JP2002524636A - Acoustic controllable open-cell polyolefin and method for producing the same - Google Patents

Acoustic controllable open-cell polyolefin and method for producing the same

Info

Publication number
JP2002524636A
JP2002524636A JP2000570233A JP2000570233A JP2002524636A JP 2002524636 A JP2002524636 A JP 2002524636A JP 2000570233 A JP2000570233 A JP 2000570233A JP 2000570233 A JP2000570233 A JP 2000570233A JP 2002524636 A JP2002524636 A JP 2002524636A
Authority
JP
Japan
Prior art keywords
foam
linear
polyolefin
composition
expanded foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000570233A
Other languages
Japanese (ja)
Other versions
JP2002524636A5 (en
Inventor
ピー パーク,チュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of JP2002524636A publication Critical patent/JP2002524636A/en
Publication of JP2002524636A5 publication Critical patent/JP2002524636A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/38Destruction of cell membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/18Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet characterized by perforations in the adhesive tape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cell Biology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

(57)【要約】 【課題】 吸音性能に優れた発泡体を提供する。 【解決手段】 少なくとも1の線状又は変性線状ポリオレフィンからなり、少なくとも50%の気泡が開放状態にあり且つ気泡の平均サイズが少なくとも1mmであることを特徴とする膨張した連続気泡発泡体ポリマー組成物ASTM D1050により1,000Hzで求めた吸音係数が0.15より大きいことが望ましくまた約800,000Rayls/mより小さい空気流抵抗をもつことが好ましい。 (57) [Problem] To provide a foam excellent in sound absorbing performance. An expanded open-cell foam polymer composition comprising at least one linear or modified linear polyolefin, wherein at least 50% of the cells are open and the average size of the cells is at least 1 mm. Desirably, the sound absorption coefficient determined at 1,000 Hz by ASTM D1050 is greater than 0.15 and preferably has an air flow resistance of less than about 800,000 Rayls / m.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は自動車や工具類等の用途での音吸収材に適する発泡材料の分野に関す
る。
The present invention relates to the field of foam materials suitable for sound absorbers in applications such as automobiles and tools.

【0002】[0002]

【従来の技術とその課題】[Prior art and its problems]

現在自動車や工具類に用いられている音吸収材料は1つ以上の欠点をもってい
る。たとえば、連続気泡ポリウレタン発泡体及びメラミン発泡体は熱硬化性材料
、即ち架橋ポリマーであり、リサイクルが困難である。またポリウレタン及びメ
ラミン発泡体は水と接触したり湿潤環境で長時間用いる際の加水分解安定性に乏
しい。 ショディは、典型的には廃棄物の熱可塑性又は熱硬化性材料を切りきざんだリ
ニードル処理してつくられる比較的安価な繊維質パッドである。ショディは一般
に優れた音吸収性をもっているが、比較的高密度であり、自動車や工具にかなり
の重量を付加することになる。
Sound absorbing materials currently used in automobiles and tools have one or more disadvantages. For example, open cell polyurethane foam and melamine foam are thermoset materials, ie, crosslinked polymers, which are difficult to recycle. Also, polyurethane and melamine foams have poor hydrolytic stability when used in contact with water or when used for a long time in a humid environment. Shodies are relatively inexpensive fibrous pads that are typically made by chopping re-needles of thermoplastic or thermoset materials from waste. Shodies generally have good sound absorption, but are relatively dense and add significant weight to cars and tools.

【0003】 現在市販されている連続気泡ポリオレフィン発泡体は音吸収材としては十分に
は適合していない。たとえば、架橋ポリエチレンからつくられた連続気泡ポリオ
レフィンは圧縮成形でつくられており、工業源から音吸収材としては適していな
い。この発泡体の孔は適切な空気流をもたらすには小さすぎて、音吸収特性が不
十分となる。 その結果、自動車や工具類の用途で優れた音吸収性を示す連続気泡で、低密度
でリサイクル可能な熱可塑性発泡体が求められている。特に実質上非架橋か軽架
橋で、且つ十分な連続気泡と高い孔度を示すに足る気泡サイズをもち、それによ
り優れた音吸収性を示すポリオレフィン発泡体を提供することが望ましい。
[0003] Currently available open-cell polyolefin foams are not well suited as sound absorbers. For example, open-cell polyolefins made from cross-linked polyethylene are made by compression molding and are not suitable as sound absorbers from industrial sources. The pores of this foam are too small to provide adequate airflow and have poor sound absorbing properties. As a result, there is a need for recyclable thermoplastic foams with low cell density and open cells that exhibit excellent sound absorption for automotive and tool applications. In particular, it is desirable to provide a polyolefin foam that is substantially uncrosslinked or lightly crosslinked, has sufficient open cells and cell size sufficient to exhibit high porosity, and thereby exhibits excellent sound absorption.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本発明は少なくとも1の線状又は変性線状ポリオレフィンからなり、少なくと
も50%の気泡が開放状態にあり且つ気泡の平均サイズが少なくとも1mmであ
ることを特徴とする膨張した連続気泡発泡体ポリマー組成物を提供する。 望ましくはこの組成物はASTM D1050により1,000Hzで測定し
た吸音係数が0.15より大きいものである。また好ましい発泡体においてこの
組成物は約800,000Rayls/mより小さい空気流抵抗をもつ。
The present invention relates to an expanded, open-cell, foamed polymer composition comprising at least one linear or modified linear polyolefin, wherein at least 50% of the cells are open and the average size of the cells is at least 1 mm. I will provide a. Desirably, the composition has a sound absorption coefficient measured at 1,000 Hz according to ASTM D1050 of greater than 0.15. Also in preferred foams, the composition has an airflow resistance of less than about 800,000 Rayls / m.

【0005】 更なる態様において本発明は2つのスキン層と該スキン層の間に配した発泡体
シートからなる防音パネルであって、該発泡体シートが0.5より大きいAST
M D1050により1,000Hzで測定した吸音係数をもつと共に、少なく
とも1の線状又は変性線状ポリオレフィンからなり、少なくとも50%の気泡が
開放状態にあり且つ気泡の平均サイズが少なくとも1mmである膨張した連続気
泡ポリマー組成物からなることを特徴とする防音パネルを提供する。 別の態様において本発明は0.15より大きいASTM D1050により1
,000Hzで測定した吸音係数をもつと共に、少なくとも1の線状又は変性線
状ポリオレフィンからなり、少なくとも50%の気泡が開放状態にあり且つ気泡
の平均サイズが少なくとも1mmである連続気泡ポリマー組成物からなることを
特徴とする発泡体シートを提供する。
In a further aspect, the present invention is a soundproofing panel comprising two skin layers and a foam sheet disposed between the skin layers, wherein the foam sheet has an AST greater than 0.5.
Expanded with at least one linear or modified linear polyolefin having a sound absorption coefficient measured at 1,000 Hz according to MD1050, with at least 50% of the cells open and an average size of the cells of at least 1 mm Provided is a soundproof panel comprising an open-cell polymer composition. In another embodiment, the present invention relates to an ASTM D1050 compound comprising greater than 1
From an open-cell polymer composition having a sound absorption coefficient measured at 2,000 Hz and comprising at least one linear or modified linear polyolefin, wherein at least 50% of the cells are open and the average size of the cells is at least 1 mm. The present invention provides a foam sheet characterized in that:

【0006】[0006]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

連続気泡ポリオレフィン発泡体はすべてが音吸収材として適している訳ではな
い。比較的低い空気流抵抗をもつ連続気泡発泡体が音吸収に適していることが知
られている。低い空気流抵抗は一般に気泡壁上の比較的大きな孔を必要とする。
一般に気泡壁上に大きな孔をもつ連続気泡発泡体を低密度分枝鎖ポリエチレン樹
脂のような一般的な発泡体樹脂からつくることは困難である。これは樹脂発泡体
の製造過程で気泡壁に孔が生ずるとすぐに気泡がなくなりはじめるからである。
どのようにして大きな開孔をもつ発泡材料をポリオレフィン樹脂からつくるかに
ついての指針を示した公知例は存在しない。
Not all open-celled polyolefin foams are suitable as sound absorbers. It is known that open cell foams having relatively low airflow resistance are suitable for sound absorption. Low airflow resistance generally requires relatively large holes on the bubble wall.
It is generally difficult to make open cell foams having large pores on the cell walls from common foam resins such as low density branched polyethylene resins. This is because bubbles start to disappear as soon as holes are formed in the cell walls in the process of producing the resin foam.
There is no known example that provides guidance on how to make a foamed material having large pores from a polyolefin resin.

【0007】 比較的大きな気泡をもち音を十分に吸収する安定な連続気泡発泡体が線状ポリ
オレフィン組成物から容易に製造できることを見出した。この発泡体は、比較的
大きな気泡窓をもつことから、比較的大きな孔がそのなかにもたらされるものと
思われる。大きな気泡をもつ連続気泡発泡体の製造に適するポリオレフィン樹脂
には、線状ポリオレフィン、変性線状ポリオレフィン又は線状ポリオレフィンも
しくは変性線状ポリオレフィンと融点がそれらより少なくとも約10℃低い他の
ポリオレフィンとのブレンド物が包含される。 線状又は変性線状ポリオレフィンとこの線状又は変性線状ポリオレフィンより
少なくとも約10℃融点が低いポリオレフィンとのブレンド物の場合には、低融
点ポリマーが気泡壁開孔用の初期サイトとなり気泡壁をより長く流動状態に保ち
、それによってより大きな孔の形成を促すものと思われる。またポリオレフィン
樹脂に低融点ポリオレフィンエラストマーをブレンドすると得られる発泡体の吸
音性能が向上することも判明した。
[0007] It has been found that stable open cell foams having relatively large cells and sufficiently absorbing sound can be readily produced from linear polyolefin compositions. It is believed that this foam has relatively large cell windows, so that relatively large pores are provided therein. Suitable polyolefin resins for the production of open cell foams having large cells include linear polyolefins, modified linear polyolefins or blends of linear polyolefins or modified linear polyolefins with other polyolefins having a melting point at least about 10 ° C. lower than them. Things are included. In the case of a blend of a linear or modified linear polyolefin and a polyolefin having a melting point lower by at least about 10 ° C. than the linear or modified linear polyolefin, the low melting point polymer becomes an initial site for opening the cell wall and forms a cell wall. It is believed that it will remain fluid for a longer time, thereby promoting the formation of larger pores. It has also been found that blending a polyolefin resin with a low-melting-point polyolefin elastomer improves the sound absorbing performance of the foam obtained.

【0008】 本発明の発泡体材料はチーグラー・ナッタ又はメタロセン触媒を用いてつくっ
た少なくとも1の線状又は変性線状ポリオレフィンからなるポリマー組成物から
つくられる。この線状又は変性線状ポリオレフィンの例としては、エチレン、プ
ロピレン、4−メチル−1−ペンテン等のC2 〜C20オレフィンのホモポリマー
、エチレンと少なくとも1のC3 〜C20α−オレフィンのコポリマー又はプロピ
レンとエチレン及び/又はC4 〜C20α−オレフィンのコポリマーがある。好ま
しいモノマーとしてはC2 〜C10α−オレフィン、特にエチレン、プロピレン、
イソブテン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン及び1−オ
クテンがある。これらのポリオレフィン樹脂のなかでも、ポリプロピレンホモポ
リマー又はエチレン−プロピレンコポリマーが好ましい。
[0008] The foam material of the present invention is made from a polymer composition comprising at least one linear or modified linear polyolefin made using a Ziegler-Natta or metallocene catalyst. Examples of the linear or modified linear polyolefin include homopolymers of C 2 to C 20 olefins such as ethylene, propylene and 4-methyl-1-pentene, and ethylene and at least one C 3 to C 20 α-olefin. There are copolymers or copolymers of propylene with ethylene and / or C 4 -C 20 α-olefins. Preferred monomers are C 2 -C 10 α-olefins, especially ethylene, propylene,
There are isobutene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene. Among these polyolefin resins, a polypropylene homopolymer or an ethylene-propylene copolymer is preferred.

