JP2002530720A - Spiral deformation liquid crystal display device with vertical alignment - Google Patents

Spiral deformation liquid crystal display device with vertical alignment

Info

Publication number
JP2002530720A
JP2002530720A JP2000584341A JP2000584341A JP2002530720A JP 2002530720 A JP2002530720 A JP 2002530720A JP 2000584341 A JP2000584341 A JP 2000584341A JP 2000584341 A JP2000584341 A JP 2000584341A JP 2002530720 A JP2002530720 A JP 2002530720A
Authority
JP
Japan
Prior art keywords
liquid crystal
glass substrate
crystal display
display device
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2000584341A
Other languages
Japanese (ja)
Inventor
シンドゥ リ
Original Assignee
スマートディスプレー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スマートディスプレー カンパニー リミテッド filed Critical スマートディスプレー カンパニー リミテッド
Publication of JP2002530720A publication Critical patent/JP2002530720A/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1414Deformed helix ferroelectric [DHL]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

(57)【要約】 本発明は垂直配向の螺旋変形液晶表示装置に関し,特に本発明の装置は,互いに対面する二つの面をそれぞれ有する第1および第2ガラス基板と,第1ガラス基板の第1面に形成し,第1電位を有する第1透明電極と,第1ガラス基板の第1面に形成し,前記第1電位と異なる第2電位を有する第2透明電極と,第1および第2透明電極を形成した,第1ガラス基板の第1面上に形成する第1垂直配向膜と,前記第2ガラス基板の第1面に形成する第2垂直配向膜と,第1および第2垂直配向膜を互いに対面する第1および第2ガラス基板の間に封じ込み,光の波長よりさらに短い螺旋ピッチを有し,前記第1および第2透明電極の間に形成する電界に応答して螺旋変形し,特定方向に分子が回転する強誘電性液晶と,第1ガラス基板の第2面に設けた第1偏光板と第2ガラス基板の第2面に設け,第1偏光板と直交する偏光性を有する第2偏光板を含む。したがって,本発明では大面積の均一な垂直配向が可能で,高い対比比率を有し,電場の大きさによって連続的に変形が可能で,連続階調表示ができ,同じ基板上の電極配列による多重配向によって広い視野角特性を有する。 (57) [Summary] The present invention relates to a vertically-aligned helical deformation liquid crystal display device, and more particularly, to a device of the present invention, comprising a first and a second glass substrate having two surfaces facing each other, and a first and a second glass substrates, respectively. A first transparent electrode formed on one surface and having a first potential; a second transparent electrode formed on a first surface of the first glass substrate and having a second potential different from the first potential; (2) a first vertical alignment film formed on a first surface of a first glass substrate on which a transparent electrode is formed; a second vertical alignment film formed on a first surface of the second glass substrate; A vertical alignment film is sealed between the first and second glass substrates facing each other, has a helical pitch shorter than the wavelength of light, and responds to an electric field formed between the first and second transparent electrodes. A ferroelectric liquid crystal that undergoes helical deformation and molecules rotate in a specific direction Provided on the first the second surface of the polarizing plate and the second glass substrate provided on the second surface of the substrate, including a second polarizer having a polarizing orthogonal to the first polarization plate. Therefore, according to the present invention, uniform vertical alignment of a large area is possible, a high contrast ratio is obtained, continuous deformation is possible according to the magnitude of an electric field, continuous gradation display is possible, and an electrode arrangement on the same substrate is possible. It has wide viewing angle characteristics due to multiple orientations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は強誘電性液晶を用いた新規の液晶表示装置に関し,特に入射光の波長
より短い螺旋ピッチを有する強誘電性液晶を垂直配向し,基板に平行した電場の
強度による螺旋構造の変形を介して分子回転方向が制御され,大面積の均一な配
向で高い対比比率を有し,連続階調表示ができ,同じ基板上に電極を配列するこ
とによって広い視野角の実現できる垂直配向の螺旋変形液晶表示装置に関する。
The present invention relates to a novel liquid crystal display device using a ferroelectric liquid crystal, and in particular, vertically aligns a ferroelectric liquid crystal having a helical pitch shorter than the wavelength of incident light and suppresses the deformation of the helical structure due to the strength of an electric field parallel to the substrate. The direction of rotation of the molecule is controlled through a large area, the orientation is high, the contrast ratio is high, continuous gradation can be displayed, and the vertical alignment helix that can realize a wide viewing angle by arranging the electrodes on the same substrate The present invention relates to a modified liquid crystal display device.

【0002】[0002]

【従来の技術】[Prior art]

液晶の電気光学効果を用いた従来の液晶表示装置は,2枚の基板にそれぞれ透
明電極を形成し,その電極面に液晶の整列できる配向膜を形成し,この基板の間
に液晶を充填し,それぞれの外面には偏光器が付けられる。かかる従来の液晶表
示装置は,入射した光を自動的に透過または遮断して画面に情報を表す。したが
って,光線を透過または遮断するためには,電圧を印加し,液晶の分子回転を誘
導して配向方向を変えなければならない。
In a conventional liquid crystal display device using the electro-optic effect of liquid crystal, a transparent electrode is formed on each of two substrates, an alignment film capable of aligning the liquid crystal is formed on the electrode surfaces, and the liquid crystal is filled between the substrates. , Each outer surface is provided with a polarizer. Such a conventional liquid crystal display device automatically transmits or blocks incident light to display information on a screen. Therefore, in order to transmit or block light, a voltage must be applied to induce rotation of liquid crystal molecules to change the alignment direction.

【0003】 一方,液晶表示装置に用いられる液晶は,分子配列構造により,方向秩序のみ
存在するネマチック(nematic)液晶と,方向秩序,位置秩序共に存在す
るスメクチック(smectic)液晶とに分けられる。このスメクチック液晶
はさらに自発分極の存在有無によって,強誘電性液晶と常誘電性液晶に分けるこ
とができる。ネマチック液晶は自発分極が無いため,電場の極性に作用されない
。ネマチック液晶は誘電異方性がある。こうしたネマチック液晶を用いる捩じれ
たネマチック液晶表示装置では,誘電異方性による液晶分子の応答速度が数十か
ら数百ms水準のため,高速応答が求められる液晶表示装置には適していない。
さらに,多重配向や追加の光学フィルムを用いなければ,狭い視野角と低い対比
比率の特性を示す。
On the other hand, the liquid crystal used in the liquid crystal display device is classified into a nematic liquid crystal having only the directional order and a smectic liquid crystal having both the directional order and the positional order depending on the molecular arrangement structure. The smectic liquid crystal can be further classified into a ferroelectric liquid crystal and a paraelectric liquid crystal depending on the presence or absence of spontaneous polarization. Nematic liquid crystals have no spontaneous polarization and are not affected by the polarity of the electric field. Nematic liquid crystals have dielectric anisotropy. Such a twisted nematic liquid crystal display device using a nematic liquid crystal is not suitable for a liquid crystal display device that requires a high-speed response because the response speed of liquid crystal molecules due to dielectric anisotropy is on the order of tens to hundreds of ms.
Furthermore, if multiple orientations and additional optical films are not used, the characteristics of a narrow viewing angle and a low contrast ratio are exhibited.

