JP4303147B2 - Solid insulation switchgear - Google Patents

Solid insulation switchgear Download PDF

Info

Publication number
JP4303147B2
JP4303147B2 JP2004056162A JP2004056162A JP4303147B2 JP 4303147 B2 JP4303147 B2 JP 4303147B2 JP 2004056162 A JP2004056162 A JP 2004056162A JP 2004056162 A JP2004056162 A JP 2004056162A JP 4303147 B2 JP4303147 B2 JP 4303147B2
Authority
JP
Japan
Prior art keywords
insulating layer
electric field
field strength
insulating
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004056162A
Other languages
Japanese (ja)
Other versions
JP2005251413A (en
Inventor
哲 塩入
晋 木下
聡 槙島
敏夫 清水
純一 佐藤
修 阪口
勝 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004056162A priority Critical patent/JP4303147B2/en
Priority to EP05004439A priority patent/EP1571684A1/en
Priority to CNB2005100518238A priority patent/CN100367588C/en
Publication of JP2005251413A publication Critical patent/JP2005251413A/en
Application granted granted Critical
Publication of JP4303147B2 publication Critical patent/JP4303147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、電源系統を構成する真空バルブや接続導体のような電気機器をエポキシ樹脂のような絶縁材料でモールドした固体絶縁スイッチギヤに関する。   The present invention relates to a solid-insulated switchgear in which an electric device such as a vacuum valve and a connection conductor constituting a power supply system is molded with an insulating material such as an epoxy resin.

従来、スイッチギヤの主回路を構成する真空バルブや接続導体のような電気機器においては、これらの電気機器が汚損湿潤の影響を受けて絶縁耐力が低下するのを防ぐため、エポキシ樹脂のような絶縁材料によりモールドして絶縁外皮を形成し、その絶縁外皮の外装に接地層を設けた固体絶縁式のものが知られている(例えば、特許文献1参照。)。   Conventionally, in electrical devices such as vacuum valves and connection conductors constituting the main circuit of the switchgear, in order to prevent these electrical devices from being affected by fouling and wetting, the dielectric strength is reduced. There is known a solid insulation type in which an insulating shell is formed by molding with an insulating material, and a grounding layer is provided on the exterior of the insulating shell (see, for example, Patent Document 1).

このモールドした電気機器においては、スイッチギヤの定格電圧が6kV以上の高電圧になると、電界強度が高くなるので比較的に絶縁厚さが厚くなり、更には、エポキシ樹脂に数種類の充填剤を混合し、優れた電気的特性と機械的特性が得られるようにしているので、比重が2程度となり重量物になってしまう。   In this molded electrical device, when the rated voltage of the switchgear becomes a high voltage of 6 kV or higher, the electric field strength increases, so that the insulation thickness becomes relatively thick, and furthermore, several kinds of fillers are mixed with epoxy resin. In addition, since excellent electrical characteristics and mechanical characteristics are obtained, the specific gravity becomes about 2 and becomes heavy.

これを解決するため、絶縁層内の電界分布を制御して絶縁厚さを薄くできるように、誘電率の異なる絶縁層を多層に形成したものが知られている(例えば、特許文献2参照。)。これは、図5に示すように、高電圧電極1と接地電極2間において、絶縁層3を高電圧側絶縁層4と接地側絶縁層5とに分け、高電圧側絶縁層4よりも接地側絶縁層5の誘電率を小さくしている。   In order to solve this problem, an insulating layer having different dielectric constants formed in multiple layers so as to reduce the insulating thickness by controlling the electric field distribution in the insulating layer is known (see, for example, Patent Document 2). ). As shown in FIG. 5, the insulating layer 3 is divided into a high-voltage side insulating layer 4 and a ground-side insulating layer 5 between the high-voltage electrode 1 and the ground electrode 2, and is grounded more than the high-voltage side insulating layer 4. The dielectric constant of the side insulating layer 5 is reduced.

