JP2003004624A - Particle detector - Google Patents

Particle detector

Info

Publication number
JP2003004624A
JP2003004624A JP2001183912A JP2001183912A JP2003004624A JP 2003004624 A JP2003004624 A JP 2003004624A JP 2001183912 A JP2001183912 A JP 2001183912A JP 2001183912 A JP2001183912 A JP 2001183912A JP 2003004624 A JP2003004624 A JP 2003004624A
Authority
JP
Japan
Prior art keywords
gas
particle
fluid
particles
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001183912A
Other languages
Japanese (ja)
Inventor
Tomonobu Matsuda
朋信 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP2001183912A priority Critical patent/JP2003004624A/en
Publication of JP2003004624A publication Critical patent/JP2003004624A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a particle detector in which S/N ratio is enhanced. SOLUTION: In the particle detector where sample gas G to be detected is introduced to a particle detecting region M being formed by irradiating with laser light La and particles contained in the sample gas G are detected by receiving the scattered light Ls from the particles, the sample gas G is admixed with clean gas Ga having a low polarizability before being introduced to the particle detecting region M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粒子に光を照射し
て生じる散乱光を受光することにより流体に含まれる粒
子を検出する粒子検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle detector for detecting particles contained in a fluid by receiving scattered light generated by irradiating particles with light.

【0002】[0002]

【従来の技術】粒子検出装置としては、レーザ光を照射
して形成される粒子検出領域に検出対象となる流体を導
き、この流体に含まれる粒子を、レーザ光が粒子に照射
されて生じる散乱光を受光することによって検出するも
のが知られている。
2. Description of the Related Art As a particle detecting device, a fluid to be detected is guided to a particle detection area formed by irradiating laser light, and particles contained in this fluid are scattered by irradiating the particle with laser light. It is known to detect light by receiving light.

【0003】近年、精密電子機器は高密度・高精密とな
っており、その製造は清浄な環境下(例えば、クリーン
ルーム)で行われている。そのため、クリーンルームの
清浄度や、洗浄等に使用される液体やガスの清浄度につ
いて、高いものが要求されている。これらの清浄度を管
理するには、一度に大量の試料を粒子検出装置に導き、
その試料中の微小粒子を検出する必要がある。そこで、
大量の試料を導くためには、流路の断面積を大きくする
と共に、レーザ光を照射して形成される粒子検出領域を
大きくする必要がある。
In recent years, precision electronic equipment has become high-density and high-precision, and its manufacture is performed in a clean environment (for example, a clean room). Therefore, the cleanliness of clean rooms and the cleanliness of liquids and gases used for cleaning and the like are required to be high. To control these cleanliness, lead a large amount of sample at one time to the particle detector,
It is necessary to detect the microparticles in the sample. Therefore,
In order to guide a large amount of sample, it is necessary to increase the cross-sectional area of the flow channel and the particle detection region formed by irradiating the laser beam.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、粒子検
出領域を大きくすると、粒子検出領域内の流体の分子数
が多くなって、その分子が発する散乱光が増大し、結果
として背景光の増加による光電素子のショットノイズが
増加する。すると、散乱光を受光した光電素子が出力す
る電気信号のS/N比(信号対雑音比)が低下し、微小
粒子の検出が困難になる。
However, if the particle detection region is enlarged, the number of molecules of the fluid in the particle detection region increases, and the scattered light emitted by the molecules increases, and as a result, the photoelectric conversion due to the increase in background light occurs. Shot noise of the device increases. Then, the S / N ratio (signal-to-noise ratio) of the electric signal output by the photoelectric device that receives the scattered light is lowered, and it becomes difficult to detect the fine particles.

【0005】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、S/N比を向上させた粒子検出装置を提供しよ
うとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a particle detecting device having an improved S / N ratio. Is.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、光を照射して形成される粒子検出
領域に検出対象となる流体を導き、この流体に含まれる
粒子を、前記光が粒子に照射されて生じる散乱光を受光
することによって検出する粒子検出装置において、前記
流体に分極率の低い流体を混合して前記粒子検出領域に
導くようにした。
In order to solve the above-mentioned problems, the invention according to claim 1 introduces a fluid to be detected into a particle detection region formed by irradiating light and removes particles contained in the fluid. In a particle detection device that detects scattered light generated by irradiating the particles with the light, a fluid having a low polarizability is mixed with the fluid and is guided to the particle detection region.