【0004】 ネマチック液晶に比べ,強誘電性液晶では,分子の応答速度が自発分極と電場
との結合により,数十μs程度と極めて高く,高速の動画像の具現に適する。し
かし,既存の表面安定化された強誘電性液晶表示装置は,双安定モードで動作し
,連続的な階調表示が不可能で,大面積の均一な配向を得ることが極めて困難で
ある。最近には,時間または空間分割駆動方式で多階調表示機能が達成されたも
のの,表面安定化された強誘電性液晶表示装置は,複雑な駆動機構により極めて
限られた階調表示しか示せない。
[0004] Compared to a nematic liquid crystal, a ferroelectric liquid crystal has a much higher response speed of molecules, about several tens of microseconds, due to a combination of spontaneous polarization and an electric field, and is suitable for realizing a high-speed moving image. However, the existing surface-stabilized ferroelectric liquid crystal display device operates in a bistable mode, cannot perform continuous gradation display, and it is extremely difficult to obtain a large-area uniform alignment. Recently, although a multi-gradation display function has been achieved by a time or space division driving method, a surface-stabilized ferroelectric liquid crystal display device can display only a very limited number of gradations due to a complicated driving mechanism. .

【0005】 近頃に紹介されている反強誘電性液晶表示装置の場合,ネマチックに比べ,迅
速な応答速度と制限された多階調表示機能を有しているものの,依然として大面
積の均一な配向の難しさと画面チラツキ現象の問題がある。一方,入射光の波長
に比べ,極めて短い螺旋ピッチを有する強誘電性液晶の水平配向の螺旋変形強誘
電性液晶表示装置が提示されている。このような液晶表示装置では,基板面の螺
旋構造が変形し,連続的な階調表示を達成するように2枚の基板上の電極に交差
する電場が供給される。この表示装置も高い応答速度を示すが,大面積の均一な
配向を得るにはずれや電場処理などの追加配向工程が求められる。さらに帯組織
が発現するなどの欠点がある。
A recently introduced antiferroelectric liquid crystal display device has a quick response speed and a limited multi-gradation display function as compared with nematic, but still has a large area and uniform alignment. And the problem of screen flicker phenomenon. On the other hand, a helically deformed ferroelectric liquid crystal display device in which a ferroelectric liquid crystal has a very short helical pitch compared to the wavelength of incident light has been proposed. In such a liquid crystal display device, an electric field that intersects the electrodes on the two substrates is supplied so that the spiral structure of the substrate surface is deformed and continuous gradation display is achieved. Although this display device also has a high response speed, additional orientation steps such as deviation and electric field treatment are required to obtain a large-area uniform orientation. There is a further drawback such as the appearance of band tissue.

【0006】 前述のように,従来の強誘電性または反強誘電性液晶表示装置は,大面積の均
一な配向と,アナログ階調表示が難しく,画質低下などの短所を有している。具
体的には,強誘電性または反強誘電性液晶は短い螺旋ピッチを有し,液晶分子と
配向表面との間の強い極性相互作用によって帯組織などの欠陥構造が現れるため
,均一な単一配向構造を得ることが極めて困難である。このように,短いピッチ
の強誘電性液晶においては,均一な構造は対比比率が低下し,高い透過度を得る
ことが不可能である。
As described above, the conventional ferroelectric or antiferroelectric liquid crystal display device has disadvantages such as large-area uniform alignment, difficulty in analog gray scale display, and deterioration in image quality. Specifically, a ferroelectric or antiferroelectric liquid crystal has a short helical pitch, and a strong polar interaction between liquid crystal molecules and an alignment surface causes a defect structure such as a band structure to appear. It is extremely difficult to obtain an oriented structure. As described above, in a ferroelectric liquid crystal having a short pitch, a uniform structure reduces a contrast ratio, and it is impossible to obtain a high transmittance.

【0007】 高品位の大画面液晶表示装置を具現するには,大面積の均一な配向,高い応答
速度,高い対比比率に付加して優れた視野角特性が求められる。液晶は光学的異
方性が極めて大きい物質であり,液晶分子に入射される光の角度によって有効屈
折率が大きく違ってくる。現在,広く用いられている捩じれたネマチックモード
の場合,基板面に垂直の軸を中心に傾斜方向での方位角の変化による対比比率の
変化が極めて反対称的に表れる。これに対する改善方法として,液晶層の有効屈
折率を補償する条件の一軸性または二軸性の位相差光学フィルムをさらに用いる
光補償方法が広く使われている。また他の方法としては,各画素に液晶の配向方
向が相異する二つまたは四つの副画素に多重配向を用いる方法や,同じ基板面で
の分子スイッチングを用いる基板内スイッチング液晶モードなどもある。
In order to realize a high-quality large-screen liquid crystal display device, excellent viewing angle characteristics are required in addition to a large-area uniform orientation, a high response speed, and a high contrast ratio. Liquid crystals are substances having extremely large optical anisotropy, and the effective refractive index greatly differs depending on the angle of light incident on liquid crystal molecules. At present, in the case of the twisted nematic mode, which is widely used, the change in the contrast ratio due to the change in the azimuth in the tilt direction about the axis perpendicular to the substrate surface appears very antisymmetrically. As a method for improving this, a light compensation method further using a uniaxial or biaxial retardation optical film under conditions for compensating the effective refractive index of the liquid crystal layer is widely used. As other methods, there are a method of using multiple alignment for two or four sub-pixels in which the alignment direction of liquid crystal is different for each pixel, and an in-substrate switching liquid crystal mode using molecular switching on the same substrate surface. .

【0008】 前述の方法のうち,多重配向方法の場合,製造時に多重磨きまたは光配向技法を
用いることとなり,少なくとも2回以上のマスク工程を使用するため,工程が複
雑になり,信頼性の劣化や製造コストが高くなるなどの問題点がある。 一方,基板内スイッチングモードでは,現在ネマチック液晶が採用され,依然と
して応答速度が低く,低い開口率による透過度の低下と,残像による画質の低下
などが伴う。他に液晶自体で一部光学的に視野角特性を補償する光補償曲がりモ
ードや,高い対比比率と優れた視野角特性を示す逆捩じりネマチックモードなど
が知られているものの,依然として対称的な視野角特性を有することができない
[0008] Among the above-mentioned methods, in the case of the multiple alignment method, a multiple polishing or optical alignment technique is used at the time of manufacturing, and at least two or more mask processes are used, which complicates the process and degrades reliability. And the manufacturing cost is high. On the other hand, in the in-substrate switching mode, a nematic liquid crystal is currently employed, and the response speed is still low, and the transmittance is reduced due to a low aperture ratio and the image quality is reduced due to an afterimage. In addition, the liquid crystal itself is partially optically compensated for the viewing angle characteristics, and the optically compensated bending mode, and the reverse torsion nematic mode, which has a high contrast ratio and excellent viewing angle characteristics, are still known, but are still symmetric. It cannot have a wide viewing angle characteristic.

