itself. Therefore, the outer conductor 2 has a higher dielectric strength than the conventional coaxial transmission line using only SF 6 as the insulating gas.
The size of the transmission line can be reduced by reducing the tube diameter of No. 4. Also when than SF 6 using an alternative gas 23 is inferior in dielectric strength, since a reduction in the dielectric strength caused by adopting the alternative gas 23 supplement in the solid insulator 25, conventional coaxial transmission using SF 6 Insulation similar to the line, that is, without increasing the size of the coaxial transmission line 20 itself,
The necessary dielectric strength can be secured.

【0032】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく、本
発明の要旨を逸脱しない範囲において種々変形実施可能
である。例えば、コネクタ6側を雄ねじとし、高電圧ケ
ーブル1側を雌ねじとしても良い。さらに、固体絶縁物
3の接続箇所に逆電界部4が構成されるのであれば良
く、逆電界部4と連結構造とが必ずしも同じもので構成
される必要はない。
The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, the connector 6 side may be a male screw and the high voltage cable 1 side may be a female screw. Further, the reverse electric field section 4 may be formed at the connection point of the solid insulator 3, and the reverse electric field section 4 and the connection structure do not necessarily have to be formed by the same thing.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、請求項
1記載の高電圧ケーブルの接続方法及び請求項2記載の
高電圧ケーブルの接続構造並びに請求項4記載の高電圧
ケーブル接続用コネクタによれば、固体絶縁物の接続箇
所に逆電界部を設けることにより、電界の向きに逆らっ
て放電を進展させなければならない上に、接続箇所・接
続部の大きさを変えずに沿面距離も増大するため、絶縁
耐力が飛躍的に向上する。しかも、接続部を大きくする
ことなく絶縁耐力を増大することができるので、コンパ
クトに高電圧ケーブルを接続できる。
As is apparent from the above description, the method for connecting a high voltage cable according to claim 1, the structure for connecting a high voltage cable according to claim 2, and the connector for connecting a high voltage cable according to claim 4 are provided. According to this, by providing a reverse electric field part at the connection part of the solid insulator, the discharge must be advanced against the direction of the electric field, and the creepage distance also increases without changing the size of the connection part / connection part. Therefore, the dielectric strength is dramatically improved. Moreover, since the dielectric strength can be increased without enlarging the connecting portion, the high voltage cable can be connected in a compact manner.

【0034】さらに、請求項3記載の高電圧ケーブルの
接続構造によれば、逆電界部はねじ構造によって構成さ
れるものとしているので、ねじ山を構成する斜面の一方
が所謂逆電界部となって繰り返し形成されるので、沿面
距離の飛躍的増加と相俟って絶縁耐力を更に増大するこ
とができる。しかも、ねじによる接続は従来のモールド
による接続と比較して引張りに対する機械的強度にも優
れるという利点もある。
Further, according to the connection structure of the high voltage cable of the third aspect, since the reverse electric field portion is constituted by the screw structure, one of the slopes forming the screw thread is a so-called reverse electric field portion. Since it is repeatedly formed, the dielectric strength can be further increased in combination with the dramatic increase in creepage distance. In addition, the screw connection has an advantage that it is superior in mechanical strength against pulling as compared with the conventional connection by molding.

【0035】さらに、請求項5記載の高電圧ケーブル接
続用コネクタによれば、逆電界部を兼ねる両端の高電圧
ケーブル接続用のねじは、逆ねじで構成されているの
で、長い高電圧ケーブルそのものを回転させなくとも、
一方向にコネクタを回転させるだけで容易に高電圧ケー
ブル同士を接続したり、切り離したりすることができ
る。
Further, according to the high-voltage cable connecting connector of the fifth aspect, since the screws for connecting the high-voltage cable at both ends which also serve as the reverse electric field portion are constituted by the reverse screws, the long high-voltage cable itself. Without rotating
High voltage cables can be easily connected or disconnected by simply rotating the connector in one direction.

