JP2003002781A - Member for producing semiconductor - Google Patents

Member for producing semiconductor

Info

Publication number
JP2003002781A
JP2003002781A JP2001191296A JP2001191296A JP2003002781A JP 2003002781 A JP2003002781 A JP 2003002781A JP 2001191296 A JP2001191296 A JP 2001191296A JP 2001191296 A JP2001191296 A JP 2001191296A JP 2003002781 A JP2003002781 A JP 2003002781A
Authority
JP
Japan
Prior art keywords
carbon
coating layer
base material
sic
composite base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001191296A
Other languages
Japanese (ja)
Inventor
Makoto Sakashita
信 坂下
Masayuki Watanabe
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001191296A priority Critical patent/JP2003002781A/en
Publication of JP2003002781A publication Critical patent/JP2003002781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem caused by the difference between the thermal expansion of a C/C composite material and that of a SiC coated layer and to provide a member useful for easily producing even large-sized semiconductor materials. SOLUTION: In the member for producing semiconductor materials which is obtained by forming a SiC coating layer on a carbon fiber-reinforced carbon composite base material, the composite base material is subjected to CVI treatment for filling carbon, and a carbon coating layer formed by CVD treatment is interposed between the surface of composite base material and the SiC coating layer as an intermediate layer. The thermal stress is eliminated by the specific internal structure. Hence the member for producing semiconductors produced by the method mentioned above has excellent resistance to thermal shock, high mechanical strengths and chemical stability, and is suitable as a hot zone member and has high quality and exhibits dramatically prolonged service life in comparison with a conventional member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造用部材
に関する。たとえば、本発明は、シリコンなどの半導体
単結晶の引上工程で使用される輻射シールド、保温筒、
保温板などのホットゾーン部材に関するものである。
TECHNICAL FIELD The present invention relates to a semiconductor manufacturing member. For example, the present invention is a radiation shield used in a pulling process of a semiconductor single crystal such as silicon, a heat insulating tube,
The present invention relates to a hot zone member such as a heat insulating plate.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合基材(C/C複合
基材)にSiC被覆層を設けた半導体製造用部材は公知
である。たとえば、特許第3120884号公報を参
照。
2. Description of the Related Art A member for semiconductor production is known in which a SiC coating layer is provided on a carbon fiber reinforced carbon composite substrate (C / C composite substrate). See, for example, Japanese Patent No. 3120884.

【0003】[0003]

【発明が解決しようとする課題】この種の半導体製造用
部材は、変形やクラックが発生しやすい。とくに輻射シ
ールド、保温筒、保温板などを半導体単結晶の引上工程
のホットゾーンで使用すると、繰り返し操業により、変
形やクラックが発生しやすい。
This kind of semiconductor manufacturing member is apt to be deformed or cracked. In particular, when a radiation shield, a heat insulating cylinder, a heat insulating plate, etc. are used in the hot zone of the semiconductor single crystal pulling process, deformation and cracks are likely to occur due to repeated operations.

【0004】このような変形やクラックは、C/C複合
基材とSiC被覆層との熱膨張差に起因する熱応力が主
な原因であると考えられてきた。特許第3120884
号発明では、C/C複合基材とSiC被覆層との中間に
強化層を設けて、この種の問題を解決しようとしてい
る。しかし、この特許第3120884号発明は、所望
の特性を得るための製造方法が限定されるため、大型部
材の場合、製造に不都合が生じがちである。
It has been considered that such deformation and cracks are mainly caused by thermal stress due to the difference in thermal expansion between the C / C composite substrate and the SiC coating layer. Patent No. 3120884
In the invention, a reinforcing layer is provided between the C / C composite base material and the SiC coating layer to solve this type of problem. However, in the invention of Japanese Patent No. 3120884, the manufacturing method for obtaining the desired characteristics is limited, and therefore, in the case of a large-sized member, inconvenience tends to occur in manufacturing.

【0005】本発明の目的は、C/C複合基材とSiC
被覆層との熱膨張差に起因する問題を解決できるばかり
でなく、大型のものでも容易に製造できる半導体製造用
部材を提供することである。
The object of the present invention is to provide a C / C composite substrate and SiC.
It is an object of the present invention to provide a semiconductor manufacturing member that not only solves the problem caused by the difference in thermal expansion from the coating layer but also can easily manufacture a large-sized one.

【0006】[0006]

【課題を解決するための手段】本発明の解決手段を例示
すると、次のとおりである。
The solution means of the present invention is exemplified as follows.