これにより、高電圧側絶縁層4の最大電界強度がEa、また接地側絶縁層5の最大電界強度がEbとなり、単一の誘電率からなる絶縁層3を設けた場合の最大電界強度Ecと比べて、電界強度を抑制することができる。即ち、異なる誘電率を設けた場合のそれぞれの最大電界強度Ea、最大電界強度Eb<単一の誘電率を設けた場合の最大電界強度Ecの関係が得られるようになる。   As a result, the maximum electric field strength Ec of the high-voltage side insulating layer 4 is Ea, the maximum electric field strength of the ground-side insulating layer 5 is Eb, and the maximum electric field strength Ec when the insulating layer 3 having a single dielectric constant is provided. In comparison, the electric field strength can be suppressed. That is, the relationship between the maximum electric field intensity Ea when different dielectric constants are provided and the maximum electric field intensity Eb when a single dielectric constant is provided can be obtained.

そして、最大電界強度が抑制された割合によって、高電圧側絶縁層4および接地側絶縁層5のそれぞれの絶縁厚さを薄くすることができる。
特開2001−286018号公報 (第4ページ、図4) 特開平11−262120号公報 (第5ページ、図1)
And according to the ratio by which the maximum electric field strength was suppressed, each insulation thickness of the high voltage side insulating layer 4 and the ground side insulating layer 5 can be made thin.
JP 2001-286018 A (4th page, FIG. 4) Japanese Patent Laid-Open No. 11-262120 (5th page, FIG. 1)

上記の従来の固体絶縁スイッチギヤにおいては、次のような問題がある。
異なる誘電率からなる高電圧側絶縁層4および接地側絶縁層5により最大電界強度を抑制できるものの、それぞれの最大電界強度に差異を生じ、大幅に絶縁厚さを薄くすることができなかった。即ち、これらの最大電界強度は、誘電率の大きさおよび絶縁厚さによって変化し、高い方の最大電界強度によって絶縁厚さが決定されることになる。
The above-described conventional solid-insulated switchgear has the following problems.
Although the maximum electric field strength can be suppressed by the high-voltage-side insulating layer 4 and the ground-side insulating layer 5 having different dielectric constants, the maximum electric field strength differs, and the insulation thickness cannot be significantly reduced. That is, these maximum electric field strengths change depending on the dielectric constant and the insulation thickness, and the insulation thickness is determined by the higher maximum electric field strength.

このため、高電圧側絶縁層4および接地側絶縁層5のそれぞれの最大電界強度を同様にし、それぞれの絶縁層4および5において絶縁厚さを薄くできることが望まれていた。これにより、モールドされた電気機器を組合せて構成した固体絶縁スイッチギヤの重量を抑制することができる。   Therefore, it has been desired that the maximum electric field strengths of the high-voltage side insulating layer 4 and the ground-side insulating layer 5 are made the same, and the insulating thicknesses of the respective insulating layers 4 and 5 can be reduced. Thereby, the weight of the solid insulation switchgear comprised combining the molded electric equipment can be suppressed.

本発明は上記問題を解決するためになされたもので、異なる誘電率からなる多層の絶縁層をモールドした電気機器を組合せてなる固体絶縁スイッチギヤの重量低減を可能とし得ることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to be able to reduce the weight of a solid insulating switchgear formed by combining electric devices molded with multilayer insulating layers having different dielectric constants.

上記目的を達成するために、本発明の固体絶縁スイッチギヤは、絶縁材料でモールドして多層の絶縁層を形成した電気機器を組合せ、電源系統を構成する固体絶縁スイッチギヤであって、前記電気機器の周りには、外周方向に向かう程、誘電率が小さくなるように主回路導体端部を露出させて前記多層の絶縁層を形成し、前記電気機器の電極端部、および前記多層の絶縁層のそれぞれの境界面部の電界強度が等しくなるようにしたことを特徴とする。   To achieve the above object, a solid insulated switchgear according to the present invention is a solid insulated switchgear that forms a power system by combining electrical devices molded with an insulating material to form a multilayer insulating layer, Around the device, the multi-layer insulating layer is formed by exposing the main circuit conductor end so that the dielectric constant decreases toward the outer peripheral direction, the electrode end of the electric device, and the multi-layer insulation It is characterized in that the electric field strength of each boundary surface portion of the layer is made equal.