【0036】さらに、請求項6記載及び請求項7記載の
同軸伝送線路によれば、内部導体を覆う固体絶縁物と逆
電界部により固体絶縁物の連結箇所での絶縁耐力を増大
させて沿面放電を防ぐようにしているので、しかも接続
部を大きくすることなく沿面距離を伸ばすことができる
から、絶縁性ガスを満たす絶縁空間を大きくしなくと
も、即ち同軸伝送線路自体を大きくすることなく、十分
な絶縁耐力が得られる。したがって、絶縁耐力に優れる
SFを使用する場合には、従来の同軸伝送線路よりも
絶縁耐力が向上し、外部導体管を小径にすること、即ち
小形化ができる。また、絶縁ガスの絶縁耐力がSF
りも劣る代替ガスを使用する場合にも、代替ガスの採用
により低下する絶縁耐力を固体絶縁物で補うことができ
るので、SFを用いる場合と同様の絶縁性を確保する
ことができる。
Further, according to the coaxial transmission line described in claims 6 and 7, the solid dielectric covering the inner conductor and the reverse electric field portion increase the dielectric strength at the connecting portion of the solid insulator to increase the creeping discharge. Since the creepage distance can be extended without increasing the size of the connecting portion, it is possible to increase the creeping distance without enlarging the insulating space, that is, without increasing the size of the coaxial transmission line itself. Dielectric strength can be obtained. Therefore, when SF 6 having excellent dielectric strength is used, the dielectric strength is improved as compared with the conventional coaxial transmission line, and the outer conductor tube can be made smaller in diameter, that is, can be made smaller. Also, when using alternate gases dielectric strength of the insulating gas is inferior SF 6 also, since the dielectric strength decreases by adopting the alternative gas can be compensated by the solid insulator, similar to the case of using the SF 6 Insulation can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高電圧ケーブルの接続方法を実現する
高電圧ケーブルと高電圧ケーブル接続用コネクタの実施
の一形態を示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an embodiment of a high-voltage cable and a connector for connecting a high-voltage cable, which realizes a method of connecting a high-voltage cable according to the present invention.

【図2】図1の逆電界部近傍の拡大断面図である。FIG. 2 is an enlarged cross-sectional view near the reverse electric field portion of FIG.

【図3】本発明の高電圧ケーブルの接続方法を実現する
高電圧ケーブルの他の例を示す概略縦断面図である。
FIG. 3 is a schematic vertical cross-sectional view showing another example of a high-voltage cable that realizes the high-voltage cable connection method of the present invention.

【図4】本発明の高電圧ケーブルの接続方法を実現する
高電圧ケーブルの他の接続構造の例を示す概略縦断面図
である。
FIG. 4 is a schematic vertical cross-sectional view showing an example of another connection structure of the high-voltage cable that realizes the method of connecting the high-voltage cable of the present invention.

【図5】本発明の同軸伝送線路の一実施形態を示す概略
縦断面図である。
FIG. 5 is a schematic vertical sectional view showing one embodiment of the coaxial transmission line of the present invention.

【図6】従来の高電圧ケーブル接続方法を示す概略縦断
面図である。
FIG. 6 is a schematic vertical sectional view showing a conventional method of connecting a high-voltage cable.

【図7】従来のGISやGILで使用される同軸伝送線
路の概略縦断面図である。
FIG. 7 is a schematic vertical sectional view of a coaxial transmission line used in conventional GIS and GIL.

【図8】従来の同軸伝送線路を示す概略側断面図であ
る。
FIG. 8 is a schematic side sectional view showing a conventional coaxial transmission line.

【符号の説明】[Explanation of symbols]

1 高電圧ケーブル 2 ケーブルの導体 3,15 固体絶縁物 4 逆電界部 5 雄ねじ(取付部) 6 高電圧ケーブル接続用コネクタ 7 絶縁性接続部 8 雌ねじ(取付部) 12 内部導体 24 外部導体 1 High voltage cable 2 Cable conductor 3,15 Solid insulator 4 Reverse electric field section 5 Male screw (mounting part) 6 High voltage cable connector 7 Insulating connection 8 Female thread (mounting part) 12 inner conductor 24 outer conductor

フロントページの続き (72)発明者 五島 久司 東京都狛江市岩戸北2−11−1 財団法人 電力中央研究所 狛江研究所内 Fターム(参考) 5E087 EE02 EE08 EE10 FF07 FF12 HH01 JJ04 RR04 RR18 RR34Continued front page    (72) Inventor Koji Goto             2-11-1 Iwatokita, Komae City, Tokyo Foundation             Central Research Institute of Electric Power Komae Research Center F term (reference) 5E087 EE02 EE08 EE10 FF07 FF12                       HH01 JJ04 RR04 RR18 RR34

