JP2002522111A - Improved method of targeted local treatment of disease - Google Patents

Improved method of targeted local treatment of disease

Info

Publication number
JP2002522111A
JP2002522111A JP2000563202A JP2000563202A JP2002522111A JP 2002522111 A JP2002522111 A JP 2002522111A JP 2000563202 A JP2000563202 A JP 2000563202A JP 2000563202 A JP2000563202 A JP 2000563202A JP 2002522111 A JP2002522111 A JP 2002522111A
Authority
JP
Japan
Prior art keywords
drug
light
pdt
agent
diseased tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000563202A
Other languages
Japanese (ja)
Inventor
クライグ ディース エイッチ
スコット ティモシー
スモリク ジョーン
エー ウォクター エリック
フィッシャー ウォルター
Original Assignee
フォトゲン インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォトゲン インク filed Critical フォトゲン インク
Publication of JP2002522111A publication Critical patent/JP2002522111A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22069Immobilising; Stabilising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • A61B2017/22087Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance photodynamic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Child & Adolescent Psychology (AREA)
  • Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Laser Surgery Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

(57)【要約】 疾患組織へのPDT薬剤の局所又は全身適用後に光の局所適用を含む、疾患組織の局所治療のための方法及び装置。 (57) Abstract: A method and apparatus for local treatment of diseased tissue, comprising local or systemic application of a PDT agent to diseased tissue followed by local application of light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 本出願は、1996年10月30日に米国出願された出願番号(USSN)0
8/738,801の一部継続出願である。
[0001] The present application is filed with US Ser. No. (USSN) 0 filed on Oct. 30, 1996.
This is a continuation-in-part application of 8 / 738,801.

【0002】 (技術分野) 本発明は、光力学的治療法(PDT)及びPDT薬剤を用いた、組織、特に疾
患組織の局所治療のための方法及び装置に関する。さらに具体的に言えば、本発
明は、疾患組織へPDT薬剤を局所又は全身使用するための方法及び装置に関す
るとともに、疾患組織への光の局所使用に関する。
TECHNICAL FIELD [0002] The present invention relates to methods and devices for the local treatment of tissues, particularly diseased tissues, using photodynamic therapy (PDT) and PDT agents. More specifically, the present invention relates to methods and devices for the local or systemic use of PDT agents on diseased tissue, as well as the local use of light on diseased tissue.

【0003】 (背景技術) PDTは、治療的介入の浸襲性を制限し、健常な非疾患組織への付随的損傷の
可能性を少なくすることを保証する癌及び他の疾患を治療するために開発された
。PDTの重要な要素として、疾患組織への光活性薬剤の選択的適用又は選択的
摂取のいずれか、及び活性化光の部位方向性適用があげられる。PDT薬剤は典
型的に全身に(例えば、静脈内注射又は経口投与を介して)適用又は疾患組織に
直接(例えば、局所クリーム、軟膏、又はスプレーを介して)局在局所適用され
る。薬剤の投与後(典型的に30分乃至72時間後)、活性化光を疾患部位に適
用し、薬剤を局所的に活性化するとともに、疾患組織を破壊する。光は部位の直
接照射、又はファイバーカテーテル若しくは同様の手段を用いて内部位置に光エ
ネルギーを送達することにより適用される。
BACKGROUND OF THE INVENTION PDT is used to treat cancer and other diseases that limit the invasiveness of therapeutic interventions and ensure that the likelihood of collateral damage to healthy non-diseased tissue is reduced. Developed in Important elements of PDT include either selective application or selective uptake of the photoactive agent into diseased tissue, and site-directed application of activating light. The PDT agent is typically applied systemically (eg, via intravenous injection or oral administration) or topically applied directly to the diseased tissue (eg, via a topical cream, ointment, or spray). After administration of the drug (typically 30 minutes to 72 hours), an activating light is applied to the diseased site to activate the drug locally and destroy diseased tissue. Light is applied by direct illumination of the site, or by delivering light energy to an internal location using a fiber catheter or similar means.

【0004】 最新のPDT治療方式は、ポルフィリンベース薬剤の全身適用又はソラレンベ
ース薬剤の局所若しくは全身適用に基づく。ポルフィリンベース薬剤の例として
、ポルフィマーナトリウム(PHOTOFRIN(登録商標))、ヘマトポルフ
ィリン誘導体(HPD)、又はSnETがあげられる。PHOTOFRIN(
登録商標)はFDAにより現在認可されているいくつの薬剤の一つである。ポル
フィリンベース薬剤は一般に天然又は合成調製された物質の複合混合物から誘導
される。ポルフィリンベース薬剤の多くの成分は脂肪親性である。この脂肪親性
の結果として、ポルフィリンベース薬剤は一部の腫瘍において優先的に蓄積する
傾向がわずかにあることが示されている。しかし、かかる薬剤の疾患組織への標
的化は、健常組織における摂取と比較すると依然として許容されないほどに低い
(すなわち、健常組織に対して疾患組織における摂取は2〜10倍大きい)。 さらに、ポルフィリンベース薬剤は主に、深く位置した癌性腫瘍の治療を可能
にするために高度に透過する活性化光と同等である薬剤を得ることが望まれた結
果として開発された。例えば、ポルフィリンベース薬剤は典型的に、1cm以上
の深さの組織を透過しうる600〜750nmの波長での光を用いて活性化され
る。これとは対照的に、600nm以下の波長での光は深さが1cmよりもはる
かに少ない組織のみを透過する。
[0004] Modern PDT treatment modalities are based on systemic application of porphyrin-based drugs or local or systemic application of psoralen-based drugs. Examples of porphyrin-based drug, porfimer sodium (PHOTOFRIN (R)), hematoporphyrin derivative (HPD), or SNET 2 and the like. PHOTOFRIN (
Is one of several drugs currently approved by the FDA. Porphyrin-based drugs are generally derived from complex mixtures of naturally or synthetically prepared substances. Many components of porphyrin-based drugs are lipophilic. As a result of this lipophilicity, porphyrin-based drugs have been shown to have a slight tendency to accumulate preferentially in some tumors. However, the targeting of such agents to diseased tissue is still unacceptably low when compared to uptake in healthy tissue (ie, uptake in diseased tissue over healthy tissue is 2-10 fold). In addition, porphyrin-based drugs have been developed primarily as a result of the desire to obtain drugs that are equivalent to highly transmitted activating light to allow treatment of deeply located cancerous tumors. For example, porphyrin-based drugs are typically activated using light at a wavelength between 600 and 750 nm, which can penetrate tissues 1 cm or more deep. In contrast, light at wavelengths below 600 nm will only penetrate tissue that is much less than 1 cm deep.