【0009】 ここで「変性線状ポリオレフィン」とは発泡体の膨張のために幾分かの長鎖分
枝をもたせた線状ポリオレフィンをいう。好ましい変性線状ポリオレフィンは高
溶融強度(HMS)ポリプロピレンがあり、これは線状ポリプロピレンに放射線
照射してつくることができる。HMP−PPは米国特許第4,916,198号
に開示されている。 これらの線状又は変性線状樹脂はこれらの線状又は変性線状ポリオレフィンよ
りも融点が少なくとも10℃低い別のポリオレフィンとブレンドすることができ
る。この低融点ポリオレフィンとしては拘束ジオメトリー触媒を用いてつくった
実質上線状のポリオレフィンが好ましい。
As used herein, the term “modified linear polyolefin” refers to a linear polyolefin having some long-chain branching due to expansion of a foam. A preferred modified linear polyolefin is high melt strength (HMS) polypropylene, which can be made by irradiating linear polypropylene. HMP-PP is disclosed in U.S. Pat. No. 4,916,198. These linear or modified linear resins can be blended with another polyolefin whose melting point is at least 10 ° C. lower than these linear or modified linear polyolefins. As this low melting point polyolefin, a substantially linear polyolefin prepared using a constrained geometry catalyst is preferred.

【0010】 好ましい実質上線状のポリオレフィンは米国特許第5,272,236号に記
載されるような拘束ジオメトリー触媒を用いてつくられる。好ましい実質上線状
のポリオレフィンはエチレンのホモポリマー又はエチレンとα−オレフィン又は
スチレンのコポリマーであり、約0.01〜約1,000g/10分のメルトイ
ンデックス(MI)をもつ。 ここで「実質上線状のポリオレフィン」とはポリマー主鎖が置換されていない
か又は炭素1,000当り3個以下の長鎖分枝で置換されているポリオレフィン
をいう。好ましいポリマーは炭素1,000当り、約0.01〜約3個、より好
ましくは約0.01〜約1個、さらに好ましくは約0.3〜約1個の長鎖分枝で
置換されているものである。
[0010] Preferred substantially linear polyolefins are made using a constrained geometry catalyst as described in US Patent No. 5,272,236. Preferred substantially linear polyolefins are homopolymers of ethylene or copolymers of ethylene and α-olefins or styrene and have a melt index (MI) of from about 0.01 to about 1,000 g / 10 minutes. As used herein, the term "substantially linear polyolefin" refers to a polyolefin in which the main chain of the polymer is not substituted or substituted with three or less long-chain branches per 1,000 carbon atoms. Preferred polymers are substituted with about 0.01 to about 3, more preferably about 0.01 to about 1, and even more preferably about 0.3 to about 1, long chain branches per 1,000 carbon atoms. Is what it is.

【0011】 好ましい実質上線状のポリオレフィンとしてはプロピレンのホモポリマー及び
プロピレンと共重合性のエチレン性不飽和コモノマーとのコポリマーがある。こ
れらのプロピレンポリマー材料としては1以上のプロピレンホモポリマー単独か
らなるもの、1以上のプロピレンコポリマー、1以上のプロピレンホモポリマー
及びコポリマーのいずれかのブレンド物、又はこれらと非プロピレン系ポリマー
とのブレンド物がある。これらのプロピレンポリマー材料はプロピレンモノマー
単位が50重量%より多いもの、特に70重量%より多いものが好ましい。好ま
しいモノエチレン性不飽和コモノマーにはα−オレフィンがある。プロピレンコ
ポリマーは最も好ましくはエチレン性不飽和コモノマー含量が約20重量%以下
のもの、即ち80重量%以上がプロピレンモノマーからなるものである。
Preferred substantially linear polyolefins include homopolymers of propylene and copolymers of propylene with an ethylenically unsaturated comonomer copolymerizable with propylene. These propylene polymer materials include one or more propylene homopolymers alone, one or more propylene copolymers, a blend of any one or more propylene homopolymers and copolymers, or a blend of these with a non-propylene polymer. There is. These propylene polymer materials preferably have more than 50% by weight, especially more than 70% by weight, of propylene monomer units. Preferred monoethylenically unsaturated comonomers include α-olefins. Most preferably, the propylene copolymer has an ethylenically unsaturated comonomer content of less than about 20% by weight, ie, more than 80% by weight, of the propylene monomer.

【0012】 特に有用なプロピレンコポリマーはプロピレンと1以上の非プロピレン性オレ
フィンとのコポリマーである。プロピレンコポリマーにはプロピレンとエチレン
及びC4 〜C10α−オレフィンからなる群から選ばれたオレフィンとのランダム
及びブロックコポリマーがある。またプロピレンコポリマーにはプロピレンとエ
チレン及びC4 〜C8 α−オレフィンからなる群から選ばれたα−オレフィンと
のランダムターポリマーもある。エチレンとC4 〜C10α−オレフィンの両者を
もつターポリマーでは、エチレン含量が20重量%以下が好ましい。C4 〜C10 α−オレフィンには、たとえば1−ブテン、イソブチレン、1−ペンテン、3−
メチル−1−ブテン、1−ヘキセン、3,4−ジメチル−1−ブテン、1−ヘプ
テン、3−メチル−1−ヘキセン等の線状又は分枝鎖C4 〜C10α−オレフィン
がある。
Particularly useful propylene copolymers are copolymers of propylene with one or more non-propylene olefins. The propylene copolymer is random and block copolymers of an olefin selected from the group consisting of propylene with ethylene and C 4 -C 10 alpha-olefin. Propylene copolymers also include random terpolymers of propylene with an α-olefin selected from the group consisting of ethylene and C 4 -C 8 α-olefins. For terpolymers having both ethylene and C 4 -C 10 α-olefins, the ethylene content is preferably 20% by weight or less. C 4 -C 10 α-olefins include, for example, 1-butene, isobutylene, 1-pentene,
There are linear or branched C 4 -C 10 α-olefins such as methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene.

【0013】 本発明のポリマーブレンド物は、ブレンド物の重量当り、好ましくは少なくと
も50重量%、より好ましくは少なくとも60重量%の線状又は変性線状ポリオ
レフィンと残部が好ましくは他のオレフィンポリマー、最も好ましくは実質上線
状のポリオレフィンからなるものである。 線状又は変性線状ポリオレフィンとブレンドしうる他の好ましいポリオレフィ
ンには、高、中及び低密度ポリエチレン、ポリブテン−1、エチレン−アクリル
酸コポリマー、エチレン−酢酸ビニルコポリマー、エチレン−プロピレンゴム、
スチレン−ブタジエンゴム、エチレン−エチルアクリレートコポリマー等がある
。 本発明のポリオレフィン発泡体は容易にリサイクルできることが好ましい。従
って本発明の吸音性発泡体の製造に用いるポリマー組成物は架橋性ポリマー及び
/又は架橋剤を含まないことが望ましい。得られる吸音性発泡体材料は実質上非
架橋物であることが好ましい。しかし、ここで「非架橋」とは架橋剤を用いずに
自然に起こりうるわずかな架橋は包含するものであり、「実質上非架橋」とは米
国特許第5,348,795号に記載されているような軽架橋ポリマーを包含す
るものである。
The polymer blends of the present invention preferably comprise at least 50%, more preferably at least 60%, by weight of the linear or modified linear polyolefin and the balance preferably other olefin polymers, most preferably at least 50%, by weight of the blend. Preferably, it is composed of a substantially linear polyolefin. Other preferred polyolefins that can be blended with the linear or modified linear polyolefin include high, medium and low density polyethylene, polybutene-1, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, ethylene-propylene rubber,
There are styrene-butadiene rubber, ethylene-ethyl acrylate copolymer and the like. Preferably, the polyolefin foam of the present invention can be easily recycled. Therefore, it is desirable that the polymer composition used for producing the sound absorbing foam of the present invention does not contain a crosslinkable polymer and / or a crosslinking agent. Preferably, the resulting sound absorbing foam material is substantially non-crosslinked. However, "non-crosslinked" as used herein includes slight crosslinks that can occur naturally without the use of a crosslinking agent, and "substantially noncrosslinked" is described in U.S. Patent No. 5,348,795. And light-crosslinked polymers as described above.

【0014】 本発明の吸音発泡材料の製造では線状又は変性線状ポリオレフィン樹脂又はこ
れらを含有する樹脂ブレンド物を押出機等の周知の溶融処理装置に供給し、溶融
し、計量するといった一般的な方法で溶融処理される。このポリマー樹脂又はポ
リマー樹脂ブレンド物に加圧下に発泡剤を混合して流動性のゲル又は混合物を形
成する。流動性ゲル又は混合物を押出機のダイ開口を通して低圧領域に押し出す
と、発泡剤が活性化してポリマーブレンド物を膨張して発泡構造体とする。16
0kg/m3 以下、より好ましくは80kg/m3 以下、最も好ましくは40k
g/m3 以下の密度をもつ発泡体を得ることができる。この発泡体は気泡の少な
くとも50%が連続気泡即ち開放構造である。平均気泡サイズは約1〜約8mm
、より好ましくは約1.5〜約5mmである。
In the production of the sound-absorbing foamed material of the present invention, a general method is used in which a linear or modified linear polyolefin resin or a resin blend containing these is supplied to a well-known melt processing device such as an extruder, melted, and measured. Is melted in a simple manner. A blowing agent is mixed under pressure with the polymer resin or polymer resin blend to form a flowable gel or mixture. Extrusion of the flowable gel or mixture through the die opening of the extruder into the low pressure region activates the blowing agent and expands the polymer blend into a foamed structure. 16
0 kg / m 3 or less, more preferably 80 kg / m 3 or less, most preferably 40 k
A foam having a density of not more than g / m 3 can be obtained. The foam is at least 50% open-cell or open-cell. Average bubble size is about 1 to about 8mm
, More preferably from about 1.5 to about 5 mm.

【0015】 用いうる発泡剤としては物理的発泡剤又は化学的発泡剤がある。しかし物理的
発泡剤が好ましい。物理的発泡剤の例としては、炭素数1〜9の脂肪族炭化水素
、炭素数1〜4のハロゲン化脂肪族炭化水素及び炭素数1〜3の脂肪族アルコー
ルがある。脂肪族炭化水素の例としてはメタン、エタン、プロパン、n−ブタン
、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等がある。ハロゲン
化炭化水素のなかではフッ素化炭化水素が好ましい。フッ素化炭化水素の例とし
てはフッ化メチル、パーフルオロメタン、フッ化エチル、1,1−ジフルオロエ
タン(HFC−152a)、1,1,1−トリフルオロエタン(HGC−143
a)、1,1,1,2−テトラフルオロエタン(HFC−134a)、ペンタフ
ルオロエタン、パーフルオロエタン、2,2−ジフルオロプロパン、1,1,1
−トリフルオロプロパン、パーフルオロプロパン、パーフルオロブタン及びパー
フルオロシクロブタンがある。
[0015] Blowing agents that can be used include physical or chemical blowing agents. However, physical blowing agents are preferred. Examples of physical blowing agents include C1-9 aliphatic hydrocarbons, C1-4 halogenated aliphatic hydrocarbons and C1-3 aliphatic alcohols. Examples of the aliphatic hydrocarbon include methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, neopentane and the like. Of the halogenated hydrocarbons, fluorinated hydrocarbons are preferred. Examples of the fluorinated hydrocarbon include methyl fluoride, perfluoromethane, ethyl fluoride, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HGC-143).
a), 1,1,1,2-tetrafluoroethane (HFC-134a), pentafluoroethane, perfluoroethane, 2,2-difluoropropane, 1,1,1
-There are trifluoropropane, perfluoropropane, perfluorobutane and perfluorocyclobutane.

【0016】 本発明で用いる部分ハロゲン化クロロ炭素及びクロロフルオロ炭素の例として
は塩化メチル、塩化メチレン、塩化エチル、1,1−ジクロロエタン、1,1−
ジクロロ−1−フルオロエタン(HCFC−141b)、1−クロロ−1,1−
ジフルオロエタン(HCFC−142b)、1,1−ジクロロ−2,2,2−ト
ルフルオロエタン(HCFC−123)及び1−クロロ−1,2,2,2−テト
ラフルオロエタン(HCFC−124)がある。完全ハロゲン化クロロフルオロ
炭素の例としてはトリクロロモノフルオロメタン(CFC−11)、ジクロロジ
フルオロメタン(CFC−12)、トリクロロトリフルオロエタン(CFC−1
13)、ジクロロテトラフルオロエタン(CFC−141)、クロロヘキサフル
オロプロパン及びジクロロヘキサフルオロプロパンがある。完全ハロゲン化クロ
ロフルオロ炭素はオゾン破壊性があり好ましくない。より好ましい有機発泡剤は
HCFC−142bと塩化エチルの混合物である。
Examples of the partially halogenated chlorocarbon and chlorofluorocarbon used in the present invention include methyl chloride, methylene chloride, ethyl chloride, 1,1-dichloroethane, 1,1-
Dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-
There are difluoroethane (HCFC-142b), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) and 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124). . Examples of fully halogenated chlorofluorocarbons include trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), and trichlorotrifluoroethane (CFC-1).
13), dichlorotetrafluoroethane (CFC-141), chlorohexafluoropropane and dichlorohexafluoropropane. Fully halogenated chlorofluorocarbons are not preferred because they have ozone destructive properties. A more preferred organic blowing agent is a mixture of HCFC-142b and ethyl chloride.