このような構成によれば、電気機器側を最も大きい誘電率の絶縁層とし、外周方向に向かう程、誘電率が小さくなるような多層の絶縁層とし、電気機器の電極端部および多層の絶縁層のそれぞれの境界面部の電界強度が同様になるようにしているので、それぞれの絶縁層の絶縁厚さを薄くすることができ、これに伴って、これらの電気機器を組合せて電源系統を構成した固体絶縁スイッチギヤの重量を低減することができる。   According to such a configuration, the insulating layer having the largest dielectric constant is provided on the electric device side, and a multi-layered insulating layer having a dielectric constant that decreases toward the outer circumferential direction is formed. Since the electric field strength of each boundary surface portion of the layers is the same, the insulation thickness of each insulating layer can be reduced, and accordingly, a power system is configured by combining these electric devices. Thus, the weight of the solid insulating switch gear can be reduced.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下、本発明の実施例に係る固体絶縁スイッチギヤを図1乃至図4を参照して説明する。図1は、本発明の実施例に係る固体絶縁スイッチギヤの構成を一部断面して示す側面図、図2は、本発明の実施例に係る遮断部を示す断面図、図3は、本発明の実施例に係る電界強度と誘電率との関係を示す特性図、図4は、本発明の実施例に係る電界強度と絶縁厚さとの関係を示す特性図である。   Hereinafter, a solid insulation switchgear according to an embodiment of the present invention will be described with reference to FIGS. 1 is a side view showing a part of the configuration of a solid-insulated switchgear according to an embodiment of the present invention, FIG. 2 is a sectional view showing a blocking portion according to the embodiment of the present invention, and FIG. FIG. 4 is a characteristic diagram showing the relationship between electric field strength and dielectric thickness according to an embodiment of the present invention.

図1に示すように、固体絶縁スイッチギヤは、背面側のケーブル部10a、中央の開閉部10b、正面側の母線部10cで電源系統が構成されている。   As shown in FIG. 1, in the solid insulation switchgear, a power supply system is configured by a cable portion 10a on the back side, a central opening / closing portion 10b, and a busbar portion 10c on the front side.

ケーブル部10aには、ケーブルヘッド11が設けられ、このケーブルヘッド11に変流器12を貫通した電力用ケーブル13が接続されている。   A cable head 11 is provided in the cable portion 10 a, and a power cable 13 penetrating the current transformer 12 is connected to the cable head 11.

開閉部10bには、遮断部14が設けられ、遮断部14の一方の主回路端がコ字状の接続導体15でケーブルヘッド11の主回路端に接続されている。この遮断部14には、接離自在の一対の接点を有する真空バルブ16が設けられている。また、真空バルブ16には、主回路導体端部を露出させて、この真空バルブ16の周りにエポキシ樹脂のような絶縁材料をモールドして第1の絶縁層17、および第1の絶縁層17の周りに第2の絶縁層18が設けられている。更に、第2の絶縁層18の周りには、接地層19が設けられている。   The opening / closing portion 10 b is provided with a blocking portion 14, and one main circuit end of the blocking portion 14 is connected to the main circuit end of the cable head 11 by a U-shaped connection conductor 15. The shut-off portion 14 is provided with a vacuum valve 16 having a pair of contact points that can be contacted and separated. The vacuum valve 16 has an end portion of the main circuit conductor exposed, and an insulating material such as epoxy resin is molded around the vacuum valve 16 to form a first insulating layer 17 and a first insulating layer 17. A second insulating layer 18 is provided around the substrate. Further, a ground layer 19 is provided around the second insulating layer 18.

遮断部14の他方の主回路端には、軸方向に絶縁操作ロッド20を介して、真空バルブ16内の一対の接点を開閉する操作機構21が設けられている。また、軸方向と直交する方向には、真空バルブ16の外部電極が連絡導体22と摺動接触されている。   An operating mechanism 21 that opens and closes a pair of contacts in the vacuum valve 16 is provided at the other main circuit end of the blocking portion 14 via an insulating operating rod 20 in the axial direction. Further, the external electrode of the vacuum valve 16 is in sliding contact with the connecting conductor 22 in a direction orthogonal to the axial direction.

