JP2003000599A - Real time three-dimensional ultrasonic imaging system and probe - Google Patents

Real time three-dimensional ultrasonic imaging system and probe

Info

Publication number
JP2003000599A
JP2003000599A JP2001191629A JP2001191629A JP2003000599A JP 2003000599 A JP2003000599 A JP 2003000599A JP 2001191629 A JP2001191629 A JP 2001191629A JP 2001191629 A JP2001191629 A JP 2001191629A JP 2003000599 A JP2003000599 A JP 2003000599A
Authority
JP
Japan
Prior art keywords
probe
circuit
row
piezoelectric elements
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001191629A
Other languages
Japanese (ja)
Other versions
JP4638622B2 (en
Inventor
Noriaki Kimura
憲明 木村
Kyoji Doi
恭二 土井
Takayoshi Yumii
孝佳 弓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001191629A priority Critical patent/JP4638622B2/en
Publication of JP2003000599A publication Critical patent/JP2003000599A/en
Application granted granted Critical
Publication of JP4638622B2 publication Critical patent/JP4638622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide three-dimensional(3D) imaging at high speed without mechanically moving part and complicated delay control. SOLUTION: A probe 10 has piezoelectric elements arrayed in the form of planar grid, and piezoelectric elements 12T for transmitting and piezoelectric elements 14R for receiving are alternately arranged. The transmitting element group of each of columns and the receiving element group of each of rows are respectively switched for the unit of column and for the unit of row by a transmitting switcher 16 and a receiving switching circuit 18 and a matrix crossing part becomes a detection area. The receiving switcher 18 receives the reflected waves of ultrasonic waves for each row and inputs ultrasonic received signals to a high frequency receiving circuit 28. The received signals are amplified by the high frequency receiving circuit 28 and sent through a control circuit 26 to a sensor image processing circuit 32 later. The sensor image processing circuit 32 reproduces a 3D image from the inputted ultrasonic received signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を用いて映
像化を行なう超音波映像装置および探触子に係り、特に
探触子において、信号の切替回路を各圧電素子毎に配置
しなくてすむ極めてシンプルな構成で3次元映像化を図
ることができるようにしたリアルタイム3次元超音波映
像装置とそれに用いられる探触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic imaging apparatus and a probe for imaging using ultrasonic waves, and in particular, in the probe, a signal switching circuit is not provided for each piezoelectric element. TECHNICAL FIELD The present invention relates to a real-time three-dimensional ultrasonic imaging device capable of achieving three-dimensional imaging with an extremely simple configuration and a probe used for the same.

【0002】[0002]

【従来の技術】水中探査や非破壊検査、医療用診断に用
いられている一般的な超音波映像分野では、圧電素子を
1mm以下のピッチでアレイ状に並べた探触子そのもの
の製作、その個々の素子に高圧パルスを給電、また素子
の受信信号を受け取る回路の製作などの困難から、現状
で実用化している2次元アレイ探触子を用いた3次元映
像装置は少なく、アレイ規模が小さいものが多い。従
来、n個の圧電素子を直線状に配置した1次元アレイで
採用されていた方法を、そのまま2次元へ持ち込むと、
素子数がn→n2 となるため技術的な困難性が急激に増
大する。
2. Description of the Related Art In the general ultrasonic imaging field used for underwater exploration, non-destructive inspection, and medical diagnosis, the production of the probe itself in which piezoelectric elements are arranged in an array at a pitch of 1 mm or less, Due to difficulties such as supplying a high-voltage pulse to each element and manufacturing a circuit for receiving the reception signal of the element, there are few three-dimensional image devices using the two-dimensional array probe currently in practical use, and the array size is small. There are many things. Conventionally, when the method used in a one-dimensional array in which n piezoelectric elements are linearly arranged is brought into a two-dimensional state,
Since the number of elements increases from n to n 2 , technical difficulty increases rapidly.

【0003】従来の典型的な超音波診断装置のブロック
図を図7に示す。アレイ型探触子1から検査対象13に
向けて高圧パルスを送信する送信回路2が設けられ、物
標(目標物)9からの反射波11を探触子1が受信した
信号は高周波受信回路3を経てメモリ4に入力され、走
査変換回路5によりCRT6にて表示される。各回路を
統合制御するCPU/制御回路7が設けられている。こ
の図の中で本質的な部分は、アレイ型探触子1とCPU
/制御回路7の部分である。CPU/制御回路7は、探
触子1のアレイの構造に応じて設計を行なう必要があ
る。
FIG. 7 shows a block diagram of a typical conventional ultrasonic diagnostic apparatus. A transmission circuit 2 for transmitting a high-voltage pulse from the array-type probe 1 to the inspection target 13 is provided, and the signal received by the probe 1 from the reflected wave 11 from the target (target) 9 is a high-frequency reception circuit. The data is input to the memory 4 via 3 and displayed on the CRT 6 by the scan conversion circuit 5. A CPU / control circuit 7 for integrally controlling each circuit is provided. The essential part of this figure is the array type probe 1 and the CPU.
/ It is a part of the control circuit 7. The CPU / control circuit 7 needs to be designed according to the structure of the array of the probe 1.

【0004】超音波ビームの空間走査・収束は、アレイ
型探触子1の各素子への送信・受信信号への電子的な遅
れによって実現される。図8に電子収束の基本原理を示
す。焦点(物標9)から返ってきた反射波11の波面
は、アレイ型探触子1を構成している圧電素子(素子)
12で受信後、遅延素子8で遅延制御され、等時加算さ
れて強信号となるが、焦点以外からの波面は等時加算さ
れない。
Spatial scanning / convergence of the ultrasonic beam is realized by electronic delay of the transmission / reception signals to each element of the array type probe 1. FIG. 8 shows the basic principle of electron convergence. The wavefront of the reflected wave 11 returned from the focal point (target 9) is a piezoelectric element (element) forming the array type probe 1.
After being received by 12, the delay element 8 controls the delay, and the isochronous addition results in a strong signal, but the wavefront from other than the focus is not added isochronously.

【0005】以上の方法で得られる映像はBモードと呼
ばれ、扇型ビームの通る断面の映像である。Cモードと
呼ばれるビームに垂直な断面画像や、3次元のソリッド
な画像を得るためには、1次元のアレイ(リニアアレ
イ)からなる探触子を、アレイの方向に垂直な方向へ移
動させることが必要である。
The image obtained by the above method is called B mode, and is an image of a section through which a fan-shaped beam passes. In order to obtain a cross-sectional image perpendicular to the beam called C mode and a three-dimensional solid image, a probe composed of a one-dimensional array (linear array) is moved in a direction perpendicular to the array direction. is necessary.

【0006】上述のような超音波装置の適用例として超
音波ソナー装置があるが、この超音波ソナー装置におい
て3次元画像を得ようとする場合の、2つの具体的な方
法としては次のような方法がある。
There is an ultrasonic sonar device as an application example of the ultrasonic device as described above. Two specific methods for obtaining a three-dimensional image in this ultrasonic sonar device are as follows. There are various methods.