【0009】[0009]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明はかかる従来の技術の問題点を解決するためなされたもので,その目的
とするところは,光の波長より短い螺旋ピッチを有する強誘電性液晶を2枚の基
板の間に垂直配向し,基板に平行した電場を用い,同じ基板内の電極によって分
子回転方向を制御することにより,大面積の均一な配向で高い対比比率を有し,
連続的に階調表示が可能で,広い視野角の得られる垂直配向の螺旋変形液晶表示
装置を提供することである。
The present invention has been made in order to solve the problems of the conventional technology, and an object of the present invention is to vertically align a ferroelectric liquid crystal having a helical pitch shorter than the wavelength of light between two substrates. By using an electric field parallel to the substrate and controlling the direction of molecular rotation by electrodes in the same substrate, a large area, uniform orientation, and a high contrast ratio,
It is an object of the present invention to provide a vertically aligned spirally deformed liquid crystal display device capable of continuously displaying gradation and obtaining a wide viewing angle.

【0010】[0010]

【発明を解決するための手段】Means for Solving the Invention

前述の本発明の目的を達成すべく本発明は, 互いに対面する二つの面をそれぞれ有する第1および第2ガラス基板と,第1ガ
ラス基板の第1面に形成し,第1電位を有する第1透明電極と,第1ガラス基板
の第1面に形成し,前記第1電位と異なる第2電位を有する第2透明電極と,第
1および第2透明電極を形成した,第1ガラス基板の第1面上に形成する第1垂
直配向膜と,前記第2ガラス基板の第1面に形成する第2垂直配向膜と,第1お
よび第2垂直配向膜を互いに対面する第1および第2ガラス基板の間に封じ込み
,光の波長よりさらに短い螺旋ピッチを有し,前記第1および第2透明電極の間
に形成する電界に応答して螺旋構造が変形し,特定方向に分子が回転する強誘電
性液晶を備えることを特徴とする垂直配向の螺旋変形液晶表示装置である。
In order to achieve the above-mentioned object of the present invention, the present invention comprises a first glass substrate having two surfaces facing each other and a second glass substrate formed on a first surface of the first glass substrate and having a first potential. A first transparent substrate formed on the first surface of the first glass substrate, the second transparent electrode having a second potential different from the first potential, and the first and second transparent electrodes; A first vertical alignment film formed on the first surface, a second vertical alignment film formed on the first surface of the second glass substrate, and first and second facing surfaces of the first and second vertical alignment films facing each other. Enclosed between glass substrates, having a helical pitch shorter than the wavelength of light, the helical structure is deformed in response to an electric field formed between the first and second transparent electrodes, and molecules rotate in a specific direction. Vertically oriented helical deformation liquid characterized by comprising a ferroelectric liquid crystal Crystal display device.

【0011】 前記の装置において,透過型は,第1ガラス基板の第2面に設けた第1偏光板
と,第2ガラス基板の第2面に設けて第1偏光板と直交する偏光性を有する第2
偏光板をさらに備える。
In the above apparatus, the transmission type has a first polarizing plate provided on the second surface of the first glass substrate and a polarizing plate provided on the second surface of the second glass substrate and having a polarizing property orthogonal to the first polarizing plate. Having a second
It further includes a polarizing plate.

【0012】 前記の装置において,反射型は,反射板を第2ガラス基板の第1面あるいは第
2面に設け,第2ガラス基板の第2面には偏光板がなく,光の波長の1/4の光
遅延特性を有する位相差フィルムを第1ガラス基板の第2面に設け,その上に前
記位相差フィルムの光軸と45°をなす光軸を有する偏光板をさらに備える。
In the above-mentioned apparatus, in the reflection type, a reflection plate is provided on the first surface or the second surface of the second glass substrate, and there is no polarizing plate on the second surface of the second glass substrate. A retardation film having an optical delay characteristic of / 4 is provided on the second surface of the first glass substrate, and a polarizing plate having an optical axis at 45 ° to the optical axis of the retardation film is further provided thereon.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

以下,添付の図面を参照し,本発明の好ましい一実施例を介して本発明をより
詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings through a preferred embodiment of the present invention.

【0014】 すなわち,本発明では基本的に強誘電性液晶の電場印加による螺旋変形現象を
駆動原理として用いる。既存の螺旋変形強誘電性液晶表示装置とは異なって,液
晶の螺旋軸方向が基板に垂直に配向し,透明電極が一つの基板面にのみ存在する
。それゆえ,同じ基板内での電場印加による連続的な階調表示機能を容易に達成
することができ,研摩や電場処理などの追加配向工程なく,大面積の均一な垂直
配向による高い対比比率が得られる。さらに,電場の極性に依存する分子回転方
向を用い,各画素毎に二つまたは四つの副画素を構成し,源泉的な多重配向構造
によって広い視野角特性を具現することができる。
That is, in the present invention, the helical deformation phenomenon caused by application of an electric field to the ferroelectric liquid crystal is basically used as a driving principle. Unlike the existing spirally deformed ferroelectric liquid crystal display device, the spiral axis direction of the liquid crystal is oriented perpendicular to the substrate, and the transparent electrode exists only on one substrate surface. Therefore, a continuous gradation display function by applying an electric field within the same substrate can be easily achieved, and a high contrast ratio can be achieved by a large-area uniform vertical alignment without additional alignment steps such as polishing and electric field processing. can get. Further, two or four sub-pixels are formed for each pixel using a molecular rotation direction depending on the polarity of an electric field, and a wide viewing angle characteristic can be realized by a source-oriented multi-orientation structure.

【0015】 図1は本発明による透過形垂直配向の螺旋変形液晶表示装置の構成を示す。 本発明の液晶表示装置は,第1ガラス基板10の第1面12にインジウム錫酸
化物(ITO)の第1および第2透明電極20,30をゆうする。図5または図
6に示されているようにこの2つの透明電極は,交互で形成され,第1および第
2透明電極20,30の間隔は数十から数百μm程度で保持するのがよく,本実
施例では好ましくは20μmとする。次に,透明電極20,30を形成した第1
ガラス基板10の第1面12の表面にJALS−204(Japan Synt
hetic Rubber Co.)のような垂直配向剤を塗布し,第1垂直配
向膜40を形成する。さらに,第2ガラス基板50の第1面52の表面にJAL
S−204(Japan Synthetic Rubber Co.)のよう
な垂直配向剤を塗布し,第2垂直配向膜60を形成する。
FIG. 1 shows the configuration of a transmission type vertically aligned spirally deformed liquid crystal display device according to the present invention. In the liquid crystal display of the present invention, first and second transparent electrodes 20 and 30 made of indium tin oxide (ITO) are formed on the first surface 12 of the first glass substrate 10. As shown in FIG. 5 or FIG. 6, these two transparent electrodes are formed alternately, and the interval between the first and second transparent electrodes 20 and 30 is preferably maintained at about several tens to several hundreds μm. In this embodiment, the thickness is preferably 20 μm. Next, the first electrode on which the transparent electrodes 20 and 30 are formed is formed.
On the surface of the first surface 12 of the glass substrate 10, JALS-204 (Japan Synt
hetic Rubber Co. ) Is applied to form a first vertical alignment film 40. Further, JAL is applied to the surface of the first surface 52 of the second glass substrate 50.
The second vertical alignment film 60 is formed by applying a vertical alignment agent such as S-204 (Japan Synthetic Rubber Co.).