母線部10cには、断路部23が設けられ、一方の主回路端が連絡導体22に摺動接触し、他方の主回路端が母線24に接続されている。この断路部23には、遮断部14と同様な真空バルブ25が設けられ、真空バルブ25の軸方向に絶縁操作ロッド26を介して、真空バルブ25内の一対の接点を開閉する操作機構27が設けられている。   The bus bar portion 10 c is provided with a disconnecting portion 23, one main circuit end is in sliding contact with the connecting conductor 22, and the other main circuit end is connected to the bus bar 24. The disconnecting portion 23 is provided with a vacuum valve 25 similar to the blocking portion 14, and an operation mechanism 27 that opens and closes a pair of contacts in the vacuum valve 25 via an insulating operation rod 26 in the axial direction of the vacuum valve 25. Is provided.

なお、遮断部14、断路部23、接続導体15および母線24などのモールドされた電気機器の主回路端は、いずれもテーパ状に形成された界面接続部となっており、図示しない可撓性絶縁体を介して互いの主回路端が接続されている。   In addition, the main circuit ends of the molded electrical equipment such as the blocking portion 14, the disconnecting portion 23, the connecting conductor 15, and the bus bar 24 are all interface connecting portions formed in a tapered shape, and are not shown in the drawing. The main circuit ends are connected to each other through an insulator.

これらモールドされた電気機器のうち、遮断部14を例にとり、図2を用いてその詳細を説明する。図2に示すように、遮断部14は、真空バルブ16両端の主回路導体端部を露出させて、先ず第1の絶縁層17をエポキシ樹脂のような絶縁材料をモールドして設け、次いで、第1の絶縁層17表面に例えばサンドブラスト処理をして接着性を向上させた後、第2の絶縁層18をエポキシ樹脂のような絶縁材料をモールドして設けている。第2の絶縁層18の外装には、例えばカーボン塗料のような導電性塗料をスプレー塗装した接地層19が設けられている。   Of these molded electric devices, the details will be described with reference to FIG. As shown in FIG. 2, the blocking portion 14 exposes the main circuit conductor end portions at both ends of the vacuum valve 16, and firstly provides the first insulating layer 17 by molding an insulating material such as an epoxy resin, After the surface of the first insulating layer 17 is subjected to, for example, sandblasting to improve adhesion, the second insulating layer 18 is provided by molding an insulating material such as an epoxy resin. A grounding layer 19 is provided on the exterior of the second insulating layer 18 by spraying a conductive paint such as a carbon paint.

ここで、第1の絶縁層17および第2の絶縁層18の誘電率は、第1の絶縁層17よりも第2の絶縁層18の方を小さくしている。これは、図3に示すように、真空バルブ16端部の電界強度特性をE1、第1の絶縁層17と第2の絶縁層18との境界面部の電界強度特性をE2、および第1の絶縁層17の誘電率をε1、第2の絶縁層18の誘電率をε2とすると、誘電率の比がε1/ε2=3のとき、互いの電界強度特性E1およびE2が交差するためである。   Here, the dielectric constants of the first insulating layer 17 and the second insulating layer 18 are smaller in the second insulating layer 18 than in the first insulating layer 17. As shown in FIG. 3, the electric field strength characteristic at the end of the vacuum valve 16 is E1, the electric field strength characteristic at the interface between the first insulating layer 17 and the second insulating layer 18 is E2, and the first This is because when the dielectric constant of the insulating layer 17 is ε1 and the dielectric constant of the second insulating layer 18 is ε2, the electric field strength characteristics E1 and E2 intersect each other when the dielectric constant ratio is ε1 / ε2 = 3. .

即ち、第2の絶縁層18の誘電率ε2に対して第1の絶縁層17の誘電率ε1を3倍にすることにより、これらの電界強度は同値となりそれぞれが最低値となる。ここで、第1の絶縁層17の絶縁厚さをt1、第2の絶縁層18の絶縁厚さをt2とすると、その比はt1/t2=0.5のときである。この絶縁厚さの比は、t1/t2=0.25〜0.8の範囲において、互いの電界強度特性E1およびE2は交差する同様の傾向にあった。   That is, when the dielectric constant ε1 of the first insulating layer 17 is tripled relative to the dielectric constant ε2 of the second insulating layer 18, these electric field strengths become the same value, and each has the lowest value. Here, if the insulating thickness of the first insulating layer 17 is t1, and the insulating thickness of the second insulating layer 18 is t2, the ratio is t1 / t2 = 0.5. The ratio of the insulating thickness was in the same tendency in which the electric field strength characteristics E1 and E2 intersect each other in the range of t1 / t2 = 0.25 to 0.8.