【0007】第1の方法は、探触子を回転軸に固定し機
械的に回転する。この場合、回転軸周りの移動量はロー
タリエンコーダを用いて測定できる。しかし、この方法
では、機械的走査を行なうので、映像化の速度に限界が
あり、さらに水中で動くセンサの機械的な構造にはシー
ルの問題などの多くの課題を発生させている。
In the first method, the probe is fixed to a rotary shaft and mechanically rotated. In this case, the amount of movement around the rotation axis can be measured using a rotary encoder. However, in this method, since mechanical scanning is performed, the speed of imaging is limited, and many problems such as a sealing problem occur in the mechanical structure of the sensor that moves in water.

【0008】第2の方法は、フリーハンドで探触子を移
動させ、探触子の位置決めには特殊な磁気センサを用い
る。このような3軸の平行移動と、その周りの回転を検
出できる磁気を用いたセンサが実用化され、販売されて
いる。
In the second method, the probe is moved by freehand, and a special magnetic sensor is used for positioning the probe. A sensor using magnetism capable of detecting such parallel movement of three axes and rotation around the same has been put into practical use and sold.

【0009】[0009]

【発明が解決しようとする課題】上記2つの方法では、
共に機械的な操作や複雑なソフトウェアによる3次元画
像の合成が必要となる。リアルタイム性が要求される検
査装置などでは、処理に要する時間が長いことは大きな
ネックとなっている。
SUMMARY OF THE INVENTION In the above two methods,
Both require mechanical operations and compositing of three-dimensional images by complicated software. In an inspection device or the like that requires real-time processing, the long processing time is a major obstacle.

【0010】そこで、探触子そのものを2次元アレイと
し、各圧電素子毎に信号の遅延回路を取り付け、計算さ
れた遅延量を与えて空間の任意の点へ収束させることに
より、一気に3次元画像を得ることが考えられる。これ
は、図8に示すように、遅延素子を制御して水中のある
焦点のデータが合成されるようにするものである。しか
し、これを3次元空間内の全ての点について可能にする
には、非常に複雑な制御が必要であり、価格も高価なも
のとなる。更に、ピッチの小さい2次元アレイ周りの給
電線や信号線の配置の設計・製作などにおいて技術的課
題が多く、現状では比較的規模の小さい(16×16素
子程度の)アレイなどを目標に開発が進められている。
この探触子が開発されても、次には各圧電素子の遅延量
を制御する電子レンズの開発が必要になる。将来的には
128×128素子のアレイが要求されると思われる
が、この場合、16382個の遅延素子が必要であっ
て、これを制御する回路も非常に複雑となる。
Therefore, the probe itself is formed into a two-dimensional array, a signal delay circuit is attached to each piezoelectric element, and a calculated delay amount is given to converge the light to an arbitrary point in space, thereby making a three-dimensional image at a stretch. Can be obtained. As shown in FIG. 8, this controls the delay element so that the data of a certain focus in the water is synthesized. However, in order to make this possible for all points in the three-dimensional space, very complicated control is required and the price is also high. Furthermore, there are many technical problems in designing and manufacturing the arrangement of power supply lines and signal lines around a two-dimensional array with a small pitch, and at present the development is aimed at a relatively small array (about 16 × 16 elements). Is being promoted.
Even if this probe is developed, it is next necessary to develop an electronic lens that controls the delay amount of each piezoelectric element. It is expected that an array of 128 × 128 elements will be required in the future, but in this case, 16382 delay elements are required, and a circuit for controlling the delay elements becomes very complicated.

【0011】本発明は、上記従来の問題点に着目し、機
械的に動く部分がなく、また複雑な遅延制御を行なうこ
と無く、安価に高速にて3次元の映像化が実現できる超
音波映像装置およびその探触子を提供することを目的と
するものである。
The present invention focuses on the above-mentioned conventional problems, and there is no mechanically moving part, and without performing complicated delay control, an ultrasonic image which can realize three-dimensional imaging at high speed at low cost. It is intended to provide a device and a probe thereof.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るリアルタイム3次元超音波映像装置
は、平面格子状に配列した圧電素子の、各行と各列とに
対応した圧電素子のそれぞれを結合し、行もしくは列の
一方を送信用とするとともに他方を受信用としてなる2
次元リニアアレイを構成し、送信素子群と受信素子群と
それぞれ行単位、列単位に切り替える切替手段を備える
ことによって行列交差部の前方を映像化領域とする探触
子を形成し、前記切替手段による切替処理毎に前記受信
素子群によって得られる計測データから映像化対象物の
3元画像を再生する処理手段を備えた構成としたもので
ある。
In order to achieve the above object, a real-time three-dimensional ultrasonic imaging apparatus according to the present invention is a piezoelectric element corresponding to each row and each column of piezoelectric elements arranged in a plane lattice pattern. Of each row or column for transmission and the other for reception 2
Forming a three-dimensional linear array, and providing a switching element for switching between the transmitting element group and the receiving element group on a row-by-row basis or a column-by-column basis, thereby forming a probe having an imaging region in front of the matrix intersection, and the switching means The processing means for reproducing the ternary image of the object to be imaged from the measurement data obtained by the receiving element group for each switching processing by

【0013】また、本発明に係る超音波映像装置の探触
子は、平面格子状に複数の圧電素子を配列し、各行列方
向に送信素子を構成する圧電素子と受信素子を構成する
圧電素子を交互に配置させ、各列(若しくは各行)に配
列している送信素子群を単位として送信切替作動させる
送信切替器と、各行(若しくは各列)に配列している受
信素子群を単位として受信切替作動させる受信切替器
と、を備えた構成としたものである。
Further, the probe of the ultrasonic imaging apparatus according to the present invention has a plurality of piezoelectric elements arranged in a plane lattice shape, and piezoelectric elements forming transmitting elements and receiving elements in each matrix direction. Are alternately arranged, and the transmission switching unit that operates the transmission element group arranged in each column (or each row) as a unit and the receiving element group arranged in each row (or each column) as a unit are received. The reception switching device for switching operation is provided.

【0014】平面格子状に並んだ圧電素子の各行と各列
とに対応した圧電素子のそれぞれを結合し、例えば行を
送信、列を受信とする。こうして送信用と受信用の合計
2n個の圧電素子のリニアアレイを構成することができ
る。このときの信号の給電は1列すなわちn個の点、受
信は1行すなわちn個の点となる。こうして2n個の配
線点のみが必要になり、回路構成は著しくシンプルとな
る。こうして得られた計測データは独自のアルゴリズム
によりコンピュータ処理されて3次元映像化される。し
たがって、本発明の方法では、機械的に動く部分がな
く、それでいて複雑な遅延制御も必要がなく、安価に高
速3次元超音波映像装置を実現できる。
Piezoelectric elements corresponding to each row and each column of piezoelectric elements arranged in a plane lattice are coupled to each other, for example, row is transmitted and column is received. In this way, it is possible to configure a linear array of a total of 2n piezoelectric elements for transmission and reception. At this time, the signal is fed in one column, that is, n points, and the signal is received in one row, that is, n points. In this way, only 2n wiring points are required, and the circuit configuration becomes remarkably simple. The measurement data thus obtained is computer-processed by a unique algorithm to be converted into a three-dimensional image. Therefore, according to the method of the present invention, there is no mechanically moving part, yet complicated delay control is not required, and a high-speed three-dimensional ultrasonic imaging apparatus can be realized at low cost.