【0016】 次に,第1および第2垂直配向膜40,60を対面するよう2枚のガラス基板
10,50を対面するようにする。これらの間隔が数μm程度を保持するのがよ
く,好ましくは5μmである。この際,液晶の光異方性と2枚の基板間隔の積が
720nmより小さくするのが好ましい。垂直配向膜の基板面に対する表面傾斜
角をθsとすると,75°≦θs≦90°がよく,本実施例では90°が好まし
い。さらに,2枚の基板10,50の間にFLC−10817(Rolic L
td.)のような強誘電性液晶70を注ぎ込み,封じ込める。ここで,強誘電性
液晶は自発分極が大きいほど印加電圧は低くなる。本実施例では自発分極が11
5nC/cmの液晶を用いる。また,分子傾斜角は22.5°≦θ≦45°の
範囲内がよく,本実施例では34°を有する。さらに,螺旋ピッチは短波長の可
視光に対して0.35μmより短いのが好ましく,0.2μmとする。
Next, the two glass substrates 10 and 50 face each other so as to face the first and second vertical alignment films 40 and 60. It is preferable that the distance between them is about several μm, preferably 5 μm. At this time, the product of the optical anisotropy of the liquid crystal and the distance between the two substrates is preferably smaller than 720 nm. Assuming that the surface inclination angle of the vertical alignment film with respect to the substrate surface is θs, 75 ° ≦ θs ≦ 90 ° is good, and in this embodiment, 90 ° is preferable. Further, FLC-10817 (Rolic LL) is provided between the two substrates 10 and 50.
td. ) Is poured and sealed. Here, the applied voltage of the ferroelectric liquid crystal decreases as the spontaneous polarization increases. In this embodiment, the spontaneous polarization is 11
A liquid crystal of 5 nC / cm 2 is used. Further, the molecular tilt angle is preferably in the range of 22.5 ° ≦ θ ≦ 45 °, and in this embodiment, it is 34 °. Further, the helical pitch is preferably shorter than 0.35 μm for short wavelength visible light, and is set to 0.2 μm.

【0017】 均一な配向を得るために,相転移順序に於いてスメクチックA相が存在するこ
とが好ましいが,大きな分子傾斜角を有する多くの物質はスメクチックA相を有
していない。したがって,本発明の実施例では,等方相−(64.5°−62.
4°)−キラルネマチック相−(62.4°−61.5°)−キラルスメクチッ
クC相(強誘電相)に相転移するようになる。
In order to obtain a uniform orientation, it is preferable that the smectic A phase exists in the phase transition order, but many substances having a large molecular tilt angle do not have the smectic A phase. Therefore, in the embodiment of the present invention, the isotropic phase- (64.5 ° -62.
(4 °) -chiral nematic phase- (62.4 ° -61.5 °) -chiral smectic C phase (ferroelectric phase).

【0018】 透過形の場合には,第1ガラス基板10の第2面14に第1偏光板80を設け
,第2ガラス基板50の第2面54に第2偏光板90を設ける。第1偏光板80
の光軸が基板に平行した電場の方向に対し,45°±3°をなすようにする。さ
らに,第2偏光板90の光軸は第1偏光板80の光軸に対し,90°をなすよう
にする。
In the case of the transmission type, a first polarizing plate 80 is provided on the second surface 14 of the first glass substrate 10, and a second polarizing plate 90 is provided on the second surface 54 of the second glass substrate 50. First polarizing plate 80
Of the electric field is 45 ° ± 3 ° with respect to the direction of the electric field parallel to the substrate. Further, the optical axis of the second polarizing plate 90 is set at 90 ° to the optical axis of the first polarizing plate 80.

【0019】 このように構成された透過形垂直配向の螺旋変形強誘電性液晶表示装置の駆動
原理は次の通りである。垂直配向構造において電場を印加していない場合,すな
わち図1および図2の中央画素の場合には,液晶のスメクチック層の螺旋構造を
保持し,平均光軸方向71が基板に垂直になる。図2で,2枚の基板のうちの1
枚の中央画素の分子配列の射影された構造は,スメクチック円錐表面のすべての
方向に分子を配列していることを示している。したがって,二つの直交偏光板8
0,90の間では完全に光が遮断される。
The driving principle of the transmission type vertically aligned spirally deformed ferroelectric liquid crystal display device having the above-described configuration is as follows. When no electric field is applied in the vertical alignment structure, that is, in the case of the central pixel in FIGS. 1 and 2, the spiral structure of the liquid crystal smectic layer is maintained, and the average optical axis direction 71 is perpendicular to the substrate. In FIG. 2, one of the two substrates
The projected structure of the molecular arrangement of the central pixel shows that the molecules are arranged in all directions on the surface of the smectic cone. Therefore, two orthogonal polarizers 8
Light is completely blocked between 0 and 90.

【0020】 一方,閾値以上の電場を液晶表示装置に印加した場合,強誘電性液晶の自発分
極に直結する印加電場の極性に従い平均光軸方向が基板に対して傾斜する。その
結果,入射光は電場方向と45°をなす偏光板を透過する。特に,左側画素にお
いては液晶分子が−90°方向に配列し,平均光軸方向72が垂直方向から前方
に傾斜するようになる。図2で左側画素の分子配列の射影された構造では,分子
は下方にのみ配列していることが分かる。しかし,右側画素においては,液晶分
子が90°方向に傾斜する配列をなすため,平均光軸方向73が垂直方向から後
方に傾斜するようになる。図2で右側画素の分子は,上方にのみ分子を配列して
いることが分かる。
On the other hand, when an electric field of a threshold value or more is applied to the liquid crystal display device, the average optical axis direction is inclined with respect to the substrate according to the polarity of the applied electric field that is directly connected to the spontaneous polarization of the ferroelectric liquid crystal. As a result, the incident light is transmitted through the polarizing plate that forms an angle of 45 ° with the direction of the electric field. In particular, in the left pixel, the liquid crystal molecules are arranged in the −90 ° direction, and the average optical axis direction 72 is inclined forward from the vertical direction. In the projected structure of the molecular arrangement of the left pixel in FIG. 2, it can be seen that the molecules are arranged only below. However, in the right pixel, the liquid crystal molecules are arranged in a 90 ° direction, so that the average optical axis direction 73 is inclined backward from the vertical direction. In FIG. 2, it can be seen that the molecules of the right pixel are arranged only above.