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導体の周りを固体絶縁物で被覆してな
り、前記固体絶縁物の接続箇所で沿面放電及び絶縁破壊
を生じるおそれのある高電圧ケーブルの接続方法におい
て、前記固体絶縁物の接続箇所に、放電の進行方向を電
界方向とは逆のベクトル成分を有する方向とする逆電界
部を設けたことを特徴とする高電圧ケーブルの接続方
法。
1. A method of connecting a high-voltage cable, comprising a conductor covered with a solid insulator, which may cause a creeping discharge and a dielectric breakdown at a connection point of the solid insulator. A method for connecting a high-voltage cable, characterized in that a reverse electric field portion is provided at a location, the reverse electric field portion having a direction in which a discharge progresses has a vector component opposite to an electric field direction.
【請求項2】 導体の周りを固体絶縁物で被覆してな
り、前記固体絶縁物の接続箇所で沿面放電及び絶縁破壊
を生じるおそれのある高電圧ケーブルの接続構造におい
て、前記固体絶縁物の接続箇所に、放電の進行方向を電
界方向とは逆のベクトル成分を有する方向とする逆電界
部を設けたことを特徴とする高電圧ケーブルの接続構
造。
2. A connection structure for a high voltage cable, comprising a conductor covered with a solid insulator, which may cause a creeping discharge and a dielectric breakdown at a connection point of the solid insulator. A connection structure for a high-voltage cable, characterized in that a reverse electric field portion is provided at a location, the reverse electric field portion having a vector component opposite to the electric field direction.
【請求項3】 前記逆電界部はねじ構造によって構成さ
れることを特徴とする請求項2記載の高電圧ケーブルの
接続構造。
3. The connection structure for a high voltage cable according to claim 2, wherein the reverse electric field portion has a screw structure.
【請求項4】 導体の周りを固体絶縁物で被覆した高電
圧ケーブル同士を接続するためのコネクタにおいて、対
向する前記高電圧ケーブルの前記固体絶縁物を機械的に
接続するための絶縁性接続部と、前記導体を電気的に接
続するための導通部とを備え、前記絶縁性接続部と前記
固体絶縁物との接続箇所に、放電の進行方向を電界方向
とは逆のベクトル成分を有する方向とする逆電界部を設
けたことを特徴とする高電圧ケーブル接続用コネクタ。
4. A connector for connecting high voltage cables each having a conductor covered with a solid insulator, and an insulating connection portion for mechanically connecting the solid insulators of the opposing high voltage cables. And a conducting portion for electrically connecting the conductor, and a direction having a vector component in which a discharge progress direction is opposite to an electric field direction at a connection portion between the insulating connection portion and the solid insulator. A connector for connecting a high-voltage cable, characterized in that a reverse electric field section is provided.
【請求項5】 前記逆電界部はねじ構造によって構成さ
れ、一方の高電圧ケーブルを接続するためのねじと他方
の高電圧ケーブルを接続するためのねじとは逆ねじであ
ることを特徴とする請求項4記載の高電圧ケーブル接続
用コネクタ。
5. The reverse electric field portion has a screw structure, and a screw for connecting one high-voltage cable and a screw for connecting the other high-voltage cable are reverse screws. The connector for connecting a high voltage cable according to claim 4.
【請求項6】 内部導体と、該内部導体との間に空間を
設けて同軸に配置される外部導体と、前記空間に満たさ
れる絶縁性ガスとを備える同軸伝送線路において、前記
内部導体の周りを固体絶縁物で被覆すると共に、前記固
体絶縁物同士の接続箇所に、放電の進行方向を電界方向
とは逆のベクトル成分を有する方向とする逆電界部を設
けたことを特徴とする同軸伝送線路。
6. A coaxial transmission line comprising an inner conductor, an outer conductor coaxially arranged with a space provided between the inner conductor, and an insulating gas filled in the space, wherein the inner conductor is surrounded by the inner conductor. Is covered with a solid insulator, and a reverse electric field portion is provided at a connection point between the solid insulators, the reverse electric field portion having a vector component having a vector component opposite to an electric field direction in a discharge direction. line.
【請求項7】 前記絶縁性ガスは六フッ化硫黄ガスの代
替ガスであることを特徴とする請求項6記載の同軸伝送
線路。
7. The coaxial transmission line according to claim 6, wherein the insulating gas is a substitute gas for sulfur hexafluoride gas.
JP2001189849A 2001-06-22 2001-06-22 High voltage cable connection method and structure, high voltage cable connector, coaxial transmission line Expired - Lifetime JP4963332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189849A JP4963332B2 (en) 2001-06-22 2001-06-22 High voltage cable connection method and structure, high voltage cable connector, coaxial transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189849A JP4963332B2 (en) 2001-06-22 2001-06-22 High voltage cable connection method and structure, high voltage cable connector, coaxial transmission line

