JP2003004440A - Method of measuring longitudinal section profile of road surface - Google Patents

Method of measuring longitudinal section profile of road surface

Info

Publication number
JP2003004440A
JP2003004440A JP2001190741A JP2001190741A JP2003004440A JP 2003004440 A JP2003004440 A JP 2003004440A JP 2001190741 A JP2001190741 A JP 2001190741A JP 2001190741 A JP2001190741 A JP 2001190741A JP 2003004440 A JP2003004440 A JP 2003004440A
Authority
JP
Japan
Prior art keywords
road surface
measuring
measurement
roller
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190741A
Other languages
Japanese (ja)
Other versions
JP3292200B1 (en
Inventor
Toshihiko Fukuhara
敏彦 福原
Akihiko Yonetani
昭彦 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNWAY KK
Original Assignee
SUNWAY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNWAY KK filed Critical SUNWAY KK
Priority to JP2001190741A priority Critical patent/JP3292200B1/en
Priority to PCT/JP2001/006513 priority patent/WO2002010682A1/en
Priority to US10/343,421 priority patent/US6647636B2/en
Priority to EP01955540A priority patent/EP1316779A1/en
Application granted granted Critical
Publication of JP3292200B1 publication Critical patent/JP3292200B1/en
Publication of JP2003004440A publication Critical patent/JP2003004440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of measuring the longitudinal section profile of a road for measuring easily and accurately the flatness of the road surface in its longitudinal direction. SOLUTION: With a first and second connecting rods 14, 15, aligned straight in a measuring block 10, a reference distance between the centers of a first and third rolls 11, 13, are divided in a plurality of measuring positions. When the measuring block passes over the reference distance in the longitudinal direction of the road to move the third roller from one measuring point to another, a rotary encoder detects the displacement angle made between the first and second connection rods at each measuring position. Based on the detected displacement angle value and the known height data at each measuring position in the measuring block located at the immediate preceding measuring position, the height data of the road surface at the measuring position is calculated, using the infinite impulse response filter calculation. Thus unit road surface profiles at the reference distance are obtained and integrated, to obtain a longitudinal section profile of the road surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、道路の路面等の凹
凸を有する平面の凹凸状態を計測する路面縦断プロファ
イルの測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a profile of a road surface profile for measuring the unevenness of a flat surface having unevenness such as the road surface of a road.

【0002】[0002]

【従来の技術】従来、直線上にある被測定物の真直度を
測定する方法としては、特公昭61−33364号公報
に示すように(図7参照)、被測定物3に平行な直線ガ
イド5に運動可能に係合したスライド4上に二つの変位
計6,7を短いピッチで並列して被測定物3に向かって
配置し、スライド4を一ピッチ宛測定長の全長にわたっ
て一方向に一回送って各位置において二つの変位計6,
7と被測定物3の距離を各変位計6,7により各々測定
し、そのデータを処理することにより直線ガイドと共に
被測定物の真直度を求める方法(以下、逐次二点法と記
す)が知られている。この逐次二点法によれば、直線ガ
イドと被測定物両者の真直形状曲線を独立に求めること
ができ、ガイドが真直ではなくても被測定物の真直度を
正確に計測することができるので非常に便利であった。
2. Description of the Related Art Conventionally, as a method for measuring the straightness of an object to be measured on a straight line, as shown in Japanese Patent Publication No. Sho 61-33364 (see FIG. 7), a straight line guide parallel to the object to be measured 3 is used. Two displacement gauges 6 and 7 are arranged in parallel at a short pitch on the slide 4 movably engaged with 5 toward the DUT 3, and the slide 4 is placed in one direction over the entire length of the measurement length for one pitch. Two displacement meters at each position, sent once
7 is a method of measuring the distance between the object to be measured 3 and each of the displacement meters 6 and 7, and processing the data to obtain the straightness of the object to be measured together with the linear guide (hereinafter, referred to as the sequential two-point method). Are known. According to this sequential two-point method, it is possible to independently obtain the straight shape curves of both the linear guide and the object to be measured, and it is possible to accurately measure the straightness of the object to be measured even if the guide is not straight. It was very convenient.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記逐次2点
法では、2つの変位計を常に平行に維持しなければなら
ず、測定が非常に煩雑であるという問題がある。また、
最近の道路は、表面に細かい凹凸形状を有する排水性及
び吸音性の舗装が採用されているが、そのため、上記逐
次2点法によると、変位計のプローブが上記凹凸形状に
影響されないように配慮する必要がある。本発明は、上
記した問題を解決しようとするもので、道路の縦方向の
路面の平坦度を簡易にかつ精度よく計測できる路面縦断
プロファイルの測定方法を提供することを目的とする。
However, the above-mentioned sequential two-point method has a problem that the two displacement gauges must always be kept in parallel, and the measurement is very complicated. Also,
Recent roads use drainage and sound absorbing pavements with fine irregularities on the surface. Therefore, according to the sequential two-point method, care should be taken to prevent the displacement gauge probe from being affected by the irregularities. There is a need to. The present invention is intended to solve the above problems, and an object of the present invention is to provide a method for measuring a road surface vertical profile that can easily and accurately measure the flatness of a road surface in the vertical direction of a road.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に上記請求項1の発明の構成上の特徴は、測定車両を縦
方向に道路上を移動させて路面の縦方向の凹凸状態を計
測する路面縦断プロファイルの測定方法であって、同一
直線上に所定間隔を隔ててかつ回転方向を同一直線方向
に合わせて円盤状の第1ローラ、第2ローラ及び第3ロ
ーラを配設し、第1及び第2ローラの各回転軸に取り付
けられて第1及び第2ローラを回転自在に連結する第1
連結棒と、第2及び第3ローラの各回転軸に取り付けら
れて第2及び第3ローラを回転自在に連結する第2連結
棒と、ローラの移動距離を測定する距離測定手段と、第
1連結棒と第2連結棒が互いに真直な状態から回動した
ときの変位角度を検出する角度検出手段とを設けてなる
測定ブロックを用い、測定ブロックを測定車両に連結部
材によって路面に向けて付勢するように弾性的に取付
け、第1及び第2連結棒が真直状態での第1ローラ及び
第3ローラの中心間寸法を基準距離として、基準距離を
複数点に分割した複数の計測位置を決め、測定ブロック
が路面の縦方向に基準距離を通るときに進行方向先頭の
ローラが計測位置に順次到達する毎に、各計測位置にて
第1及び第2連結棒のなす変位角度を角度検出手段によ
り検出し、角度検出手段による変位角度検出値と測定ブ
ロックが直前の計測位置に在るときの測定ブロックにお
ける各計測位置での既知の高さデータとに基づいてフィ
ルタ演算手法を用いて各計測位置での路面の高さデータ
を算出することにより基準距離の単位路面プロファイル
を求め、路面の縦方向全体にわたって連続した単位路面
プロファイルを集積することにより路面の縦断プロファ
イルを作成するようにすることにある。
In order to achieve the above object, the structural feature of the invention of claim 1 is that the measurement vehicle is vertically moved on the road to measure the unevenness of the road surface in the vertical direction. A method for measuring a longitudinal profile of a road surface, comprising: arranging a disk-shaped first roller, a second roller, and a third roller at a predetermined interval on the same straight line and with their rotation directions aligned with the same straight line direction, A first roller attached to each rotary shaft of the first and second rollers to rotatably connect the first and second rollers
A connecting rod; a second connecting rod attached to each rotating shaft of the second and third rollers to rotatably connect the second and third rollers; distance measuring means for measuring a moving distance of the roller; A measuring block provided with an angle detecting means for detecting a displacement angle when the connecting rod and the second connecting rod rotate from a straight state is used, and the measuring block is attached to the measuring vehicle by a connecting member toward the road surface. The first and second connecting rods are elastically attached so as to urge each other, and the reference distance is the center distance between the first roller and the third roller when the first and second connecting rods are in a straight state. When the measurement block passes the reference distance in the longitudinal direction of the road surface, the displacement angle formed by the first and second connecting rods is detected at each measurement position each time the roller in the traveling direction sequentially reaches the measurement position. Angle detection by means of The height of the road surface at each measurement position is calculated using a filter calculation method based on the detected displacement angle value by the step and the known height data at each measurement position in the measurement block when the measurement block is at the immediately previous measurement position. By calculating the height data, a unit road surface profile of the reference distance is obtained, and unit road surface profiles that are continuous over the entire length of the road surface are accumulated to create a longitudinal profile of the road surface.