【0015】[0015]

【発明の実施の形態】以下に本発明に係る3次元リアル
タイム超音波映像装置の具体的実施の形態を図面を参照
して説明する。図1は実施の形態に係る超音波映像装置
のシステムブロック図であり、図2は超音波映像装置の
探触子の構造を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of a three-dimensional real-time ultrasonic imaging apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a system block diagram of an ultrasonic imaging apparatus according to an embodiment, and FIG. 2 is a diagram showing a structure of a probe of the ultrasonic imaging apparatus.

【0016】図2に示すように、この実施形態の探触子
10は、平面格子状に複数の圧電素子を配列し、各行列
方向に送信素子12Tを構成する圧電素子と受信素子1
4Rを構成する圧電素子を交互に配置させ、各列に配列
している送信素子群12を単位として送信切替作動させ
る送信切替器16と、各行に配列している受信素子群1
4を単位として受信切替作動させる受信切替器18とを
備えている。図では白い素子を送信素子12Tとし、ハ
ッチング素子を受信素子14Rとして用い、それぞれ列
および行ごとにまとめて送信、受信するようにしてい
る。各列に対応した複数の送信用圧電素子12T、また
は各行に対応した複数の圧電素子14Rは、図4に示し
たように、それぞれが並列に接続されていて、一つのか
たまりとして動作するように前記切替器16、18が作
動させる。このように配置したことにより、2次元アレ
イの場合に各素子が小さくなるので必然的に大きくなる
各素子のインピーダンスを、束ねた結果、適切な値に保
ち、単体の素子から放射する場合に指向性と信号強度を
同時に失う問題を解決できる。並列接続によるインピー
ダンスの低下、信号強度の増大、1次元アレイによる指
向性の回復は装置の実現の上で重要である。
As shown in FIG. 2, the probe 10 according to this embodiment has a plurality of piezoelectric elements arranged in a plane lattice, and a piezoelectric element forming a transmitting element 12T in each matrix direction and a receiving element 1.
A transmission switching unit 16 in which the piezoelectric elements forming 4R are alternately arranged and the transmission switching operation is performed in units of the transmission element groups 12 arranged in each column, and the reception element group 1 arranged in each row
The reception switcher 18 performs the reception switching operation in units of four. In the figure, the white element is used as the transmitting element 12T and the hatching element is used as the receiving element 14R, so as to collectively transmit and receive for each column and row. As shown in FIG. 4, the plurality of transmitting piezoelectric elements 12T corresponding to each column or the plurality of piezoelectric elements 14R corresponding to each row are connected in parallel so that they operate as one block. The switching devices 16 and 18 are operated. By arranging in this way, each element becomes smaller in the case of a two-dimensional array, so the impedance of each element, which will inevitably become larger, is bundled and maintained at an appropriate value. It can solve the problem of loss of signal and signal strength at the same time. The reduction of impedance due to parallel connection, the increase of signal strength, and the restoration of directivity due to the one-dimensional array are important for realizing the device.

【0017】このように、送信と受信の1次元アレイが
互いに直交することにより、交差点でのデータが採れ、
送信用の列と受信用の行をスキャニングすることによ
り、アレイ平面上の全ての点でデータを採取することが
できる。ただし、これは探触子の直上でのことであり、
1次元アレイからの放射波は横方向に扇形に広がり、円
筒面状の波面を形成する。受信も同様で、結果的に図3
に示すように、2つの部分円筒が交差する領域O-p1-p2-
p3-p4が検知域となる。圧電素子が平面的に正方形状で
半波長程度のサイズの時には、1次元アレイ軸に対して
横方向の指向性は殆どないから、このままではまともな
映像は期待できない。したがって、上記探触子10を用
いて得られたデータを収束させる必要が生じる。
As described above, since the transmission and reception one-dimensional arrays are orthogonal to each other, the data at the intersection can be obtained.
By scanning the transmitting columns and the receiving rows, data can be collected at all points on the array plane. However, this is just above the transducer,
The radiated waves from the one-dimensional array spread laterally in a fan shape, forming a cylindrical wavefront. The reception is the same, and as a result, FIG.
As shown in, the region O-p1-p2- where two partial cylinders intersect
p3-p4 is the detection area. When the piezoelectric element has a square shape in a plane and a size of about a half wavelength, there is almost no directivity in the lateral direction with respect to the axis of the one-dimensional array, so that a decent image cannot be expected. Therefore, it is necessary to converge the data obtained by using the probe 10.

【0018】今、上述したような、X、Y軸にそれぞれ
平行な一次元アレイ素子群の一方を送信用に、他方を受
信用に用いた探触子10にて映像用データを得たとす
る。この時に像をフォーカスさせる方法の原理は以下の
ようになる。
Now, assume that image data is obtained by the probe 10 using one of the one-dimensional array element groups parallel to the X and Y axes for transmission and the other for reception as described above. . The principle of the method of focusing the image at this time is as follows.

【0019】図5に示す例えば水中の点Q(ξ,η,
ζ)は、超音波の反射体(物標)上の点である。この点
QとX軸までの距離をρ1、Y軸までの距離をρ2とす
る。X軸上に等間隔に配置された圧電素子列から同位相
で放射される超音波は、X軸を回転軸とする円筒座標系
を用いて以下のように表すことができる。
For example, the point Q (ξ, η,
ζ) is a point on the ultrasonic reflector (target). The distance between this point Q and the X axis is ρ 1 , and the distance between the Y axis is ρ 2 . Ultrasonic waves radiated in the same phase from the piezoelectric element rows arranged at equal intervals on the X axis can be represented as follows using a cylindrical coordinate system having the X axis as the rotation axis.

【0020】超音波の振幅をΦ(x,y,z,t)と
し、[数1]のように時間でフーリエ変換する。
The amplitude of the ultrasonic wave is Φ (x, y, z, t), and Fourier transform is performed in time as in [Equation 1].

【数1】 [Equation 1]

【0021】ここでωは角振動数であって、ω=ckであ
る。cは音速であり、kは波数である。
Here, ω is the angular frequency, and ω = ck. c is the speed of sound and k is the wave number.

【数2】 [Equation 2]

【0022】この式は、圧電素子の結合された軸方向を
0とし、その軸からの距離をr、回転方向をθとする円
筒座標系では、次のようになる。
This equation is as follows in a cylindrical coordinate system where z 0 is the axial direction to which the piezoelectric elements are coupled, r is the distance from the axis, and θ is the rotational direction.

【数3】 [Equation 3]

【0023】この式の解をz0に依存しない次のような
形に仮定する。
The solution of this equation is assumed to have the following form that does not depend on z 0 .

【数4】 このとき、Q(r)は、次の式を満たす。[Equation 4] At this time, Q (r) satisfies the following equation.