【0005】 しかし、ほとんどのポルフィリンベース薬剤の暗毒性は高い。暗毒性は活性化
光の非存在下の細胞毒性である。細胞毒性におけるわずかな増大のみが、特定の
組織における治療を行うために高用量の薬剤を必要とする照射時に達成される。
さらに、有意な薬剤濃度が皮膚及び他の外部組織に存在する薬剤投与語の持続時
間である全身クリアランス時間は、数週間乃至数ヶ月延長することがあり、患者
は重篤な皮膚刺激や他の合併症を避けるために、長期間、明るい光や太陽光への
曝露を避けることが必要となる。全身投与には薬剤投与と光活性化との間に30
分乃至72時間の遅延も必要であり、基本的に疾患組織の発見時にかかる疾患組
織の即時治療の可能性を不可能にする。さらに、バレット食道など胃腸疾患の発
見と治療は少なくとも2つの内視鏡的方法を必要とする。すなわち、診断する方
法、PDT薬剤の投与後に光で疾患組織を治療するその後の方法である。
[0005] However, the dark toxicity of most porphyrin-based drugs is high. Dark toxicity is cytotoxicity in the absence of activating light. Only a slight increase in cytotoxicity is achieved upon irradiation, which requires high doses of the drug to effect treatment in a particular tissue.
In addition, the systemic clearance time, which is the duration of drug administration when significant drug concentrations are present in the skin and other external tissues, can be extended by weeks or months, and patients may experience severe skin irritation or other It is necessary to avoid exposure to bright light or sunlight for an extended period to avoid complications. For systemic administration, 30 minutes between drug administration and photoactivation.
A delay of minutes to 72 hours is also required, essentially hampering the possibility of immediate treatment of such diseased tissue upon its discovery. Further, the discovery and treatment of gastrointestinal disorders, such as Barrett's esophagus, requires at least two endoscopic methods. That is, a method of diagnosis and a subsequent method of treating diseased tissue with light after administration of a PDT drug.

【0006】 明暗細胞毒性と最も一般的なPDT薬剤の低い優先的濃度比との間の有意差の
非存在は、高い薬剤投与量を必要とする。例えば、PHOTOFRIN(登録商
標)による成人男性の治療の投与量は、薬剤のみで5000ドルを超える値段の
100mg以上の薬剤を必要とする。この大用量は、数週間残存することがある
健常組織における(皮膚光毒性など)有害な副作用の発現の有意な可能性をも上
昇させる。また、ポルフィリンベース薬剤は600nm以上の波長(すなわち、
近赤外光(NIR))での光で活性化するため、ポルフィリン+NIRに基づく
方法は、かかるNIR光の組織透過による重篤な合併症の有意なリスクに患者を
さらすこともある。合併症として、局所治療部位のゾーン外である健常組織層に
存在する薬剤の望ましくない活性化による、食道疾患の治療時の食道など、内部
構造物の穿孔があげられる。
[0006] The absence of a significant difference between light and dark cytotoxicity and low preferential concentration ratios of the most common PDT drugs requires high drug doses. For example, the dosage for treatment of adult males with PHOTOFRIN® requires over 100 mg of drug at a price of over $ 5000 for the drug alone. This large dose also increases the significant likelihood of adverse side effects (such as cutaneous phototoxicity) in healthy tissues that can persist for weeks. Also, porphyrin-based drugs have wavelengths above 600 nm (ie,
Because of activation with light in the near-infrared light (NIR), porphyrin + NIR-based methods may also expose patients to a significant risk of serious complications due to tissue penetration of such NIR light. Complications include perforation of internal structures, such as the esophagus during treatment of esophageal disease, due to undesired activation of drugs present in healthy tissue layers outside the zone of the local treatment site.

【0007】 また、ポルフィリンベースPDT薬剤は、典型的に細胞Oの細胞毒性一重酸
素への転換であるII型メカニズムを介して光活性化細胞特性を活性化する。細
胞Oレベルは、II型PDT薬剤の活性化時に欠乏しやすいため、光活性化の
持続時間全体にわたってOレベル十分に維持されるために、かかる薬剤の使用
は比較的低い強度の照射及び比較的長い照射時間を必要とする。例えば、PHO
TOFRIN(登録商標)によるバレット食道の治療において、光強度は典型的
に治療時に100〜150mW/cm以下である必要あり、10〜20分間以
上の照射を必要とする。多数の開業医は、II型薬剤により、照射時に治療部位
での血液循環を損なうことがある組織処置を避けること、また利用可能なO
潜在的な欠乏を避けるためにも同じく重要であることも見出している。このため
、照射装置及び方法の注意深い調節が、血液循環に影響を及ぼすようなやり方で
組織に影響を及ぼすことなく、適切な光強度の照射を確実に送達するために重要
である。
Further, porphyrin-based PDT agents, typically activates a photoactivatable cellular characteristics through the type II mechanism is a transformation of the cells O 2 into cytotoxic singlet oxygen. Because cellular O 2 levels are prone to depletion upon activation of type II PDT agents, the use of such agents requires relatively low intensity of irradiation and relatively low intensity to maintain O 2 levels well over the duration of photoactivation. Requires a relatively long irradiation time. For example, PHO
In the treatment of Barrett's esophagus with TOFRIN®, the light intensity typically needs to be less than 100-150 mW / cm 2 at the time of treatment and requires more than 10-20 minutes of irradiation. Numerous practitioners, the type II drug, it avoids the tissue treatment that may impair the blood circulation at the treatment site during irradiation, and that in order to avoid potential lack of available O 2 is equally important Also headlines. For this reason, careful adjustment of the illumination device and method is important to ensure that the illumination of the appropriate light intensity is delivered without affecting the tissue in a manner that affects blood circulation.

【0008】 バレット食道は、在来の外科的手段を介してアクセスするのが困難であるが、
内視鏡カテーテルを用いて容易にアクセス可能である位置に生じるため、PDT
の魅力的な候補である表在性疾患の完全な例である。これは胃からの慢性酸逆流
が胃食道接合部で食道を刺激し、食道中の上皮組織を増殖させる状態である。バ
レット食道の患者は食道癌を発現するリスク有意に増大する。FDAはバレット
患者における組織増殖を破壊するPDT(630nmでの光によるPHOTOF
RIN(登録商標))を認可した。同様の治療方式を用いて、食道癌により生じ
る食道狭窄を除去することもできる。
[0008] Barrett's esophagus is difficult to access via conventional surgical means,
Because it occurs in a location that is easily accessible using an endoscopic catheter, PDT
Is a complete example of superficial disease that is an attractive candidate. This is a condition in which chronic acid reflux from the stomach stimulates the esophagus at the gastroesophageal junction, causing epithelial tissue in the esophagus to proliferate. Patients with Barrett's esophagus have a significantly increased risk of developing esophageal cancer. FDA uses PDT (PHOTOF by light at 630 nm) to disrupt tissue growth in Barrett patients
RIN®) was approved. A similar treatment modality can be used to remove esophageal strictures caused by esophageal cancer.