【0021】 図3は,本発明による垂直配向の螺旋変形液晶表示装置の電場強さと光透過特
性の関係を示している。図示されているように,電場の強さによって液晶分子が
連続的にスメクチック円錐表面で回転しながら螺旋構造が変形し,液晶の有効複
屈折の大きさが連続的に変わるようになる。したがって,電場の方向と45°を
なす直交した偏光板を透過する光の強さは,連続に変化する有効複屈折によって
連続階調表示が可能になる。すなわち,基板に平行した電場の強さは,位置によ
って電極のある第1ガラス基板10で最も大きく,電極のない第2ガラス基板5
0に行くほど小さくなる。分子回転角は電場の強さに比例する。
FIG. 3 shows the relationship between the electric field strength and the light transmission characteristics of the vertically aligned spirally deformed liquid crystal display according to the present invention. As shown, the helical structure is deformed while the liquid crystal molecules rotate continuously on the surface of the smectic cone due to the strength of the electric field, and the magnitude of the effective birefringence of the liquid crystal changes continuously. Therefore, the intensity of the light passing through the polarizing plate orthogonal to the direction of the electric field at an angle of 45 ° enables continuous gradation display by effective birefringence that changes continuously. That is, the intensity of the electric field parallel to the substrate is largest in the first glass substrate 10 having electrodes depending on the position, and is equal to the second glass substrate 5 having no electrodes.
The value gets smaller as going to zero. The molecular rotation angle is proportional to the strength of the electric field.

【0022】 図4は本発明による垂直配向の螺旋変形液晶表示装置の矩形波電圧波形と光透
過応答特性の関係を示す。すなわち,矩形波を印加する時点で光透過度は立上り
時に大略140μsの応答特性を示しながら,液晶はオフ状態(光遮断状態)か
らオン状態(光透過状態)になることが分かる。また,矩形波を遮断する時点で
は,光透過度は下降時に大略40μsの応答特性は示しながらオン状態(光透過
状態)からオフ状態(光遮断状態)になることが分かる。さらに,オン状態での
光透過度は図3から分かるように,印加した電場の強さに比例する。
FIG. 4 shows the relationship between the square wave voltage waveform and the light transmission response characteristic of the vertically aligned spirally deformed liquid crystal display device according to the present invention. That is, it can be seen that the liquid crystal changes from the off state (light blocking state) to the on state (light transmitting state) from the off state (light blocking state) while exhibiting a response characteristic of approximately 140 μs when the rectangular wave is applied. Further, when the rectangular wave is cut off, it can be seen that the light transmittance changes from an on state (light transmitting state) to an off state (light blocking state) while exhibiting a response characteristic of approximately 40 μs when falling. Further, as can be seen from FIG. 3, the light transmittance in the ON state is proportional to the intensity of the applied electric field.

【0023】 図5は本発明による垂直配向の螺旋変形液晶表示装置の駆動電極配列の一実施
例の構成を示す。一つの画素で第1透明電極20はn字形であって,第2透明電
極30はm字形で構成され,これら二つの電極20,30が交互で配置されるよ
うに配列する。したがって,これら電極の枝の間で四つの副画素が1×4形態に
配置される。したがって,オン状態の画素100においては四つの副画素101
,102,103,104から印加される電場の方向を交互で配置するため,奇
数の副画素101,103と偶数の副画素102,104との平均光軸方向は互
いに逆方向に対称性を有するようになる。すなわち,このような一つの画素内の
複数の副画素の反対称的な平均光軸方向によって広い視野角が確保できるように
する。したがって,本発明では従来の液晶表示装置と比較し,透明電極の構成に
よって容易に広い視野角の確保が可能であるため,追加的な光学フィルムなどの
構成が不要である。
FIG. 5 shows a configuration of an embodiment of a drive electrode arrangement of a vertically-aligned spirally deformed liquid crystal display device according to the present invention. In one pixel, the first transparent electrode 20 has an n-shape, and the second transparent electrode 30 has an m-shape. The two electrodes 20 and 30 are arranged alternately. Therefore, four sub-pixels are arranged in a 1.times.4 form between these electrode branches. Therefore, in the pixel 100 in the ON state, four sub-pixels 101
, 102, 103, and 104, the directions of the electric fields applied thereto are alternately arranged, so that the average optical axis directions of the odd-numbered sub-pixels 101 and 103 and the even-numbered sub-pixels 102 and 104 have symmetry in opposite directions. Become like That is, a wide viewing angle can be secured by the anti-symmetric average optical axis direction of the plurality of sub-pixels in one pixel. Therefore, in the present invention, as compared with the conventional liquid crystal display device, a wide viewing angle can be easily secured by the configuration of the transparent electrode, and thus, an additional configuration such as an optical film is unnecessary.

【0024】 図6は本発明による垂直配向の螺旋変形液晶表示装置の駆動電極配列の他の実
施例の構成を示す。他の実施例の電極構造は二つの第1透明電極20の間に第2
透明電極30を配置し,第1透明電極20から垂直方向に繰り返される複数の枝
と,第2透明電極から垂直方向に延長される複数の枝とを交互で配置するように
構成したものである。したがって,画素はこれら電極の枝によって複数の副画素
に区分され,隣り合う2つの副画素は水平方向に沿って互いに逆方向の光軸を有
するようになる。こうした電極配列構造では四つの副画素が2×2形態を有する
ようになる。
FIG. 6 shows the configuration of another embodiment of the drive electrode arrangement of the vertically aligned spirally deformed liquid crystal display device according to the present invention. In another embodiment, the electrode structure includes a second transparent electrode 20 between two first transparent electrodes 20.
The transparent electrodes 30 are arranged, and a plurality of branches which are repeated vertically from the first transparent electrode 20 and a plurality of branches which are vertically extended from the second transparent electrode are alternately arranged. . Therefore, a pixel is divided into a plurality of sub-pixels by the branches of these electrodes, and two adjacent sub-pixels have optical axes opposite to each other along the horizontal direction. In such an electrode array structure, four sub-pixels have a 2 × 2 configuration.

【0025】 図7は本発明による反射形垂直配向の螺旋変形液晶表示装置の構成を示す。図
7は図1の透過型と比較し,第2ガラス基板50の第1面52あるいは第2面5
4に反射板120を設け,第2ガラス基板50の第2面54には偏光板がなく,
第1ガラス基板10と偏光板80の間に位相差フィルム84を設けている点が異
なる。したがって,同様の構造に対しては同様の符号で処理する。
FIG. 7 shows a configuration of a helical deformation liquid crystal display device of the reflection type vertical alignment according to the present invention. FIG. 7 shows the first surface 52 or the second surface 5 of the second glass substrate 50 as compared with the transmission type shown in FIG.
4, a reflecting plate 120 is provided, and the second surface 54 of the second glass substrate 50 has no polarizing plate.
The difference is that a retardation film 84 is provided between the first glass substrate 10 and the polarizing plate 80. Therefore, similar structures are processed with similar codes.