【0007】請求項2に係る発明は、光を照射して形成
される粒子検出領域に検出対象となる流体を導き、この
流体に含まれる粒子を、前記光が粒子に照射されて生じ
る散乱光を受光することによって検出する粒子検出装置
において、前記流体を置換手段を用いて分極率の低い流
体に置換し、この分極率の低い流体を前記粒子検出領域
に導くようにした。
According to a second aspect of the present invention, a fluid to be detected is guided to a particle detection region formed by irradiating light, and particles contained in this fluid are scattered light generated by irradiating the particles with the light. In the particle detecting device for detecting by receiving light, the fluid is replaced with a fluid having a low polarizability by using a replacement means, and the fluid having a low polarizability is guided to the particle detection region.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
粒子検出装置の第1の実施の形態の構成図、図2は本発
明に係る粒子検出装置の第2の実施の形態の構成図、図
3は電気移動度分級器の構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a configuration diagram of a first embodiment of a particle detection device according to the present invention, FIG. 2 is a configuration diagram of a second embodiment of a particle detection device according to the present invention, and FIG. 3 is an electric transfer. It is a block diagram of a degree classifier.

【0009】本発明に係る粒子検出装置の第1の実施の
形態は、図1に示すように、試料気体Gを粒子検出領域
Mに導くインレットチューブ1と、分極率の低い清浄気
体Gaを試料気体Gに混合するためインレットチューブ
1に供給する気体供給部2と、試料気体Gと清浄気体G
aの混合気体Gmに含まれる粒子を検出する粒子検出部
3と、試料気体Gと清浄気体Gaの混合気体Gmを粒子
検出部3から外部に排出するアウトレットチューブ4
と、試料気体Gと清浄気体Gaを混合して吸引する吸引
ポンプ5などを備える。
In the first embodiment of the particle detecting apparatus according to the present invention, as shown in FIG. 1, an inlet tube 1 for guiding a sample gas G to a particle detecting region M and a clean gas Ga having a low polarizability are used as a sample. Gas supply unit 2 for supplying to inlet tube 1 for mixing with gas G, sample gas G and clean gas G
a particle detection unit 3 for detecting particles contained in the mixed gas Gm of a, and an outlet tube 4 for discharging the mixed gas Gm of the sample gas G and the clean gas Ga from the particle detection unit 3 to the outside.
And a suction pump 5 for mixing and sucking the sample gas G and the clean gas Ga.

【0010】気体供給部2は、分極率の低い清浄気体G
a、例えばヘリウムHeなどを貯留したボンベ6と、試
料気体Gに対する清浄気体Gaの混合量を調整する流量
制御バルブ7と、フィルタ8からなる。清浄気体Ga
は、インレットチューブ1に配管9を接続することによ
り、試料気体Gと混合される。散乱光Lsの強度は、分
極率の二乗に比例するので、低分極率の気体ではレーザ
Laを照射しても分極率がヘリウムの約8倍の窒素を主
成分とする空気ほど散乱光Lsを発しない。
The gas supply unit 2 is a clean gas G having a low polarizability.
a, a cylinder 6 that stores, for example, helium He, a flow rate control valve 7 that adjusts the amount of the clean gas Ga mixed with the sample gas G, and a filter 8. Clean gas Ga
Is mixed with the sample gas G by connecting the pipe 9 to the inlet tube 1. Since the intensity of the scattered light Ls is proportional to the square of the polarizability, even in the case of a gas having a low polarizability, even if the laser La is irradiated, the air whose main polarizability is about 8 times that of helium has the scattered light Ls. Do not emit.