【数5】 [Equation 5]

【0024】この式はハンケル関数を用いて次のように
表すことができる。
This equation can be expressed as follows using the Hankel function.

【数6】 [Equation 6]

【0025】ここで、ハンケル関数は次のように漸次展
開できる。
Here, the Hankel function can be gradually expanded as follows.

【数7】 [Equation 7]

【数8】 [Equation 8]

【0026】X軸から放射し、物体で反射し、Y軸で受
信される超音波の信号はε(ξ,η,ζ)を物体中での
単位体積当たりの反射率とするとき、次のように表せ
る。
The ultrasonic signal radiated from the X-axis, reflected by the object, and received by the Y-axis is expressed as follows, where ε (ξ, η, ζ) is the reflectance per unit volume in the object. Can be expressed as

【数9】 [Equation 9]

【0027】漸次展開の式を上式へ適用すれば、Applying the equation of the gradual expansion to the above equation,

【数10】 [Equation 10]

【0028】この式を波数kについてフーリエ逆変換す
ると、
When this equation is inversely Fourier transformed with respect to the wave number k,

【数11】 [Equation 11]

【0029】[数11]において位相因子exp{ik
(ρ1+ρ2−ct)}が映像を再構築するために重要で
あることが分かる。これを踏まえ映像化のアルゴリズム
として次のような手順を用いる。探触子10の表面(X
Y平面)の1軸上(X軸に平行)に送信用圧電素子アレ
イ、他の1軸上(Y軸に平行)に受信用圧電素子アレイ
があると仮定する。
In [Equation 11], the phase factor exp {{ik
It can be seen that (ρ 1 + ρ 2 −ct)} is important for reconstructing the image. Based on this, the following procedure is used as a visualization algorithm. Surface of the probe 10 (X
It is assumed that there is a transmitting piezoelectric element array on one axis (parallel to the X axis) on the Y plane and another receiving piezoelectric element array on another axis (parallel to the Y axis).

【0030】送信用圧電素子が設定された超音波送信点
1(ξ,y,z)から放射し、受信用圧電素子が設定
された受信点P2(x,η,z)で受信した場合、物体
内部の反射点Q(ξ,η,ζ)からの反射波は、超音波
の減衰がなければ次のように書ける。
The ultrasonic wave is emitted from the set ultrasonic wave transmission point P 1 (ξ, y, z) and received by the receiving piezoelectric element P 2 (x, η, z). In this case, the reflected wave from the reflection point Q (ξ, η, ζ) inside the object can be written as follows if there is no attenuation of the ultrasonic wave.

【数12】 [Equation 12]

【0031】ここでri、ti、w(t)はそれぞれ反射
係数、超音波の反射点までの往復時間及び超音波パルス
波形である。物体中の各反射点までの距離に対応して時
間の遅延tiがある。ここで反射係数は、図5のξ、
η、ζに依存している。このような時系列データがx、
yの自由度に対応した数だけ計測される。
Here, r i , t i , and w (t) are the reflection coefficient, the round-trip time to the reflection point of the ultrasonic wave, and the ultrasonic pulse waveform, respectively. There is a time delay t i corresponding to the distance to each reflection point in the object. Here, the reflection coefficient is ξ in FIG.
It depends on η and ζ. Such time series data is x,
Only the number corresponding to the degree of freedom of y is measured.

【0032】像を再構成するためには図5において、先
ずP1(X軸に平行な軸上の点)、P2(Y軸に平行な軸
上の点)と点Qを選択する、この選択には5つの独立変
数(x,y,ξ,η,ζ)に対応した自由度がある。そ
して、これらの5つの独立変数について特定の値を選択
したときの組一つにつき、反射波として測定される超音
波の時系列データψ(t)が対応している。そこで、超
音波の伝播パス(P 1→Q→P2)対応した計測時系列波
形ψ(t)からQ点での反射振幅を、この伝播に要する
所要時間を計算して求め、点Qに割当てる。上記の5つ
の独立変数につきこの操作を実施すると、検査対象が存
在しない反射点Qについては反射振幅が得られず、検査
対象が存在する反射点Qについては反射振幅が得られ
る。従って、各点へ割当てられた反射振幅の数値を像空
間(映像化対象)の各点ごとに加算すると像が再構成で
きる。具体的には次の式が用いられる。
To reconstruct the image, in FIG.
Without P1(Point on the axis parallel to the X axis), P2(Axis parallel to Y-axis
Select the upper point) and the point Q. Five independent variables are included in this selection.
There are degrees of freedom corresponding to the numbers (x, y, ξ, η, ζ). So
And choose specific values for these five independent variables
Ultrasound measured as reflected waves for each pair when
Corresponding time series data ψ (t) of the waves. So super
Sound wave propagation path (P 1→ Q → P2) Corresponding measurement time series wave
The reflection amplitude at point Q from the shape ψ (t) is required for this propagation.
The required time is calculated and obtained and assigned to the point Q. 5 above
If you perform this operation for each independent variable of
For the reflection point Q that does not exist, the reflection amplitude cannot be obtained, and the inspection
For the reflection point Q where the object exists, the reflection amplitude can be obtained.
It Therefore, the numerical value of the reflection amplitude assigned to each point
The image can be reconstructed by adding each point between (imaging target)
Wear. Specifically, the following formula is used.

【0033】送信用圧電素子の位置を(ξ,y,z)、
受信用圧電素子の位置を(x,η,z)、媒体中の点Q
を(ξ,η,ζ)とすると、
The position of the transmitting piezoelectric element is (ξ, y, z),
The position of the receiving piezoelectric element is (x, η, z), and the point Q in the medium is
Let (ξ, η, ζ) be

【数13】 を求めればよい[Equation 13] Just ask

【0034】このような処理を行なうための実施形態に
係る3次元超音波映像装置は次のように構成される。図
2に示したように、探触子10のセンサヘッドを平面的
な構造の多重クロスリニアアレイ圧電素子配置とする。
このとき、3次元映像が、以下に示すようにセンサヘッ
ドが動かなくても得られるのが特徴である。
The three-dimensional ultrasonic imaging apparatus according to the embodiment for performing such processing is configured as follows. As shown in FIG. 2, the sensor head of the probe 10 has a multi-cross linear array piezoelectric element arrangement having a planar structure.
At this time, a characteristic is that a three-dimensional image can be obtained without moving the sensor head as shown below.