【0005】上記のように構成した請求項1の発明にお
いては、測定ブロックは、起点からスタートして路面の
縦方向に基準距離に相当する距離を通る。その際、先頭
のローラが基準距離内の予め決められた各計測位置に順
次到達する毎に、各計測位置にて第1連結棒及び第2連
結棒のなす変位角度が角度検出手段により検出される。
この角度検出手段による検出値と、この角度検出位置の
直前の計測位置での測定ブロックにおける各計測位置の
既知の高さデータとに基づいて、フィルタ演算手法を用
いることにより順次各計測位置での高さデータを算出す
ることができる。各計測位置での算出データを合せるこ
とにより、基準距離内の路面のプロファイルを、短いピ
ッチの各計測位置毎に精密に得ることができる。このよ
うに得られた基準距離における単位路面プロファイルを
路面の縦方向全体にわたって連続して集積することによ
り、路面全体の精密な縦断プロファイルを得ることがで
きる。
In the invention of claim 1 configured as described above, the measurement block starts from the starting point and passes a distance corresponding to the reference distance in the longitudinal direction of the road surface. At that time, each time the leading roller sequentially reaches each predetermined measurement position within the reference distance, the displacement angle formed by the first connecting rod and the second connecting rod is detected by the angle detecting means at each measuring position. It
Based on the value detected by the angle detection means and the known height data of each measurement position in the measurement block at the measurement position immediately before this angle detection position, the filter calculation method is used to sequentially measure each measurement position. Height data can be calculated. By combining the calculated data at each measurement position, the profile of the road surface within the reference distance can be accurately obtained for each measurement position with a short pitch. By precisely accumulating the unit road surface profiles at the reference distance thus obtained over the entire longitudinal direction of the road surface, it is possible to obtain a precise vertical profile of the entire road surface.

【0006】以下に、フィルタ演算手法の例として、無
限インパルス応答フィルタ(InfiniteImpulse Response
Filter、以下IIRフィルタと記す)を用いた方法に
ついて説明する。図3に示すように、第1及び第2連結
棒14,15(ここでは同一長さである)が真直状態で
の第1ローラ11及び第3ローラ13の中心間距離であ
る基準距離50(任意単位とする)を例えば50等分
し、各計測位置をi〜(i−50)とする。各計測位置
に対応する路面高さをy(i)〜y(i−50)とする
と、第1連結棒14と第2連結棒15のなす角度u
(i)は、下記数1で表される。
In the following, as an example of a filter calculation method, an infinite impulse response filter (Infinite Impulse Response)
Filter, hereinafter referred to as IIR filter) will be described. As shown in FIG. 3, the reference distance 50 (which is the distance between the centers of the first roller 11 and the third roller 13 in a straight state of the first and second connecting rods 14 and 15 (here, having the same length) ( For example, it is divided into 50 equal parts, and each measurement position is set to i to (i-50). Assuming that the road surface height corresponding to each measurement position is y (i) to y (i-50), the angle u formed by the first connecting rod 14 and the second connecting rod 15
(I) is represented by the following mathematical expression 1.