【0017】 これらの発泡剤は少量成分(15重量%以下)として1以上の無機発泡剤又は
化学発泡剤を含有しうる。本発明の発泡体をつくるために有用な無機発泡剤の例
としては二酸化炭素、アルゴン、水、空気、窒素及びヘリウムがある。化学的発
泡剤の例としてはアゾジカルボンアミド、アゾジイソブチロニトリル、ベンゼン
スルホンヒドラジド、4,4−オキシベンゼンスルホニルセミカルボンアミド、
アゾジイソブチロニトリル、ベンゼンスルホンヒドラジド、4,4−オキシベン
ゼンスルホニルセミカルバジド、p−トルエンスルホニルセミカルバジド、バリ
ウムアゾジカルボキシレート、N,N′−ジメチル−N,N′−ジニトロソテレ
フタルアミド及びトリヒドラジノトリアジンがある。
These blowing agents may contain one or more inorganic or chemical blowing agents as minor components (up to 15% by weight). Examples of inorganic blowing agents useful for making the foams of the present invention include carbon dioxide, argon, water, air, nitrogen and helium. Examples of chemical blowing agents include azodicarbonamide, azodiisobutyronitrile, benzenesulfonhydrazide, 4,4-oxybenzenesulfonylsemicarbonamide,
Azodiisobutyronitrile, benzenesulfonhydrazide, 4,4-oxybenzenesulfonylsemicarbazide, p-toluenesulfonylsemicarbazide, barium azodicarboxylate, N, N'-dimethyl-N, N'-dinitrosoterephthalamide and trihydrazino There is a triazine.

【0018】 発泡体形成性ポリマーゲルをつくるためにポリマー溶融物に加える発泡剤の量
はポリマー1kg当り好ましくは約0.5〜約5g、より好ましくは約0.8〜
約4gである。 実質上非架橋の発泡体が好ましいが、軽架橋発泡体も本発明で製造しうる。こ
れらの軽架橋発泡体は好ましい実質上非架橋の発泡体ほどは容易にリサイクルで
きないが、それ以外は通常同じ利点、即ち低密度、優れた吸音性、優れた構造一
体性をもっている。これらの組成物は1以上の架橋性ポリマーを含有しうる。架
橋性ポリマーとしてはエチレン性不飽和モノマー又は他のオレフィン性モノマー
と、カルボン酸官能基、ヒドロキシル基、又はアミンもしくはアミド基をもつエ
チレン性不飽和モノマーとのコポリマーがある。これらのモノマーはたとえばラ
ンダムコポリマーとして、ブロック又はシーケンス形コポリマーとして、又はグ
ラフトコポリマーとして、適宜にコポリマーに結合しうる。これらの材料と方法
自体は公知である。ブレンド物における架橋性ポリマーとしてはエチレンとアク
リル酸のコポリマーが好ましい。架橋発泡体の製造に有用な架橋剤の例としては
エポキシ及びアミノ官能性シラン、有機官能性アルコキシシラン、多エポキシ官
能性樹脂、チタネート及びアミンがある。これらの架橋剤はブレンド物の架橋性
ポリマーと反応して軽架橋発泡体を形成する。ポリマーブレンド物の軽架橋は溶
融強度を改良し、通常の溶融加工装置での連続的な発泡体押出しをより容易にす
る。
The amount of blowing agent added to the polymer melt to form a foam-forming polymer gel is preferably from about 0.5 to about 5 g per kg of polymer, more preferably from about 0.8 to about 5 g per kg of polymer.
It is about 4 g. While substantially non-crosslinked foams are preferred, lightly crosslinked foams can also be made with the present invention. These lightly crosslinked foams are not as easily recyclable as the preferred substantially non-crosslinked foams, but otherwise usually have the same advantages: low density, good sound absorption, and good structural integrity. These compositions may contain one or more crosslinkable polymers. Crosslinkable polymers include copolymers of ethylenically unsaturated monomers or other olefinic monomers with ethylenically unsaturated monomers having carboxylic acid functions, hydroxyl groups, or amine or amide groups. These monomers can be suitably attached to the copolymer, for example, as a random copolymer, as a block or sequenced copolymer, or as a graft copolymer. These materials and the methods themselves are known. As the crosslinkable polymer in the blend, a copolymer of ethylene and acrylic acid is preferable. Examples of crosslinkers useful in making crosslinked foams include epoxy and amino functional silanes, organofunctional alkoxysilanes, multi-epoxy functional resins, titanates and amines. These crosslinkers react with the crosslinkable polymer of the blend to form a lightly crosslinked foam. Light cross-linking of the polymer blend improves melt strength and makes continuous foam extrusion in conventional melt processing equipment easier.

【0019】 架橋性ポリマーの量は樹脂ブレンド物重量の70%以下が好ましく、より好ま
しくは60%以下、最も好ましくは50%以下である。 用ちうる架橋剤のうちのあるものはアルコールを放出する反応によって架橋結
合を形成する。たとえば、アルコキシ官能性シラン架橋剤はカルボン酸基を含有
するエチレン性ポリマー上にグラフトし、アルコールを放出しつつアシルオキシ
シラン結合を形成する。同様に、アミノ及びエポキシ官能性シランはアルコール
を放出してカルボン酸基又は無水物基をもつポリマー上にグラフトする。発泡体
押出ライン中のアルコールの存在は架橋反応を制御してポリマーブレンド物が押
出ダイを出るまで架橋を効果的に遅らせうる。
The amount of the crosslinkable polymer is preferably at most 70%, more preferably at most 60%, most preferably at most 50% of the weight of the resin blend. Some of the available cross-linking agents form cross-links through reactions that release alcohol. For example, an alkoxy-functional silane crosslinker is grafted onto an ethylenic polymer containing carboxylic acid groups to form an acyloxysilane linkage while releasing the alcohol. Similarly, amino and epoxy-functional silanes release alcohols and graft onto polymers with carboxylic acid or anhydride groups. The presence of an alcohol in the foam extrusion line can control the crosslinking reaction and effectively retard crosslinking until the polymer blend exits the extrusion die.

【0020】 好ましいシラン架橋剤は一般式:RR′SiY2 (ここでRはケイ素炭素結合
を介してケイ素に結合しているエポキシ又はアミン官能基を示し、これは炭素、
水素及び所望により酸素又は窒素からなる、Yは加水分解性有機基であり、R′
は炭化水素基である)で示される有機官能性シランである。また一般式:Ra
i(O′R)b (ここでaは1又は2であり、bは2又は3であり、Rはメチル
基又は有機反応性アルキル基であり、OR′は加水分解性アルコキシ基である)
で示されるアルコキシシランも好ましいシランである。 好ましい多(マルチ)エポキシ官能性樹脂にはエポキシノボラック樹脂があり
、その具体例としてはザ・ダウ・ケミカル・カンパニーから市販されているD.
E.N.431がある。これらの多エポキシ官能性樹脂は架橋性ポリマー上のカ
ルボン酸官能基と反応しうる複数のエポキシ官能性反応サイトをもっている。
A preferred silane crosslinker has the general formula: RR'SiY 2, where R represents an epoxy or amine function linked to silicon via a silicon carbon bond, which is a carbon,
Y, consisting of hydrogen and optionally oxygen or nitrogen, is a hydrolysable organic group, R '
Is a hydrocarbon group). In addition the general formula: R a S
i (O′R) b (where a is 1 or 2, b is 2 or 3, R is a methyl group or an organic reactive alkyl group, and OR ′ is a hydrolyzable alkoxy group)
Is also a preferred silane. Preferred multi-epoxy functional resins include epoxy novolak resins, specific examples of which are commercially available from The Dow Chemical Company.
E. FIG. N. 431. These multi-epoxy functional resins have a plurality of epoxy-functional reaction sites that can react with carboxylic acid functions on the crosslinkable polymer.

【0021】 好ましいチタネート架橋剤には一般式:Ti(OR)4 (ここでRは炭素数1
〜18のアルキル基である)で示されるチタンアルコキシド、又は一般式:(R
O)m Ti(O−X−R2 −Y)n (ここでRはアルキル基であり、Xはカルボ
ニルであり、R2 は長鎖炭素原子であり、Yは反応性2重結合又はアミノ基であ
り、mとnは合計が4の整数である)で示されるチタンカップリング剤がある。
最も好ましいチタネートカップリング剤はチタンイソプロポキシド及びテトラメ
チルチタネートである。チタネート架橋剤はアルコールを放出して架橋性ポリマ
ー上のカルボン酸又はヒドロキシル官能基と反応する。
Preferred titanate crosslinking agents include the general formula: Ti (OR) 4 (where R is 1 carbon atom)
Or an alkyl group represented by the general formula: (R
O) m Ti (O—X—R 2 —Y) n (where R is an alkyl group, X is carbonyl, R 2 is a long-chain carbon atom, and Y is a reactive double bond or amino And m and n are total integers of 4).
Most preferred titanate coupling agents are titanium isopropoxide and tetramethyl titanate. The titanate crosslinker releases an alcohol to react with the carboxylic acid or hydroxyl functionality on the crosslinkable polymer.

【0022】 好ましいアミノ架橋剤にはヘキサメトキシメチルメラミン(HMMM)及びア
ルキル化グリコールラリホルムアルデヒド樹脂がある。アミノ架橋剤は架橋性ポ
リマー上のヒドロキシル、カルボン酸又はアミド官能基と反応する。 架橋剤は発泡剤と共にポリマーゲルブレンド物に加えられ、ブレンド物の架橋
性ポリマー成分と反応する。架橋によりゲルの溶融強度と溶融粘度が増加するが
、ポリマーの流動性は残される。 架橋剤によっては架橋反応の結果としてアルコールを形成し、架橋の程度を制
限する。しかしこの場合もアルコールが揮発性発泡剤と共に気相中に拡散するの
でダイ出口での発泡体の膨張中に架橋反応が進行する。所望により、架橋反応を
さらに制御するために発泡剤にアルコールを加えてもよい。好ましいこれらのア
ルコールはメタノール、エタノール、イソプロパノール及びブタノール等の炭素
数1〜4の低分子量のものである。
Preferred amino crosslinkers include hexamethoxymethyl melamine (HMMM) and alkylated glycol lariformaldehyde resins. Amino crosslinkers react with hydroxyl, carboxylic acid or amide functional groups on the crosslinkable polymer. The crosslinker is added to the polymer gel blend along with the blowing agent and reacts with the crosslinkable polymer component of the blend. Crosslinking increases the melt strength and melt viscosity of the gel, but leaves the polymer fluid. Some crosslinking agents form alcohols as a result of the crosslinking reaction, limiting the degree of crosslinking. However, also in this case, the alcohol diffuses into the gas phase together with the volatile foaming agent, so that the crosslinking reaction proceeds during expansion of the foam at the die exit. If desired, alcohol may be added to the blowing agent to further control the crosslinking reaction. Preferred alcohols are those having a low molecular weight having 1 to 4 carbon atoms such as methanol, ethanol, isopropanol and butanol.

【0023】 本発明で用いうる架橋性ポリマーはフリーラジカル発生性化合物を用いてつく
ることもできる。たとえば、線状低密度ポリエチレンはジクミルパーオキシド等
の有機パーオキシドを用いて軽架橋できる。またポリプロピレンは多アジド官能
性化合物を用いて架橋できる。 本発明の発泡体生成物はスクリュー型押出機からの連続押出等の一般的な溶融
処理装置を用いて製造しうる。これらの押出機は典型的には、供給域、圧縮及び
溶融域・計量(メタリング)域及び混合域をもつ一連の連続域をもっている。押
出機のバレルは区分した温度制御用の一般的な電気加熱機を備えている。
The crosslinkable polymer that can be used in the present invention can also be prepared using a free radical generating compound. For example, linear low density polyethylene can be lightly crosslinked using an organic peroxide such as dicumyl peroxide. Also, polypropylene can be crosslinked using multi-azide functional compounds. The foam product of the present invention can be produced using a general melt processing apparatus such as continuous extrusion from a screw type extruder. These extruders typically have a series of continuous zones with a feed zone, a compression and melting zone and a metering zone and a mixing zone. The barrel of the extruder is equipped with a common electric heater for separate temperature control.