【0035】図1に装置全体のブロック図を示したよう
に、実施形態に係る超音波映像装置は図2に示した回路
構成の多重クロスリニアレイ構造となっている探触子1
0を有している。この探触子10は平面格子状に複数の
圧電素子を配列し、各行列方向に送電素子12Tを構成
する圧電素子と、受信素子14Rを構成する圧電素子を
交互に配置させている。このように多数の圧電素子が配
列された探触子10で、各列(若しくは各行)に配列し
ている送信素子群12を単位として送信切替作動させる
送信切替器(パルス切替回路)16が設けられ、また、
各行(若しくは各列)に配列している受信素子群14を
単位として受信切替作動させる受信切替器(受信切替回
路)18が設けられている。また、送信素子群12を列
単位に切り替える送信切替器16と、受信素子群14を
行単位に切り替える受信切替器18とは、制御回路26
によってそれぞれ各列単位、各行単位に順次切り替えら
れるように制御され、選択された送信列と受信列との交
差部分がその選択時の検知対象領域となるようにしてい
る。このような探触子10の信号線は2次元アレイ(N
×N)であるにもかかわらず、送信用N本、受信用N本
の合計2N本であり、これらの端子はアレイの外周部に
ある。制御回路26の信号制御回路部分は、上記の列あ
るいは行を順次選択する信号をSPNT(Single
PortN Transfer)切替器からなる送信
切替器16と受信切替器18とに送られる。このSPN
T切替器は、送信用の切替器16の場合、高圧パルス送
信回路38からの信号の電力が大きいので例えばパワー
FETで構成され、受信用の切替器18の場合、信号の
電力が微弱なので通常のFETスイッチなどで構成でき
る。受信切替器18により切替えられた受信信号は、高
感度の増幅器である高周波受信回路28により増幅され
A/D変換器30へ送られる。制御回路16の役割は、
当該スイッチ制御、信号をA/D変換するタイミングの
制御を主とするものである。図6は実際の探触子10に
おける配線パターンの一例で、3層構造の基板20に送
信信号線パターン22、受信信号線パターン24、アー
スパターン(図示せず)を設け、各圧電素子(12T、
14R)のアース側は共通アースとする。
As shown in the block diagram of the entire apparatus in FIG. 1, the ultrasonic imaging apparatus according to the embodiment is a probe 1 having a multiple cross linear ray structure of the circuit configuration shown in FIG.
Has 0. The probe 10 has a plurality of piezoelectric elements arranged in a plane lattice, and piezoelectric elements forming the power transmitting elements 12T and piezoelectric elements forming the receiving element 14R are alternately arranged in each matrix direction. In the probe 10 in which a large number of piezoelectric elements are arranged in this way, a transmission switching device (pulse switching circuit) 16 for performing transmission switching operation in units of the transmission element groups 12 arranged in each column (or each row) is provided. And again
A reception switcher (reception switching circuit) 18 for performing reception switching operation in units of the reception element groups 14 arranged in each row (or each column) is provided. Further, the transmission switch 16 that switches the transmission element group 12 in column units and the reception switch 18 that switches the reception element group 14 in row units are the control circuit 26.
Each column is controlled to be switched to each column and each row is sequentially controlled so that the intersection of the selected transmission column and reception column becomes the detection target area at the time of selection. The signal line of such a probe 10 is a two-dimensional array (N
XN), there are a total of 2N transmission N lines and reception N lines, and these terminals are located on the outer periphery of the array. The signal control circuit portion of the control circuit 26 outputs signals for sequentially selecting the columns or rows to SPNT (Single).
It is sent to the transmission switch 16 and the reception switch 18, which are PortN Transfer) switches. This SPN
In the case of the switch 16 for transmission, the T switch is composed of, for example, a power FET because the power of the signal from the high-voltage pulse transmission circuit 38 is large. It can be configured with a FET switch or the like. The reception signal switched by the reception switch 18 is amplified by the high-frequency receiving circuit 28, which is a high-sensitivity amplifier, and sent to the A / D converter 30. The role of the control circuit 16 is
The switch control and the timing control for A / D converting the signal are mainly used. FIG. 6 shows an example of an actual wiring pattern in the probe 10, in which a transmission signal line pattern 22, a reception signal line pattern 24, and an earth pattern (not shown) are provided on a substrate 20 having a three-layer structure, and each piezoelectric element (12T). ,
The ground side of 14R) is a common ground.

【0036】前記送信切替器(パルス切替回路)16に
は高圧パルス発生回路38が接続され、選択された列の
送信素子群12から超音波をパルスとして放射させるよ
うにしている。この高圧パルス発生回路38には、産業
用の高速・高電圧のFETを用いればよく、そのゲート
コントロールを行なうことで50V、10MHz程度ま
でのパルス電圧を発生させることができる。また、前記
受信切替器(受信切替回路)18によって選択されてい
る行の受信素子群14によって検出された反射信号は、
高周波受信回路28からA/D変換器30を経由して制
御回路26に入力されるようになっている。
A high voltage pulse generation circuit 38 is connected to the transmission switching device (pulse switching circuit) 16 so that ultrasonic waves are emitted as pulses from the transmission element group 12 in the selected row. An industrial high-speed, high-voltage FET may be used for the high-voltage pulse generation circuit 38, and a pulse voltage up to about 50 V and 10 MHz can be generated by controlling the gate of the FET. Further, the reflection signal detected by the receiving element group 14 in the row selected by the reception switching device (reception switching circuit) 18 is
The signal is input from the high frequency receiving circuit 28 to the control circuit 26 via the A / D converter 30.

【0037】実施形態における3次元超音波映像装置
は、制御回路26が送信切替回路(パルス切替回路)1
6と受信切替回路18とに切替制御信号を出力するとと
もに、高圧パルス送信回路38に制御信号を出力して送
信パルスを発生させる。すなわち、送信切替回路16
は、制御回路26からの切替制御信号に基づいて、探触
子10の例えば第1列目の送信用圧電素子群12を高圧
パルス送信回路38に接続する。そして、制御回路26
は、この送信用圧電素子群12の切り替えに同期して高
圧パルス送信回路38に制御信号を与え、高圧パルスを
発生させる。これにより、第1列目の送信用圧電素子群
12は、高圧パルス送信回路38の出力するパルスが入
力し、所定周波数の超音波パルスを空中や水中、あるい
は検査対象となる物体中に放射する。また、制御回路2
6は、第1列目の送信用圧電素子群12に超音波パルス
を出力させると、受信切替回路18を介して探触子10
の受信用圧電素子14Rを順次切り替えて高周波受信回
路28に接続する。この受信用圧電素子14Rの切り替
えは、探触子10の行ごとに行なわれる。
In the three-dimensional ultrasonic imaging apparatus according to the embodiment, the control circuit 26 has a transmission switching circuit (pulse switching circuit) 1
A switching control signal is output to 6 and the reception switching circuit 18, and a control signal is output to the high voltage pulse transmission circuit 38 to generate a transmission pulse. That is, the transmission switching circuit 16
On the basis of the switching control signal from the control circuit 26, for example, the transmission piezoelectric element group 12 in the first column of the probe 10 is connected to the high-voltage pulse transmission circuit 38. Then, the control circuit 26
Supplies a control signal to the high voltage pulse transmission circuit 38 in synchronization with the switching of the transmission piezoelectric element group 12 to generate a high voltage pulse. As a result, the transmission piezoelectric element group 12 in the first column receives the pulse output from the high-voltage pulse transmission circuit 38 and radiates an ultrasonic pulse of a predetermined frequency into the air, water, or an object to be inspected. . In addition, the control circuit 2
6 outputs the ultrasonic pulse to the transmitting piezoelectric element group 12 in the first column, the probe 10 is transmitted through the reception switching circuit 18.
The receiving piezoelectric elements 14R are sequentially switched and connected to the high frequency receiving circuit 28. The switching of the receiving piezoelectric element 14R is performed for each row of the probe 10.