【0026】 位相差フィルム84の光軸方向は偏光板80の光軸方向と45°となるように
構成する。位相差フィルム84は入射光波長の1/4の位相遅延を有するように
する。位相差フィルム84の位相差が160×Nnmと200×Nnm(N=1
,2,3,…)の間の値を有するのが好ましい。反射型では,電場を印加してい
ない場合,液晶の平均光軸は基板に垂直方向のため,光学特性は位相差フィルム
の位相遅延によって決定される。光の有効位相差は位相差板84の位相遅延の2
倍である暗い状態が実現される。反射型の液晶表示装置に電場が印加された場合
,液晶の平均光軸は有効復屈折率によって表面から基板の垂直方向へ傾斜する。
したがって,明るい状態は,有効復屈折率と2枚の基板の間隔の積の大きさから
位相遅延によって実現される。
The optical axis direction of the retardation film 84 is configured to be 45 ° with respect to the optical axis direction of the polarizing plate 80. The phase difference film 84 has a phase delay of 1/4 of the wavelength of the incident light. The retardation of the retardation film 84 is 160 × Nnm and 200 × Nnm (N = 1
, 2, 3,...). In the reflection type, when no electric field is applied, the average optical axis of the liquid crystal is perpendicular to the substrate, and the optical characteristics are determined by the phase delay of the retardation film. The effective phase difference of the light is 2 of the phase delay of the phase difference plate 84.
A dark state that is twice as high is realized. When an electric field is applied to the reflective liquid crystal display device, the average optical axis of the liquid crystal is inclined from the surface in the direction perpendicular to the substrate due to the effective birefringence.
Therefore, the bright state is realized by the phase delay based on the product of the effective birefringence and the distance between the two substrates.

【0027】[0027]

【発明の効果】【The invention's effect】

以上,前記で説明したように,本発明では大面積の均一な配向および連続的な
階調表示機能を容易に解決することができ,垂直配向による高い対比比率が得ら
れる。さらに,電極配列構造の設計による源泉的な多重領域構造が可能で,広い
視野角特性を得ることができる。また,研摩などの配向膜表面処理工程が求めら
れず,製造工程が単純,且つ製造コストを減らすなどの利点がある。
As described above, according to the present invention, a large-area uniform orientation and a continuous gradation display function can be easily solved, and a high contrast ratio by vertical orientation can be obtained. Furthermore, a source-side multi-region structure is possible by designing the electrode array structure, and a wide viewing angle characteristic can be obtained. In addition, there is an advantage that an alignment film surface treatment step such as polishing is not required, the manufacturing process is simple, and the manufacturing cost is reduced.

【0028】 前記においては本発明の好ましい実施例を参照して説明したが,当該技術分野
の熟練された当業者は請求の範囲に記載の本発明の思想および領域から逸しない
範囲内で本発明を多様に修正および変形できることを理解するであろう。
While the above description has been made with reference to preferred embodiments of the present invention, those skilled in the art will appreciate that the present invention can be practiced without departing from the spirit and scope of the invention as set forth in the appended claims. Can be variously modified and varied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による透過形垂直配向の螺旋変形液晶表示装置の構成を示
す図面である。
FIG. 1 is a diagram illustrating a configuration of a transmission type vertically aligned spirally deformed liquid crystal display device according to the present invention.

【図2】 図1の動作原理を説明するための図面である。FIG. 2 is a diagram for explaining the operation principle of FIG. 1;

【図3】 本発明による垂直配向の螺旋変形液晶表示装置の電場強さと光透
過特性の関係である。
FIG. 3 is a graph showing a relationship between an electric field strength and a light transmission characteristic of a vertically aligned spirally deformed liquid crystal display device according to the present invention.

【図4】 本発明による垂直配向の螺旋変形液晶表示装置の矩形波電圧波形
と光透過応答特性の関係である。
FIG. 4 is a graph showing a relationship between a rectangular wave voltage waveform and a light transmission response characteristic of a vertically aligned spirally deformed liquid crystal display device according to the present invention.

【図5】 本発明による垂直配向の螺旋変形液晶表示装置の駆動電極配列の
一実施例の構成を示す図面である。
FIG. 5 is a view showing a configuration of an embodiment of a drive electrode arrangement of a vertically-oriented spirally deformed liquid crystal display device according to the present invention.

【図6】 本発明による垂直配向の螺旋変形液晶表示装置の駆動電極配列の
他の実施例の構成を示す図面である。
FIG. 6 is a view showing a configuration of another embodiment of a drive electrode arrangement of a vertically aligned spirally deformed liquid crystal display device according to the present invention.

【図7】 本発明による反射形垂直配向の螺旋変形液晶表示装置の構成を示
す図面である。
FIG. 7 is a view illustrating a configuration of a reflective vertical alignment spirally deformed liquid crystal display device according to the present invention.

【符号の説明】[Explanation of symbols]

10 第1ガラス基板 20 第1透明電極 30 第2透明電極 40 第1垂直配向膜 50 第2ガラス基板 60 第2垂直配向膜 70 強誘電性液晶 80 第1偏光板 82 反射板 84 位相差フィルム 90 第2偏光板 100 画素(ON) 110 画素(OFF) 101−104 副画素 120 反射板 Reference Signs List 10 first glass substrate 20 first transparent electrode 30 second transparent electrode 40 first vertical alignment film 50 second glass substrate 60 second vertical alignment film 70 ferroelectric liquid crystal 80 first polarizing plate 82 reflecting plate 84 retardation film 90 Second polarizing plate 100 pixels (ON) 110 pixels (OFF) 101-104 Sub-pixel 120 Reflector