【0009】 PDTを用いたバレット食道の治療の一般的な方法が、図1(а)に断面図の
形で示されている。食道10は近位組織表面12及び遠位組織表面14を有する
。図1(а)に示された例において、食道10の部分は健常組織16であるが、
別の部分は疾患組織18である。典型的に、食道10に挿入される非協力的バル
ーン20を用いて、治療される組織を安定化する。バルーンは気体または液体が
充填され、食道の膨張を回避しながら周知の半径(ほぼ食道を満たす)に拡大す
る。前記の膨張は、光活性化時にO供給を損なう治療部位への血流の制限をも
たらすことがある。バルーン20の中心に挿入される光ファイバーは光源22と
して使用され、バルーンの表面での均一の光強度が得られる。このバルーン20
の外側構造は活性化光24を散乱させる物質で構成され、又は活性化光に対して
透明であってもよい。
A general method of treating Barrett's esophagus with PDT is shown in cross section in FIG. Esophagus 10 has a proximal tissue surface 12 and a distal tissue surface 14. In the example shown in FIG. 1 (а), the portion of the esophagus 10 is a healthy tissue 16,
Another part is diseased tissue 18. Typically, a non-cooperative balloon 20 inserted into the esophagus 10 is used to stabilize the tissue to be treated. The balloon is filled with a gas or liquid and expands to a known radius (almost filling the esophagus) while avoiding esophageal inflation. Expansion of the can lead to restriction of blood flow to the treatment site impairing O 2 supplied during photoactivation. An optical fiber inserted into the center of the balloon 20 is used as a light source 22 to obtain a uniform light intensity on the surface of the balloon. This balloon 20
The outer structure of may be composed of a substance that scatters the activating light 24, or may be transparent to the activating light.

【0010】 それにより、バルーンの近位に位置した組織(近位組織表面12上)に存在す
るPDT薬剤は、バルーン20の表面から放出される光により活性化される。バ
ルーン20は非協力的であるため、バルーンの幾何学的特性及び光源22の光放
出特性についての知識に基づき、バルーンの表面で光強度を推計することが可能
である。光ファイバーの拡散先端部がかかる光源の例である。しかし、バルーン
20の外側表面は一般に食道の形状に正確に適合しないため、近位組織表面12
の周囲に沿ったすべての点で光強度を正確に推計することは不可能である。さら
に、例えば、光源22の不均一な光放出特性又は食道10における光源22の不
正確な位置により、近位組織表面12に存在する光野が一様でない場合は、一様
でない治療に帰することがある。極端な場合には、かかる一様でない治療は十分
に組織を損ない、組織穿孔や患者の死亡をもたらすこともある。
Thereby, the PDT drug present on the tissue located on the proximal side of the balloon (on the proximal tissue surface 12) is activated by the light emitted from the surface of the balloon 20. Because the balloon 20 is non-cooperative, it is possible to estimate the light intensity at the surface of the balloon based on knowledge of the balloon's geometric properties and the light emission properties of the light source 22. The diffusion tip of an optical fiber is an example of such a light source. However, since the outer surface of the balloon 20 generally does not exactly conform to the shape of the esophagus, the proximal tissue surface 12
It is not possible to accurately estimate the light intensity at every point along the perimeter of. Furthermore, if the light field present at the proximal tissue surface 12 is not uniform, for example due to the non-uniform light emission characteristics of the light source 22 or the incorrect position of the light source 22 in the esophagus 10, this may result in uneven treatment. There is. In extreme cases, such uneven treatment can cause sufficient tissue damage, resulting in tissue perforation and patient death.

【0011】 図1(b)に示されているように、照射時の食道におけるPDT薬剤の活性化
は治療ゾーン26を生成し、これは一般に図1(а)における疾患組織の全体の
ゾーンを含み、疾患組織18のゾーンの縁を大幅に越える距離を半径方向及び周
囲に延びることがある。実際に、薬剤活性化のためのNIR光の使用により、食
道10の近位組織表面12から遠位組織表面14への大幅な距離を延びる治療ゾ
ーンが形成される。これはNIR光の特徴である大きな透過深度及び健常組織に
おける薬剤の大幅な全身濃度の存在の結果である。極端な場合には、治療ゾーン
の拡大は健常組織を十分に損ない、組織穿孔や患者の死亡をもたらすこともある
As shown in FIG. 1 (b), activation of the PDT drug in the esophagus upon irradiation creates a treatment zone 26, which generally creates the entire zone of diseased tissue in FIG. And may extend radially and circumferentially far beyond the edge of the zone of diseased tissue 18. In fact, the use of NIR light for drug activation creates a treatment zone that extends a significant distance from the proximal tissue surface 12 of the esophagus 10 to the distal tissue surface 14. This is a result of the large depth of penetration that is characteristic of NIR light and the presence of significant systemic concentrations of the drug in healthy tissue. In extreme cases, the expansion of the treatment zone can damage enough healthy tissue, resulting in tissue perforation and death of the patient.

【0012】 表在性病変の治療用のPDT使用のこの例は、現在の方法及び装置の多数の欠
点を示している。例えば; (1) 全身薬剤適用は高い薬剤投与量の要件により費用がかかる; (2) 全身薬剤適用により所望の治療ゾーンの外側の健常組織の感作が生じ
る; (3) 全身薬剤適用は皮膚光感作の延長を来たす; (4) 全身薬剤の適用は、周囲の健常組織を除外しながら疾患組織に薬剤を
送達するために、疾患診断と疾患治療との間に大きな遅延を必要とする; (5) 全身薬剤適用は、PDT開業医に薬剤の送達及び濃度の部位に対する
調節の制限を与える; (6) 全身薬剤適用は、疾患組織への薬剤の一様でない分配により一様でな
い治療を来たす; (7) II型薬剤の使用は、O欠乏を回避する緩徐で長い薬剤活性化を必
要とする; (8) II型薬剤の使用は、組織照射時に血流の制限とその結果としてのO 欠乏を回避する注意深い組織の取扱いを必要とする; (9) II型薬剤の使用は、一般にNIR活性化光と組み合わせると、ほと
んどの局所適用における過剰な治療深度を来たし、周囲の健常組織に有害な影響
を及ぼす。 したがって、本発明の目的は、処置の有効性及び安全性を増大させ、治療の費
用を削減しながら、PDTの改善された適用のための新しい方法及び装置を提供
することである。
[0012] This example of the use of PDT for the treatment of superficial lesions highlights the numerous shortcomings of current methods and devices.
Points are shown. For example: (1) systemic drug application is expensive due to high drug dosage requirements; (2) systemic drug application results in sensitization of healthy tissue outside the desired treatment zone
(3) Systemic drug application results in prolongation of skin photosensitization; (4) Systemic drug application applies drug to diseased tissue while excluding surrounding healthy tissue.
Delivery requires a large delay between disease diagnosis and disease treatment; (5) Systemic drug application requires the PDT practitioner to
(6) systemic drug application may be uneven due to uneven distribution of drug to diseased tissue.
(7) The use of type II drugs is2Slow and prolonged drug activation to avoid deficiency
(8) The use of type II drugs limits blood flow and consequent O 2 Requires careful tissue handling to avoid deficiency; (9) the use of type II drugs, when combined with NIR-activated light, generally
Excessive treatment depth in local topical application and adverse effects on surrounding healthy tissue
Effect. Therefore, it is an object of the present invention to increase the efficacy and safety of treatment and to reduce
Provide new methods and apparatus for improved application of PDT while reducing usage
It is to be.