なお、誘電率の調整は、エポキシ樹脂に充填する例えばシリカ粉末の充填量を変えることにより行うことができる。   In addition, adjustment of a dielectric constant can be performed by changing the filling amount of the silica powder with which an epoxy resin is filled, for example.

次に、第1の絶縁層17および第2の絶縁層18の絶縁厚さは、第1の絶縁層17の絶縁厚さt1よりも第2の絶縁層18の絶縁厚さt2の方を大きくしている。これは、図4に示すように、真空バルブ16端部の電界強度特性をE3、第1の絶縁層17と第2の絶縁層18との境界面部の電界強度特性をE4とすると、それぞれの電界強度特性E3およびE4はいずれもV字状の曲線となり、絶縁厚さの比がt1/t2=0.5〜0.6のとき、電界強度特性E3およびE4が最も低くなるためである。   Next, the insulating thickness of the first insulating layer 17 and the second insulating layer 18 is larger in the insulating thickness t2 of the second insulating layer 18 than the insulating thickness t1 of the first insulating layer 17. is doing. As shown in FIG. 4, when the electric field strength characteristic at the end of the vacuum valve 16 is E3, and the electric field strength characteristic at the interface between the first insulating layer 17 and the second insulating layer 18 is E4, This is because the electric field strength characteristics E3 and E4 are both V-shaped curves, and the electric field strength characteristics E3 and E4 are the lowest when the ratio of the insulation thickness is t1 / t2 = 0.5 to 0.6.

即ち、第1の絶縁層17の絶縁厚さt1に対し、第2の絶縁層18の絶縁厚さt2を2倍にすることにより、電界強度を最も抑制することができる。ここで、第1の絶縁層17の誘電率ε1および第2の絶縁層18の誘電率ε2の比は、ε1/ε2=3のときである。この誘電率の比は、ε1/ε2=1.5〜4.5の範囲において、電界強度特性E3およびE4はV字状の曲線となる同様の傾向にあった。   That is, the electric field strength can be suppressed most by doubling the insulating thickness t2 of the second insulating layer 18 with respect to the insulating thickness t1 of the first insulating layer 17. Here, the ratio of the dielectric constant ε1 of the first insulating layer 17 to the dielectric constant ε2 of the second insulating layer 18 is when ε1 / ε2 = 3. The ratio of dielectric constants in the range of ε1 / ε2 = 1.5 to 4.5 had the same tendency for the electric field strength characteristics E3 and E4 to be V-shaped curves.

一方、遮断部14においては、図2に示すように、真空バルブ16のA部、即ち電極端部において、最大電界強度が位置する。これは、真空バルブ16内を真空封着する部位であり、溶接などでシャープエッジになるためである。このようなシャープエッジを有する破壊電圧特性は、局所的な部位での電界強度のため、第1の絶縁層17が破壊する臨界に達しても、直ちに絶縁破壊を起こさない。絶縁破壊が起きるためには、更に電界強度が上昇して第1の絶縁層17内が高電界となり分極し、そしてその状態での電界強度が臨界に達しなければならない。   On the other hand, as shown in FIG. 2, the maximum electric field strength is located at the A portion of the vacuum valve 16, that is, at the electrode end in the blocking portion 14. This is because the inside of the vacuum valve 16 is vacuum-sealed and becomes a sharp edge by welding or the like. The breakdown voltage characteristic having such a sharp edge does not cause dielectric breakdown immediately even when reaching the criticality at which the first insulating layer 17 breaks due to the electric field strength at a local site. In order for dielectric breakdown to occur, the electric field strength further increases, the first insulating layer 17 becomes a high electric field and is polarized, and the electric field strength in that state must reach a critical level.