【0038】つまり、制御回路26は、第1列目の送信
用圧電素子群12が超音波パルスを放射すると、第1行
目の受信用圧電素子群14、第2行目の受信用圧電素子
群14、………、第N行目の受信用圧電素子群14と順
次切り替えて高周波受信回路28に接続し、第1列目の
送信用圧電素子群12が放射した超音波の反射波による
受信信号を高周波受信回路28に入力する。そして、制
御回路26は、受信用圧電素子群14を第1行目から第
N行目までの切り替えを終了すると、送信切替回路16
に切替信号を与え、第1行目の送信用圧電素子群12を
オフして第2行目の送信用圧電素子群12を高圧パルス
送信回路38に接続し、第2行目の送信用圧電素子群1
2から超音波パルスを放射させるとともに、受信切替回
路18を介して受信用圧電素子群14を第1行目から第
N行目まで順次切り替えて高周波受信回路28に接続す
る。
That is, when the transmitting piezoelectric element group 12 in the first column emits an ultrasonic pulse, the control circuit 26 causes the receiving piezoelectric element group 14 in the first row and the receiving piezoelectric element in the second row. Group 14, ..., which is sequentially switched to the receiving piezoelectric element group 14 in the Nth row and connected to the high-frequency receiving circuit 28, and which is generated by reflected waves of ultrasonic waves emitted from the transmitting piezoelectric element group 12 in the first column. The received signal is input to the high frequency receiving circuit 28. Then, when the control circuit 26 finishes switching the reception piezoelectric element group 14 from the first row to the Nth row, the transmission switching circuit 16
To the high voltage pulse transmission circuit 38 to connect the piezoelectric element group 12 for transmission on the second row to the high voltage pulse transmission circuit 38, and to transmit the piezoelectric element group 12 for transmission on the second row. Element group 1
The ultrasonic pulse is emitted from 2, and the receiving piezoelectric element group 14 is sequentially switched from the first row to the Nth row via the reception switching circuit 18 and connected to the high-frequency receiving circuit 28.

【0039】このようにして、制御回路26は、送信用
圧電素子群12を第1列目から第N列目までを順次切り
替えて高圧パルス送信回路38に接続して駆動するとと
もに、受信用圧電素子群14を第1行目から第N行目ま
で順次切り替えて高周波受信回路に接続する。なお、探
触子10の切替動作は、送信用圧電素子群12と受信用
圧電素子群14とで、上記と逆であってもよい。
In this way, the control circuit 26 sequentially switches the piezoelectric element groups 12 for transmission from the first column to the Nth column and connects them to the high-voltage pulse transmission circuit 38 to drive them, and at the same time, receives the piezoelectric elements for reception. The element group 14 is sequentially switched from the first row to the Nth row and connected to the high frequency receiving circuit. The switching operation of the probe 10 may be reversed for the transmission piezoelectric element group 12 and the reception piezoelectric element group 14.

【0040】このようにして受信用圧電素子群14によ
って受信された信号は、受信切替回路を介してセンサ画
像処理回路32に出力され、ここで3次元映像化処理を
行なうようにしている。そして、センサ画像処理回路3
2が求めた画像データは、制御回路26を介して表示装
置34に出力され、3次元画像として表示される。
The signal thus received by the receiving piezoelectric element group 14 is output to the sensor image processing circuit 32 via the reception switching circuit, where the three-dimensional image processing is performed. Then, the sensor image processing circuit 3
The image data obtained by 2 is output to the display device 34 via the control circuit 26 and displayed as a three-dimensional image.

【0041】センサ画像処理回路32での具体的処理
は、次のようになる。探触子10は多重クロスリニアア
レイ構造とされ、図3に示すように、一列のアレイの場
合には、アレイの軸方向と直角方向には超音波が広が
り、指向性が低下し、これが互いに直交する送受双方に
ついて言えるので、同図のP1、P2、P3、P4で示
すようにな扇形柱の交点領域が同時検知領域となってい
る。図から判るように、このままではビームの広がりの
ために検知領域が大きくなり、像がぼける結果となる。
そこで、この像のぼけを直し、正しい収束した像に再生
するための処理方法はすでに述べた通りである。
The specific processing in the sensor image processing circuit 32 is as follows. The probe 10 has a multi-cross linear array structure. As shown in FIG. 3, in the case of a single-row array, ultrasonic waves spread in the direction orthogonal to the axial direction of the array and the directivity deteriorates. Since this can be applied to both the orthogonal transmission and reception, the intersection area of the fan-shaped pillars is the simultaneous detection area as indicated by P1, P2, P3, and P4 in FIG. As can be seen from the figure, if this is left as it is, the detection area becomes large due to the spread of the beam, resulting in a blurred image.
Therefore, the processing method for correcting this image blur and reproducing it to a correct converged image is as described above.

【0042】このように、本実施形態では、多重クロス
リニアアレイの構造の探触子と、これを駆動する回路を
内蔵したシステムと、これらを用いて得られる超音波受
信信号からセンサ画像処理回路に搭載された像再生のア
ルゴリズムにより画像のぼけを収束させて対象物の3次
元映像を求めることができる。
As described above, in the present embodiment, the probe having the structure of the multiple cross linear array, the system incorporating the circuit for driving the probe, and the sensor image processing circuit from the ultrasonic wave reception signal obtained by using them. It is possible to obtain a three-dimensional image of the object by converging the blur of the image by the image reproducing algorithm installed in the.

【0043】[0043]

【発明の効果】以上説明したように、本発明は、平面格
子状に配列した圧電素子の各行と各列をそれぞれ結合す
ることにより行もしくは列の一方を送信用とするととも
に他方を受信用としてなる2次元クロスリニアアレイを
構成し、送信素子群と受信素子群とをそれぞれ行単位、
列単位に切り替える切替手段を備え、当該切替手段によ
る切替処理毎に前記受信素子群によって得られた超音波
受信信号から像の再生計算式に基づいて3次元画像を再
生する処理手段を備えた構成としたので、第1に機械走
査のいらないリアルタイム3次元映像装置が実現でき、
また、電子回路の配線などが激減するので、非常に安価
に構成できる。
As described above, according to the present invention, by connecting each row and each column of piezoelectric elements arranged in a plane lattice, one of the rows or columns is used for transmission and the other is used for reception. And a transmitting element group and a receiving element group are arranged in rows,
A configuration including switching means for switching to each column, and processing means for reproducing a three-dimensional image based on an image reproduction calculation formula from an ultrasonic wave reception signal obtained by the receiving element group every switching processing by the switching means. Therefore, firstly, a real-time 3D image device that does not require mechanical scanning can be realized,
Also, the wiring of the electronic circuit is drastically reduced, so that the configuration can be made very inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態に係るリアルタイム3次元映像装置の
全体構成を示すブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a real-time 3D image device according to an embodiment.