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),AE,AL,A M,AT,AU,AZ,BA,BB,BG,BR,BY ,CA,CH,CN,CU,CZ,DE,DK,EE, ES,FI,GB,GD,GE,GH,GM,HR,H U,ID,IL,IN,IS,JP,KE,KG,KP ,KZ,LC,LK,LR,LS,LT,LU,LV, MD,MG,MK,MN,MW,MX,NO,NZ,P L,PT,RO,RU,SD,SE,SG,SI,SK ,SL,TJ,TM,TR,TT,UA,UG,US, UZ,VN,YU,ZA,ZW Fターム(参考) 2H049 BA02 BA07 BB03 BC22 2H088 EA02 GA04 HA02 HA06 JA17 KA17 MA13 MA18 2H090 HB01Y HC05 HD14 HD18 KA14 LA01 MA01 MA11 2H092 GA05 GA14 NA04 PA02 QA13 【要約の続き】 い視野角特性を有する。──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE , GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, U S, UZ, VN, YU, ZA, ZWF terms (reference) 2H049 BA02 BA07 BB03 BC22 2H088 EA02 GA04 HA02 HA06 JA17 KA17 MA13 MA18 2H090 HB01Y HC05 HD14 HD18 KA14 LA01 MA01 MA11 2H092 GA05 GA14 NA04 PA02 QA13 It has excellent viewing angle characteristics.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 互いに対面する二つの面をそれぞれ有する第1および第2ガ
ラス基板と, 前記第1ガラス基板の第1面に形成し,第1電位を有する第1透明電極と, 前記第1ガラス基板の第1面に形成し,前記第1電位と異なる第2電位を有す
る第2透明電極と, 前記第1および第2透明電極を形成した,第1ガラス基板の第1面上に形成す
る第1垂直配向膜と, 前記第2ガラス基板の第1面に形成する第2垂直配向膜と, 前記第1および第2垂直配向膜を互いに対面する第1および第2ガラス基板の
間に封じ込み,光の波長よりさらに短い螺旋ピッチを有し,前記第1および第2
透明電極の間に形成する電界に応答して螺旋変形し,分子が特定方向に回転する
強誘電性液晶を含むことを特徴とする垂直配向の螺旋変形強誘電性液晶表示装置
A first glass substrate having two surfaces facing each other; a first transparent electrode formed on a first surface of the first glass substrate and having a first potential; A second transparent electrode formed on the first surface of the glass substrate and having a second potential different from the first potential; and a second transparent electrode formed on the first surface of the first glass substrate on which the first and second transparent electrodes are formed. A first vertical alignment film to be formed, a second vertical alignment film formed on the first surface of the second glass substrate, and a first vertical alignment film between the first and second glass substrates facing each other. Encapsulation, having a helical pitch even shorter than the wavelength of light,
A vertically aligned spirally deformed ferroelectric liquid crystal display device comprising a ferroelectric liquid crystal that undergoes a spiral deformation in response to an electric field formed between transparent electrodes and molecules rotate in a specific direction.
【請求項2】 前記の強誘電性液晶において,螺旋軸に対する分子傾斜角を
θとすると,分子傾斜角が22.5°≦θ≦45°であることを特徴とする請求
項1に記載の垂直配向の螺旋変形強誘電性液晶表示装置。
2. The ferroelectric liquid crystal according to claim 1, wherein the molecular tilt angle is 22.5 ° ≦ θ ≦ 45 °, where θ is the molecular tilt angle with respect to the helical axis. Spiral deformation ferroelectric liquid crystal display device with vertical alignment.
【請求項3】 前記の強誘電性液晶の螺旋ピッチが0.35μmより短いこ
とを特徴とする請求項1に記載の垂直配向の螺旋変形強誘電性液晶表示装置。
3. The vertically aligned spirally deformed ferroelectric liquid crystal display device according to claim 1, wherein a spiral pitch of the ferroelectric liquid crystal is shorter than 0.35 μm.
【請求項4】 前記の垂直配向膜の基板面に対する表面傾斜角をθsとする
と,75°≦θs≦90°を特徴とする請求項1に記載の垂直配向の螺旋変形強
誘電性液晶表示装置。
4. The vertically aligned spirally deformed ferroelectric liquid crystal display device according to claim 1, wherein 75 ° ≦ θs ≦ 90 ° where a surface inclination angle of the vertical alignment film with respect to the substrate surface is θs. .
【請求項5】 前記の強誘電性液晶の屈折率異方性と基板の間の間隔の積が
720nmより小さいことを特徴とする請求項1に記載の垂直配向の螺旋変形強
誘電性液晶表示装置。
5. The vertically aligned spirally deformed ferroelectric liquid crystal display according to claim 1, wherein the product of the refractive index anisotropy of the ferroelectric liquid crystal and the distance between the substrates is smaller than 720 nm. apparatus.
【請求項6】 前記の装置は,前記第1ガラス基板の第2面に設けられた第
1偏光板, および前記第2ガラス基板の第2面に設けられ,第1偏光板と直交する偏光性
を有する第2偏光板を含むことを特徴とする請求項1に記載の垂直配向の螺旋変
形強誘電性液晶表示装置。
6. The apparatus according to claim 1, further comprising a first polarizing plate provided on a second surface of the first glass substrate, and a polarizing plate provided on a second surface of the second glass substrate, the polarizing plate being orthogonal to the first polarizing plate. The vertically aligned helically deformed ferroelectric liquid crystal display device according to claim 1, further comprising a second polarizing plate having a property.
【請求項7】 前記の第1偏光板は前記第1および第2透明電極の間に形成
される電場の方向に対し,大略45°の光軸方向を有することを特徴とする請求
項6に記載の垂直配向の螺旋変形強誘電性液晶表示装置。
7. The optical system according to claim 6, wherein the first polarizing plate has an optical axis direction of approximately 45 ° with respect to a direction of an electric field formed between the first and second transparent electrodes. A vertically aligned spirally deformed ferroelectric liquid crystal display device as described in the above.
【請求項8】 前記の第1透明電極と第2透明電極は交互で配置し,隣接す
る左右の二つの画素で平均光軸が互いに反対称になるようにすることを特徴とす
る請求項1に記載の垂直配向の螺旋変形強誘電性液晶表示装置。
8. The method according to claim 1, wherein the first transparent electrodes and the second transparent electrodes are alternately arranged so that the average optical axes of two adjacent left and right pixels are antisymmetric with each other. 5. A vertically aligned spirally deformed ferroelectric liquid crystal display device according to item 1.
【請求項9】 互いに対面する二つの面をそれぞれ有する第1および第2ガ
ラス基板と, 前記第1ガラス基板の第1面に形成し,第1電位を有する第1透明電極と, 前記第1ガラス基板の第1面に形成し,前記第1電位と他の第2電位を有する
第2透明電極と, 前記第1および第2透明電極を形成した,第1ガラス基板の第1面上に形成さ
れる第1垂直配向膜と, 前記第2ガラス基板の一側面に設けられた反射板と, 前記第1ガラス基板の第1面に形成される第2垂直配向膜と, 前記第1ガラス基板の第2面に光の波長の1/4の光遅延特性を有する位相差
フィルムと, 前記第1ガラス基板の第2面に設けられ,前記位相差フィルムの光軸と45°
をなす光軸を有する偏光板, および前記第1および第2垂直配向膜が互いに対面する第1および第2ガラス
基板の間に封じ込められ,光の波長より短い螺旋ピッチを有し,前記第1および
第2透明電極の間に形成される電界に応答して螺旋変形され,特定方向に分子が
回転される強誘電性液晶を含むことを特徴とする垂直配向の螺旋変形強誘電性液
晶表示装置。
9. A first and second glass substrate each having two surfaces facing each other, a first transparent electrode formed on a first surface of the first glass substrate and having a first potential, and A second transparent electrode formed on a first surface of the glass substrate and having the first potential and another second potential; and a second transparent electrode formed on the first surface of the first glass substrate on which the first and second transparent electrodes are formed. A first vertical alignment film to be formed; a reflector provided on one side surface of the second glass substrate; a second vertical alignment film formed on a first surface of the first glass substrate; A retardation film having an optical delay characteristic of 1/4 of the wavelength of light on a second surface of the substrate; and a retardation film provided on the second surface of the first glass substrate and having an angle of 45 ° with the optical axis of the retardation film.
A polarizing plate having an optical axis, and the first and second vertical alignment films are sealed between first and second glass substrates facing each other, have a helical pitch shorter than the wavelength of light, and A vertically aligned helically deformed ferroelectric liquid crystal display device comprising a ferroelectric liquid crystal that is helically deformed in response to an electric field formed between the second transparent electrodes and has molecules rotated in a specific direction. .
【請求項10】 前記の位相差フィルムの位相差が160×Nnmと200
×Nnm(N=1,2,3,…)の間の値を有することを特徴とする請求項9に
記載の垂直配向の螺旋変形強誘電性液晶表示装置。
10. The retardation film having a retardation of 160 × Nnm and 200
The vertically aligned spirally deformed ferroelectric liquid crystal display device according to claim 9, wherein the liquid crystal display device has a value between × Nnm (N = 1, 2, 3,...).
JP2000584341A 1998-11-21 1999-11-20 Spiral deformation liquid crystal display device with vertical alignment Ceased JP2002530720A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1998/50029 1998-11-21
KR1019980050029A KR100320102B1 (en) 1998-11-21 1998-11-21 Vertically Aligned Helix-Deformed Liquid Crystal Display
PCT/KR1999/000700 WO2000031582A1 (en) 1998-11-21 1999-11-20 Vertically aligned helix-deformed liquid crystal display