【0007】[0007]

【数1】 [Equation 1]

【0008】ただし、aは定数である。数1をy(i)
で表すと下記数2となる。
However, a is a constant. Number 1 is y (i)
When expressed by, the following formula 2 is obtained.

【0009】[0009]

【数2】 [Equation 2]

【0010】ここで、上記数1をz変換することによ
り、下記数3となる。さらに、数3をY(z)で表すと
数4のようになる。
Here, the following expression 3 is obtained by z-converting the above expression 1. Furthermore, when the expression 3 is represented by Y (z), the expression 4 is obtained.

【0011】[0011]

【数3】 [Equation 3]

【0012】[0012]

【数4】 [Equation 4]

【0013】数4の分母をD(z)として展開すると、
数5のようになる。さらに、数5をD(z)及びD
(z)の積で表すと、D(z)とD(z)は数6に
示すようにまとめられる。
When the denominator of equation 4 is expanded as D (z),
It becomes like the number 5. Furthermore, the equation 5 is converted into D 1 (z) and D 2
When expressed by the product of (z), D 1 (z) and D 2 (z) can be summarized as shown in Formula 6.

【0014】[0014]

【数5】 [Equation 5]

【0015】[0015]

【数6】 [Equation 6]

【0016】D(z)=0の解すなわちフィルタの極P
kは、1が2個と、e[j(2π/ 25)i]各2個ず
つ(i=1〜25)、すなわち25の間の凹凸の積算に
対応する、ものである。この極Pkのふるまいは、
(i,i(Pk))であり、すべての極の絶対値が1
となり、D(z)を分母に持つフィルタ出力は、発散す
ることになる。そこで、さらに極を下記数7のように置
き換えることにより、フィルタの出力を収束させること
ができる。
The solution of D (z) = 0, that is, the pole P of the filter
k corresponds to 2 for 1 and 2 for each of e [j (2π / 25) i] (i = 1 to 25), that is, corresponds to integration of unevenness between 25. The behavior of this pole Pk is
(I, i (Pk) i ) and the absolute value of all poles is 1
Therefore, the filter output having D (z) as the denominator diverges. Therefore, the output of the filter can be converged by further replacing the poles as shown in the following Expression 7.

【0017】[0017]

【数7】 [Equation 7]

【0018】数7に基づき上記D(z)、D(z)
の極を置き換えることにより、下記数8、数9に示すよ
うに、D′(z)、D′(z)が得られる。
Based on Equation 7, the above D 1 (z) and D 2 (z)
By replacing the poles of, D 1 ′ (z) and D 2 ′ (z) are obtained as shown in the following formulas 8 and 9.

【0019】[0019]

【数8】 [Equation 8]

【0020】[0020]

【数9】 [Equation 9]

【0021】さらに、D′(z)、D′(z)を掛
け合せることにより、下記数10に示すように、D′
(z)にまとめられる。
Further, by multiplying D 1 ′ (z) and D 2 ′ (z), as shown in the following formula 10, D ′
(Z).

【0022】[0022]

【数10】 [Equation 10]

【0023】ここで、C〜C50は定数である。この
D′(z)を上記数4のD(z)と置き換えることによ
り、下記数11が得られ、さらに数11をU(z)で表
すことにより数12が得られる。
Here, C 1 to C 50 are constants. By replacing this D '(z) with D (z) of the above equation 4, the following equation 11 is obtained, and by expressing equation 11 by U (z), equation 12 is obtained.

【0024】[0024]

【数11】 [Equation 11]

【0025】[0025]

【数12】 [Equation 12]

【0026】上記数12を逆z変換することにより、計
測位置iでの第1連結棒14と第2連結棒15のなす変
位角度U(i)を表す数13が得られる。さらに、数1
3をy(i)で表すことにより計測位置iでの路面高さ
であるy(i)を示す数14が得られる。
By inverse z-transforming the above equation 12, the equation 13 representing the displacement angle U (i) formed by the first connecting rod 14 and the second connecting rod 15 at the measurement position i can be obtained. Furthermore, the number 1
By representing 3 by y (i), the equation 14 indicating the road surface height y (i) at the measurement position i can be obtained.

【0027】[0027]

【数13】 [Equation 13]

【0028】[0028]

【数14】 [Equation 14]

【0029】すなわち、IIR法を採用することによ
り、数14に示す路面縦断プロファイルの演算式を求め
ることができる。この演算式により、基準距離を複数の
区分に細分し、各計測位置での高さデータを、変位角度
U(i)と、直前の計測位置での測定ブロックの各計測
位置の既知の高さデータから求めることができる。
That is, by adopting the IIR method, it is possible to obtain the arithmetic expression of the road surface vertical profile shown in Expression 14. With this arithmetic expression, the reference distance is subdivided into a plurality of sections, and the height data at each measurement position is calculated as the displacement angle U (i) and the known height of each measurement position of the measurement block at the immediately previous measurement position. It can be determined from the data.