【0013】 (発明の開示) 本発明は、PDT薬剤の疾患組織への局所又は全身適用の後、光の局所適用を
含む疾患組織の局所治療のための方法及び装置に関する。一般に、この方法はP
DT薬剤を疾患組織に適用して治療ゾーンを形成するステップと、過剰な薬剤を
取り除くステップと、治療ゾーンに光を適用して疾患組織と関連した薬剤を活性
化するステップとを含む。光は治療ゾーンの外側の薬剤の活性化を最小限に抑え
ながら治療ゾーンを透過する。
SUMMARY OF THE INVENTION [0013] The present invention relates to methods and devices for local treatment of diseased tissue, including local or systemic application of a PDT drug to diseased tissue, followed by local application of light. In general, this method uses P
Applying the DT agent to the diseased tissue to form a treatment zone, removing excess drug, and applying light to the treatment zone to activate an agent associated with the diseased tissue. Light is transmitted through the treatment zone with minimal activation of the drug outside the treatment zone.

【0014】 好ましい実施例において、ローズベンガルがPDT薬剤である。 別の実施例において、PDT薬剤は治療ゾーンのみに直接適用される。または
、PDTは全身に適用することができる。 さらに別の実施例において、PDT薬剤の活性化の深度は、基礎となっている
健常組織に位置しうる薬剤の活性化を回避するために、活性化光の波長の適切な
選択により調節することができる。 さらに別の実施例において、疾患組織はPDT薬剤を適用する前に診断される
。 別の実施例において、病変の発見及び治療は、分離診断及び治療法に関係なく
(内視鏡など)単一の方法を用いて短期間に行うことができる。 別の実施例において、治療速度は酸素依存性メカニズムにより制限されない。 別の実施例において、活性化光は疾患部位に位置した「バルーン」又は他の送
達装置により送達される。 別の実施例において、本発明の方法は胃腸管における疾患の治療に用いること
ができる。
[0014] In a preferred embodiment, Rose Bengal is the PDT drug. In another embodiment, the PDT agent is applied directly to the treatment zone only. Alternatively, PDT can be applied systemically. In yet another embodiment, the depth of activation of the PDT drug is adjusted by appropriate selection of the wavelength of the activating light to avoid activation of the drug that may be located in the underlying healthy tissue. Can be. In yet another embodiment, the diseased tissue is diagnosed before applying the PDT drug. In another example, the discovery and treatment of a lesion can be performed in a short period of time using a single method (such as an endoscope) regardless of the method of isolation diagnosis and treatment. In another embodiment, the rate of treatment is not limited by an oxygen-dependent mechanism. In another embodiment, the activating light is delivered by a "balloon" or other delivery device located at the disease site. In another embodiment, the methods of the present invention can be used to treat diseases in the gastrointestinal tract.

【0015】 本発明の方法は循環系の血管における疾患の治療に用いることができる。 本発明は疾患組織の局所治療の装置にも関する。 したがって、本発明は光送達の一様性を改善する方法及び装置に関するととも
に、バレット食道や他の状態の治療のためのPDTの安全性及び有効性を改善す
るとともにその費用の削減に関する。
[0015] The methods of the present invention can be used to treat diseases in the blood vessels of the circulatory system. The invention also relates to a device for local treatment of diseased tissue. Accordingly, the present invention relates to methods and devices for improving the uniformity of light delivery, as well as improving the safety and effectiveness of PDT for the treatment of Barrett's esophagus and other conditions and reducing its cost.

【0016】 (発明を実施するための最良の形態) 本発明の方法及び装置は、乾癬又は皮膚癌などさまざまな皮膚科疾患の改善さ
れた治療、及び消化管又は気管の疾患など、体内の各部位における疾患組織に応
用可能である。本発明は、腹腔内、腹腔内、心臓内、循環内、脳内、及び生殖管
を含む他の解剖学的部位の治療にも用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method and device of the present invention provide improved treatment of various dermatological disorders such as psoriasis or skin cancer, and individual diseases in the body such as gastrointestinal or tracheal disorders. Applicable to diseased tissue at the site. The invention can also be used to treat other anatomical sites, including intraperitoneal, intraperitoneal, intracardiac, intracirculatory, intracerebral, and genital tract.

【0017】 一般に、本発明の方法は、1つ又はそれ以上の以下のステップを含む。最初に
、疾患は、例えば、組織学的検査を用いて、又は疾患組織の自己蛍光特性の測定
により、若しくはかかる疾患組織への蛍光染料又はPDT薬剤など指標薬剤の選
択的摂取の検出により診断される。その後に、疾患組織を覆い、還流し、又は飽
和するために、所望のPDT薬剤の十分な量の局所又は全身組成物を疾患部位に
適用される。疾患組織内で薬剤をコートし、還流し、さもなければ活性にするた
めに短い蓄積期間後に、疾患部位から過剰な薬剤を取り除き、又は洗い流し、疾
患組織と関連した薬剤を活性化するために、実質的に均一な光野を疾患部位に適
用する。
In general, the method of the present invention includes one or more of the following steps. Initially, the disease is diagnosed, for example, using histological examination, or by measuring the autofluorescent properties of the diseased tissue, or by detecting the selective uptake of an indicator drug, such as a fluorescent dye or a PDT drug, into such diseased tissue. You. Thereafter, a sufficient amount of a local or systemic composition of the desired PDT agent is applied to the disease site to cover, reflux, or saturate the diseased tissue. After a short accumulation period to coat and reflux or otherwise activate the drug within the diseased tissue, to remove or wash away excess drug from the diseased site and activate the drug associated with the diseased tissue, A substantially uniform light field is applied to the disease site.

【0018】 表在性疾患組織の治療には、疾患組織への光透過を可能にするが、基礎の健常
組織への疾患組織を超えるさらなる光透過を最小限に抑えるために光の波長が選
択されることが好ましい。例えば、スペクトル範囲400〜600nmの可視光
を用いて、約数ミリメートル以下の浅い透過深度を与えることができる。かかる
光の使用により、同時に基礎組織の有害な光感作の可能性を最小限に抑えながら
、表在性疾患組織における薬剤活性化の有効性が得られる。レーザー光が使用さ
れることが好ましい。レーザー光は光ファイバーカテーテルにより送達される。
または、光は直接照射により送達される。それに代わる他の光源構成及び送達装
置として、光ファイバー束、中空コア光学導波管、及び液体充填導波管があげら
れる。別の光源として、光放出ダイオード、マイクロレーザー、単色レーザー、
連続レーザー又は活性化光の生成のためのランプ、及び連続波又はパルスレーザ
ー若しくはランプがあげられる。薬剤活性化には、単一光子励起法又は2光子励
起法のいずれかを用いることができる。かかる励起法のさらに詳細な説明は、1
996年10月30日に米国出願され、本出願人に譲渡された出願番号08/7
39,801に示されており、これは本願中で援用される。
For treatment of superficial diseased tissue, the wavelength of light is selected to allow light transmission to diseased tissue, but to minimize further light transmission over diseased tissue to underlying healthy tissue. Is preferably performed. For example, visible light in the spectral range of 400-600 nm can be used to provide a shallow penetration depth of about a few millimeters or less. The use of such light provides the efficacy of drug activation in superficially diseased tissue while at the same time minimizing the potential for harmful photosensitization of the underlying tissue. Preferably, laser light is used. Laser light is delivered by a fiber optic catheter.
Alternatively, the light is delivered by direct irradiation. Other alternative light source configurations and delivery devices include fiber optic bundles, hollow core optical waveguides, and liquid-filled waveguides. Other light sources include light emitting diodes, microlasers, monochromatic lasers,
Lamps for the generation of continuous laser or activating light, and continuous wave or pulsed lasers or lamps. Either single-photon excitation or two-photon excitation can be used for drug activation. A more detailed description of such an excitation method can be found in
Application No. 08/7 filed on Oct. 30, 996, and assigned to the present applicant.
39,801, which is incorporated herein by reference.