【0024】 入口は計量域と混合域の間で押出機バレル中のポリマーブレンド物に加圧下に
流体発泡剤と所望により架橋剤との混合物を加えるために用意される。所望によ
り架橋剤を、射出ノズル上流の流体発泡剤流中に、制御しつつ、ポンプ注入する
。発泡剤と所望の架橋剤を通常の手段で出発ポリマー中に混練して、好ましくは
連続的に、流動性のゲル又は混合物を形成する。 ポリマーブレンド物、発泡剤及び所望成分の架橋剤が押出機の混合域で、ポリ
マー樹脂を可塑化するための加熱と発泡剤を液状に保つための加圧と十分な混合
をうるための機械作用とを用いて、合体される。
An inlet is provided for adding a mixture of a fluid blowing agent and optionally a cross-linking agent under pressure to the polymer blend in the extruder barrel between the metering zone and the mixing zone. If desired, the crosslinking agent is pumped in a controlled manner into the fluid blowing agent stream upstream of the injection nozzle. The blowing agent and the desired crosslinking agent are kneaded by conventional means into the starting polymer to form, preferably continuously, a flowable gel or mixture. In the mixing zone of the extruder, the polymer blend, the foaming agent, and the crosslinking agent of the desired component are heated to plasticize the polymer resin and pressurized to keep the foaming agent in a liquid state, and a mechanical action to achieve sufficient mixing. And are combined.

【0025】 押出機の混合域の排出端は、冷却及び温度制御域を介して、ダイオリフィスに
連結されている。熱ポリマーゲルは冷却されダイオリフィスを通って低圧域(た
とえば、通常の外空気圧)に移され、そこで発泡剤が活性化され、ポリマーゲル
が膨張して低密度の発泡体となる。発泡押出物が形成するとダイから離され、冷
却、硬化される。発泡押出物は厚板、チューブ、シート等として成形されうる。 タルク、ケイ酸カルシウム、ステアリン酸亜鉛等の一般的な微細固体物質を押
出前にポリマーゲルに加えることは望ましいことである。これらの微細固体物質
は気泡のサイズを制御する助けをし、通常ポリマーの5重量%以下の量で用いら
れる。従来技術におけると同様、多くのフィラー、顔料、潤滑剤、抗酸化剤等も
所望により加えられる。
The discharge end of the mixing zone of the extruder is connected to a die orifice via a cooling and temperature control zone. The hot polymer gel is cooled and transferred through the die orifice to a low pressure region (eg, normal outside air pressure) where the blowing agent is activated and the polymer gel expands to a low density foam. Once the foamed extrudate has formed, it is released from the die, cooled and cured. The foam extrudate can be formed as a slab, tube, sheet, or the like. It is desirable to add common fine solid materials such as talc, calcium silicate, zinc stearate, etc. to the polymer gel prior to extrusion. These finely divided solid materials help control the size of the cells and are usually used in amounts of up to 5% by weight of the polymer. As in the prior art, many fillers, pigments, lubricants, antioxidants and the like are added as desired.

【0026】 本発明の好ましい態様に従って、発泡体を押出後に軟化して機械圧縮し連続気
泡を増やしうる。 本発明の発泡体は吸音材及び防音材として有用である。この発泡体は連続気泡
含量が50%以上で、気泡サイズが1mmより大きいという特徴を有する。好ま
しくは連続気泡含量が少なくとも70%、気泡サイズが少なくとも1.5mm、
圧縮強度が偏差10%で30kPa以上である。この発泡体は好ましくは1,0
00Hzで0.15より大きく、より好ましくは0.2より大きい吸音係数(s
oundabsorption coefficient)をもつ。
In accordance with a preferred embodiment of the present invention, the foam may be softened after extrusion and mechanically compressed to increase open cells. The foam of the present invention is useful as a sound absorbing material and a sound insulating material. The foam is characterized by an open cell content of 50% or more and a cell size of more than 1 mm. Preferably the open cell content is at least 70%, the cell size is at least 1.5 mm,
The compressive strength is 30 kPa or more with a deviation of 10%. The foam is preferably 1,0
Sound absorption coefficient (s) greater than 0.15 at 00 Hz, more preferably greater than 0.2
has an underabsorption coefficient.

【0027】 本発明の発泡体は適宜の断面サイズ又は構造につくることができ、特に発泡体
シートをつくるのに適している。吸音材として用いる場合には発泡体の孔密度が
好ましくは10cm2 当り1以上の孔、より好ましくは5cm2 当り1以上の孔、
最も好ましくは1cm2 当り1以上の孔となるように孔あけすることが好ましい
。デカップラーとして用いる場合には、発泡体を50%以上、より好ましくは8
0%以上予備圧縮して、偏差10%で圧縮強度を30kPa以下、好ましくは2
0kPa以下、最も好ましくは10kPa以下にすることが好ましい。 音の制御の最終用途に本発明の発泡体を用いる場合、空気流抵抗が約800,
000Rayls/m(800,000Pa・s/m2 )より低いことが好まし
い。特に100,000Rayls/m(100,000Pa・s/m2 )以下
さらには50,000Rayls/m(50,000Pa・s/m2 )以下の空
気流抵抗が発泡体の最終用途によりより好ましい。
The foam of the present invention can be made to have an appropriate cross-sectional size or structure, and is particularly suitable for making a foam sheet. When used as a sound absorbing material, the pore density of the foam is preferably 1 or more per 10 cm 2 , more preferably 1 or more per 5 cm 2 ,
Most preferably, it is preferable to form one or more holes per 1 cm 2 . When used as a decoupler, the foam should be 50% or more, more preferably 8% or more.
0% or more pre-compressed, and the compression strength is 30 kPa or less, preferably 2%, with a deviation of 10%.
It is preferably set to 0 kPa or less, most preferably 10 kPa or less. When the foam of the present invention is used for sound control end use, the air flow resistance is about 800,
It is preferably lower than 000 Rayls / m (800,000 Pa · s / m 2 ). In particular, an air flow resistance of 100,000 Rayls / m (100,000 Pa · s / m 2 ) or less, more preferably 50,000 Rayls / m (50,000 Pa · s / m 2 ) or less is more preferable depending on the final use of the foam.

【0028】 図7に、第1スキン層12、第2スキン層14及び防音インサート20をもつ
、防音自動車ドアパネル等の、防音パネル10の断面を示す。防音インサート2
0は少なくとも50%の連続気泡含量、少なくとも1mmの気泡サイズをもち、
線状又は変性線状ポリオレフィン又はそれを含むブレンド物からつくった本発明
の発泡体シートである。発泡体インサート20は構造物を通る音又は振動の移動
を効果的に低下させるために低い動的こわさ(dynamic stiffne
ss)をもつ。たとえばスキン層12の1つはシート金属で他のスキン層14は
高充填エチレン酢酸ビニルコポリマー又は熱可塑性エラストマーでありうる。パ
ネル20は吸音材、防音材又は音/振動デカップラーとして作用しうる。現在、
連続気泡ポリウレタン発泡体又は繊維バットが一般にデカップラーとして用いら
れている。ポリウレタン発泡体はリサイクルが困難で、また湿潤環境での使用に
適していない。
FIG. 7 shows a cross section of a soundproof panel 10, such as a soundproof automobile door panel, having a first skin layer 12, a second skin layer 14, and a soundproof insert 20. Soundproof insert 2
0 has an open cell content of at least 50%, a cell size of at least 1 mm,
1 is a foam sheet of the present invention made from a linear or modified linear polyolefin or a blend containing the same. The foam insert 20 has low dynamic stiffness to effectively reduce the transfer of sound or vibration through the structure.
ss). For example, one of the skin layers 12 may be sheet metal and the other skin layer 14 may be a highly filled ethylene vinyl acetate copolymer or a thermoplastic elastomer. Panel 20 may act as a sound absorber, a sound insulator, or a sound / vibration decoupler. Current,
Open cell polyurethane foam or fiber bats are commonly used as decouplers. Polyurethane foams are difficult to recycle and are not suitable for use in wet environments.

【0029】[0029]

【実施例】 次に実施例で本発明を例証するが、これらは本発明の範囲を制限するものでは
ない。これらにおいて部及び%は断りのない限り重量基準で示す。 例1: この例で用いた装置は供給、計量及び混合の通常の連続域の端部に混合と冷却
の追加域をもつ38mm(1〜1/2インチ)スクリュー型押出機である。計量
及び混合域間の押出機バレル上に発泡剤用の開口をもつ。冷却域の端部に方形の
開口をもつダイオリフィスがある。この開口の高さ(以後ダイギャップと称する
)は調節可能であり、その幅は6.35mm(0.25インチ)に固定されてい
る。 この例ではポリオレフィンエラストマー(POE)樹脂をブレンドした高溶融
強度(HMS)ポリプロピレン樹脂を押出して連続気泡発泡体とした。
The following examples illustrate the invention but do not limit the scope of the invention. In these, parts and percentages are indicated by weight unless otherwise specified. Example 1 The equipment used in this example is a 38 mm (1-1 / 2 inch) screw extruder with an additional zone of mixing and cooling at the end of the usual continuous zone of feeding, metering and mixing. There is an opening for the blowing agent on the extruder barrel between the metering and mixing zones. There is a die orifice with a rectangular opening at the end of the cooling zone. The height of this opening (hereinafter referred to as the die gap) is adjustable and its width is fixed at 6.35 mm (0.25 inch). In this example, a high melt strength (HMS) polypropylene resin blended with a polyolefin elastomer (POE) resin was extruded into an open cell foam.

【0030】 樹脂ブレンド物はASTM D1238により230℃/2.16kgで測定
したメルトフローレート(MFR)が約2のHMS96.8/3.2プロピレン
/エチレンコポリマー樹脂と約0.3のMFRをもつ一般的なポリプロピレンホ
モポリマー樹脂との50/50重量比のブレンド物である。HMSポリプロピレ
ン樹脂は約0.6のMFRをもっていた。POE樹脂はASTM D1235に
より190℃/2.161kgで測定したメルトインデックスが0.5で密度が
0.870g/cm3 のDow ENGAGE(商標)樹脂EG8150である
。このPOE樹脂はINSITE(商標)技術触媒(拘束ジオメトリー触媒)を
用いてつくった。 実施に当り、粒状ポリオレフィン樹脂を予め決めた比で且つ抗酸化剤パッケー
ジ及び少量の気泡サイズ制限用のタルク粉末と予備ブレンドした。タルク粉末濃
度はポリマー100部(pph)当り0.015部である。
The resin blend has an HMS 96.8 / 3.2 propylene / ethylene copolymer resin having a melt flow rate (MFR) of about 2 and a MFR of about 0.3 as measured at 230 ° C./2.16 kg by ASTM D1238. It is a 50/50 weight ratio blend with a common polypropylene homopolymer resin. HMS polypropylene resin had an MFR of about 0.6. The POE resin is Dow ENGAGE ™ resin EG8150 having a melt index of 0.5 and a density of 0.870 g / cm 3 measured at 190 ° C./2.161 kg according to ASTM D1235. The POE resin was made using INSITE ™ technology catalyst (constrained geometry catalyst). In practice, the particulate polyolefin resin was pre-blended in a predetermined ratio and with an antioxidant package and a small amount of talc powder for limiting cell size. The talc powder concentration is 0.015 parts per 100 parts (pph) of polymer.