【0030】[0030]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を用いて説明すると、図1及び図2は同実施形
態である道路の路面Dの縦断方向のプロファイルを計測
する方法に用いる測定ブロック10の概略構成を正面図
及び平面図により示したものである。なお、道路Dの縦
断プロファイル計測位置は、路面の摩耗の最も激しいア
ウトホイールパス(OWP)といわれる車両の左車輪の
通過位置について行われる。この道路のアウトホイール
パスは、車両の70〜80%が通過する位置であること
が明らかになっている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 are used for the method for measuring the profile in the longitudinal direction of a road surface D of a road according to the embodiment. 1 shows a schematic configuration of a measurement block 10 with a front view and a plan view. The longitudinal profile measurement position of the road D is performed with respect to the passing position of the left wheel of the vehicle, which is called an out-wheel path (OWP) in which the road surface is most worn. The out-wheel path on this road is known to be where 70-80% of the vehicles pass.

【0031】測定ブロック10は、図1に示すように、
進行方向に向って後中前の3個の円盤形の第1、第2及
び第3ローラ11,12,13を有している。各ローラ
11,12,13は、硬質のゴムあるいはプラスチック
製であって、同一直線上に回転方向を同一直線方向に合
わせて配列されている。第1、第2及び第3ローラ1
1,12,13の外径は、本実施形態では100mmφ
になっている。第1、第2及び第3ローラ11,12,
13には、それぞれ回転軸11a,12a,13aが貫
通固定されている。第1ローラ11と第2ローラ12の
回転軸11a,12aの両端側には、長尺板状の一対の
第1連結棒14が回転軸11a,12aが回転自在なよ
うに固定されている。また、第2ローラ12と第3ロー
ラ13の回転軸12a,13aの両端には、長尺板状の
一対の第2連結棒15が回転軸12a,13aが回転自
在なように固定されている。本実施形態では、ローラ1
1,12間及び及ローラ12,13間の距離がいずれも
250mmにされており、したがって各ローラ11,1
2,13が一直線上に配列されたときの第1ローラ11
と第3ローラ13の中心間の寸法である基準距離が50
0mmになっている。
The measuring block 10 is, as shown in FIG.
It has three disk-shaped first, second, and third rollers 11, 12, and 13 in the front, rear, middle, and front directions in the traveling direction. The rollers 11, 12 and 13 are made of hard rubber or plastic and are arranged on the same straight line with their rotation directions aligned with the same straight line direction. First, second and third rollers 1
The outer diameters of 1, 12, and 13 are 100 mmφ in this embodiment.
It has become. The first, second and third rollers 11, 12,
Rotational shafts 11a, 12a, 13a are fixedly passed through 13 respectively. A pair of long plate-shaped first connecting rods 14 are fixed to both ends of the rotating shafts 11a and 12a of the first roller 11 and the second roller 12 so that the rotating shafts 11a and 12a are rotatable. A pair of long plate-shaped second connecting rods 15 are fixed to both ends of the rotation shafts 12a and 13a of the second roller 12 and the third roller 13 so that the rotation shafts 12a and 13a are rotatable. . In this embodiment, the roller 1
The distances between the rollers 1 and 12 and between the rollers 12 and 13 are both set to 250 mm.
First roller 11 when 2, 13 are arranged in a straight line
And the reference distance, which is the dimension between the center of the third roller 13 and the center of the third roller 13, is 50
It is 0 mm.

【0032】第1連結棒14(又は第2連結棒15)に
は、いずれかのローラ11、12、13の回転数から測
定ブロックの移動距離を検出する距離測定器16が取り
付けられている。また、第2連結棒15(又は第1連結
棒14)には、第1連結棒14と第2連結棒15が互い
に真直な状態から回動した変位角度θを検出する角度検
出手段であるロータリエンコーダ18が取り付けられて
いる。
A distance measuring device 16 is attached to the first connecting rod 14 (or the second connecting rod 15) to detect the moving distance of the measuring block from the rotational speed of any one of the rollers 11, 12 and 13. In addition, the second connecting rod 15 (or the first connecting rod 14) is a rotary that is an angle detecting unit that detects a displacement angle θ at which the first connecting rod 14 and the second connecting rod 15 are rotated from the straight state. An encoder 18 is attached.

【0033】測定ブロック10は、第1連結棒14にて
連結支持棒19によって測定車Mに連結されている。連
結支持棒19は、第1連結棒14及び測定車Mに対し
て、それぞれ回動自在に取り付けられている。さらに、
連結支持棒19は、長さ方向中間位置にて、コイルバネ
19aにより測定車Mと弾性的に連結されており、コイ
ルバネ19aによって測定ブロック10を道路にわずか
に押し付ける方向に付勢されている。これにより、測定
ブロック10は、測定車Mの移動に伴って路面に軽く押
しつけられた状態で移動できるようになっている。
The measuring block 10 is connected to the measuring wheel M by a connecting support bar 19 at the first connecting bar 14. The connection support rod 19 is rotatably attached to the first connection rod 14 and the measurement vehicle M, respectively. further,
The connection support bar 19 is elastically connected to the measurement wheel M by the coil spring 19a at the intermediate position in the length direction, and is biased in the direction in which the measurement block 10 is slightly pressed against the road by the coil spring 19a. As a result, the measurement block 10 can move while being lightly pressed against the road surface as the measurement vehicle M moves.

【0034】測定車Mには、コンピュータからなる制御
装置21が設けられている。制御装置21の記憶部に
は、上記基準距離が50区分に分割された計測位置の間
隔値(測定ピッチ)10mmが記憶されており、また上
記数14の演算式が記憶されている。そして、制御装置
21の入力側には、上記距離測定器16及びロータリエ
ンコーダ18が接続されており、出力側には図示しない
プリンタ等の記録装置が接続されている。
The measuring vehicle M is provided with a control device 21 including a computer. The storage unit of the control device 21 stores an interval value (measurement pitch) of 10 mm at the measurement position obtained by dividing the reference distance into 50 sections, and also stores the arithmetic expression of the above-mentioned expression 14. The distance measuring device 16 and the rotary encoder 18 are connected to the input side of the control device 21, and a recording device such as a printer (not shown) is connected to the output side.