【0019】 さらに、薬剤及び光の適用の時間と順序を変動することもできる。例えば、薬
剤及び光治療方式の適用は1回又はそれ以上反復し、残留疾患組織を除去するこ
とができる。さらに、一部の適用では、薬剤適用と光治療との間の遅延の増大が
有利となりうる。また、診断するステップのほぼ直後にPDT薬剤を適用し、過
剰な薬剤を取り除くとともに光を適用するステップを行い、診断及び治療の前記
方法を単一の手順で行うことができる。PDT薬剤摂取を用いて疾患組織を診断
又は検出する場合は、診断のステップの直後に活性化光を適用するステップを行
う。または、それらは診断とPDT治療との間の不定の遅延であってもよい。
Further, the time and order of application of the drug and light may be varied. For example, the application of the drug and phototherapy regime may be repeated one or more times to remove residual diseased tissue. Further, for some applications, an increased delay between drug application and phototherapy may be advantageous. Also, the steps of applying the PDT drug almost immediately after the step of diagnosing, removing excess drug and applying light can be performed to perform the method of diagnosis and treatment in a single procedure. When diagnosing or detecting diseased tissue using PDT drug ingestion, a step of applying activation light is performed immediately after the step of diagnosis. Alternatively, they may be an indefinite delay between diagnosis and PDT treatment.

【0020】 PDT又は光感作薬剤として、安価で、非毒性であり、ヒトの使用で安全性が
証明されており、意味ある固有の脂肪親性を有し、I型及びII型反応を示し、
したがって、I型、酸素依存性メカニズムにより活性化することができ、500
nmと600nmとの間の光による活性化時に強く光毒性であるため、ローズベ
ンゲルを用いることが好ましい。そのO依存性反応により、ローズベンゲルは
高強度の光活性化と適合性であり、これによりポルフィリンベース薬剤に対して
治療時間が短縮される。さらに具体的に言えば、ローズベンゲルは、表在性疾患
の活性化に十分であり、基礎の健常組織の活性化の可能性を実質的に回避する、
500nmと600nmとの間の光を用いて最適に活性化される。かかるPDT
の例は、l−オクタノール又はリポソームなど適切な脂肪親性送達賦形剤で調製
したローズベンゲルの溶液である。
As a PDT or photosensitizer, it is inexpensive, non-toxic, proven safe for human use, has meaningful inherent lipophilicity, and exhibits type I and II reactions ,
Therefore, it can be activated by a type I, oxygen-dependent mechanism,
It is preferred to use Rose Bengel because it is strongly phototoxic when activated by light between nm and 600 nm. By its O 2 dependent reaction, Rose Wenger is photoactivatable and compatible high strength, treatment time can be shortened thereby against the porphyrin-based agents. More specifically, Rose Wengel is sufficient for the activation of superficial diseases, substantially avoiding the potential for activation of underlying healthy tissue,
Activated optimally with light between 500 and 600 nm. Such PDT
An example is a solution of rose bengel prepared with a suitable lipophilic delivery vehicle such as l-octanol or liposomes.

【0021】 または、I型又はII型薬剤を含む他のPDT薬剤を用いることができる。か
かるPDT薬剤の例として、ソラレン誘導体;ポルフィリン及びヘマトポルフィ
リン誘導体;クロリン誘導体;フタロシアニン誘導体;ローダミン誘導体;クマ
リン誘導体;ベンゾフェノキサジン誘導体;クロルプロマジン及びクロルプロマ
ジン誘導体;クロロフィル及びバクテリオクロロフィル誘導体;フェオホルビド
а(Pheo а)、メロシアニン540(MC 540);ビタミンD;5−ア
ミノ−レブリン酸(ALA);フォトサン;フェオホルビド−а(Ph−а);
さまざまなフェノキサジン染料をフクムフェノキサジンナイルブルー誘導体;P
HOTOFRIN;ベンゾポルフィリン誘導体一重酸;SnET;及びルテッ
クスがあげられる。本発明の発明人は、現在及び将来のPDT薬剤がすべて本発
明の方法及び装置において作用するものと考えている。 また、本発明はPDT薬剤の使用には限定されていない。その代わりに、1種
類以上のPDT薬剤を治療方式時に用いることができる。
Alternatively, other PDT agents, including Type I or Type II agents, can be used. Examples of such PDT agents include psoralen derivatives; porphyrins and hematoporphyrin derivatives; chlorin derivatives; phthalocyanine derivatives; rhodamine derivatives; coumarin derivatives; benzophenoxazine derivatives; , Merocyanine 540 (MC 540); vitamin D; 5-amino-levulinic acid (ALA); photosan; pheophorbide-а (Ph-а);
A variety of phenoxazine dyes were prepared from fukumphenoxazine Nile blue derivatives;
HOTOFRIN; benzoporphyrin derivative monoacid; SnET 2 ; and lutex. The inventors of the present invention believe that all present and future PDT agents will work in the methods and devices of the present invention. Also, the invention is not limited to the use of PDT drugs. Alternatively, one or more PDT agents can be used during the treatment regime.

【0022】 別の実施例において、本発明で使用されるPDTには、少なくとも1つの標的
成分を含めることができる。かかる標的成分の例として、DNA、RNA、アミ
ノ酸、タンパク質、抗体、リガンド、ハプテン、炭水化物受容体又は複合薬剤、
脂質受容体又は複合薬剤、タンパク質受容体又は複合受容体、キレート化剤、及
び被包化賦形剤があげられる。かかる標的成分は、疾患組織への薬剤送達の選択
性を改善するために用いることができ、光感作化PDT薬剤と結合させるか(例
えばPDT薬剤が標的成分からなる賦形剤中に被包化される)、又は光感作化P
DT薬剤に付着させるか(例えばPDT薬剤が標的成分に共有結合性に付着され
る)のいずれかにより機能することができる。
In another embodiment, the PDT used in the present invention can include at least one target component. Examples of such target components include DNA, RNA, amino acids, proteins, antibodies, ligands, haptens, carbohydrate receptors or complex drugs,
Lipid or complex drugs, protein or complex receptors, chelating agents, and encapsulating excipients. Such targeting moieties can be used to improve the selectivity of drug delivery to diseased tissues and can be coupled to a photosensitized PDT drug (eg, if the PDT drug is encapsulated in an excipient consisting of the target component). Sensitized) or photosensitized P
It can function either by being attached to a DT agent (eg, a PDT agent is covalently attached to a target moiety).