【0031】 抗酸化剤パッケージはチバ・ガイギー製のイルガノックス(商標)1010ヒ
ンダードフェノール型抗酸化剤とゼネラルエレクトリック製のUttranox
(商標)626ホスファイト型抗酸化剤の各0.1pphからなるものである。
抗酸化剤は濃縮形でポリエチレン樹脂に約10%濃度で混練して用いた。この固
体混合物を次いで押出機のホッパーに供給し、5.44kg/時(12ポンド/
時)の均一比で押出した。押出域で維持した温度は、供給域で188℃、転移域
で196℃、溶融域で210℃、計量域で216℃、混合域で213℃であった
。 イソブタンを発泡剤濃度がポリマー1kg当り約1.7g−モルになるように
均一速度で注入口に注入した。冷却域の温度を徐々に下げてポリマー/発泡剤混
合物(ゲル)を優れた連続気泡発泡体を与える各調合物の最高温度まで冷却した
。テスト1.2及び1.3の発泡温度は154℃であり、ダイ温度は発泡性ゲル
温度とほぼ同じに維持した。ダイ開口を予備発泡のない優れた発泡体ストランド
を得るよう調節した。
The antioxidant package includes Irganox ™ 1010 hindered phenolic antioxidant from Ciba Geigy and Uttranox from General Electric.
(Trademark) 626 phosphite type antioxidants each consisting of 0.1 pph.
The antioxidant was used by kneading the polyethylene resin in a concentrated form at a concentration of about 10%. This solid mixture was then fed to the hopper of the extruder and fed to 5.44 kg / hr (12 lb / hr).
Extruded at a uniform ratio. The temperatures maintained in the extrusion zone were 188 ° C in the feed zone, 196 ° C in the transition zone, 210 ° C in the melting zone, 216 ° C in the metering zone, and 213 ° C in the mixing zone. Isobutane was injected into the inlet at a uniform rate such that the foaming agent concentration was about 1.7 g-mol / kg polymer. The temperature of the cooling zone was gradually reduced to cool the polymer / blowing agent mixture (gel) to the maximum temperature of each formulation that provided excellent open cell foam. The foaming temperature for tests 1.2 and 1.3 was 154 ° C., and the die temperature was kept approximately the same as the foamable gel temperature. The die opening was adjusted to obtain a good foam strand without prefoaming.

【0032】 約0.9mmのダイ開口サイズにて、幅約34mm厚さ約11mmの優れた発
泡体を得た。表1に示すように、この発泡体は低密度の実質上連続気泡構造体で
あり連続気泡含量は75%より高かった。水平方向で測定した気泡サイズは1.
6mmから2.3mmの範囲にある比較的大きいものであった。押出約1ヶ月後
にこの発泡体を他のテスト、即ち熱変形温度、引張り強度及び圧縮強度の測定に
供した。
An excellent foam having a width of about 34 mm and a thickness of about 11 mm was obtained with a die opening size of about 0.9 mm. As shown in Table 1, the foam was a low density, substantially open cell structure with an open cell content greater than 75%. The bubble size measured in the horizontal direction is 1.
It was relatively large, ranging from 6 mm to 2.3 mm. About one month after extrusion, the foam was subjected to other tests, i.e., determination of heat distortion temperature, tensile strength and compressive strength.

【0033】 発泡体の物理的及び機械的性質: テスト結果を表1に要約する。PP/POEブレンド発泡体の熱変形温度はP
P発泡体(150℃)より20℃低いが、自動車用途を含む多くの用途にとって
は十分な高さである。POE樹脂は発泡体の物理的性質に望ましい効果をもって
いた。POE樹脂は発泡体をより強靱且つ軟かくした。PP/POEブレンド発
泡体はPP発泡体よりも2倍以上伸びた。POE樹脂のモジュラスが低いことか
ら予測されるように、PP/POEブレンド発泡体はPP発泡体よりもかなり低
い圧縮強度をもっていた。最初の圧縮テスト中発泡体片を約80%の偏差に圧縮
した。圧縮後、発泡体片は実質上もとの厚さにもどった。このテスト片をさらに
別の圧縮テストに供して圧縮強度を記録した。表1に示した第2の圧縮中の圧縮
強度データから明らかなように、この発泡体は最初の圧縮中に軟化した。偏差1
0%での圧縮強度は7倍も低下した。低い偏差での低い圧縮強度又は低い圧縮モ
ジュラスは防音材として望ましいものである。
[0033] Physical and mechanical properties of the foam: The test results are summarized in Table 1. The heat distortion temperature of PP / POE blend foam is P
20 ° C. lower than P foam (150 ° C.), but high enough for many applications, including automotive applications. The POE resin had a desirable effect on the physical properties of the foam. The POE resin made the foam tougher and softer. The PP / POE blend foam extended more than twice as much as the PP foam. As expected from the low modulus of the POE resin, the PP / POE blend foam had much lower compressive strength than the PP foam. During the initial compression test, the foam pieces were compressed to about 80% deviation. After compression, the foam pieces returned to substantially their original thickness. The test piece was subjected to another compression test to record the compression strength. The foam softened during the first compression, as evidenced by the compressive strength data during the second compression shown in Table 1. Deviation 1
The compressive strength at 0% was reduced by a factor of seven. Low compressive strength or low compressive modulus with low deviation is desirable as a soundproofing material.

【0034】[0034]

【表1】 [Table 1]

【0035】 例1でつくった発泡体の音制御特性: 例1でつくった選択された発泡体について吸音性能をテストした。PP発泡体
と60/40PP/POE発泡体を選択した。発泡体ストランドを削った上合体
して厚さ12.7mmのテスト片をつくった。 この発泡体片をASTM E1050の吸音テストに供した。吸音係数を発泡
体当り2個のテスト片について周波数の関数として求めた。2回のテスト結果の
平均を計算して図1に示した。また選択した周波数での吸音データを例2及び参
考例でつくった発泡体のデータと共に表2に示す。これらの発泡体は音エネルギ
ーを十分に吸収した。PP/POEブレンド発泡体はほとんどの周波数範囲でP
P発泡体より音をよく吸収した。
The sound control properties of the foam made in Example 1 The selected foam made in Example 1 was tested for sound absorption performance. PP foam and 60/40 PP / POE foam were selected. The foam strands were shaved off and united to form 12.7 mm thick test specimens. The foam piece was subjected to an ASTM E1050 sound absorption test. The sound absorption coefficient was determined as a function of frequency for two test pieces per foam. The average of the two test results was calculated and is shown in FIG. Table 2 shows the sound absorption data at the selected frequency together with the data of the foams produced in Example 2 and Reference Example. These foams absorbed sound energy well. PP / POE blended foam has a P
Absorbed sound better than P foam.

【0036】[0036]

【表2】 [Table 2]

【0037】 例2: この例で用いた発泡装置は例1で用いたのと本質的に同じ配置構造をもつ89
mm(3〜1/2インチ)−スクリュー型押出機である。57.2mm(2.2
5インチ)のダイギャップ調節性スリットダイをこの装置に装着した。 実施に当り、線状低密度ポリエチレン(ザ・ダウ・ケミカル・カンパニー製の
Dowlex2038、メルトインデックス1.0、密度0.935g/cm3
)と低密度分枝ポリエチレン(密度0.923g/cm3 、メルトインデックス
0.7)の50/50ブレンド物を約113.5kg/時(250ポンド/時)
の均一速度で押出機に供給した。またステアリルステアラミド1.2pphとジ
ブチルスズジラウレート0.025pph(いずれも濃縮形)もポリマーと共に
供給した。ステアリルステアラミドは発泡体の寸法安定性向上用にまたジブチル
スズジラウレートはシラン架橋反応用の触媒として加えた。押出機の供給、転移
、溶融及び計量の各域を150〜200℃にセットしてポリマーを均一に溶融し
押出すようにした。230℃に保った混合域にCFC−12発泡剤を約20pp
hの速度で注入した。発泡剤注入流にアジド官能性シラン(HerculesC
orporation製のAz−CupMC98名)を0.2pphの速度で注
入した。このゲルを冷却域温度を調節して最適発泡温度に冷却した。約115℃
のゲル温度にて優れた連続気泡発泡体を得た。 予備発泡を抑制するように調節したダイ開口にて、厚さ約30mm幅200m
mの優れた発泡体を得た。この発泡体は密度約27kg/m3 、気泡サイズ1.
2mm、連続気泡含量89%をもっていた。この発泡体は偏差25%の圧縮強度
が約25kPaの軟いものであった。
Example 2 The foaming device used in this example has essentially the same configuration as that used in Example 1.
mm (3 to 1/2 inch)-Screw type extruder. 57.2 mm (2.2
A 5 inch (5 inch) die gap adjustable slit die was fitted to the device. In practice, a linear low-density polyethylene (Dowlex 2038 manufactured by The Dow Chemical Company, melt index 1.0, density 0.935 g / cm 3)
) And a low-density branched polyethylene (density 0.923 g / cm 3 , melt index 0.7) blend of about 50 lb / hr (250 lb / hr)
At an even rate. Further, 1.2 pph of stearyl stearamide and 0.025 pph of dibutyltin dilaurate (all in a concentrated form) were also supplied together with the polymer. Stearyl stearamide was added to improve the dimensional stability of the foam and dibutyltin dilaurate was added as a catalyst for the silane crosslinking reaction. The feed, transfer, melting and metering zones of the extruder were set at 150 to 200 ° C. to uniformly melt and extrude the polymer. Approximately 20 pp of CFC-12 blowing agent in the mixing zone maintained at 230 ° C.
h. Add azido-functional silane (Hercules C) to the blowing agent injection stream
Az-CupMC manufactured by corporation (98 persons) was injected at a rate of 0.2 pph. The gel was cooled to the optimum foaming temperature by adjusting the cooling zone temperature. About 115 ° C
Excellent open cell foam was obtained at the gel temperature of With a die opening adjusted to suppress prefoaming, a thickness of about 30 mm and a width of 200 m
m was obtained. This foam has a density of about 27 kg / m 3 and a cell size of 1.
2 mm, 89% open cell content. The foam was soft with a deviation strength of 25% and a compressive strength of about 25 kPa.

【0038】 押出した厚板を12.7mm(0.5インチ)厚のシートにスライスし、ギャ
ップを発泡体厚の約10%に調節した2個の駆動ロール間を通して圧縮テストを
行った。圧縮発泡体は連続気泡含量90%、偏差25%の圧縮強度16kPaを
もっていた。発泡体は押出し時既に高い連続気泡含量をもっており、更なる連続
気泡化は最小であった。 押出したままの発泡体片及び圧縮した発泡体片の両者をASTM E1050
吸音テストに供した。図2及び表2に示すように、両発泡体片共中から高周波数
で音エネルギーを十分に吸収した。吸音に関しては、発泡体の圧縮は性能を向上
しない。しかし圧縮軟化した発泡体はより低い動的こわさをもち、たとえば衝撃
音に対して、改良された防音性能をもたらす。
The extruded slab was sliced into 0.5 inch (12.7 mm) thick sheets and compression tested through two drive rolls with a gap adjusted to about 10% of the foam thickness. The compressed foam had an open cell content of 90% and a compressive strength of 16 kPa with a deviation of 25%. The foam already had a high open cell content upon extrusion and further open celling was minimal. Both the as-extruded and compressed foam pieces are ASTM E1050
It was subjected to a sound absorption test. As shown in FIG. 2 and Table 2, sound energy was sufficiently absorbed at high frequencies from both foam pieces. With respect to sound absorption, foam compression does not improve performance. However, compression-softened foams have lower dynamic stiffness and provide improved soundproofing, for example, against impact noise.

【0039】 比較例1: この例で用いた発泡装置はダイオリフィス以外は例2で用いたものと同じであ
る。ダイは例2で用いたのと同じ配置構造をもっているが幅が25.4mm(1
インチ)と狭い。 この例のテストでは0.43のメルトフローレート(ASTM D1238に
て230℃/2.16kg)をもつ高溶融強度(HMS)2/98エチレン/プ
ロピレンランダムコポリマーを発泡膨張用に用いた。実施に当り、粒状ポリプロ
ピレンを約136kg/時(300ポンド/時)の均一速度で押出機に供給した
。また少量のタルカム粉末(0.1pph)を気泡サイズ制御用に加えまた抗酸
化剤濃縮物としてイルガノックス1010(チバ・ガイギー)及びUltran
ox(ゼネラル・エレクトリック)の各々の濃度が0.1ppmになるように加
えた。押出機域で維持した温度は供給域で約130℃、溶融域で200℃、計量
域で230℃、混合域で210℃であった。 HCFC−142b発泡剤を加圧下にポリマー1kg当り1.5g−モルの速
度で混合域に注入した。ポリマー/発泡剤混合物を約154℃の最適発泡温度に
冷却し、ダイギャップを予備発泡のない発泡体をつくるように調節した。2.2
mm(0.088インチ)のダイギャップにて、厚さ43mm、幅123mmを
もつ優れた発泡体を得た。
Comparative Example 1: The foaming apparatus used in this example is the same as that used in Example 2 except for the die orifice. The die has the same configuration as used in Example 2, but has a width of 25.4 mm (1
Inches) and narrow. In this example test, a high melt strength (HMS) 2/98 ethylene / propylene random copolymer having a melt flow rate of 0.43 (230 ° C./2.16 kg according to ASTM D1238) was used for foam expansion. In practice, the particulate polypropylene was fed to the extruder at a uniform rate of about 136 kg / hr (300 lb / hr). A small amount of talcum powder (0.1 pph) was also added for cell size control and Irganox 1010 (Ciba Geigy) and Ultranx as antioxidant concentrates.
ox (General Electric) was added to a concentration of 0.1 ppm. The temperatures maintained in the extruder zone were about 130 ° C in the feed zone, 200 ° C in the melting zone, 230 ° C in the metering zone, and 210 ° C in the mixing zone. HCFC-142b blowing agent was injected under pressure into the mixing zone at a rate of 1.5 g-mol / kg polymer. The polymer / blowing agent mixture was cooled to an optimum foaming temperature of about 154 ° C and the die gap was adjusted to create a foam without prefoaming. 2.2
An excellent foam having a thickness of 43 mm and a width of 123 mm was obtained with a die gap of 0.088 inch (mm).