【0007】(1)C/C複合基材にSiC被覆層を形
成した半導体製造用部材において、複合基材がCVI処
理をして炭素を充填したものであり、その複合基材の表
面とSiC被覆層との間に、CVD処理により形成され
た炭素被覆層が中間層として介在していることを特徴と
する半導体製造用部材。
(1) In a member for semiconductor production in which a SiC coating layer is formed on a C / C composite base material, the composite base material is CVI-treated and filled with carbon. A member for semiconductor production, wherein a carbon coating layer formed by a CVD process is interposed as an intermediate layer between the coating layer and the coating layer.

【0008】(2)炭素被覆層の厚みがSiC被覆層の
厚みよりも厚いことを特徴とする前述の半導体製造用部
材。
(2) The above-mentioned semiconductor manufacturing member, wherein the carbon coating layer is thicker than the SiC coating layer.

【0009】(3)炭素被覆層の厚みが100〜200
μmであることを特徴とする前述の半導体製造用部材。
(3) The thickness of the carbon coating layer is 100 to 200.
The member for semiconductor production as described above, which is characterized in having a thickness of μm.

【0010】(4)CVI処理をした複合基材の嵩密度
が、1.6g/cm3以上であることを特徴とする前述
の半導体製造用部材。
(4) The above-mentioned semiconductor manufacturing member, wherein the CVI-treated composite base material has a bulk density of 1.6 g / cm 3 or more.

【0011】(5)SiC被覆層の厚みが50〜100
μmである前述の半導体製造用部材。
(5) The thickness of the SiC coating layer is 50-100.
The above-mentioned semiconductor manufacturing member having a thickness of μm.

【0012】[0012]

【発明の実施の形態】本発明者は、まずC/C複合基材
とSiC被覆層との熱膨張差に起因する問題を解決する
ために種々の実験を行った。たとえば、SiC被覆層を
形成させるカーボン基材の表面に周期的な凹凸をつけた
り、SiC膜厚を薄くしたり、膜厚の均一性を改善した
り、カーボン基材にSiCをCVI処理してSiC/S
iC+カーボン/カーボンの3重構造にしたりした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor first conducted various experiments in order to solve the problems caused by the difference in thermal expansion between the C / C composite substrate and the SiC coating layer. For example, the surface of the carbon base material on which the SiC coating layer is formed has periodic irregularities, the thickness of the SiC film is reduced, the uniformity of the film thickness is improved, or the carbon base material is treated with CVI to form SiC. / S
It has a triple structure of iC + carbon / carbon.

【0013】このように種々の形で熱膨張差による熱応
力を緩衝する方法を検討したが、部材における変形やク
ラックを確実に回避することはできなかった。
Although various methods for buffering the thermal stress due to the difference in thermal expansion have been studied in this way, it has not been possible to reliably avoid deformation and cracks in the member.

【0014】さらに、SiCを被覆しないカーボン基材
や、高強度でかつ高熱衝撃耐性を有するC/C複合基材
で作成した輻射シールド、保温筒および保温板につい
て、それぞれ試験した。
Further, a carbon substrate not coated with SiC, a radiation shield made of a C / C composite substrate having high strength and high thermal shock resistance, a heat insulating cylinder and a heat insulating plate were tested respectively.

【0015】この結果、カーボン基材の場合は、SiC
被覆カーボン基材と同様にホットゾーンで使用すると、
変形やクラックが発生した。C/C複合基材の場合は、
変形は見られなかったものの、融液から蒸発したSiO
ガスとの反応性が高く、珪化によるクラックや剥離が生
じた。これによって、カーボン基材の場合には、熱が誘
因となり、歪曲とクリープが発生することが確認され
た。また、C/C複合基材の場合には、化学反応による
変質が問題であることが確認された。
As a result, in the case of a carbon base material, SiC
When used in the hot zone like the coated carbon substrate,
Deformation or cracks occurred. In the case of C / C composite substrate,
Although no deformation was observed, SiO evaporated from the melt
The reactivity with gas was high, and cracking and peeling due to silicification occurred. From this, it was confirmed that in the case of a carbon base material, heat was an incentive to cause distortion and creep. Further, in the case of the C / C composite base material, it was confirmed that deterioration due to a chemical reaction was a problem.