Publications (1)

Publication Number Publication Date
JP2002530720A true JP2002530720A (en) 2002-09-17

Family

ID=19559194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000584341A Ceased JP2002530720A (en) 1998-11-21 1999-11-20 Spiral deformation liquid crystal display device with vertical alignment

Country Status (6)

Country Link
EP (1) EP1131671A1 (en)
JP (1) JP2002530720A (en)
KR (1) KR100320102B1 (en)
CN (1) CN1326560A (en)
AU (1) AU1187900A (en)
WO (1) WO2000031582A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504586A (en) * 2004-07-02 2008-02-14 ケンブリッジ・エンタープライズ・リミテッド Flexible electro-optic liquid crystal device
WO2013073613A1 (en) * 2011-11-18 2013-05-23 Dic株式会社 Liquid crystal display element
WO2013183684A1 (en) * 2012-06-06 2013-12-12 Dic株式会社 Liquid-crystal optical modulation element

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02004594A (en) 1999-11-16 2002-10-23 Boehringer Ingelheim Pharma Urea derivatives as anti inflammatory agents.
KR100852224B1 (en) * 2000-12-28 2008-08-13 하야시 텔렘프 가부시끼가이샤 Retardation film and process for producing the same
JP4773649B2 (en) * 2001-09-20 2011-09-14 株式会社リコー Optical deflection apparatus and image display apparatus
KR20030005927A (en) * 2001-07-11 2003-01-23 학교법인고려중앙학원 Ferroelectric Liquid Crystal Display Device Applied by Normally White Mode
US7304705B2 (en) * 2002-03-26 2007-12-04 Ricoh Company, Ltd. Imaging unit, optical write unit, optical read unit and image forming apparatus
CN102074200B (en) * 2003-03-31 2012-11-28 伊英克公司 Methods for driving bistable electro-optic displays
EP1853967A4 (en) * 2005-02-03 2009-11-11 Univ North Carolina Low surface energy polymeric material for use in liquid crystal displays
TWI321676B (en) 2005-11-03 2010-03-11 Au Optronics Corp Liquid crystal display panel and manufacturing method therof and liquid crystal display device incorporating the same
KR101667052B1 (en) * 2010-06-15 2016-10-17 한양대학교 산학협력단 Liquid crystal display
KR101333614B1 (en) * 2010-06-25 2013-11-27 엘지디스플레이 주식회사 Liquid crystal display device
CN107209431B (en) * 2015-01-20 2020-10-23 香港科技大学 Vertical spiral ferroelectric liquid crystal display unit
CN108572488B (en) * 2017-12-08 2021-07-06 北京航空航天大学 Optical switch based on electrolytic spiral ferroelectric liquid crystal
CN109270760A (en) * 2018-10-08 2019-01-25 新辉开科技(深圳)有限公司 A kind of bistable liquid crystal display for air-conditioning remote control
CN117331260B (en) * 2023-11-20 2024-06-14 南京邮电大学 Method for realizing microsecond electro-optic response of low driving electric field in ferroelectric nematic liquid crystal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3068983D1 (en) * 1980-01-10 1984-09-27 Noel A Clark Chiral smectic liquid crystal electro-optical device and process of making the same
DE3876059D1 (en) * 1987-09-18 1992-12-24 Hoffmann La Roche FERROELECTRIC LIQUID CRYSTAL CELL.
EP0405346B1 (en) * 1989-06-29 1995-09-20 F. Hoffmann-La Roche Ag Bistable ferroelectric liquid cristal display
US5539555A (en) * 1990-07-20 1996-07-23 Displaytech, Inc. High contrast distorted helex effect electro-optic devices and tight ferroelectric pitch ferroelectric liquid crystal compositions useful therein
KR970007426A (en) * 1995-07-20 1997-02-21 윤종용 Ferroelectric Nematic Liquid Crystal Display
US6606134B1 (en) * 1997-03-11 2003-08-12 Rolic Ag Reflective ferroelectric liquid crystal display and projection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504586A (en) * 2004-07-02 2008-02-14 ケンブリッジ・エンタープライズ・リミテッド Flexible electro-optic liquid crystal device
KR101211869B1 (en) 2004-07-02 2012-12-12 캠브리지 엔터프라이즈 리미티드 Flexoelectro-optic liquid crystal device
WO2013073613A1 (en) * 2011-11-18 2013-05-23 Dic株式会社 Liquid crystal display element
JP5505566B2 (en) * 2011-11-18 2014-05-28 Dic株式会社 Liquid crystal display element
WO2013183684A1 (en) * 2012-06-06 2013-12-12 Dic株式会社 Liquid-crystal optical modulation element
JP5725260B2 (en) * 2012-06-06 2015-05-27 Dic株式会社 Liquid crystal light modulator
US9771517B2 (en) 2012-06-06 2017-09-26 Dic Corporation Liquid-crystal optical modulation element

Also Published As

Publication number Publication date
WO2000031582A1 (en) 2000-06-02
KR20000033252A (en) 2000-06-15
CN1326560A (en) 2001-12-12
EP1131671A1 (en) 2001-09-12
KR100320102B1 (en) 2002-04-22
AU1187900A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP2002530720A (en) Spiral deformation liquid crystal display device with vertical alignment
US6317111B1 (en) Passive matrix addressed LCD pulse modulated drive method with pixel area and/or time integration method to produce covay scale
US5035491A (en) Liquid crystal apparatus
US20050179632A1 (en) Display element and display apparatus
JP2721284B2 (en) Liquid crystal display element and optically anisotropic element
JP2000193940A (en) Display device and its address method
JP2003533716A (en) Reflective bistable display device
JPH0728065A (en) Liquid crystal display device
JP3099937B2 (en) Liquid crystal display
US5016989A (en) Liquid crystal element with improved contrast and brightness
JP2001311969A (en) Light modulating device
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
US5956010A (en) Liquid crystal apparatus and driving method
JP2001154214A (en) Liquid crystal display device
JPH04349424A (en) Liquid crystal display element
KR100383542B1 (en) Smectic liquid crystal display in a transverse electrode configuration
KR20010113172A (en) Vertically Aligned Helix-Deformed Liquid Crystal Display
JP2000275684A (en) Liquid crystal element and liquid crystal device using the same
JPH06281938A (en) Liquid crystal display element
JP3042424B2 (en) Display element and method of manufacturing the same
JPH0756148A (en) Liquid crystal display element
JP2775528B2 (en) Chiral smectic liquid crystal device
JPH09160022A (en) Liquid crystal electro-optical device
JP3365587B2 (en) Liquid crystal device
JPH05313126A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20050125