【0035】つぎに、上記測定系による道路の凹凸の測
定について説明する。図3に示すように、測定ブロック
10が、道路の平坦にされた初期位置に進行方向に向け
て載置され、さらに、道路のOWP位置に合せてかつ先
頭の第3ローラ13が起点Gにセットした状態にされ
る。初期位置では、角度u(0)=0、高さデータy
(0)=…=y(−250)=…=y(−500)=0
である。ここで、初期位置での高さデータを基準値とす
るために「0」とした。
Next, the measurement of the unevenness of the road by the above measuring system will be described. As shown in FIG. 3, the measurement block 10 is placed at the flattened initial position of the road in the traveling direction, and further, the third roller 13 at the head is placed at the starting point G in accordance with the OWP position of the road. It will be set. At the initial position, angle u (0) = 0, height data y
(0) = ... = y (-250) = ... = y (-500) = 0
Is. Here, “0” is set to use the height data at the initial position as the reference value.

【0036】測定車Mを前方(縦方向)に進行させるこ
とにより、測定ブロック10も移動する。測定ブロック
10が10mm移動して第1の計測位置に到達すると、
距離測定器16及びロータリエンコーダ18の測定結果
が制御装置21に入力される。すなわち、まず第1の計
測位置での角度u(10)の値が得られる。ここで、直
前の計測位置での既知の高さデータとしては、初期値か
らy(0)=…=y(−490)=0であるので、制御
装置21は、IIRフィルタ演算手法による上記数14
に基づいて第1の計測位置での高さデータy(10)を
算出する。以下、測定ブロック10が10mm移動する
毎に、同様にして、制御装置21により順次各計測位置
での高さデータy(20)、y(30)…y(49
0)、y(500)が求められる。
By advancing the measuring vehicle M forward (longitudinal direction), the measuring block 10 also moves. When the measurement block 10 moves 10 mm and reaches the first measurement position,
The measurement results of the distance measuring device 16 and the rotary encoder 18 are input to the control device 21. That is, first, the value of the angle u (10) at the first measurement position is obtained. Here, since the known height data at the immediately preceding measurement position is y (0) = ... = y (-490) = 0 from the initial value, the control device 21 controls the above-mentioned number by the IIR filter calculation method. 14
The height data y (10) at the first measurement position is calculated based on. Hereinafter, every time the measurement block 10 moves by 10 mm, similarly, the height data y (20), y (30), ...
0) and y (500) are obtained.

【0037】すなわち、測定ブロック10が、起点Gか
らスタートして路面の縦方向に基準距離に換算した距離
500mmを通る間に、先頭の第3ローラ13が各計測
位置に順次到達する毎に、各計測位置にて第1及び第2
連結棒14,15のなす変位角度がロータリーエンコー
ダ18により検出される。距離測定器16からの出力
と、ロータリエンコーダ18からの変位角度検出値u
(i)を受けて、制御装置21は、計測位置に対する直
前の計測位置での測定ブロック10の各計測位置での既
知の高さデータを用い、上記数14の演算式に基づいて
計測位置での高さデータを算出することができる。そし
て、各計測位置での高さデータy(i)を合せることに
より、図4に示すように、基準距離内の路面の単位路面
プロファイルを、各計測位置間の短いピッチ毎に精密に
得ることができる。このように得られた基準距離におけ
る単位路面プロファイルを路面の縦方向全体にわたって
連続して集積することにより、路面全体の精密な縦断プ
ロファイルを得ることができる。
That is, while the measurement block 10 starts from the starting point G and passes the distance of 500 mm converted to the reference distance in the longitudinal direction of the road surface, every time the leading third roller 13 reaches each measurement position in sequence, First and second at each measurement position
The displacement angle formed by the connecting rods 14 and 15 is detected by the rotary encoder 18. The output from the distance measuring device 16 and the displacement angle detection value u from the rotary encoder 18
In response to (i), the control device 21 uses the known height data at each measurement position of the measurement block 10 at the immediately previous measurement position with respect to the measurement position, and at the measurement position based on the arithmetic expression of the above equation (14). Height data can be calculated. Then, by uniting the height data y (i) at each measurement position, as shown in FIG. 4, a unit road surface profile of the road surface within the reference distance can be precisely obtained for each short pitch between each measurement position. You can By precisely accumulating the unit road surface profiles at the reference distance thus obtained over the entire longitudinal direction of the road surface, it is possible to obtain a precise vertical profile of the entire road surface.

【0038】その結果、本実施形態によれば、基準距離
内に区分された各計測位置間の短いピッチ毎に路面の精
密な凹凸データに得ることができるため、路面全体にお
いて存在する構造物ジョイント、コンクリートメジ、ポ
ットホール等の小さな凹凸物も含めて路面全体の凹凸を
精度良く検出することができる。さらに、このように得
られた路面プロファイルを、道路の段差管理に活用する
ことができる。
As a result, according to the present embodiment, since it is possible to obtain accurate unevenness data of the road surface for each short pitch between the measurement positions divided within the reference distance, the structure joint existing on the entire road surface can be obtained. It is possible to accurately detect irregularities on the entire road surface including small irregularities such as concrete media and potholes. Furthermore, the road surface profile obtained in this way can be utilized for road level difference management.