【0040】 この発泡体は室温(約20〜23℃)でのエージング中寸法は安定であった。
1ヶ月以上十分にエージングした発泡体は密度24.2kg/m3 (1.51p
cf)、気泡サイズ0.9mm、連続気泡含量35%をもっていた。この発泡体
を約12.7mm厚のシートに切った。このシートのいくつかを例2に記載した
方法によって厚さの90%まで圧縮した。この圧縮で気泡が破れた。発泡体の連
続気泡含量が95%に増加し、偏差25%での圧縮強度が約84kPaから26
kPaに低下した。 押出したままの発泡体シートと圧縮した発泡体シートをASTM E1050
吸音テストに供した。 図3及び表2に示すように、共発泡体は、それらの連続気泡含量とは独立に、
音エネルギーの吸収材として望ましくないことが示された。0.9mmの気泡サ
イズをもつ発泡体は2mmの気泡サイズをもつテスト1.1でつくった発泡体よ
りも大巾に劣るものであった。連続気泡含量が95%に増加してさえ、圧縮は発
泡体の音制御性能にほとんど影響していない。
The foam was dimensionally stable during aging at room temperature (about 20-23 ° C.).
A foam aged sufficiently for one month or more has a density of 24.2 kg / m 3 (1.51 p.
cf), the cell size was 0.9 mm, and the open cell content was 35%. The foam was cut into sheets about 12.7 mm thick. Some of the sheets were compressed to 90% of their thickness by the method described in Example 2. Bubbles were broken by this compression. The open cell content of the foam is increased to 95% and the compressive strength at a deviation of 25% is increased from about 84 kPa to 26
kPa. The as-extruded and compressed foam sheets were subjected to ASTM E1050.
It was subjected to a sound absorption test. As shown in FIG. 3 and Table 2, the co-foams, independent of their open cell content,
It has been shown to be undesirable as a sound energy absorber. The foam with a cell size of 0.9 mm was significantly inferior to the foam made in Test 1.1 with a cell size of 2 mm. Even when the open cell content is increased to 95%, compression has little effect on the sound control performance of the foam.

【0041】 比較例2: この例で用いた装置はオリフィスダイ以外は例32で用いたものと同じである
。開口間が0.25インチの同じ方形パターンで18列112段に配した直径0
.041インチの開口2016個をもつ多孔ダイをこの装置に装着した。この装
置の操作法は例3におけると本質的に同じである。 この例では0.34のメルトフローレート(ASTM D1238にて230
℃/2.16kg)をもつHMS2/98エチレン/プロピレンランダムコポリ
マーを用いて行った。この粒状樹脂を気泡サイズ制御用の少量のタルカム粉末(
0.05pph)と抗酸化剤0.2pphを混合した。抗酸化剤はイルガノック
ス1010名のヒンダードフェノール型抗酸化剤(チバ・ガイギー製)50%と
Ultranox名のホスファイト型抗酸化剤(ボルグ・ワーナー・ケミカル製
)50%からなるものである。
Comparative Example 2: The apparatus used in this example is the same as that used in Example 32 except for the orifice die. 0-diameter arranged in 18 rows and 112 steps in the same square pattern with 0.25 inches between openings
. A perforated die with 2016 openings of 041 inches was mounted on the device. The operation of this device is essentially the same as in Example 3. In this example, a melt flow rate of 0.34 (230 according to ASTM D1238)
C./2.16 kg) using a HMS2 / 98 ethylene / propylene random copolymer. A small amount of talcum powder (for controlling the bubble size)
0.05 pph) and 0.2 pph of the antioxidant. The antioxidant consisted of 50% of a hindered phenol type antioxidant (manufactured by Ciba Geigy) of 1010 Irganox and 50% of a phosphite type antioxidant (manufactured by Borg Warner Chemical) of Ultranox name.

【0042】 抗酸化剤はベース樹脂を用いマスターバッチに予備混練した。この固体混合物
を約181kg/時(400ポンド/時)の均一速度で押出機に供給した。 押出機で維持した温度は供給域で約130℃、溶融域で200℃、計量域で2
30℃、混合域で210℃であった。 HCFC−142b発泡剤を加圧下に35.8kg/時(79ポンド/時、こ
れは19.8pph又はポリマー1kg当り約2.0g−モルに相当)の速度で
混合域に供給した。ポリマーと発泡剤の均一混合物を約154℃に冷却し、微細
気泡サイズをもつ優れた発泡体を得た。この発泡体ストランドは互に付着してほ
とんどの空隙が充填した発泡体厚板になっていた。発泡体の断面サイズは約61
mm×605mmであった。
The antioxidant was preliminarily kneaded into a master batch using a base resin. This solid mixture was fed to the extruder at a uniform rate of about 181 kg / hr (400 lb / hr). The temperature maintained in the extruder was about 130 ° C in the feed zone, 200 ° C in the melting zone, and 2 ° C in the metering zone.
The temperature was 30 ° C and 210 ° C in the mixing zone. HCFC-142b blowing agent was fed to the mixing zone under pressure at a rate of 35.8 kg / hr (79 lb / hr, which corresponds to 19.8 pph or about 2.0 g-mol / kg polymer). The homogeneous mixture of polymer and blowing agent was cooled to about 154 ° C. to obtain an excellent foam with fine cell size. The foam strands adhered to each other to form a foam slab filled with most voids. The cross-sectional size of the foam is about 61
mm × 605 mm.

【0043】 この発泡体はエージング中ほとんど寸法変化がなく(1%以下)優れた寸法安
定性を示した。押出後2週間してから発泡体の性質を調べたこの発泡体は密度2
3.7kg/m3 、気泡サイズ0.58mm、連続気泡含量69%をもっていた
。この発泡体は偏差25%で約49kPaの垂直圧縮強度をもっていた。この発
泡体厚板を25.4mm厚シートに切り、例2に記載した方法で90%圧縮した
。この圧縮片は押出したままの発泡体に比し94%というより高い連続気泡含量
と17kPaというより低い圧縮強度をもっていた。25.4mm厚の発泡体片
の吸音性能をテストした。図4と表2に示すように、発泡体片は、連続気泡含量
とは独立に不十分な吸音性能を示した。この発泡体片の厚さをテスト1.1でつ
くった発泡体の2倍にしても、吸音性能はテスト1.1の発泡体より劣るもので
あった。
This foam showed little dimensional change (1% or less) during aging and exhibited excellent dimensional stability. Two weeks after extrusion, the properties of the foam were examined.
It had 3.7 kg / m 3 , a cell size of 0.58 mm and an open cell content of 69%. This foam had a vertical compressive strength of about 49 kPa with a deviation of 25%. The foam slab was cut into 25.4 mm thick sheets and compressed 90% as described in Example 2. The compact had a higher open cell content of 94% and a lower compressive strength of 17 kPa compared to the as-extruded foam. A 25.4 mm thick piece of foam was tested for sound absorption performance. As shown in FIG. 4 and Table 2, the foam pieces exhibited poor sound absorption performance independent of the open cell content. Even if the thickness of this foam piece was twice that of the foam made in test 1.1, the sound absorption performance was inferior to that of test 1.1.

【0044】[0044]

【表3】 [Table 3]

【0045】 例3: この例で用いた発泡装置はダイオリフィス以外例2で用いたものと同じである
スリットダイの代りに、環状シートダイとこれに合わされたサイズ用マンドレル
を装着した。環状オリフィスの直径は50.8mm(2インチ)で環状体のギャ
ップは調節可能になっている。ダイオリフィスに取りつけたサイズ用マンドレル
は210mm(8.25インチ)の直径をもつ。 この例では、HMSポリプロピレン樹脂とPOE樹脂の70/30ブレンド物
という例1のテスト1.2で用いたと同じポリマーブレンド物から連続気泡シー
ト発泡体をつくった。約5mm厚の発泡体シートをテスト3.1に供し、約10
mm厚の発泡体シートをテスト3.2に供した。 実施に当っては、ポリプロピレン樹脂とPOE樹脂の粒状ブレンド物を、テス
ト1.1では136kg/時(300ポンド/時)、テスト3.2では182k
g/時(400ポンド/時)の均一速度で押出機に供給した。またタルカム粉末
0.03pphと例1で用いたと同じ抗酸化剤0.25pphを供給した。押出
機域で維持した温度は供給域で約130℃、溶融域で200℃、計量域で250
℃、混合域で195℃であった。
Example 3 The foaming apparatus used in this example was the same as that used in Example 2 except for the die orifice, except that an annular sheet die and a sizing mandrel fitted to it were fitted. The diameter of the annular orifice is 2 inches and the gap of the annular body is adjustable. The sizing mandrel attached to the die orifice has a diameter of 210 mm (8.25 inches). In this example, an open cell sheet foam was made from the same polymer blend used in Test 1.2 of Example 1 of a 70/30 blend of HMS polypropylene resin and POE resin. An about 5 mm thick foam sheet was subjected to test 3.1 and tested for about 10
The mm-thick foam sheet was subjected to test 3.2. In operation, a particulate blend of polypropylene resin and POE resin was tested at 136 kg / hr (300 lb / hr) in Test 1.1 and 182 k / hr in Test 3.2.
Feed to the extruder at a uniform rate of g / hr (400 lb / hr). Also supplied was 0.03 pph of talcum powder and 0.25 pph of the same antioxidant used in Example 1. The temperature maintained in the extruder zone was about 130 ° C in the feed zone, 200 ° C in the melting zone, and 250 ° C in the metering zone.
° C and 195 ° C in the mixing zone.

【0046】 イソブタンを10pph(ポリマー1kg当り1.72g−モル)になるよう
な速度で混合域に注入した。冷却域とダイの温度を優れた連続気泡発泡体が得ら
れるように低下させた。その温度はテスト3.1で158℃と156℃、テスト
3.2で154℃と156℃であった。環状オリフィスのギャップを予備発泡の
ない発泡体を生ずるよう調節した。発泡性ゲルをサイズ用マンドレルから引き出
してチューブ状発泡体を得た。このチューブ状発泡体を平均シートに切り一セッ
トの引張りロールを通しロールに巻いた。この発泡体シートの厚さはダイギャッ
プと引き出し速度で調節した。引き出し速度はテスト3.1では約23m/分、
テスト3.2では20m/分であった。高い連続気泡含量の優れた品質の発泡体
シートを両テストで得た。 これらの発泡体の物理的及び機械的性質をテストしてから吸音テストをした。
吸音テストは押出物と穴あけ後の両サンプル片についてASTM E1050に
よりインピーダンスチューブを用いて行った。シートに10mm×10mm平方
のパターンにて2mm直径の針で穴あけした。
Isobutane was injected into the mixing zone at a rate of 10 pph (1.72 g-mol / kg polymer). The cooling zone and the temperature of the die were lowered to obtain an excellent open cell foam. The temperatures were 158 ° C and 156 ° C in test 3.1 and 154 ° C and 156 ° C in test 3.2. The annular orifice gap was adjusted to produce a foam without prefoaming. The foamable gel was pulled out from the size mandrel to obtain a tubular foam. This tubular foam was cut into an average sheet, passed through a set of pulling rolls and wound on rolls. The thickness of the foam sheet was adjusted by the die gap and the drawing speed. Withdrawal speed is about 23m / min in test 3.1,
In test 3.2, it was 20 m / min. Excellent quality foam sheets with high open cell content were obtained in both tests. After testing the physical and mechanical properties of these foams, they were tested for sound absorption.
The sound absorption test was performed on both the extrudate and the sample piece after drilling according to ASTM E1050 using an impedance tube. The sheet was perforated with a 2 mm diameter needle in a 10 mm × 10 mm square pattern.