【図2】実施形態に係る超音波映像装置用探触子のレイ
アウト図である。
FIG. 2 is a layout diagram of a probe for an ultrasonic imaging apparatus according to an embodiment.

【図3】実施形態に係る探触子のビーム形状と検知領域
の説明図である。
FIG. 3 is an explanatory diagram of a beam shape and a detection region of the probe according to the embodiment.

【図4】実施の形態に係る探触子の行または列を形成す
る圧電素子の接続方法の説明図である。
FIG. 4 is an explanatory diagram of a method of connecting piezoelectric elements forming rows or columns of the probe according to the embodiment.

【図5】3次元映像表示の原理説明図である。FIG. 5 is a diagram illustrating the principle of three-dimensional image display.

【図6】探触子の配線パターンの説明図である。FIG. 6 is an explanatory diagram of a wiring pattern of the probe.

【図7】一般的な超音波映像装置の基本構成図である。FIG. 7 is a basic configuration diagram of a general ultrasonic imaging apparatus.

【図8】圧電素子を用いた探触子の電子収束の原理図で
ある。
FIG. 8 is a principle diagram of electron focusing of a probe using a piezoelectric element.

【符号の説明】[Explanation of symbols]

10………探触子、12T………送信用圧電素子、14
R………受信用圧電素子、16………送信切替器、18
………受信切替器、26………制御回路、28………高
周波受信回路、32………センサ画像処理回路、34…
……表示装置、38………高圧パルス発生回路。
10 ... Probe, 12T ... Piezoelectric element for transmission, 14
R ......... Reception piezoelectric element, 16 ......... Transmission switch, 18
……… Reception switch, 26 ……… Control circuit, 28 ……… High frequency receiving circuit, 32 ……… Sensor image processing circuit, 34…
...... Display device, 38 ………… High voltage pulse generation circuit.

フロントページの続き (72)発明者 弓井 孝佳 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 Fターム(参考) 2F068 AA40 DD02 FF12 FF14 GG01 KK13 KK17 KK18 LL04 PP05 QQ42 QQ44 RR02 2G047 AC13 BC07 CA01 EA16 GB02 GB17 GF01 GF06 GF15 GG09 GH07 GH08 GH09 4C301 AA03 BB02 BB13 BB19 BB22 EE10 EE17 GB09 HH17 KK16 5D019 AA06 BB19 Continued front page    (72) Inventor Takayoshi Yumi             Mitsui Shipbuilding, 3-1-1 Tamama, Tamano City, Okayama Prefecture             Tamano Works Co., Ltd. F term (reference) 2F068 AA40 DD02 FF12 FF14 GG01                       KK13 KK17 KK18 LL04 PP05                       QQ42 QQ44 RR02                 2G047 AC13 BC07 CA01 EA16 GB02                       GB17 GF01 GF06 GF15 GG09                       GH07 GH08 GH09                 4C301 AA03 BB02 BB13 BB19 BB22                       EE10 EE17 GB09 HH17 KK16                 5D019 AA06 BB19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平面格子状に配列した圧電素子の、各行
と各列とに対応した圧電素子のそれぞれを結合し、行も
しくは列の一方を送信用とするとともに他方を受信用と
してなる2次元リニアアレイを構成し、送信素子群と受
信素子群とそれぞれ行単位、列単位に切り替える切替手
段を備えることによって行列交差部前方を映像領域とす
る探触子を形成し、前記切替手段による切替処理毎に前
記受信素子群によって得られる計測データから映像化対
象物の3次元画像を再生する処理手段を備えたことを特
徴とするリアルタイム3次元超音波映像装置。
1. A two-dimensional structure in which piezoelectric elements corresponding to each row and each column of piezoelectric elements arranged in a plane lattice are coupled so that one of the rows or columns is for transmission and the other is for reception. A linear array is provided, and a switching device that switches between the transmitting element group and the receiving element group in units of rows and columns is formed to form a probe having a video area in front of the matrix intersection, and switching processing by the switching unit is performed. A real-time three-dimensional ultrasonic imaging apparatus comprising processing means for reproducing a three-dimensional image of an object to be imaged from measurement data obtained by the receiving element group for each.
【請求項2】平面格子状に複数の圧電素子を配列し、各
行列方向に送信素子を構成する圧電素子と受信素子を構
成する圧電素子を交互に配置させ、各列(若しくは各
行)に配列している送信素子群を単位として送信切替作
動させる送信切替器と、各行(若しくは各列)に配列し
ている受信素子群を単位として受信切替作動させる受信
切替器と、を備えたことを特徴とする超音波映像装置用
探触子。
2. A plurality of piezoelectric elements are arranged in a plane lattice, and piezoelectric elements forming a transmitting element and piezoelectric elements forming a receiving element are alternately arranged in each matrix direction, and arranged in each column (or each row). And a reception switcher for performing a reception switching operation for each receiving element group arranged in each row (or each column). A probe for an ultrasonic imaging device.
JP2001191629A 2001-06-25 2001-06-25 Real-time 3D ultrasound imaging device and probe Expired - Lifetime JP4638622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191629A JP4638622B2 (en) 2001-06-25 2001-06-25 Real-time 3D ultrasound imaging device and probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191629A JP4638622B2 (en) 2001-06-25 2001-06-25 Real-time 3D ultrasound imaging device and probe

Publications (2)

Publication Number Publication Date
JP2003000599A true JP2003000599A (en) 2003-01-07
JP4638622B2 JP4638622B2 (en) 2011-02-23

Family

ID=19030224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191629A Expired - Lifetime JP4638622B2 (en) 2001-06-25 2001-06-25 Real-time 3D ultrasound imaging device and probe

Country Status (1)