【0011】粒子検出部3は、レーザ光Laを照射して
粒子検出領域Mを形成するレーザ発振器10と、混合気
体Gmにより形成される流路11と、散乱光Lsを受光
する受光部12を備えている。レーザ発振器10は、レ
ーザ光Laを放射するHe・Neレーザ管13と、He
・Neレーザ管13と流路11を挟んで対向して設置さ
れ、He・Neレーザ管13が放射するレーザ光Laを
反射してHe・Neレーザ管13に帰還させる凹面鏡1
4からなる。
The particle detecting section 3 includes a laser oscillator 10 which irradiates a laser beam La to form a particle detecting region M, a flow path 11 formed by a mixed gas Gm, and a light receiving section 12 which receives scattered light Ls. I have it. The laser oscillator 10 includes a He / Ne laser tube 13 that emits a laser beam La and a He / Ne laser tube 13.
A concave mirror 1 that is installed to face the Ne laser tube 13 with the channel 11 in between and that reflects the laser light La emitted by the He / Ne laser tube 13 and returns it to the He / Ne laser tube 13.
It consists of 4.

【0012】流路11は、粒子の検出対象となる試料気
体Gと清浄気体Gaの混合気体Gmをアウトレットチュ
ーブ4の下流に接続した吸引ポンプ5が吸引することに
より、混合気体Gmがインレットチューブ1からアウト
レットチューブ4にながれて形成される。レーザ光La
と流路11が交差する箇所が粒子検出領域Mとなる。
In the flow path 11, the mixed gas Gm of the sample gas G and the clean gas Ga, which are particles to be detected, is sucked by the suction pump 5 connected to the downstream side of the outlet tube 4, so that the mixed gas Gm is introduced into the inlet tube 1. Formed from the outlet tube 4 to the outlet tube 4. Laser light La
The part where the flow path 11 intersects with the particle detection region M.

【0013】受光部12は、粒子検出領域Mで生じる散
乱光Lsを集光する集光レンズ15と、集光した散乱光
Lsを光電変換するフォトダイオードなどの光電素子1
6を備え、混合気体Gmに粒子が含まれている場合に粒
子検出領域Mにおいて粒子に照射されたレーザ光Laに
よる散乱光Lsを受光し、散乱光Lsの強度に応じた電
気信号を出力する。
The light receiving section 12 has a condenser lens 15 for condensing the scattered light Ls generated in the particle detection region M, and a photoelectric element 1 such as a photodiode for photoelectrically converting the condensed scattered light Ls.
When the mixed gas Gm contains particles, the scattered light Ls by the laser light La with which the particles are irradiated in the particle detection region M is received, and an electric signal corresponding to the intensity of the scattered light Ls is output. .

【0014】以上のように構成した本発明に係る粒子検
出装置の第1の実施の形態における動作について説明す
る。検出対象の試料気体Gと清浄気体Gaをインレット
チューブ1内で混合して混合気体Gmとし、この混合気
体Gmを吸引ポンプ5によって粒子検出領域Mに導く。
The operation of the first embodiment of the particle detecting device according to the present invention configured as above will be described. The sample gas G to be detected and the clean gas Ga are mixed in the inlet tube 1 to form a mixed gas Gm, and this mixed gas Gm is guided to the particle detection region M by the suction pump 5.

【0015】粒子検出領域Mでは、混合気体Gmにレー
ザ光Laが照射されるが、混合気体Gmが発する散乱光
Lsの光量は、試料気体Gのみの場合の散乱光Lsの光
量より少なくなる。
In the particle detection region M, the mixed gas Gm is irradiated with the laser light La, but the amount of scattered light Ls emitted by the mixed gas Gm is smaller than that of the sample gas G alone.

【0016】従って、混合気体Gmによって生じる背景
光が低く抑えられるので、フォトダイオードなどの光電
素子16のショットノイズのレベルも低くすることがで
きる。その結果として、粒子検出装置のS/N比を向上
させることができる。
Therefore, since the background light generated by the mixed gas Gm is suppressed to a low level, the level of shot noise of the photoelectric element 16 such as a photodiode can also be lowered. As a result, the S / N ratio of the particle detecting device can be improved.