Publications (2)

Publication Number Publication Date
JP2003007394A true JP2003007394A (en) 2003-01-10
JP4963332B2 JP4963332B2 (en) 2012-06-27

Family

ID=19028708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189849A Expired - Lifetime JP4963332B2 (en) 2001-06-22 2001-06-22 High voltage cable connection method and structure, high voltage cable connector, coaxial transmission line

Country Status (1)

Country Link
JP (1) JP4963332B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073416A (en) * 2002-03-11 2003-09-19 엘지전선 주식회사 The monolithic corona shield with conductor sleeve
CN111937374A (en) * 2018-04-18 2020-11-13 索尼公司 Cable, method for controlling cable, transmitting apparatus, method for controlling transmitting apparatus, receiving apparatus, and method for controlling receiving apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069636A (en) * 1998-08-19 2000-03-03 Toshiba Corp Gas-insulated apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069636A (en) * 1998-08-19 2000-03-03 Toshiba Corp Gas-insulated apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073416A (en) * 2002-03-11 2003-09-19 엘지전선 주식회사 The monolithic corona shield with conductor sleeve
CN111937374A (en) * 2018-04-18 2020-11-13 索尼公司 Cable, method for controlling cable, transmitting apparatus, method for controlling transmitting apparatus, receiving apparatus, and method for controlling receiving apparatus
US11662393B2 (en) 2018-04-18 2023-05-30 Sony Corporation Cable, method for controlling cable, transmission device, method for controlling transmission device, reception device, and method for controlling reception device
CN111937374B (en) * 2018-04-18 2023-09-05 索尼公司 Cable, transmitting apparatus, receiving apparatus, and control method thereof

Also Published As

Publication number Publication date
JP4963332B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US7067739B2 (en) Joint structure of superconducting cable and insulating spacer for connecting superconducting cable
CN104067448A (en) Electric cable, method for producing an electric cable, and welding device for producing an electric cable
US3492410A (en) Jacketed metallic conduit connector
JP4050023B2 (en) Insulated operation rod
JP4615258B2 (en) Power cable termination connection and assembly method
JP2003007394A (en) Method, structure and connector for connecting high voltage cable, and coaxial transmission line
WO2015030011A1 (en) Shielded cable and wire harness
KR101134181B1 (en) Connecting structure of epoxy bushing electrode and conductor sleeve for sealing terminal of ultar high voltage power cable
JP2008067597A (en) Connector, inter-board connecting member using this connector, and cable terminal joint using above-mentioned connector
JP6593052B2 (en) Mounting structure for polymer connection for power cable
KR101393062B1 (en) Moldcone assembly of switch and switchgear
JP4632959B2 (en) Switchgear
JP2008017569A (en) Intermediate joint for power cable
JP2004282907A (en) Switchgear
JP2007104840A (en) Insulation structure of electric apparatus and switchgear therewith
JP3181504B2 (en) Power cable connection
JP2019193515A (en) Cable connection part
CN1881719B (en) Arrangement for electrically connecting high voltage switch gear
JP2002281652A (en) Terminal connection part for power cable
JP2724086B2 (en) Gas insulated bushing
JP7110525B2 (en) insulating cap
US10910799B2 (en) Connecting device with conical interface and flexible insulator
JP2024044168A (en) cable connection structure
CN115566834A (en) Waterproof sealing structure for power supply outgoing line of motor winding and linear motor
JP2003259542A (en) Cv cable connection part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4963332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250