【0016】そこで、本発明者は、化学的に安定で高強
度、高熱衝撃耐性を有する半導体製造用部材(とくに輻
射シールド、保温筒および保温板)の材質や構造を種々
検討した結果、CVI処理をして炭素を充填したC/C
複合基材の表面にCVD処理により綴密な炭素被覆層を
形成させ、その上にSiC層を被覆して、3層構造にす
ることにより、熱的、化学的に安定なホットゾーン部材
を形成できることを究明した。
Therefore, the present inventor has studied various materials and structures of semiconductor manufacturing members (especially, radiation shields, heat insulating cylinders and heat insulating plates) that are chemically stable, have high strength, and have high thermal shock resistance. C / C filled with carbon
A tight carbon coating layer is formed on the surface of the composite substrate by a CVD process, and a SiC layer is coated thereon to form a three-layer structure, thereby forming a thermally and chemically stable hot zone member. I have determined what I can do.

【0017】本発明による半導体製造用部材は、熱膨張
係数のマッチングについてはSiC被覆カーボン基材よ
りも悪いながら、各層間の熱膨張差によるストレスが基
材のC/C複合材により吸収された形で基材のC/C複
合基材の熱安定性およびSiCの化学的な安定性が発揮
される。
In the semiconductor manufacturing member according to the present invention, the matching of the thermal expansion coefficient is worse than that of the SiC-coated carbon base material, but the stress due to the difference in thermal expansion between the layers is absorbed by the C / C composite material of the base material. In the form, the thermal stability of the C / C composite substrate and the chemical stability of SiC are exerted.

【0018】本発明によれば、C/C複合基材はCVI
処理をしたものである。たとえば、CVI処理した複合
基材は、基材の裏側から減圧して炭素系CVDガスを吸
引して基材内部に炭素を埋め込んだものである。基材の
表面は十分に緻密化されており、好適には鏡面になって
いる。そのように緻密化された基材表面に、炭素系CV
D膜を積層させてから、SiC−CVDコートを形成す
る。
According to the present invention, the C / C composite substrate is CVI
It has been processed. For example, the CVI-treated composite base material is one in which carbon is embedded in the base material by reducing the pressure from the back side of the base material and sucking carbon-based CVD gas. The surface of the base material is sufficiently densified, and is preferably a mirror surface. A carbon-based CV is formed on the surface of the base material thus densified.
After stacking the D films, a SiC-CVD coat is formed.

【0019】CVD処理による緻密な炭素中間層を形成
しやすくするために、C/C複合基材の表面をCVI処
理により緻密化する。
The surface of the C / C composite substrate is densified by CVI treatment in order to facilitate the formation of a dense carbon intermediate layer by the CVD treatment.

【0020】炭素中間層の厚さは、100μm未満であ
ると、表面の滑らかさが不充分で、SiC膜の耐久性が
劣る。また、200μmを超えると、かえってSiC膜
厚が不安定となり、耐久性が劣る。
If the thickness of the carbon intermediate layer is less than 100 μm, the surface smoothness is insufficient and the durability of the SiC film is poor. On the other hand, when it exceeds 200 μm, the SiC film thickness becomes rather unstable and the durability deteriorates.

【0021】SiC被覆層の厚みも、下地のCVD炭素
中間層を被覆するに十分であればよい。
The thickness of the SiC coating layer may be sufficient to coat the underlying CVD carbon intermediate layer.

【0022】[0022]

【実施例】PAN系高強度タイプの炭素繊維を用いて、
フェノール樹脂を含浸してフィラメントワインディング
により成形して、下部内径350mm、上部内径750
mm、高さ450mm、厚さ7mmの円錐台型のC/C
複合基材からなる輻射シールドを作成した。この輻射シ
ールドをCVI処理した。すなわち、C/C複合基材か
らなる輻射シールドの一方側(たとえば裏側や内側)か
ら減圧して、炭素系CVDガスを輻射シールドの他方側
(たとえば表側や外側)から吸引して、基材の内部構造
に炭素を埋め込み、その後、減圧を止めた。このような
CVI処理により基材の緻密化処理を2回繰り返して、
嵩密度1.6g/cm3の基材に仕上げた。そのように
CVI処理した基材の表面に、CVD処理により100
μm厚の緻密な炭素層を形成し、さらに、その上を50
μm厚のSiC被膜をCVDにより形成して、3重構造
の輻射シールドを製造した。
[Example] Using a PAN-based high-strength type carbon fiber,
Molded by filament winding impregnated with phenol resin, lower inner diameter 350mm, upper inner diameter 750
mm, height 450 mm, thickness 7 mm truncated cone C / C
A radiation shield made of a composite substrate was created. This radiation shield was CVI treated. That is, the pressure is reduced from one side (for example, the back side or the inside) of the radiation shield made of the C / C composite substrate, and the carbon-based CVD gas is sucked from the other side (for example, the front side or the outside) of the radiation shield, and The internal structure was filled with carbon and then the vacuum was stopped. The densification treatment of the base material is repeated twice by such CVI treatment,
A substrate having a bulk density of 1.6 g / cm 3 was finished. The surface of the substrate thus CVI-treated is 100
A dense carbon layer with a thickness of μm is formed, and 50
A triple-layered radiation shield was manufactured by forming a μm thick SiC film by CVD.