【0017】本発明に係る粒子検出装置の第2の実施の
形態は、図2に示すように、検出対象となる粒子を含む
試料気体Gを分極率の低い清浄気体Gaに置換する分級
器21と、試料気体Gを分級器21に導くサンプリング
チューブ22と、清浄気体Gaを分級器21に供給する
気体供給部23と、清浄気体Gaを粒子検出領域Mに導
くインレットチューブ24と、清浄気体Gaに含まれる
粒子を検出する粒子検出部25と、試料気体G又は清浄
気体Gaを外部に排出するアウトレットチューブ26,
27と、試料気体G又は清浄気体Gaを吸引する吸引ポ
ンプ28,29などを備える。
In the second embodiment of the particle detecting apparatus according to the present invention, as shown in FIG. 2, a classifier 21 for replacing the sample gas G containing particles to be detected with a clean gas Ga having a low polarizability. A sampling tube 22 for guiding the sample gas G to the classifier 21, a gas supply unit 23 for supplying the clean gas Ga to the classifier 21, an inlet tube 24 for guiding the clean gas Ga to the particle detection region M, and the clean gas Ga. A particle detecting section 25 for detecting particles contained in the outlet tube 26 for discharging the sample gas G or the clean gas Ga to the outside.
27 and suction pumps 28, 29 for sucking the sample gas G or the clean gas Ga.

【0018】分級器21は、大量の清浄気体を試料気体
に混合し、物理的法則を用いてその試料気体中に含まれ
るある粒径範囲の粒子を一部の気体と共に取り出す装置
で、電気移動度分級器(Differential Mobility Analyz
er)、拡散法(ディフュージョン・バッテリー法)分級
器や慣性法(インパクタ法、サイクロン法)分級器など
が適用できる。
The classifier 21 is a device for mixing a large amount of clean gas with a sample gas and taking out particles in a certain particle size range contained in the sample gas together with a part of the gas by using a physical law. Degree Classifier (Differential Mobility Analyz
er), diffusion method (diffusion battery method) classifier and inertial method (impactor method, cyclone method) classifier etc. can be applied.

【0019】なお、気体供給部23、粒子検出部25
は、図1に示す気体供給部2、粒子検出部3と構成が同
じなので説明を省略する。
The gas supply unit 23 and the particle detection unit 25
Has the same structure as the gas supply unit 2 and the particle detection unit 3 shown in FIG.

【0020】分級器21として電気移動度分級器を用い
ると、図3に示すように、中和器30を通ることによっ
て試料気体G中の粒子が荷電され、荷電された粒子を含
む試料気体Gが、外円筒部材31の上部側面から、外円
筒部材31と内円筒(中心ロッド)32の間に導入され
る。すると、試料気体Gは、試料気体Gの内側を通る分
極率の低い清浄気体Gaと乱れることなく合流して流下
する。
When an electric mobility classifier is used as the classifier 21, as shown in FIG. 3, particles in the sample gas G are charged by passing through the neutralizer 30, and the sample gas G containing the charged particles is charged. Are introduced between the outer cylinder member 31 and the inner cylinder (center rod) 32 from the upper side surface of the outer cylinder member 31. Then, the sample gas G merges with the clean gas Ga having a low polarizability passing through the inside of the sample gas G without being disturbed and flows down.

【0021】そして、高圧電源33よって中心ロッド3
2に電圧が印加されているので、中心ロッド32と逆極
性に帯電している粒子は中心ロッド32方向に引き寄せ
られる。従って、印加電圧に応じた電気移動度をもつ粒
子のみが、中心ロッド32の下方に設けられたサンプリ
ングスリット34から試料気体Gと置換された清浄気体
Gaと共に取り出される。一方、試料気体Gと余分な清
浄気体Gaは、アウトレットチューブ26を介して外部
に排出される。
The central rod 3 is driven by the high voltage power source 33.
Since the voltage is applied to 2, the particles charged with the opposite polarity to the central rod 32 are attracted toward the central rod 32. Therefore, only particles having an electric mobility corresponding to the applied voltage are taken out together with the clean gas Ga replaced with the sample gas G from the sampling slit 34 provided below the center rod 32. On the other hand, the sample gas G and the extra clean gas Ga are discharged to the outside through the outlet tube 26.