【0039】次に、上記縦断プロファイルに関して、そ
の平坦度を求める方法を説明する。第1の方法として、
図5に示すように、互いに平行でかつ所定間隔t(例え
ば3m)を隔てて整列された3本のプローブ31a,3
1b,31cを設けてなる測定具31を、上記方法によ
り求めた縦断プロファイルf(x)に沿ってその両側の
プローブ31a,31cを縦断プロファイルf(x)上
に接触した状態で所定間隔t単位で移動させ、各移動単
位毎に、測定具31の真中のプローブ31bの縦断プロ
ファイルf(x)からの外れ寸法hxを求め、各移動単
位での外れ寸法hxの標準偏差σを算出することにより
路面の平坦度とした。なお、通常は、このような測定処
理は、コンピュータを利用して行われ、それにより迅速
にかつ正確な結果を得ることができる。
Next, a method of obtaining the flatness of the above vertical profile will be described. As the first method,
As shown in FIG. 5, three probes 31a, 3 are arranged parallel to each other and arranged at a predetermined interval t (for example, 3 m).
The measuring tool 31 provided with 1b and 31c is attached at a predetermined interval t in a state where the probes 31a and 31c on both sides of the measuring tool 31 are in contact with the longitudinal profile f (x) along the longitudinal profile f (x) obtained by the above method. By calculating the standard deviation σ of the deviation dimension hx in each movement unit by obtaining the deviation dimension hx from the longitudinal profile f (x) of the probe 31b in the middle of the measuring tool 31 for each movement unit. The flatness of the road surface. In addition, such a measurement process is usually performed using a computer, whereby a quick and accurate result can be obtained.

【0040】また、縦断プロファイルに関して、その平
坦度を求める第2の方法として、国際粗さ指標iRi(int
ernational roughness index)による方法を示す。図6
に示すように、所定のばね定数の線状ばね材34の一端
に所定重量の重り35を取り付けてなる測定具33を、
線状ばね材34を上下に向けかつ重り35を上端側に配
置し、下端を縦断プロファイルf(x)に接触させた状
態で、所定速度vで縦方向に移動させ、その際の重りの
上下方向の変位を積分して、その積分値を算出すること
により路面の平坦度としている。国際粗さ指標iRiを求
める方法は、通常は、マイクロコンピュータを用いたソ
フトウエア処理により行われ、これにより、迅速にかつ
精度の良い結果を得ることができる。この国際粗さ指標
iRiによれば、道路を走行する車両の立場から、現実的
な路面の粗さを得ることができる。
As a second method for obtaining the flatness of the longitudinal profile, the international roughness index iRi (int
ernational roughness index). Figure 6
As shown in, a measuring tool 33 having a weight 35 of a predetermined weight attached to one end of a linear spring member 34 having a predetermined spring constant,
The linear spring member 34 is oriented vertically and the weight 35 is disposed on the upper end side, and the lower end is brought into contact with the longitudinal profile f (x), and is moved vertically at a predetermined speed v, and the vertical direction of the weight at that time is moved. The flatness of the road surface is obtained by integrating the displacement in the direction and calculating the integrated value. The method for obtaining the international roughness index iRi is usually carried out by software processing using a microcomputer, which allows quick and accurate results to be obtained. This international roughness index
According to iRi, it is possible to obtain realistic road surface roughness from the standpoint of a vehicle traveling on a road.

【0041】なお、上記実施形態においては、測定車M
に搭載された制御装置21により、計測位置での角度検
出値等に基づいて高さデータが算出されているが、これ
に代えて、測定車Mでは計測データのみを取得するよう
にし、高さデータの算出は、この計測データに基づいて
別の場所で行うようにしてもよい。また、上記実施形態
では、測定ブロック10の第1連結棒14と第2連結棒
15の長さが同一になっているが、両者の長さを同一に
する必要はなくそれぞれの長さを変えてもよい。さら
に、距離測定器16についても上記実施形態に示したも
のに限らず、取付け位置についても連結棒に限らない。
また、角度検出手段についても、ロータリーエンコーダ
に限らず、類似の検出手段を用いることができる。
In the above embodiment, the measuring vehicle M
The height data is calculated by the control device 21 mounted on the vehicle based on the angle detection value at the measurement position, etc. Instead of this, the measurement vehicle M acquires only the measurement data, Data may be calculated at another place based on this measurement data. Further, in the above embodiment, the lengths of the first connecting rod 14 and the second connecting rod 15 of the measuring block 10 are the same, but it is not necessary to make both lengths the same, and the respective lengths can be changed. May be. Further, the distance measuring device 16 is not limited to that shown in the above embodiment, and the mounting position is not limited to the connecting rod.
Further, the angle detecting means is not limited to the rotary encoder, but similar detecting means can be used.

【0042】さらに、フィルタ演算手法としては、上記
無限インパルス応答フィルタ演算法IIRに代えて、高
速フーリエ変換を用いた方法等も可能である。また測定
ブロックの具体的構成についても、上記実施形態に示し
たものに限らない。その他、上記実施形態に示したもの
は一例であり、本発明の主旨を逸脱しない範囲で種々変
更して実施することが可能である。
Further, as a filter calculation method, a method using a fast Fourier transform or the like can be used instead of the infinite impulse response filter calculation method IIR. The specific configuration of the measurement block is not limited to that shown in the above embodiment. In addition, what is shown in the above embodiment is an example, and various modifications can be made without departing from the gist of the present invention.