この絶縁破壊に到る電界強度は、シャープエッジを有するような遮断部14では、分極を起こす前の電界強度の1.1倍となる。即ち、図3に示すように、互いの電界強度特性E1およびE2が交差して同値となる最低の電界強度Ewに対し、1.1倍に上昇した電界強度Exが実際の絶縁破壊に寄与するものとなる。これにより、実際の絶縁破壊に寄与する電界強度Exを用いることが実用的なものとなり、この電界強度Exを下回る誘電率の比を求めると、その比はε1/ε2=1.5〜4.5の範囲となる。誘電率の比がε1/ε2=1.5以下、またはε1/ε2=4.5以上では、電界強度Exを超えるので、絶縁破壊を起こすことになる。   The electric field strength that leads to this dielectric breakdown is 1.1 times the electric field strength before polarization occurs in the blocking portion 14 having a sharp edge. That is, as shown in FIG. 3, the electric field strength Ex increased by 1.1 times contributes to the actual dielectric breakdown with respect to the lowest electric field strength Ew at which the electric field strength characteristics E1 and E2 cross each other and have the same value. It will be a thing. This makes it practical to use the electric field strength Ex that contributes to actual dielectric breakdown. When the ratio of the dielectric constant below this electric field strength Ex is obtained, the ratio is ε1 / ε2 = 1.5-4. The range is 5. When the dielectric constant ratio is ε1 / ε2 = 1.5 or less, or ε1 / ε2 = 4.5 or more, the electric field strength Ex is exceeded, which causes dielectric breakdown.

また、上記と同様に、図4に示すように、電界強度特性E3およびE4においては、V字状の曲線の最低の電界強度Eyに対し、1.1倍に上昇した電界強度Ezが実際の絶縁破壊に寄与するものとなる。これにより、実際の絶縁破壊に寄与する電界強度Ezを用いることが実用的なものとなり、この電界強度Ezを下回る絶縁厚さの比を求めると、その比はt1/t2=0.25〜0.8の範囲となる。絶縁厚さの比がt1/t2=0.25以下、またはt1/t2=0.8以上では、電界強度Ezを超えるので、絶縁破壊を起こすことになる。   Similarly to the above, as shown in FIG. 4, in the electric field strength characteristics E3 and E4, the electric field strength Ez increased 1.1 times with respect to the lowest electric field strength Ey of the V-shaped curve. It contributes to dielectric breakdown. This makes it practical to use the electric field strength Ez that contributes to actual dielectric breakdown. When the ratio of the insulation thickness below this electric field strength Ez is determined, the ratio is t1 / t2 = 0.25-0. .8 range. When the ratio of the insulation thickness is t1 / t2 = 0.25 or less, or t1 / t2 = 0.8 or more, the electric field strength Ez is exceeded, which causes dielectric breakdown.

なお、第1の絶縁層17が電界強度Exもしくは電界強度Ezを超えて絶縁破壊を起こすと、なだれ的に第2の絶縁層18も絶縁破壊を起こし、ついには第1の絶縁層17および第2の絶縁層18が全路絶縁破壊に到る。   Note that when the first insulating layer 17 causes breakdown due to the electric field strength Ex or the electric field strength Ez, the second insulating layer 18 also causes dielectric breakdown, and finally the first insulating layer 17 and the first insulating layer 17 The two insulating layers 18 cause dielectric breakdown in all paths.

上記実施例の固体絶縁スイッチギヤによれば、真空バルブ16側に誘電率の大きい第1の絶縁層17を設け、この第1の絶縁層17の周りに第1の絶縁層17よりも誘電率の小さい第2の絶縁層18を設けて、その外装を接地層19とし、そして真空バルブ16の電極端部、および第1の絶縁層17と第2の絶縁層18との境界面部の電界強度がほぼ同様の値となるようにしているので、互いの絶縁層17および18の絶縁厚さをそれぞれ薄くすることができる。また、この電気機器を組合せてなる固体絶縁スイッチギヤの重量を低減することができる。   According to the solid-insulated switchgear of the above embodiment, the first insulating layer 17 having a large dielectric constant is provided on the vacuum valve 16 side, and the dielectric constant is higher than the first insulating layer 17 around the first insulating layer 17. The second insulating layer 18 having a small thickness is provided, and the exterior of the second insulating layer 18 is a ground layer 19, and the electric field strength at the electrode end portion of the vacuum valve 16 and the boundary surface portion between the first insulating layer 17 and the second insulating layer 18 is provided. Therefore, the insulating thicknesses of the insulating layers 17 and 18 can be reduced. Moreover, the weight of the solid insulation switchgear which combines this electric equipment can be reduced.