【0022】電気移動度分級器によって清浄気体Gaと
共に取り出される粒子の粒径Dpは、次式により求めら
れる。 Dp=(2CcpeLV)/(3μQcln(R2/R
1))
The particle diameter Dp of the particles taken out together with the clean gas Ga by the electric mobility classifier is obtained by the following equation. Dp = (2CcpeLV) / (3μQcln (R2 / R
1))

【0023】ここで、Ccはカニンガムの補正係数、p
は荷電数、eは電気素量、μは試料気体Gの粘性係数、
Qcは清浄気体Gaの流量、R1は中心ロッド32の半
径、R2は外円筒部材31の内半径、Vは印加電圧、L
は試料気体Gの導入部からサンプリングスリット34ま
での距離である。従って、電気移動度分級器によって清
浄気体Gaと共に取り出すことができる粒子の粒径Dp
は、印加電圧Vにより制御できる。
Here, Cc is a correction coefficient of Cunningham, p
Is the number of charges, e is the elementary charge, μ is the viscosity coefficient of the sample gas G,
Qc is the flow rate of the clean gas Ga, R1 is the radius of the central rod 32, R2 is the inner radius of the outer cylindrical member 31, V is the applied voltage, L
Is the distance from the introduction portion of the sample gas G to the sampling slit 34. Therefore, the particle diameter Dp of the particles that can be taken out together with the clean gas Ga by the electric mobility classifier
Can be controlled by the applied voltage V.

【0024】以上のように構成した本発明に係る粒子検
出装置の第2の実施の形態における動作について説明す
る。検出対象となる粒子を含む試料気体Gをサンプリン
グチューブ22を介して分級器21に導くと共に、清浄
気体Gaを気体供給部23により分級器21に供給す
る。
The operation of the second embodiment of the particle detecting apparatus according to the present invention constructed as above will be described. The sample gas G containing particles to be detected is guided to the classifier 21 via the sampling tube 22, and the clean gas Ga is supplied to the classifier 21 by the gas supply unit 23.

【0025】すると、分級器21の作用により、印加電
圧Vに応じた電気移動度をもつ粒子を含む清浄気体Ga
は、インレットチューブ24を介して粒子検出部25に
導かれる。一方、試料気体Gと余分な清浄気体Gaはア
ウトレットチューブ26を介して吸引ポンプ28により
外部に排出される。
Then, due to the action of the classifier 21, a clean gas Ga containing particles having an electric mobility corresponding to the applied voltage V is obtained.
Are guided to the particle detection unit 25 via the inlet tube 24. On the other hand, the sample gas G and the excess clean gas Ga are discharged to the outside by the suction pump 28 via the outlet tube 26.

【0026】粒子検出領域Mでは、清浄気体Gaにレー
ザ光Laが照射されるが、清浄気体Gaが発する散乱光
Lsの光量は、試料気体Gの場合の散乱光Lsの光量よ
り少なくなる。
In the particle detection region M, the clean gas Ga is irradiated with the laser light La, but the quantity of scattered light Ls emitted by the clean gas Ga is smaller than the quantity of scattered light Ls in the case of the sample gas G.

【0027】即ち、試料気体Gをそのまま粒子検出領域
Mに導いた場合の光電素子16の出力信号の波形は、図
4に示すように、試料気体Gによる散乱光Lsの強度が
高く、それに伴い光電素子16のショットノイズのレベ
ルも粒子による散乱光Lsの強度に近いレベルにある。
That is, the waveform of the output signal of the photoelectric element 16 when the sample gas G is guided to the particle detection region M as it is is that the intensity of the scattered light Ls by the sample gas G is high as shown in FIG. The shot noise level of the photoelectric element 16 is also close to the intensity of the light Ls scattered by the particles.