【0047】 シート発泡体の物理的及び機械的性質: この例でつくったシート発泡体の性質を表3に示す。このシート発泡体は高い
連続気泡含量と高い熱変形温度をもっていた。圧縮強度は例1の圧縮を行ったこ
れらの発泡体に似て低かった。低い圧縮強度は押出方向での発泡体の配向とそれ
らが引張りロールを通って移動する間に発泡体が受ける部分圧縮の両方による。
高い熱変形温度をもつこれらの低モジュラス連続気泡発泡体は自動車の吸音用に
有用である。このシート発泡体はたとえばシート金属と重い層の間の分断(de
coupling)インサート用に有用である。
Physical and Mechanical Properties of Sheet Foam: The properties of the sheet foam made in this example are shown in Table 3. This sheet foam had a high open cell content and a high heat distortion temperature. The compressive strength was low, similar to those foams that underwent the compression of Example 1. The low compressive strength is due to both the orientation of the foam in the extrusion direction and the partial compression that the foam undergoes as they move through the pull roll.
These low modulus open cell foams with high heat distortion temperatures are useful for automotive sound absorption. This sheet foam may, for example, provide a break (de) between the sheet metal and the heavy layer.
Useful for coupling inserts.

【0048】[0048]

【表4】 [Table 4]

【0049】 シート発泡体の吸音特性: シート発泡体の吸音特性を表4及び図5及び図6に示す。中及び高周波数にお
いてこれらのシート発泡体は音をよく吸収する。穴あけは一般的にいってシート
発泡体による吸音を向上させる。比較的薄い材料によるこれらの吸音性能は満足
いくものである。
Sound Absorption Characteristics of Sheet Foam: Table 4 and FIGS. 5 and 6 show the sound absorption characteristics of the sheet foam. At medium and high frequencies, these sheet foams absorb sound well. Drilling generally improves the sound absorption by the sheet foam. Their sound absorbing performance with relatively thin materials is satisfactory.

【0050】[0050]

【表5】 [Table 5]

【0051】 本発明の発泡体と方法を一例について詳しく記載したが製造者の製造プロセス
や意図に従って本発明の本質を変えることなくこの範囲内で変更しうることは当
然のことである。
Although the foams and methods of the present invention have been described in detail for one example, it will be understood that variations may be made within this range without altering the essence of the present invention according to the manufacturer's manufacturing process and intentions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 例1の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 1 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Example 1.

【図2】 例2の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 2 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Example 2.

【図3】 比較例1の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 3 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Comparative Example 1.

【図4】 比較例2の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 4 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Comparative Example 2.

【図5】 例3の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 5 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Example 3.

【図6】 例3の発泡体の吸音係数と周波数の関係を示すグラフ。FIG. 6 is a graph showing the relationship between the sound absorption coefficient and the frequency of the foam of Example 3.

【図7】 防音パネルの概略断面図。FIG. 7 is a schematic sectional view of a soundproof panel.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年8月31日(2000.8.31)[Submission date] August 31, 2000 (2000.8.31)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AE,AL,AM,AT,AU,AZ,BA ,BB,BG,BR,BY,CA,CH,CN,CZ, DE,DK,EE,ES,FI,GB,GD,GE,G H,GM,HR,HU,ID,IL,IN,IS,JP ,KE,KG,KR,KZ,LC,LK,LR,LS, LT,LU,LV,MD,MG,MK,MN,MW,M X,NO,NZ,PL,PT,RO,RU,SD,SE ,SG,SI,SK,SL,TJ,TM,TR,TT, UA,UG,US,UZ,YU,ZA,ZW Fターム(参考) 4F074 AA16 AA17 AA21 AA24 AA25 AA28 AA98 AB03 AB05 BA38 BB02 BB22 BB28 CA22 CC04Y CC05Z CC06X DA02 DA03 DA19 DA57 4J002 BB00W BB00X BB03W BB05W BB12W BB15W BB15X BB20Y GR00 ──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR , BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP , KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, YU, ZA, ZWF Term (reference) 4F074 AA16 AA17 AA21 AA24 AA25 AA28 AA98 AB03 AB05 BA38 BB02 BB22 BB28 CA22 CC04Y CC05Z CC06X DA02 DA03 DA19 DA57 4J002 BB00W BB00X BB03W BB05W BB12W BB15W BB15X BB20Y GR00

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1の線状又は変性線状ポリオレフィンからなり、
少なくとも50%の気泡が開放状態にあり且つ気泡の平均サイズが少なくとも1
mmであることを特徴とする膨張した連続気泡発泡体ポリマー組成物。
1. A method comprising: at least one linear or modified linear polyolefin;
At least 50% of the bubbles are open and the average size of the bubbles is at least 1
mm. Expanded open cell foam polymer composition, characterized in that
【請求項2】 組成物が0.15より大きいASTM D1050により1
,000Hzで測定した吸音係数をもつ請求項1の組成物。
2. The composition according to ASTM D1050, wherein the composition is greater than 0.15.
The composition of claim 1 having a sound absorption coefficient measured at 2,000 Hz.
【請求項3】 組成物が約800,000Rayls/mより小さい空気流
抵抗をもつ請求項1の組成物。
3. The composition of claim 1, wherein the composition has an airflow resistance of less than about 800,000 Rayls / m.
【請求項4】 線状又は変性線状ポリオレフィンがエチレン又はプロピレン
のホモポリマー又はコポリマーである請求項1の膨張した発泡体。
4. The expanded foam of claim 1 wherein the linear or modified linear polyolefin is a homopolymer or copolymer of ethylene or propylene.
【請求項5】 線状又は変性線状ポリオレフィンがエチレンと少なくとも1
のC3 〜C20α−オレフィンのコポリマーである請求項1の膨張した発泡体。
5. The method according to claim 1, wherein the linear or modified linear polyolefin is ethylene and at least one
Expanded foam of claim 1 which is C 3 -C 20 alpha-olefins copolymers.
【請求項6】 線状又は変性線状ポリオレフィンがプロピレンとエチレン及
びC4 〜C20α−オレフィンから選ばれた少なくとも1のα−オレフィンのコポ
リマーである請求項1の膨張した発泡体。
6. The expanded foam of claim 1 wherein the linear or modified linear polyolefin is a copolymer of propylene and at least one α-olefin selected from ethylene and a C 4 -C 20 α-olefin.
【請求項7】 線状又は変性線状ポリオレフィンが線状低密度ポリエチレン
である請求項1の膨張した発泡体。
7. The expanded foam of claim 1 wherein the linear or modified linear polyolefin is a linear low density polyethylene.
【請求項8】 線状又は変性線状ポリオレフィンが高溶融強度変性ポリプロ
ピレンである請求項1の膨張した発泡体。
8. The expanded foam of claim 1 wherein the linear or modified linear polyolefin is a high melt strength modified polypropylene.
【請求項9】 ポリマー組成物がさらに第2の別のポリオレフィンを含有す
る請求項1の膨張した発泡体。
9. The expanded foam of claim 1 wherein the polymer composition further comprises a second additional polyolefin.
【請求項10】 第2のポリオレフィンが組成物の合計ポリマー重量の50
重量%より少ない量である請求項9の膨張した発泡体。
10. The composition of claim 10, wherein the second polyolefin is 50% of the total polymer weight of the composition.
10. The expanded foam of claim 9 in an amount less than weight percent.
【請求項11】 第2のポリオレフィンが組成物の合計重量の40重量%よ
り少ない量である請求項9の膨張した発泡体。
11. The expanded foam of claim 9, wherein the second polyolefin is less than 40% by weight of the total weight of the composition.
【請求項12】 発泡体が160kg/m3 より小さい密度をもつ請求項1
の膨張した発泡体。
12. The foam according to claim 1, wherein the foam has a density of less than 160 kg / m 3.
Expanded foam.
【請求項13】 発泡体が80kg/m3 より小さい密度をもつ請求項1の
膨張した発泡体。
13. The expanded foam of claim 1 wherein the foam has a density of less than 80 kg / m 3 .
【請求項14】 発泡体が40kg/m3 より小さい密度をもつ請求項1の
膨張した発泡体。
14. The expanded foam of claim 1 wherein the foam has a density of less than 40 kg / m 3 .
【請求項15】 平均気泡サイズが少なくとも1.5mmである請求項1の
膨張した発泡体。
15. The expanded foam of claim 1 wherein the average cell size is at least 1.5 mm.
【請求項16】 平均気泡サイズが少なくとも2mmである請求項1の膨張
した発泡体。
16. The expanded foam of claim 1 wherein the average foam size is at least 2 mm.
【請求項17】 気泡の少なくとも70%が連続気泡である請求項1の膨張
した発泡体。
17. The expanded foam of claim 1, wherein at least 70% of the cells are open cells.
【請求項18】 気泡の少なくとも85%が連続気泡である請求項1の膨張
した発泡体。
18. The expanded foam of claim 1, wherein at least 85% of the cells are open cells.
【請求項19】 第2のポリオレフィンが実質上線状のポリオレフィンであ
る請求項9の膨張した発泡体。
19. The expanded foam of claim 9 wherein the second polyolefin is a substantially linear polyolefin.
【請求項20】 発泡体がシート形状に押出されている請求項1の膨張した
発泡体。
20. The expanded foam of claim 1 wherein the foam is extruded in sheet form.
【請求項21】 ポリマー組成物がさらに架橋ポリマーを含有する請求項1
の膨張した発泡体。
21. The polymer composition according to claim 1, further comprising a crosslinked polymer.
Expanded foam.
【請求項22】 架橋ポリマーが、側鎖として、カルボン酸官能基、ヒドロ
キシル官能基、アミノ官能基、アミド官能基又はそれらの官能基の組合せをもつ
オレフィン性ポリマーとエポキシ官能性シラン、アミン官能性シラン、有機官能
性アルコキシシラン、チタネート、多エポキシ官能性樹脂及びアミノ架橋剤から
なる群から選ばれた架橋剤との反応生成物である請求項21の膨張した発泡体。
22. An olefinic polymer having a carboxylic acid function, a hydroxyl function, an amino function, an amide function or a combination of these functions as a side chain and an epoxy-functional silane, an amine function. 22. The expanded foam of claim 21 which is a reaction product with a crosslinker selected from the group consisting of silanes, organofunctional alkoxysilanes, titanates, multi-epoxy functional resins and amino crosslinkers.
【請求項23】 架橋ポリマーがフリーラジカル発生性化合物を用いてつく
られる請求項21の膨張した発泡体。
23. The expanded foam of claim 21 wherein the crosslinked polymer is made using a free radical generating compound.
【請求項24】 有機パーオキシドである請求項22のフリーラジカル発生
性化合物。
24. The free radical generating compound according to claim 22, which is an organic peroxide.
【請求項25】 多アジド官能性化合物である請求項23のフリーラジカル
発生性化合物。
25. The free radical generating compound of claim 23, which is a polyazide functional compound.
【請求項26】 第2のポリオレフィンが線状又は変性線状ポリオレフィン
の融点より少なくとも10℃低い融点をもつ請求項9の膨張した発泡体。
26. The expanded foam of claim 9 wherein the second polyolefin has a melting point at least 10 ° C. below the melting point of the linear or modified linear polyolefin.
【請求項27】 2つのスキン層と該スキン層の間に配した発泡体シートか
らなる防音パネルであって、該発泡体シートが0.5より大きいASTM D1
050により1,000Hzで測定した吸音係数をもつと共に、少なくとも1の
線状又は変性線状ポリオレフィンからなり、少なくとも50%の気泡が開放状態
にあり且つ気泡の平均サイズが少なくとも1mmである膨張した連続気泡ポリマ
ー組成物からなることを特徴とする防音パネル。
27. A soundproof panel comprising two skin layers and a foam sheet disposed between the skin layers, wherein the foam sheet is greater than 0.5 ASTM D1.
An expanded continuous tube having a sound absorption coefficient measured at 1,000 Hz according to 050 and consisting of at least one linear or modified linear polyolefin, wherein at least 50% of the cells are open and the average size of the cells is at least 1 mm A soundproof panel comprising a cellular polymer composition.
【請求項28】 組成物が約800,000Rayls/mより小さい空気
流抵抗性をもつ請求項27の組成物。
28. The composition of claim 27, wherein the composition has an airflow resistance of less than about 800,000 Rayls / m.
【請求項29】 0.15より大きいASTM D1050により1,00
0Hzで測定した吸音係数をもつと共に、少なくとも1の線状又は変性線状ポリ
オレフィンからなり、少なくとも50%の気泡が開放状態にあり且つ気泡の平均
サイズが少なくとも1mmである連続気泡ポリマー組成物からなることを特徴と
する発泡体シート。
29. An ASTM D1050 of greater than 0.15
Consists of at least one linear or modified linear polyolefin having a sound absorption coefficient measured at 0 Hz and comprising an open cell polymer composition having at least 50% of cells open and having an average cell size of at least 1 mm. A foam sheet characterized by the above-mentioned.
【請求項30】 組成物が約800,000Rayls/mより小さい空気
流抵抗をもつ請求項29の組成物。
30. The composition of claim 29, wherein the composition has an airflow resistance of less than about 800,000 Rayls / m.
JP2000570233A 1998-09-17 1999-09-16 Acoustic controllable open-cell polyolefin and method for producing the same Pending JP2002524636A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10069998P 1998-09-17 1998-09-17
US60/100,699 1998-09-17
US13625299P 1999-05-27 1999-05-27
US60/136,252 1999-05-27
PCT/US1999/021569 WO2000015700A1 (en) 1998-09-17 1999-09-16 Acoustical open-cell polyolefins and process for making