なお、本発明は、上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。上記実施例では、異なる誘電率からなる絶縁層を2層で説明したが、3層以上の多層とし、電気機器側の絶縁層の誘電率を最も大きくし、また接地側の絶縁層の誘電率を最も小さくし、電気機器の電極端部および各絶縁層の境界面部での電界強度がほぼ同様になるようにしてもよい。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the summary of invention, it can implement in various deformation | transformation. In the above embodiment, two insulating layers having different dielectric constants have been described. However, the dielectric constant of the insulating layer on the electric equipment side is maximized, and the dielectric constant of the insulating layer on the ground side is set to be three or more. The electric field strength at the electrode end portion of the electric device and the boundary surface portion of each insulating layer may be substantially the same.

また、モールドした電気機器を遮断部14で説明したが、断路部23や接続導体15などにも用いることができる。   Moreover, although the molded electric device was demonstrated by the interruption | blocking part 14, it can be used also for the disconnection part 23, the connection conductor 15, etc. FIG.

更に、第2の絶縁層18の外周に接地層19を設けて説明したが、各相を所定の定格電圧に耐え得る気中ギャップを介して独立固定させれば、接地層18を設けてなくてもよい。この場合、気中ギャップも絶縁媒体であるので、電気機器の電極端部、第1と第2の絶縁層17、18の境界面部、および第2の絶縁層18と絶縁媒体との境界面部、即ち第2の絶縁層18沿面の電界強度が同様になるようにすればよい。   Furthermore, although the ground layer 19 is provided on the outer periphery of the second insulating layer 18, the ground layer 18 is not provided if each phase is independently fixed via an air gap that can withstand a predetermined rated voltage. May be. In this case, since the air gap is also an insulating medium, the electrode end portion of the electric device, the boundary surface portion between the first and second insulating layers 17 and 18, and the boundary surface portion between the second insulating layer 18 and the insulating medium, That is, the electric field intensity along the second insulating layer 18 may be made similar.

本発明の実施例に係る固体絶縁スイッチギヤの構成を一部断面して示す側面図。The side view which shows the structure of the solid insulation switchgear which concerns on the Example of this invention in partial cross section. 本発明の実施例に係る遮断部を示す断面図。Sectional drawing which shows the interruption | blocking part which concerns on the Example of this invention. 本発明の実施例に係る電界強度と誘電率との関係を示す特性図。The characteristic view which shows the relationship between the electric field strength which concerns on the Example of this invention, and a dielectric constant. 本発明の実施例に係る電界強度と絶縁厚さとの関係を示す特性図。The characteristic view which shows the relationship between the electric field strength which concerns on the Example of this invention, and insulation thickness. 異なる誘電率からなる多層絶縁層の電界強度を説明する説明図。Explanatory drawing explaining the electric field strength of the multilayer insulating layer which consists of a different dielectric constant.

符号の説明Explanation of symbols

1 高電圧電極
2 接地電極
3 絶縁層
4 高電圧側絶縁層
5 接地側絶縁層
10a ケーブル部
10b 開閉部
10c 母線部
11 ケーブルヘッド
12 変流器
13 電力用ケーブル
14 遮断部
15 接続導体
16、25 真空バルブ
17 第1の絶縁層
18 第2の絶縁層
19 接地層
20、26 絶縁操作ロッド
21、27 操作機構
22 連絡導体
23 断路部
24 母線
DESCRIPTION OF SYMBOLS 1 High voltage electrode 2 Ground electrode 3 Insulating layer 4 High voltage side insulating layer 5 Ground side insulating layer 10a Cable part 10b Opening and closing part 10c Busbar part 11 Cable head 12 Current transformer 13 Power cable 14 Breaking part 15 Connection conductors 16 and 25 Vacuum valve 17 First insulating layer 18 Second insulating layer 19 Grounding layer 20, 26 Insulating operating rods 21, 27 Operating mechanism 22 Connecting conductor 23 Disconnecting portion 24 Busbar

Claims (1)