Country Link
JP (1) JP4638622B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114075A (en) * 2005-10-21 2007-05-10 Hitachi Ltd Ultrasonic probe for ultrasonic flaw detector
JP2007526785A (en) * 2003-06-30 2007-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Two-dimensional transducer array using beam control for view area improvement
JP2010088497A (en) * 2008-10-03 2010-04-22 Canon Inc Biological information acquisition apparatus
JP2010171872A (en) * 2009-01-26 2010-08-05 Nec Tokin Corp Ultrasonic phased array transceiver
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
JP2011072585A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Ultrasonic probe
US8169855B2 (en) 2009-02-06 2012-05-01 Seiko Epson Corporation Ultrasonic sensor unit and electronic device
US8210043B2 (en) 2009-04-06 2012-07-03 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
JP2013176706A (en) * 2013-06-27 2013-09-09 Canon Inc Biological information acquisition device
JP5409784B2 (en) * 2009-05-25 2014-02-05 株式会社日立メディコ Ultrasonic transducer and ultrasonic diagnostic apparatus using the same
CN104034802A (en) * 2014-06-03 2014-09-10 艾因蒂克检测科技(上海)有限公司 Detecting method for improving resolution ratio of area array probe
US9199277B2 (en) 2013-01-29 2015-12-01 Seiko Epson Corporation Ultrasonic measurement device, ultrasonic head unit, ultrasonic probe, and ultrasonic image device
JP2016057104A (en) * 2014-09-08 2016-04-21 一般財団法人電力中央研究所 Virtual ultrasonic flaw detection testing system
US10588527B2 (en) 2009-04-16 2020-03-17 Braemar Manufacturing, Llc Cardiac arrhythmia report
CN111568468A (en) * 2020-05-11 2020-08-25 上海思立微电子科技有限公司 Ultrasonic chip, ultrasonic detection device and method for detecting blood pressure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954359B (en) * 2016-05-24 2019-01-25 武汉理工大学 Complicated shape inside parts defect distribution formula ultrasonic no damage detection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069593A (en) * 1998-08-03 2000-03-03 Wingmed Sound As Multi-dimensional transducer array device
JP2000254120A (en) * 1999-03-11 2000-09-19 Toshiba Corp Three-dimensional ultrasonograph
JP2000325344A (en) * 1999-05-21 2000-11-28 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2002119509A (en) * 2000-09-15 2002-04-23 Koninkl Philips Electronics Nv 2d ultrasonic converter array for two-dimensional and three-dimensional imaging
JP2002165790A (en) * 2000-11-22 2002-06-11 Ge Medical Systems Global Technology Co Llc Ultrasonic imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010210A1 (en) * 1980-03-17 1981-09-24 Siemens AG, 1000 Berlin und 8000 München ULTRASONIC ARRAY
JPS59218143A (en) * 1983-05-25 1984-12-08 株式会社東芝 Ultrasonic examining apparatus
JPH03247324A (en) * 1990-02-23 1991-11-05 Hitachi Ltd Ultrasonic photographing method and apparatus
JPH05140A (en) * 1991-06-24 1993-01-08 Matsushita Electric Ind Co Ltd Ultrasonic probe and ultrasonic diagnosing apparatus
JPH09238943A (en) * 1996-03-12 1997-09-16 Furuno Electric Co Ltd Ultrasonic diagnostic apparatus
JP4582827B2 (en) * 1998-02-10 2010-11-17 株式会社東芝 Ultrasonic diagnostic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069593A (en) * 1998-08-03 2000-03-03 Wingmed Sound As Multi-dimensional transducer array device
JP2000254120A (en) * 1999-03-11 2000-09-19 Toshiba Corp Three-dimensional ultrasonograph
JP2000325344A (en) * 1999-05-21 2000-11-28 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2002119509A (en) * 2000-09-15 2002-04-23 Koninkl Philips Electronics Nv 2d ultrasonic converter array for two-dimensional and three-dimensional imaging
JP2002165790A (en) * 2000-11-22 2002-06-11 Ge Medical Systems Global Technology Co Llc Ultrasonic imaging device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526785A (en) * 2003-06-30 2007-09-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Two-dimensional transducer array using beam control for view area improvement
JP2007114075A (en) * 2005-10-21 2007-05-10 Hitachi Ltd Ultrasonic probe for ultrasonic flaw detector
JP2010088497A (en) * 2008-10-03 2010-04-22 Canon Inc Biological information acquisition apparatus
JP2010171872A (en) * 2009-01-26 2010-08-05 Nec Tokin Corp Ultrasonic phased array transceiver
US8169855B2 (en) 2009-02-06 2012-05-01 Seiko Epson Corporation Ultrasonic sensor unit and electronic device
US8451694B2 (en) 2009-02-06 2013-05-28 Seiko Epson Corporation Ultrasonic sensor unit and electronic device
JP2010243321A (en) * 2009-04-06 2010-10-28 Hitachi-Ge Nuclear Energy Ltd Ultrasonic measurement method and apparatus
US8210043B2 (en) 2009-04-06 2012-07-03 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
US8701492B2 (en) 2009-04-06 2014-04-22 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic measurement method, ultrasonic measurement apparatus, and ultrasonic sensor
US10588527B2 (en) 2009-04-16 2020-03-17 Braemar Manufacturing, Llc Cardiac arrhythmia report
JP5409784B2 (en) * 2009-05-25 2014-02-05 株式会社日立メディコ Ultrasonic transducer and ultrasonic diagnostic apparatus using the same
US9085012B2 (en) 2009-05-25 2015-07-21 Hitachi Medical Corporation Ultrasonic transducer and ultrasonic diagnostic apparatus provided with same
JP2011072585A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Ultrasonic probe
US9199277B2 (en) 2013-01-29 2015-12-01 Seiko Epson Corporation Ultrasonic measurement device, ultrasonic head unit, ultrasonic probe, and ultrasonic image device
JP2013176706A (en) * 2013-06-27 2013-09-09 Canon Inc Biological information acquisition device
CN104034802A (en) * 2014-06-03 2014-09-10 艾因蒂克检测科技(上海)有限公司 Detecting method for improving resolution ratio of area array probe
JP2016057104A (en) * 2014-09-08 2016-04-21 一般財団法人電力中央研究所 Virtual ultrasonic flaw detection testing system
CN111568468A (en) * 2020-05-11 2020-08-25 上海思立微电子科技有限公司 Ultrasonic chip, ultrasonic detection device and method for detecting blood pressure
CN111568468B (en) * 2020-05-11 2023-04-21 上海思立微电子科技有限公司 Ultrasonic chip, ultrasonic detection device and method for detecting blood pressure

Also Published As

Publication number Publication date
JP4638622B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US5186175A (en) Ultrasonic diagnostic apparatus
US7474778B2 (en) Ultrasonograph
JP4638622B2 (en) Real-time 3D ultrasound imaging device and probe
US7090642B2 (en) Ultrasonic transmitting and receiving apparatus and ultrasonic transmitting and receiving method
US6537220B1 (en) Ultrasound imaging with acquisition of imaging data in perpendicular scan planes
KR100274653B1 (en) Method of ultrasonic 3-dimension imaging using cross array
JP2007152127A (en) Ultrasonic imaging transducer array for synthetic aperture
WO2006134686A1 (en) Ultrasonographic device
JPH09313487A (en) Method and device for ultrasonic three-dimensional photographing
US8202222B2 (en) Equal phase two-dimensional array probe
JP2010029374A (en) Ultrasonic diagnostic apparatus
US6638220B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JPH0644908B2 (en) Method and apparatus for creating a signal for forming an image of a target area in a body
JP2004512117A (en) Method, system and probe for acquiring images
US8235906B2 (en) System and method for accelerated focused ultrasound imaging
JP2743008B2 (en) Ultrasound diagnostic equipment
JP3256698B2 (en) Ultrasound diagnostic equipment
JP2006218089A (en) Ultrasonic diagnostic apparatus
JPH1062396A (en) Ultrasonic scanning device, ultrasonic diagnostic device, nondestructive inspecting device, and ultrasonic oscillator array
JPS624984B2 (en)
JP3101301B2 (en) Ultrasound diagnostic equipment
WO2022230601A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP2000325343A (en) Ultrasonic diagnostic apparatus and wave transmitter/ receiver
CN114072063B (en) Ultrasonic three-dimensional imaging method and device
JPH03247324A (en) Ultrasonic photographing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141203

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term