【0023】同様のやり方で、内径800mm、高さ1
50mm、厚さ7mmの円筒型C/C基材および内径8
00mm、外形1000mm、厚さ7mmのドーナツ型
C/C基材を用いて、3重構造の保温筒および保温板を
作製した。
In a similar manner, inner diameter 800 mm, height 1
50mm, 7mm thick cylindrical C / C substrate and inner diameter 8
Using a doughnut-shaped C / C substrate having a size of 00 mm, an outer shape of 1000 mm and a thickness of 7 mm, a heat retaining cylinder and a heat retaining plate having a triple structure were produced.

【0024】このようにして作製した輻射シールド、保
温筒および保温板をそれぞれシリコン単結晶引上装置の
ホットゾーンの所定位置に設置した。石英ルツボ内にシ
リコン多結晶原料250kgを入れて加熱融解し、所定
の作業で直径300mmの単結晶を引上げて製造したの
ち、炉を冷却して工程を終えた。
The radiation shield, the heat insulating cylinder, and the heat insulating plate thus produced were placed at predetermined positions in the hot zone of the silicon single crystal pulling apparatus. 250 kg of a silicon polycrystal raw material was put into a quartz crucible, heated and melted, and a single crystal having a diameter of 300 mm was pulled up by a predetermined work to manufacture it, and then the furnace was cooled to finish the process.

【0025】上記の工程を30回繰り返しても、輻射シ
ールド、保温筒および保温板は、いずれも、変形やクラ
ック・剥離が見られず、初期の状態を保持していた。
Even when the above steps were repeated 30 times, the radiation shield, the heat insulating cylinder and the heat insulating plate were not deformed or cracked or peeled off, and the initial state was maintained.

【0026】比較例 従来のカーボン基材にSiC被覆を形成して前述の実施
例と同じ形状の輻射シールド、保温筒および保温板を製
造した。それらを使用して、前述の実施例と同様の工程
でシリコン単結晶を製造したところ、使用1回目で輻射
シールドのテーパ部にクラックが入った。繰り返し使用
の5回目では、クラックが進行して一部剥離離脱して再
使用が不可能となった。保温筒についても同様に使用5
回目で剥離離脱が生じて再使用不可能になった。保温板
に関しては、使用1回目で変形湾曲して、水平だしが困
難になった。使用を重ねるほどにわん曲が大きくなり、
使用5回目ではクラックが入った。この時には剥離離脱
は生じなかったものの、その後、クラックを通しての内
部珪化が進行して、使用7回目ではボロボロになって、
剥離離脱が発生して再使用不可能になった。
Comparative Example A SiC coating was formed on a conventional carbon base material to manufacture a radiation shield, a heat insulating cylinder, and a heat insulating plate having the same shapes as those of the above-described embodiments. When these were used to manufacture a silicon single crystal in the same process as in the above-mentioned example, cracks were formed in the tapered portion of the radiation shield in the first use. At the 5th time of repeated use, cracks progressed and some of them peeled off to make reuse impossible. The same is used for the heat insulation cylinder 5
At the second time, peeling and detachment occurred and it became impossible to reuse. Regarding the heat insulating plate, it deformed and curved after the first use, making it difficult to level out. The more you use it, the bigger the bow becomes,
A crack was formed on the fifth use. At this time, peeling and separation did not occur, but after that, internal silicification progressed through the cracks, and it became worn out at the 7th use,
Detachment occurred and it became impossible to reuse.

【0027】本発明は、前述の実施例に限定されるもの
ではない。たとえば、前述の実施例では、シリコン単結
晶引上装置について述べたが、半導体処理用部材にも適
用できる。
The invention is not limited to the embodiments described above. For example, although the silicon single crystal pulling apparatus has been described in the above embodiment, the present invention can be applied to a semiconductor processing member.