絶縁材料でモールドして多層の絶縁層を形成した電気機器を組合せ、電源系統を構成する固体絶縁スイッチギヤであって、
前記電気機器の周りには、外周方向に向かう程、誘電率が小さくなるように主回路導体端部を露出させて前記多層の絶縁層を形成し、
前記電気機器の電極端部、および前記多層の絶縁層のそれぞれの境界面部の電界強度が等しくなるようにしたことを特徴とする固体絶縁スイッチギヤ。
A solid insulated switchgear that constitutes a power supply system by combining electrical devices molded with an insulating material to form a multilayer insulating layer,
Around the electrical equipment, the multilayer insulating layer is formed by exposing the end portion of the main circuit conductor so that the dielectric constant decreases toward the outer peripheral direction,
A solid insulating switchgear characterized in that the electric field strength of each of the electrode end portion of the electric device and the boundary surface portion of the multilayer insulating layer is equal.
JP2004056162A 2004-03-01 2004-03-01 Solid insulation switchgear Expired - Lifetime JP4303147B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004056162A JP4303147B2 (en) 2004-03-01 2004-03-01 Solid insulation switchgear
EP05004439A EP1571684A1 (en) 2004-03-01 2005-03-01 Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof
CNB2005100518238A CN100367588C (en) 2004-03-01 2005-03-01 Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056162A JP4303147B2 (en) 2004-03-01 2004-03-01 Solid insulation switchgear

Publications (2)

Publication Number Publication Date
JP2005251413A JP2005251413A (en) 2005-09-15
JP4303147B2 true JP4303147B2 (en) 2009-07-29

Family

ID=35031701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056162A Expired - Lifetime JP4303147B2 (en) 2004-03-01 2004-03-01 Solid insulation switchgear

Country Status (1)

Country Link
JP (1) JP4303147B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660303B2 (en) * 2005-07-12 2011-03-30 株式会社東芝 Solid insulation switchgear
JP4918301B2 (en) * 2006-07-19 2012-04-18 ソマール株式会社 Manufacturing method of power switchgear
KR100851760B1 (en) * 2007-04-18 2008-08-11 엘에스산전 주식회사 Vacuum interrupter
JP4734384B2 (en) * 2008-08-06 2011-07-27 株式会社日立製作所 Vacuum switch
JP5367544B2 (en) * 2009-11-24 2013-12-11 株式会社東芝 Mold vacuum valve test method
KR200459270Y1 (en) 2010-02-22 2012-03-23 엘에스산전 주식회사 Connection device for switching gear
JP2014049353A (en) * 2012-08-31 2014-03-17 Toshiba Corp Solid insulation switch gear and vacuum valve for solid insulation switch gear
JP6328998B2 (en) * 2014-05-22 2018-05-23 株式会社日立産機システム Unit switch, switchgear, and railway vehicle
CN116111483B (en) * 2023-02-22 2023-12-01 国网浙江省电力有限公司杭州供电公司 Strong current distribution box

Also Published As

Publication number Publication date
JP2005251413A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4303147B2 (en) Solid insulation switchgear
US11901709B2 (en) Gas-insulated switchgear
JP2009022115A (en) Solid insulated switchgear, and test method therefor
JP4660303B2 (en) Solid insulation switchgear
JP2009240095A (en) Vacuum breaker
CN101053044A (en) Electrical insulator particularly for medium voltage and high voltage
JP4190320B2 (en) Switchgear
CA1141427A (en) Protected electrical inductive apparatus
JP2006049329A (en) Switch gear
JP6471253B2 (en) Tank type vacuum circuit breaker
KR101501218B1 (en) Voltage control screen for vacuum interrupter and conductor
JP4632959B2 (en) Switchgear
WO2017022510A1 (en) Switching device and switch gear
JP4062847B2 (en) Solid insulated bus
JP7026864B1 (en) Gas insulation switchgear
JP4908132B2 (en) Insulation structure of electrical equipment and switchgear using the insulation structure
JP4498251B2 (en) Switchgear insulation structure
JP3369319B2 (en) Disconnector with resistance
JPH0749690Y2 (en) Insulator and insulator tube damage prevention device
JP4111504B2 (en) Switchgear
JP6374147B2 (en) Tank type vacuum circuit breaker
JP2001345224A (en) Transformer or reactor
JP2748711B2 (en) Insulation case using insulated conductor unit with conductive layer on conductor insulation
WO2000074094A1 (en) Electric switching device
JP2007318871A (en) Conductor connector and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4303147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5