【0043】[0043]

【発明の効果】本発明によれば、基準距離内に区分され
た各計測位置間の短いピッチ毎に路面の精密な凹凸デー
タに得ることができるため、路面全体に存在する構造物
ジョイント、コンクリートメジ、ポットホール等の小さ
な凹凸物を含めて路面全体の凹凸を精度良く検出するこ
とができる。さらに、このように得られた路面プロファ
イルを、道路の段差管理に活用することができる。
According to the present invention, since it is possible to obtain accurate unevenness data of the road surface for each short pitch between the measurement positions divided within the reference distance, the structure joints and concrete existing on the entire road surface can be obtained. It is possible to accurately detect irregularities on the entire road surface including small irregularities such as media and potholes. Furthermore, the road surface profile obtained in this way can be utilized for road level difference management.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である道路の路面の平坦度
を計測するために測定ブロックに取り付けられる測定ブ
ロックを概略的に示す正面図である。
FIG. 1 is a front view schematically showing a measurement block attached to a measurement block for measuring the flatness of a road surface according to an embodiment of the present invention.

【図2】同測定ブロックを概略的に示す平面図である。FIG. 2 is a plan view schematically showing the measurement block.

【図3】測定ブロックにより基準距離での路面の凹凸を
測定する方法について説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a method of measuring unevenness of a road surface at a reference distance using a measurement block.

【図4】路面の凹凸状態と基準距離内の各計測位置にお
ける高さデータとの関係を説明する説明図である。
FIG. 4 is an explanatory diagram illustrating the relationship between the unevenness of the road surface and the height data at each measurement position within the reference distance.

【図5】 路面の縦断プロファイルに基づいて路面の平
坦性を解析する方法を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a method of analyzing the flatness of a road surface based on a longitudinal profile of the road surface.

【図6】 路面の縦断プロファイルに基づいて路面の平
坦性をiRi法により解析する方法を説明する説明図で
ある。
FIG. 6 is an explanatory diagram illustrating a method of analyzing flatness of a road surface by an iRi method based on a longitudinal profile of the road surface.

【図7】 従来例である逐次二点法による路面の平坦性
を計測する方法を説明する説明図である。
FIG. 7 is an explanatory diagram illustrating a method of measuring the flatness of a road surface by a sequential two-point method, which is a conventional example.

【符号の説明】[Explanation of symbols]

10…測定ブロック、11,12,13…第1,第2,
第3ローラ、11a,12a,13a…回転軸、14…
第1連結棒、15…第2連結棒、16…距離測定器、1
8…ロータリエンコーダ(角度検出手段)、19…連結
支持棒、19a…コイルバネ、21…制御装置、M…測
定車。
10 ... Measuring block, 11, 12, 13 ... First, second,
Third roller, 11a, 12a, 13a ... Rotating shaft, 14 ...
1st connecting rod, 15 ... 2nd connecting rod, 16 ... Distance measuring device, 1
8 ... Rotary encoder (angle detecting means), 19 ... Connection support rod, 19a ... Coil spring, 21 ... Control device, M ... Measuring vehicle.

フロントページの続き (72)発明者 米谷 昭彦 愛知県豊田市梅坪町二丁目58番地5号 カ サブェルデ301 Fターム(参考) 2F069 AA06 AA61 AA71 BB24 GG01 GG59 HH15 NN00 NN07 Continued front page    (72) Inventor Akihiko Yoneya             5-5, 2-58, Umetsubo-cho, Toyota-shi, Aichi             Suberde 301 F term (reference) 2F069 AA06 AA61 AA71 BB24 GG01                       GG59 HH15 NN00 NN07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定車両を縦方向に道路上を移動させて
路面の縦方向の凹凸状態を計測する路面縦断プロファイ
ルの測定方法であって、 同一直線上に所定間隔を隔ててかつ回転方向を同一直線
方向に合わせて円盤状の第1ローラ、第2ローラ及び第
3ローラを配設し、前記第1及び第2ローラの各回転軸
に取り付けられて該第1及び第2ローラを回転自在に連
結する第1連結棒と、前記第2及び第3ローラの各回転
軸に取り付けられて該第2及び第3ローラを回転自在に
連結する第2連結棒と、前記ローラの移動距離を測定す
る距離測定手段と、前記第1連結棒と前記第2連結棒が
互いに真直な状態から回動したときの変位角度を検出す
る角度検出手段とを設けてなる測定ブロックを用い、該
測定ブロックを前記測定車両に連結部材によって路面に
向けて付勢するように弾性的に取付け、 前記第1及び第2連結棒が真直状態での前記第1ローラ
及び第3ローラの中心間寸法を基準距離として、該基準
距離を複数点に分割した複数の計測位置を決め、 前記測定ブロックが路面の縦方向に前記基準距離を通る
ときに進行方向先頭のローラが前記計測位置に順次到達
する毎に、各計測位置にて前記第1及び第2連結棒のな
す変位角度を前記角度検出手段により検出し、該角度検
出手段による変位角度検出値と前記測定ブロックが直前
の計測位置に在るときの該測定ブロックにおける各計測
位置での既知の高さデータとに基づいてフィルタ演算手
法を用いて各計測位置での路面の高さデータを算出する
ことにより該基準距離の単位路面プロファイルを求め、
路面の縦方向全体にわたって連続した単位路面プロファ
イルを集積することにより路面の縦断プロファイルを作
成するようにすることを特徴とする路面縦断プロファイ
ルの測定方法。
1. A method of measuring a profile of a road surface profile in which a measurement vehicle is vertically moved on a road to measure the unevenness of the road surface in a vertical direction, and the measurement is performed on a straight line at predetermined intervals and in a rotation direction. A disk-shaped first roller, a second roller, and a third roller are arranged in alignment with the same linear direction, and are attached to the respective rotary shafts of the first and second rollers, and the first and second rollers are rotatable. A first connecting rod connected to the second connecting rod, a second connecting rod attached to each rotating shaft of the second and third rollers to rotatably connect the second and third rollers, and a moving distance of the roller is measured. And a distance measuring means, and an angle detecting means for detecting a displacement angle when the first connecting rod and the second connecting rod rotate from a straight state with respect to each other. By the connecting member to the measurement vehicle The first and second connecting rods are elastically attached so as to be urged toward the surface, and the reference distance is a plurality of points with the center-to-center dimension of the first roller and the third roller in a straight state. A plurality of measurement positions divided into two are determined, and each time the first roller in the traveling direction sequentially reaches the measurement position when the measurement block passes the reference distance in the longitudinal direction of the road surface, the first measurement position is measured at each measurement position. And the displacement angle formed by the second connecting rod is detected by the angle detecting means, and the displacement angle detection value by the angle detecting means and the respective measurement positions in the measurement block when the measurement block is at the immediately previous measurement position. Obtaining a unit road surface profile of the reference distance by calculating height data of the road surface at each measurement position using a filter calculation method based on known height data,
A method for measuring a longitudinal profile of a road, characterized in that a vertical profile of the road is created by accumulating continuous unit road profiles over the entire longitudinal direction of the road.
【請求項2】 前記フィルタ演算手法が、無限インパル
ス応答フィルタ演算法であることを特徴とする請求項1
に記載の路面縦断プロファイルの測定方法。
2. The infinite impulse response filter operation method is used as the filter operation method.
The method for measuring the longitudinal profile of the road surface described in.
JP2001190741A 2000-08-01 2001-06-25 Road profile measurement method Expired - Lifetime JP3292200B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001190741A JP3292200B1 (en) 2001-06-25 2001-06-25 Road profile measurement method
PCT/JP2001/006513 WO2002010682A1 (en) 2000-08-01 2001-07-27 Method of measuring road surface longitudinal profile
US10/343,421 US6647636B2 (en) 2000-08-01 2001-07-27 Method for measuring road surface longitudinal profile
EP01955540A EP1316779A1 (en) 2000-08-01 2001-07-27 Method of measuring road surface longitudinal profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190741A JP3292200B1 (en) 2001-06-25 2001-06-25 Road profile measurement method