Publications (2)

Publication Number Publication Date
JP2002524636A true JP2002524636A (en) 2002-08-06
JP2002524636A5 JP2002524636A5 (en) 2010-11-18

Family

ID=26797458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000570233A Pending JP2002524636A (en) 1998-09-17 1999-09-16 Acoustic controllable open-cell polyolefin and method for producing the same

Country Status (17)

Country Link
EP (1) EP1114085B1 (en)
JP (1) JP2002524636A (en)
KR (1) KR100697542B1 (en)
CN (1) CN1147524C (en)
AT (1) ATE319766T1 (en)
AU (1) AU765546B2 (en)
BR (1) BR9913960A (en)
CA (1) CA2339847C (en)
CZ (1) CZ2001481A3 (en)
DE (1) DE69930278T2 (en)
ES (1) ES2255760T3 (en)
HU (1) HUP0103857A3 (en)
IL (1) IL141517A0 (en)
NO (1) NO20011348D0 (en)
RU (1) RU2224773C2 (en)
TR (1) TR200100744T2 (en)
WO (1) WO2000015700A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500998A (en) * 2000-03-17 2004-01-15 ダウ グローバル テクノロジーズ インコーポレイティド Polyolefin foam useful for sound insulation and thermal insulation
JP2007045979A (en) * 2005-08-11 2007-02-22 Kaneka Corp Interior material for automobile
JP2007182500A (en) * 2006-01-06 2007-07-19 Daicel Novafoam Ltd Resin composition for foam and foam
WO2009001934A1 (en) 2007-06-27 2008-12-31 Asahi Fiber Glass Company, Limited Foam board of polyolefin resin, and method for production thereof
US7968180B2 (en) 2005-04-27 2011-06-28 Prime Polymer Co., Ltd. Extruded propylene-resin composite foam
WO2014155521A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720362B1 (en) 1998-09-17 2004-04-13 The Dow Chemical Company Perforated foams
EP1274779B1 (en) 2000-03-17 2014-08-27 Sealed Air Corporation (US) Preparation of a macrocellular acoustic foam
AU2001238200B2 (en) 2000-03-17 2004-10-21 Dow Global Technologies Inc. Acoustic absorption polymer foam having improved thermal insulating performance
ATE323125T1 (en) 2000-03-17 2006-04-15 Dow Global Technologies Inc HIGH OPERATING TEMPERATURE POLYOLEFINE FOAM FOR ACOUSTIC USE
KR20040094713A (en) 2002-02-22 2004-11-10 다우 글로벌 테크놀로지스 인크. Thermoplastic foam containing particulate additive
US7144925B2 (en) 2002-05-09 2006-12-05 Dow Global Technologies Inc. Fire resistance acoustic foam
US6649666B1 (en) 2002-05-21 2003-11-18 Dow Global Technologies Inc. Propylene polymer coupling and foams
EP1754744B1 (en) 2005-08-19 2008-05-07 Borealis Technology Oy A polyolefin foam
CA2580590C (en) 2007-03-02 2010-02-23 Trican Well Service Ltd. Apparatus and method of fracturing
MX2011004971A (en) * 2008-11-11 2011-07-29 Akzo Nobel Coatings Int Bv Intumescent composition.
CN101792549B (en) * 2009-12-25 2011-10-19 东莞市峄董塑胶科技有限公司 Improved polypropylene renewable material modified plate foaming process
DE102011083434B4 (en) 2011-09-26 2016-11-17 Neue Materialien Bayreuth Gmbh Process for producing an open-cell polymer foam
WO2015138719A1 (en) * 2014-03-12 2015-09-17 Keane Craig Patrick Solid self-leveling underlayment
CN104403199A (en) * 2014-12-05 2015-03-11 南京聚隆科技股份有限公司 Extrusion-grade highly filled polypropylene composite material and preparation method thereof
RU2678051C2 (en) * 2016-04-07 2019-01-22 Общество с ограниченной ответственностью "Рекстром-М" Method of producing material for manufacturing panels of sound shields by extrusion method
CA3147972A1 (en) * 2019-08-29 2021-03-04 Mohamed Esseghir Method of making a homogeneous mixture of polyolefin solids and carbon solids
CN114539666B (en) * 2022-01-27 2023-11-28 泉州师范学院 Polypropylene composite material suitable for supercritical foaming and resistant to impact and stress whitening and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126701A (en) * 1984-11-16 1986-06-14 ザ ダウ ケミカル カンパニー Slightly crosslinked linear olefinic polymer foam body and generation thereof
JPS61243835A (en) * 1985-04-19 1986-10-30 ザ ダウ ケミカル カンパニー Foamable polymer composition and production of polymer foam
JPS6330541A (en) * 1986-07-24 1988-02-09 Sekisui Chem Co Ltd Production of sheet-form molding
JPH0598058A (en) * 1991-10-09 1993-04-20 Jsp Corp Propylene resin foam and its production
JPH06256556A (en) * 1992-12-15 1994-09-13 Scriptoria Nv Foam polyolefin board and its preparation
JPH0776054A (en) * 1993-09-08 1995-03-20 Nippon Tokushu Toryo Co Ltd High performance sound insulation material
JPH08504472A (en) * 1992-12-17 1996-05-14 ザ ダウ ケミカル カンパニー Open-cell polypropylene foam and method for producing the same
JPH08508764A (en) * 1993-03-18 1996-09-17 ザ ダウ ケミカル カンパニー Method for producing ethylene-based polymer foam structure
JPH09250050A (en) * 1996-03-13 1997-09-22 Unix:Kk Sound absorbing cloth and sound absorbing curtain
JPH10156916A (en) * 1996-12-04 1998-06-16 Jsp Corp Polycarbonate resin open-cell type plate-shaped extruded foam
JPH10168200A (en) * 1996-12-06 1998-06-23 Sumitomo Chem Co Ltd Film for labeling tape
JPH10219868A (en) * 1997-02-12 1998-08-18 Zeon Kasei Co Ltd Sound insulation panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154785A (en) * 1974-10-22 1979-05-15 The Furukawa Electric Co., Ltd. Method of manufacturing a tough board of thermoplastic resin foam having integral skins and a dense intermediate layer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126701A (en) * 1984-11-16 1986-06-14 ザ ダウ ケミカル カンパニー Slightly crosslinked linear olefinic polymer foam body and generation thereof
JPS61243835A (en) * 1985-04-19 1986-10-30 ザ ダウ ケミカル カンパニー Foamable polymer composition and production of polymer foam
JPS6330541A (en) * 1986-07-24 1988-02-09 Sekisui Chem Co Ltd Production of sheet-form molding
JPH0598058A (en) * 1991-10-09 1993-04-20 Jsp Corp Propylene resin foam and its production
JPH06256556A (en) * 1992-12-15 1994-09-13 Scriptoria Nv Foam polyolefin board and its preparation
JPH08504472A (en) * 1992-12-17 1996-05-14 ザ ダウ ケミカル カンパニー Open-cell polypropylene foam and method for producing the same
JPH08508764A (en) * 1993-03-18 1996-09-17 ザ ダウ ケミカル カンパニー Method for producing ethylene-based polymer foam structure
JPH0776054A (en) * 1993-09-08 1995-03-20 Nippon Tokushu Toryo Co Ltd High performance sound insulation material
JPH09250050A (en) * 1996-03-13 1997-09-22 Unix:Kk Sound absorbing cloth and sound absorbing curtain
JPH10156916A (en) * 1996-12-04 1998-06-16 Jsp Corp Polycarbonate resin open-cell type plate-shaped extruded foam
JPH10168200A (en) * 1996-12-06 1998-06-23 Sumitomo Chem Co Ltd Film for labeling tape
JPH10219868A (en) * 1997-02-12 1998-08-18 Zeon Kasei Co Ltd Sound insulation panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500998A (en) * 2000-03-17 2004-01-15 ダウ グローバル テクノロジーズ インコーポレイティド Polyolefin foam useful for sound insulation and thermal insulation
US7968180B2 (en) 2005-04-27 2011-06-28 Prime Polymer Co., Ltd. Extruded propylene-resin composite foam
JP2007045979A (en) * 2005-08-11 2007-02-22 Kaneka Corp Interior material for automobile
JP2007182500A (en) * 2006-01-06 2007-07-19 Daicel Novafoam Ltd Resin composition for foam and foam
WO2009001934A1 (en) 2007-06-27 2008-12-31 Asahi Fiber Glass Company, Limited Foam board of polyolefin resin, and method for production thereof
US8361363B2 (en) 2007-06-27 2013-01-29 Asahi Fiber Glass Company, Limited Foam board of polyolefin resin and method for its production
WO2014155521A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet

Also Published As

Publication number Publication date
CZ2001481A3 (en) 2001-10-17
HUP0103857A2 (en) 2002-01-28
AU6152399A (en) 2000-04-03
WO2000015700A1 (en) 2000-03-23
CN1147524C (en) 2004-04-28
CA2339847C (en) 2009-11-24
EP1114085A1 (en) 2001-07-11
ES2255760T3 (en) 2006-07-01
NO20011348L (en) 2001-03-16
KR20010075188A (en) 2001-08-09
CN1318079A (en) 2001-10-17
TR200100744T2 (en) 2001-10-22
IL141517A0 (en) 2002-03-10
KR100697542B1 (en) 2007-03-21
DE69930278D1 (en) 2006-05-04
NO20011348D0 (en) 2001-03-16
RU2224773C2 (en) 2004-02-27
HUP0103857A3 (en) 2002-06-28
BR9913960A (en) 2001-07-03
DE69930278T2 (en) 2006-11-02
AU765546B2 (en) 2003-09-25
ATE319766T1 (en) 2006-03-15
EP1114085B1 (en) 2006-03-08
CA2339847A1 (en) 2000-03-23

Similar Documents

Publication Publication Date Title
US6541105B1 (en) Acoustical open-cell polylefins and process for making
JP2002524636A (en) Acoustic controllable open-cell polyolefin and method for producing the same
ZA200101148B (en) Acoustical open-cell polyolefins and process for making.
AU749141B2 (en) Thermoformable polypropylene foam sheet
JP4884635B2 (en) Sound absorbing polymer foam with improved thermal insulation performance
US5527573A (en) Extruded closed-cell polypropylene foam
US5348795A (en) Process for making a dimensionally-stable open-cell polypropylene foam with organic blowing agents
JP2002511917A (en) Thermoplastic extruded foam energy absorbing articles
EP0200817A2 (en) Lightly crosslinked linear olefinic polymer foam blends and process for making foams
JPH08504472A (en) Open-cell polypropylene foam and method for producing the same
JP2002523587A (en) Foams made from blends of syndiotactic polypropylene and thermoplastic polymers
JP3393341B2 (en) Dimensionally stable polypropylene foam foamed with inorganic foaming agent
JP2004529231A (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
WO1994013459A1 (en) Extruded closed-cell propylene polymer foam and methods of making the same
MXPA01002795A (en) Acoustical open-cell polyolefins and process for making
KR100678401B1 (en) Polyolefin foams having improved property
JPH11189687A (en) Resin material for foam molding and foamed sheet
JPH11349724A (en) Foamable polyolefin-based resin particle, foamed particle therefrom and foamed molded material
CZ20004249A3 (en) Heat moldable polypropylene foam foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101