【0023】 別の好ましい実施例において、PDT薬剤は疾患組織に直接適用される。直接
局所適用の使用により、多数の利点が得られる。特に、これにより疾患組織に特
異的な薬剤の標的が改善され、薬剤投与と光活性化との間に必要な潜時期間が軽
減されることにより、治療サイクルが短縮され、全身光感作の可能性が実質的に
除去され、薬剤消費が削減されるとともに、薬剤に対する曝露からの副作用の全
体的可能性が軽減される。薬剤は局所スプレー又は洗浄として適用されることが
好ましい。短い蓄積期間後(一般に30分を超えない)、過剰な薬剤を水又は食
塩水など液体で洗浄することにより組織表面から除去する。この洗浄後、疾患組
織と関連した残留性薬剤は、400nmと600nmとの間の可視光で疾患部位
の照射により活性化されることが好ましい。光学的に、光は上述したように適用
することができる。 または、PDTは全身に適用することができる。例えば、この適用は静脈内注
射又は非経口投与(例えば、PDT薬剤の錠剤又は液体組成物の消費による)を
介して可能である。 別の実施例において、治療ゾーンに熱を加えて高熱を介してPDTの有効性を
増大させることができる。熱は、例えば、照射バルーン中の過熱液体、照射源と
組織との間に配置した透明過熱パッド、又は赤外線エネルギーによる治療部位の
同時照射により適用することができる。
In another preferred embodiment, the PDT agent is applied directly to the diseased tissue. The use of direct topical application offers a number of advantages. In particular, this improves the target of the drug specific to diseased tissue and reduces the latency required between drug administration and photoactivation, thereby shortening the treatment cycle and reducing the The potential is substantially eliminated, drug consumption is reduced, and the overall likelihood of side effects from exposure to the drug is reduced. Preferably, the medicament is applied as a topical spray or lavage. After a brief accumulation period (typically not more than 30 minutes), excess drug is removed from the tissue surface by washing with a liquid such as water or saline. After this washing, the persistent drug associated with the diseased tissue is preferably activated by irradiation of the diseased site with visible light between 400 nm and 600 nm. Optically, light can be applied as described above. Alternatively, PDT can be applied systemically. For example, this application is possible via intravenous injection or parenteral administration (eg, by consumption of a tablet or liquid composition of the PDT drug). In another embodiment, heat may be applied to the treatment zone to increase the effectiveness of PDT via high heat. Heat can be applied, for example, by a superheated liquid in an irradiation balloon, a transparent heating pad positioned between the irradiation source and the tissue, or by simultaneous irradiation of the treatment site with infrared energy.

【0024】 本願のこれらの実施例の一部の例が、図2(а)、及び図2(c)に断面図の
形で示されている。 図2(а)は、非協力的バルーン20照射装置を用いた疾患食道の治療の例を
示すものである。最初に、治療ゾーン30が確認される。これは例えば、食道の
内視鏡検査及び疾患組織ゾーンの肉眼的又は分光学的確認により行うことができ
る。かかる確認として、疾患の組織学的変化又は他の肉眼的指標の検出、自己蛍
光の変化の検出、又はPDT若しくは他の薬剤の疾患組織への摂取の検出などが
あげられる。治療ゾーン30の確認後、PDT薬剤を確認された疾患組織に適用
する。この薬剤は、例えば、全身適用又はさらに好ましくは、内視鏡の遠位端に
備えたノズル又は他の手段を用いてスプレーにより適用することができる。その
後に、過剰な薬剤は、例えば、自然な全身クリアランス又は液体による洗浄によ
り、その部位から取り除かれる。
Some examples of these embodiments of the present application are shown in cross-section in FIGS. 2 (a) and 2 (c). FIG. 2A shows an example of treatment of a diseased esophagus using a non-cooperative balloon 20 irradiation device. First, the treatment zone 30 is identified. This can be done, for example, by endoscopy of the esophagus and macroscopic or spectroscopic confirmation of the diseased tissue zone. Such confirmations include detecting histological changes or other macroscopic indicators of the disease, detecting changes in autofluorescence, or detecting the uptake of PDT or other drugs into the diseased tissue. After confirmation of the treatment zone 30, the PDT drug is applied to the identified diseased tissue. The medicament can be applied, for example, by systemic application or more preferably by spraying using a nozzle or other means provided at the distal end of the endoscope. Thereafter, excess drug is removed from the site, for example, by natural systemic clearance or rinsing with a liquid.

【0025】 次に、治療ゾーン30をスパンするために、透明な非協力的バルーン装置20
を食道に挿入する。非協力的バルーン20は、所望の予め規定された半径を確立
するために、予め規定された圧力まで気体又は液体で充填する。そして、バルー
ンの中心軸に沿って配置された、例えば光ファイバー圧縮機など、光源22を用
いたバルーン20の壁を通じて、可視光24を治療部位に半径方向に均一に送達
する。
Next, the transparent non-cooperative balloon device 20 is used to span the treatment zone 30.
Into the esophagus. The non-cooperative balloon 20 is filled with a gas or liquid to a predetermined pressure to establish a desired predefined radius. The visible light 24 is then uniformly delivered radially to the treatment site through the wall of the balloon 20 using a light source 22, such as a fiber optic compressor, positioned along the central axis of the balloon.

【0026】 また、バルーン20は、バルーンの表面で送達される光強度の均一性を改善す
るために、脂質内の希釈液など散乱媒体で充填することができる。さらに、バル
ーン20は、バルーンの表面で送達される光強度の均一性をさらに改善するため
に、バルーンの表面で送達される光24を散乱させる物質で構成すること、又は
これを含めることができる。かかる物質の例として、ラテックスなど自然に半透
明である物質;粒状の散乱物質を含むポリマー;又は粗い表面のポリマーがあげ
られる。
Also, the balloon 20 can be filled with a scattering medium, such as a diluent in lipids, to improve the uniformity of the light intensity delivered at the surface of the balloon. In addition, balloon 20 can be comprised of or include a substance that scatters light 24 delivered at the surface of the balloon to further improve the uniformity of light intensity delivered at the surface of the balloon. . Examples of such materials are naturally translucent materials such as latex; polymers containing particulate scattering material; or polymers with rough surfaces.

【0027】 図2(а)に示された例において、光源22の強度は、非協力的バルーン20
の充填半径及びバルーンの表面での所望の光強度や光量に基づく予め規定された
持続時間に予め規定されたレベルで操作される。 この実施例の別の例が、図2(b)に断面図の形で示されており、ここでは疾
患食道組織が拡大された非協力的バルーン40を用いて治療される。この例では
、疾患組織の確認後に、PDT薬剤が確認された疾患組織に適用される。その後
に、過剰な薬剤がその部位から取り除かれる。
In the example shown in FIG. 2A, the intensity of the light source 22 is
At a pre-defined level for a pre-determined duration based on the fill radius of the and the desired light intensity and light intensity at the balloon surface. Another example of this embodiment is shown in cross-section in FIG. 2 (b), where diseased esophageal tissue is treated using an expanded non-cooperative balloon 40. In this example, after confirming the diseased tissue, the PDT drug is applied to the confirmed diseased tissue. Thereafter, excess drug is removed from the site.