【0028】一方、分級器21で試料気体Gを分極率の
低い清浄気体Gaに置換して粒子検出領域Mに導いた場
合の光電素子16の出力信号の波形は、図5に示すよう
に、分極率の低い清浄気体Gaによる散乱光Lsの強度
が低く、それに伴い光電素子16のショットノイズのレ
ベルも粒子による散乱光Lsの強度より小さいレベルに
ある。
On the other hand, the waveform of the output signal of the photoelectric element 16 when the sample gas G is replaced with the clean gas Ga having a low polarizability by the classifier 21 and guided to the particle detection region M is as shown in FIG. The intensity of the scattered light Ls due to the clean gas Ga having a low polarizability is low, and accordingly, the level of the shot noise of the photoelectric element 16 is also lower than the intensity of the scattered light Ls due to the particles.

【0029】従って、試料気体Gを清浄気体Gaに置換
することにより背景光が低く抑えられるので、フォトダ
イオードなどの光電素子16のショットノイズのレベル
も低くすることができる。その結果として、粒子検出装
置のS/N比を向上させることができる。
Therefore, the background light can be suppressed to a low level by replacing the sample gas G with the clean gas Ga, so that the level of shot noise of the photoelectric element 16 such as a photodiode can be lowered. As a result, the S / N ratio of the particle detecting device can be improved.

【0030】また、試料気体Gに分極率の低い清浄気体
Gaを混合したり、或いは試料気体Gを分極率の低い清
浄気体Gaで置換したりすることによって、一度に大量
の試料気体Gを流すために粒子検出領域Mを大きくして
も、背景光の光量を増大させずに、粒子による散乱光L
sの強度レベルをノイズレベルよりも大きくすることが
できるので、試料気体G中の微小粒子の検出が可能にな
る。
Further, by mixing the sample gas G with the clean gas Ga having a low polarizability or by replacing the sample gas G with the clean gas Ga having a low polarizability, a large amount of the sample gas G flows at one time. Therefore, even if the particle detection region M is enlarged, the light amount of the background light is not increased and the scattered light L by the particles is increased.
Since the intensity level of s can be made higher than the noise level, it becomes possible to detect fine particles in the sample gas G.

【0031】[0031]

【発明の効果】以上説明したように請求項1に係る発明
によれば、流体に分極率の低い流体を混合して粒子検出
領域に導くようにしたので、背景光を低減でき、S/N
比を向上させることができる。
As described above, according to the first aspect of the present invention, the fluid having a low polarizability is mixed with the fluid to be guided to the particle detection region, so that the background light can be reduced and the S / N ratio can be reduced.
The ratio can be improved.

【0032】請求項2に係る発明によれば、流体を分極
率の低い流体に置換して粒子検出領域に導くようにした
ので、背景光を低減でき、S/N比を向上させることが
できる。
According to the second aspect of the invention, since the fluid is replaced with a fluid having a low polarizability and is guided to the particle detection region, the background light can be reduced and the S / N ratio can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子検出装置の第1の実施の形態
の構成図
FIG. 1 is a configuration diagram of a first embodiment of a particle detection device according to the present invention.

【図2】本発明に係る粒子検出装置の第2の実施の形態
の構成図
FIG. 2 is a configuration diagram of a second embodiment of a particle detection device according to the present invention.

【図3】電気移動度分級器の構成図FIG. 3 is a block diagram of an electric mobility classifier.

【図4】試料気体をそのまま粒子検出領域に導いた場合
の光電素子の出力信号を示す波形図
FIG. 4 is a waveform diagram showing an output signal of the photoelectric element when the sample gas is directly guided to the particle detection region.

【図5】分級器で試料気体を分極率の低い清浄気体に置
換して粒子検出領域に導いた場合の光電素子の出力信号
を示す波形図
FIG. 5 is a waveform diagram showing an output signal of a photoelectric element when a sample gas is replaced with a clean gas having a low polarizability by a classifier and led to a particle detection region.