Publications (2)

Publication Number Publication Date
JP3292200B1 JP3292200B1 (en) 2002-06-17
JP2003004440A true JP2003004440A (en) 2003-01-08

Family

ID=19029473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190741A Expired - Lifetime JP3292200B1 (en) 2000-08-01 2001-06-25 Road profile measurement method

Country Status (1)

Country Link
JP (1) JP3292200B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127604A (en) * 2005-11-07 2007-05-24 Railway Technical Res Inst Method for calculating actual shape of vehicle travel road and method for calculating repair amount of the vehicle travel road
JP2014143785A (en) * 2013-01-22 2014-08-07 Hitachi Constr Mach Co Ltd Trolley type transportation vehicle
US9430679B2 (en) 2008-12-19 2016-08-30 Thomson Licensing Display device and method aiming to protect access to audiovisual documents recorded in storage means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4615271B2 (en) * 2004-08-31 2011-01-19 株式会社 サンウェイ Road surface profile measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127604A (en) * 2005-11-07 2007-05-24 Railway Technical Res Inst Method for calculating actual shape of vehicle travel road and method for calculating repair amount of the vehicle travel road
US9430679B2 (en) 2008-12-19 2016-08-30 Thomson Licensing Display device and method aiming to protect access to audiovisual documents recorded in storage means
JP2014143785A (en) * 2013-01-22 2014-08-07 Hitachi Constr Mach Co Ltd Trolley type transportation vehicle

Also Published As

Publication number Publication date
JP3292200B1 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US6647636B2 (en) Method for measuring road surface longitudinal profile
US7044680B2 (en) Method and apparatus for calculating and using the profile of a surface
CN101619970B (en) Method for measuring vertical section of road surface
JP3488200B2 (en) Traveling road surface shape measuring device
JP2005315675A (en) Road surface flatness measuring device
JP6592827B2 (en) Apparatus, method, program, and recording medium for identifying weight of vehicle traveling on traffic road
CN1283881C (en) Portuble push type track inspection car
CN107386075B (en) A kind of pressure test device and pressure detection method for evaluating evenness of road surface
JP3292200B1 (en) Road profile measurement method
JP3329796B2 (en) Road profile measurement method
CN104101322A (en) Surface roughness measuring system and method based on successive two-angle method
JP4393622B2 (en) Pavement road surface information method
JP4536910B2 (en) Method for measuring road profile and method for measuring road profile
CN217026596U (en) Comprehensive road and bridge detection device
CN103063172A (en) Device capable of continuously measuring structure component partial geometric initial imperfection and method
JP2017025662A (en) Device, method, program, and recording medium for identifying vehicle's traveling position in transverse direction of traffic road
JP4615271B2 (en) Road surface profile measurement method
JPH07318342A (en) Road-surface-property measuring apparatus
KR100514328B1 (en) A measuring apparatus of roll profile
JP3959314B2 (en) Multiple road surface flatness analysis method
JP3986946B2 (en) Road profile profile measurement method
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH1035493A (en) Irregularity of track calibration jig for simplified detection-measurement vehicle
Nazef et al. Alternative validation practice of an automated faulting measurement method
JPH07138908A (en) Road roller

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3292200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250