【0028】 次に、治療ゾーン30をスパンするために、透明な非協力的バルーン装置40
を食道に挿入する。非協力的バルーン40は、食道を実質的に拡張又はわずかに
拡大するために、気体又は液体で充填され、食道表面の畳み込みを除去すること
により、照射のためにさらに均一な組織表面12を提供する。充填圧を測定して
充填バルーンの半径を確立する。そして、バルーンの中心軸に沿って配置された
、例えば光ファイバー圧縮機など、光源22を用いたバルーン20の壁を通じて
、可視光24を治療部位に半径方向に均一に送達する。
Next, in order to span the treatment zone 30, the transparent non-cooperative balloon device 40
Into the esophagus. The uncooperative balloon 40 is filled with a gas or liquid to substantially dilate or slightly dilate the esophagus, providing a more uniform tissue surface 12 for irradiation by removing convolutions in the esophageal surface. I do. Measure the filling pressure to establish the radius of the filling balloon. The visible light 24 is then uniformly delivered radially to the treatment site through the wall of the balloon 20 using a light source 22, such as a fiber optic compressor, positioned along the central axis of the balloon.

【0029】 また、バルーン40は、バルーンの表面で送達される光強度の均一性を改善す
るために、脂質内の希釈液など散乱媒体で充填することができる。さらに、バル
ーン40は、バルーンの表面で送達される光強度の均一性をさらに改善するため
に、バルーンの表面で送達される光24を散乱させる物質で構成すること、又は
これを含めることができる。かかる物質の例として、ラテックスなど自然に半透
明である物質;粒状の散乱物質を含むポリマー;又は粗い表面のポリマーがあげ
られる。
The balloon 40 can also be filled with a scattering medium, such as a diluent in lipid, to improve the uniformity of the light intensity delivered at the surface of the balloon. In addition, balloon 40 can be comprised of or include a substance that scatters light 24 delivered at the surface of the balloon to further improve the uniformity of light intensity delivered at the surface of the balloon. . Examples of such materials are naturally translucent materials such as latex; polymers containing particulate scattering material; or polymers with rough surfaces.

【0030】 バルーンを充填するために用いられる圧力を測定し、これを用いて充填バルー
ンの操作上の半径を確立し、光源22の強度は、非協力的バルーン20の充填半
径及びバルーンの表面での所望の光強度や光量に基づく予め規定された持続時間
に予め規定されたレベルで操作される。この別の実施例では、食道組織の潜在的
な狭窄又は他の非特異的刺激を回避するために、食道を大きく拡大することなく
、治療される食道部分の畳み込みを最小限に抑えるために、十分な圧力が使用さ
れることが好ましい。 この実施例のさらに別の例が、図2(c)に断面図の形で示されており、ここ
では疾患食道組織が協力的バルーン50を用いて治療される。この例では、疾患
組織の確認後に、PDT薬剤が確認された疾患組織に適用される。その後に、過
剰な薬剤がその部位から取り除かれる。
The pressure used to fill the balloon is measured and used to establish the operational radius of the filling balloon, and the intensity of the light source 22 depends on the filling radius of the non-cooperative balloon 20 and the surface of the balloon. At a pre-defined level for a pre-defined duration based on the desired light intensity and light quantity. In this alternative embodiment, to avoid potential stenosis or other non-specific irritation of the esophageal tissue, to minimize convolution of the treated esophageal segment without greatly expanding the esophagus, Preferably, sufficient pressure is used. Yet another example of this embodiment is shown in cross section in FIG. 2 (c), where diseased esophageal tissue is treated using a cooperative balloon 50. In this example, after confirming the diseased tissue, the PDT drug is applied to the confirmed diseased tissue. Thereafter, excess drug is removed from the site.

【0031】 次に、治療ゾーン30をスパンするために、透明な協力的バルーン装置50を
食道に挿入する。協力的バルーン50は、食道を実質的に拡張又はわずかに拡大
するために、気体又は液体で充填され、食道表面とバルーンとの間の不均一な接
触を除去することにより、照射のためにさらに均一な組織表面を提供する。充填
圧を測定して充填バルーンの半径に近づける。そして、バルーンの中心軸に沿っ
て配置された、例えば光ファイバー圧縮機など、光源22を用いたバルーン50
の壁を通じて、可視光24を治療部位に半径方向に均一に送達する。
Next, a transparent cooperative balloon device 50 is inserted into the esophagus to span the treatment zone 30. The cooperative balloon 50 is filled with a gas or liquid to substantially dilate or slightly dilate the esophagus, further removing the non-uniform contact between the esophageal surface and the balloon, for further irradiation. Provides a uniform tissue surface. Measure the filling pressure to approximate the radius of the filling balloon. Then, the balloon 50 using the light source 22, such as an optical fiber compressor, is disposed along the central axis of the balloon.
The visible light 24 is uniformly delivered to the treatment site in the radial direction through the wall of the patient.

【0032】 また、バルーン50は、バルーンの表面で送達される光強度の均一性を改善す
るために、脂質内の希釈液など散乱媒体で充填することができる。さらに、バル
ーン50は、バルーンの表面で送達される光強度の均一性をさらに改善するため
に、バルーンの表面で送達される光24を散乱させる物質で構成すること、又は
これを含めることができる。かかる物質の例として、ラテックスなど自然に半透
明である物質;粒状の散乱物質を含むポリマー;又は粗い表面のポリマーがあげ
られる。
The balloon 50 can also be filled with a scattering medium, such as a diluent in lipid, to improve the uniformity of the light intensity delivered at the surface of the balloon. Further, balloon 50 can be comprised of or include a substance that scatters light 24 delivered at the surface of the balloon to further improve the uniformity of light intensity delivered at the surface of the balloon. . Examples of such materials are naturally translucent materials such as latex; polymers containing particulate scattering material; or polymers with rough surfaces.

【0033】 バルーンを充填するために用いられる圧力を測定し、これを用いて充填バルー
ンの操作上の半径を確立する。このため、この例では、光源22の強度は、所望
の光強度及びバルーンの表面での光量を送達するために、充填された協力的バル
ーン50の操作上の半径に基づき選択されるレベルで操作される。この別の実施
例では、(食道組織の潜在的な狭窄又は他の非特異的刺激を回避するために)食
道を大きく拡大することなく、治療される食道部分の畳み込みを最小限に抑える
ために、十分な圧力が使用されることが好ましい。
The pressure used to fill the balloon is measured and used to establish the operational radius of the filling balloon. Thus, in this example, the intensity of the light source 22 is manipulated at a level selected based on the operational radius of the filled cooperative balloon 50 to deliver the desired light intensity and the amount of light at the surface of the balloon. Is done. In this alternative embodiment, to minimize convolution of the treated esophageal segment without greatly expanding the esophagus (to avoid potential stenosis or other non-specific irritation of esophageal tissue) Preferably, sufficient pressure is used.