【符号の説明】[Explanation of symbols]

2,23…気体供給部、3,25…粒子検出部、21…
分級器(置換手段)、G…試料気体、Ga…清浄気体、
La…レーザ光、Ls…散乱光、M…粒子検出領域。
2, 23 ... Gas supply unit, 3, 25 ... Particle detection unit, 21 ...
Classifier (replacement means), G ... Sample gas, Ga ... Clean gas,
La ... laser light, Ls ... scattered light, M ... particle detection region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光を照射して形成される粒子検出領域に
検出対象となる流体を導き、この流体に含まれる粒子
を、前記光が粒子に照射されて生じる散乱光を受光する
ことによって検出する粒子検出装置において、前記流体
に分極率の低い流体を混合して前記粒子検出領域に導く
ことを特徴とする粒子検出装置。
1. A fluid to be detected is guided to a particle detection region formed by irradiating light, and particles contained in the fluid are detected by receiving scattered light generated by irradiating the light with the particles. In the particle detecting device, the fluid is mixed with a fluid having a low polarizability and is guided to the particle detecting region.
【請求項2】 光を照射して形成される粒子検出領域に
検出対象となる流体を導き、この流体に含まれる粒子
を、前記光が粒子に照射されて生じる散乱光を受光する
ことによって検出する粒子検出装置において、前記流体
を置換手段を用いて分極率の低い流体に置換し、この分
極率の低い流体を前記粒子検出領域に導くことを特徴と
する粒子検出装置。
2. A fluid to be detected is guided to a particle detection region formed by irradiating light, and particles contained in this fluid are detected by receiving scattered light generated by irradiating the light with the particles. In the particle detecting device according to the present invention, the fluid is replaced with a fluid having a low polarizability by using a replacement means, and the fluid having a low polarizability is guided to the particle detection region.
JP2001183912A 2001-06-18 2001-06-18 Particle detector Pending JP2003004624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183912A JP2003004624A (en) 2001-06-18 2001-06-18 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183912A JP2003004624A (en) 2001-06-18 2001-06-18 Particle detector

Publications (1)

Publication Number Publication Date
JP2003004624A true JP2003004624A (en) 2003-01-08

Family

ID=19023774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183912A Pending JP2003004624A (en) 2001-06-18 2001-06-18 Particle detector

Country Status (1)

Country Link
JP (1) JP2003004624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2013040845A (en) * 2011-08-15 2013-02-28 Taisei Corp Charge amount specification apparatus for charged particle
JP2017053822A (en) * 2015-09-11 2017-03-16 株式会社東芝 Particle measurement apparatus and particle measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114664A (en) * 2003-10-10 2005-04-28 Rion Co Ltd Device for particle detection
JP2013040845A (en) * 2011-08-15 2013-02-28 Taisei Corp Charge amount specification apparatus for charged particle
JP2017053822A (en) * 2015-09-11 2017-03-16 株式会社東芝 Particle measurement apparatus and particle measurement method

Similar Documents

Publication Publication Date Title
JP6328493B2 (en) Measuring apparatus and measuring method
JP6075979B2 (en) Particle counting system
US6639671B1 (en) Wide-range particle counter
KR20210052506A (en) Nanoparticle detection in production equipment and surfaces
US10393639B2 (en) Method and system for simultaneously measuring fine particle concentrations PM1, PM2.5 and PM10—particulate matter
US8911955B2 (en) Virus detection device and virus detection method
KR20170012259A (en) Measurement device and measurement method
WO2012150672A1 (en) Detection device and detection method
JP5443787B2 (en) A device that counts fibers in the air with high accuracy
WO2012081285A1 (en) Detection device and detection method
JP2009539084A (en) High-throughput particle counter
US20200103334A1 (en) Miniaturized optical particle detector
US11117144B2 (en) Cyclone collector
KR100219420B1 (en) Particle measuring device having cycloneshaped collector for semiconductor cleanroom applications
JP2003004624A (en) Particle detector
JP2013002947A (en) Particle measuring device
WO2012081284A1 (en) Detection device and detection method
JP2015206669A (en) Collector, detector, cleaner, collecting method, detection method and cleaning method
JPH0733992B2 (en) Air filter collection efficiency measuring device
WO2012081358A1 (en) Detection device and detection method
JP2014059275A (en) Particle measuring apparatus
JP2003287491A (en) Apparatus and method for analyzing particle
JP4180952B2 (en) Wide range particle counter
JP2000325729A (en) Fine particle concentrator and fine particle analyser using that
RU2801784C1 (en) Method for control of content of mechanical impurities in aerosols and liquids and device of optical cell for its implementation