【0028】[0028]

【発明の効果】本発明によれば、特別の内部構造によっ
て熱応力が解消される。そのため、本発明による半導体
製造用部材は、耐熱衝撃性に優れ、機械的強度が高く、
化学的に安定なものとなり、ホットゾーン部材として最
適なものであり、従来品に比べて、高品質であって、耐
用寿命が飛躍的に長くなる。さらに、本発明による半導
体製造用部材は、軽量にできるため、作業性や安全性に
優れている。
According to the present invention, the thermal stress is eliminated by the special internal structure. Therefore, the semiconductor manufacturing member according to the present invention has excellent thermal shock resistance, high mechanical strength,
It becomes chemically stable, is optimal as a hot zone member, has higher quality than conventional products, and has a dramatically extended service life. Further, since the semiconductor manufacturing member according to the present invention can be made lightweight, it is excellent in workability and safety.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C30B 15/14 C04B 35/80 B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C30B 15/14 C04B 35/80 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維強化炭素複合基材にSiC被覆
層を形成した半導体製造用部材において、前記複合基材
がCVI処理をして炭素を充填したものであり、その複
合基材の表面とSiC被覆層との間に、CVD処理によ
り形成された炭素被覆層が中間層として介在しているこ
とを特徴とする半導体製造用部材。
1. A member for semiconductor production in which a SiC coating layer is formed on a carbon fiber reinforced carbon composite base material, wherein the composite base material is CVI-treated and filled with carbon. A member for semiconductor production, wherein a carbon coating layer formed by a CVD process is interposed as an intermediate layer between the SiC coating layer and the SiC coating layer.
【請求項2】 炭素被覆層の厚みがSiC被覆層の厚み
よりも厚いことを特徴とする請求項1に記載の半導体製
造用部材。
2. The semiconductor manufacturing member according to claim 1, wherein the carbon coating layer is thicker than the SiC coating layer.
【請求項3】 炭素被覆層の厚みが100〜200μm
であることを特徴とする請求項1又は2に記載の半導体
製造用部材。
3. The carbon coating layer has a thickness of 100 to 200 μm.
The semiconductor manufacturing member according to claim 1 or 2, wherein
【請求項4】 CVI処理をした複合基材の嵩密度が、
1.6g/cm3以上であることを特徴とする請求項1
〜3のいずれか1項に記載の半導体製造用部材。
4. The bulk density of the CVI-treated composite substrate is
2. The amount is 1.6 g / cm 3 or more.
The member for semiconductor production as described in any one of Claims 1-3.
JP2001191296A 2001-06-25 2001-06-25 Member for producing semiconductor Pending JP2003002781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191296A JP2003002781A (en) 2001-06-25 2001-06-25 Member for producing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191296A JP2003002781A (en) 2001-06-25 2001-06-25 Member for producing semiconductor

Publications (1)

Publication Number Publication Date
JP2003002781A true JP2003002781A (en) 2003-01-08

Family

ID=19029943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191296A Pending JP2003002781A (en) 2001-06-25 2001-06-25 Member for producing semiconductor

Country Status (1)

Country Link
JP (1) JP2003002781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091966A (en) * 2010-10-27 2012-05-17 Denso Corp Apparatus and method for producing silicon carbide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012091966A (en) * 2010-10-27 2012-05-17 Denso Corp Apparatus and method for producing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
EP1899508B1 (en) Crucible for the crystallization of silicon and process for its preparation
JP4024865B2 (en) COMPOSITE MATERIAL CONTAINING CERAMIC MATRIX AND SiC FIBER REINFORCEMENT AND METHOD FOR PRODUCING THE SAME
KR100273054B1 (en) Crucible for crystal pulling and method of manufacturing same
KR20070004901A (en) Crucible for the crystallization of silicon
US7055236B2 (en) Joining method for high-purity ceramic parts
CN112341213B (en) Method for carrying out melt siliconizing on small-size circular-section ceramic matrix composite component
JP2000302577A (en) Graphite member coated with silicon carbide
JP2003002781A (en) Member for producing semiconductor
JPH0343250Y2 (en)
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JP2002068851A (en) Carbon part
KR20040014257A (en) Component of glassy carbon for cvd apparatus and process for production thereof
JP2004231493A (en) Porous silicon carbide sintered compact and its manufacturing method
JPH1160373A (en) Crucible for pulling up single crystal
JP2000086382A (en) C/c crucible for pulling single crystal
JP2642604B2 (en) Manufacturing method of fiber reinforced ceramics
JP4441649B2 (en) Manufacturing method of large quartz glass body
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
EP1357098B1 (en) Joining methode for high-purity ceramic parts
JP2000246821A (en) Heat resistant material and its manufacture
CN114232074B (en) Quartz fiber/carbon fiber reinforced carbon-based composite guide cylinder and preparation method thereof
CN115286393B (en) Low-cost long-life carbon Tao Re field product and preparation method thereof
JPH05163086A (en) Sic-coated c/c composite material
CN114014677B (en) Quartz fiber/carbon fiber reinforced carbon-based composite material crucible and preparation method thereof
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711