【0034】 循環系の血管における疾患(動脈又は静脈プラークなど)の治療について、図
3(а)及び図3(b)では本発明の別の好ましい実施例が示されている。 図3(а)の特殊な例では、光感作薬剤が非経口的又は静脈内注射で適用され
る。薬剤は血管壁60の疾患組織に蓄積して治療ゾーン62を形成する。この薬
剤は所望の治療ゾーンに存在する疾患物質中の優先的な濃度に基づき選択される
。短い蓄積期間後、疾患物質と関連した薬剤を活性化するために疾患部位に光6
4が適用される。この適用は光ファイバーカテーテル66又は光送達の空間的調
節のための集束、視準、又は拡散ターミナルを有する同様の手段を用いて行うこ
とができる。光ファイバーカテーテル66は光64を治療ゾーン62に直接送達
することができ、光は局所的に適用できる。基礎の健常組織への光透過を最小限
に抑えるには、約数ミリメートル以下の浅い透過深度を得るために、スペクトル
範囲400〜600nmの可視光を用いることが好ましい。かかる光の使用によ
り、同時に基礎組織の有害な光感作の可能性を最小限に抑えながら、表在性疾患
組織における薬剤活性化の有効性が得られる。
For the treatment of diseases in the blood vessels of the circulatory system (such as arterial or venous plaque), FIGS. 3 (a) and 3 (b) show another preferred embodiment of the present invention. In the specific example of FIG. 3 (a), the photosensitizing agent is applied parenterally or by intravenous injection. The drug accumulates in the diseased tissue of the vessel wall 60 to form a treatment zone 62. The drug is selected based on the preferential concentration in the disease substance present in the desired treatment zone. After a short accumulation period, light 6 is applied to the disease site to activate the drug associated with the disease substance.
4 applies. This application can be made using a fiber optic catheter 66 or similar means having a focusing, collimating, or diffusing terminal for spatial adjustment of light delivery. The fiber optic catheter 66 can deliver the light 64 directly to the treatment zone 62 and the light can be applied locally. To minimize light transmission through the underlying healthy tissue, it is preferable to use visible light in the spectral range of 400-600 nm to obtain a shallow penetration depth of about a few millimeters or less. The use of such light provides the efficacy of drug activation in superficially diseased tissue while at the same time minimizing the potential for harmful photosensitization of the underlying tissue.

【0035】 または、図3(b)に示されているように、治療ゾーン62における疾患物質
に、薬剤の局在的な直接適用を介して、光感作薬剤投与を行うことができる。薬
剤投与は、治療ゾーン62に直接又はその近くに、流れ70又は他のフローとし
て少量の薬剤を送達するために用いられる光ファイバーカテーテル66に付着さ
れ、その端の近くで終わる毛細管など薬剤送達装置68を介して容易に行うこと
ができる。または、この送達装置68は光ファイバーカテーテル66から分離す
ることができ、これにより光送達光ファイバー66及び薬剤送達装置68のそれ
ぞれの終端の独立した位置を促進する。いずれかの実施例では、治療ゾーン62
における疾患物質への少量の光感作薬剤の送達が行われ、短い蓄積期間後に、疾
患物質と関連した薬剤を活性化するために、疾患部位に光62を適用する。
Alternatively, as shown in FIG. 3 (b), a photosensitizing drug can be administered to the diseased substance in the treatment zone 62 via local direct application of the drug. Drug delivery is applied directly or near the treatment zone 62 to a drug delivery device 68 such as a capillary attached to a fiber optic catheter 66 that is used to deliver small quantities of drug as a stream 70 or other flow and ending near its end. Can be easily performed via Alternatively, the delivery device 68 can be separated from the fiber optic catheter 66, thereby facilitating independent locations of the respective ends of the light delivery fiber optic 66 and the drug delivery device 68. In any embodiment, the treatment zone 62
Delivery of a small amount of the photosensitizing agent to the diseased substance occurs in the above, and after a short accumulation period, light 62 is applied to the diseased site to activate the drug associated with the diseased substance.

【0036】 これらの例では、光感作薬剤としてローズベンゲルを用いることが好ましい。
ローズベンゲルは、表在性疾患物質の活性化に十分であり、実質的に基礎の健常
組織の活性化の可能性を回避する500nmと600nmとの間の光を用いて最
適に活性化される。さらに、この薬剤は高強度の光活性化と適合性であり、これ
によりII型PDT薬剤など他の薬剤で必要とされる治療時間を実質的に削減す
るために用いることができる。 この説明は例示を目的として提供されたものにすぎず、以下の請求の範囲に規定
されている本願の発明の限定を意図したものではない。 新しく請求され、特許証により保護されることが望ましいものが、添付の請求
の範囲に記載されている。
In these examples, it is preferable to use rose bengel as a photosensitizing agent.
Rose Wengel is optimally activated using light between 500 nm and 600 nm which is sufficient for the activation of superficial disease substances and substantially avoids the possibility of activation of the underlying healthy tissue . In addition, the drug is compatible with high intensity photoactivation and can be used to substantially reduce the treatment time required for other drugs, such as Type II PDT drugs. This description is provided for the purpose of illustration only, and is not intended to limit the invention of the present application as defined in the following claims. What is newly claimed and desired to be protected by Letters Patent is set forth in the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (а)はPDTを用いたバレット食道の治療のための通常の方法を示す食道の
断面図であり、(b)は(а)の方法の治療ゾーンを示す図である。
FIG. 1 (a) is a cross-sectional view of the esophagus showing a normal method for treating Barrett's esophagus using PDT, and (b) is a view showing a treatment zone of the method of (а).

【図2】 (а)は疾患食道組織の治療のための本発明の実施例の実例を示す図であり、
(b)は(а)の実施例の別の補足的な実例を示す図であり、(c)は(а)の
実施例の別の補足的な実例を示す図である。
FIG. 2 (a) shows an example of an embodiment of the present invention for treatment of diseased esophageal tissue;
(B) is a figure which shows another complementary example of the Example of (а), and (c) is a figure which shows another complementary example of the Example of (а).

【図3】 (а)は循環系の血管における疾患の治療のための別の実施例の実例を示す図
であり、(b)はPDT薬剤が疾患組織に直接適用される(а)の実施例の別の
実例を示す図である。
FIG. 3 (a) shows an example of another embodiment for the treatment of a disease in a blood vessel of the circulatory system, and (b) shows an example in which the PDT drug is directly applied to the diseased tissue (a). FIG. 6 shows another example of an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 31/7105 A61K 31/711 4C086 31/711 39/395 4C206 38/00 45/00 39/395 A61P 35/00 45/00 41/00 A61P 35/00 A61B 17/36 350 41/00 A61K 37/02 (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AE,AL,AM,AT,AU,AZ,BA ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GD,G E,GH,GM,HR,HU,ID,IL,IN,IS ,JP,KE,KG,KP,KR,KZ,LC,LK, LR,LS,LT,LU,LV,MD,MG,MK,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,SL,TJ,TM, TR,TT,UA,UG,UZ,VN,YU,ZA,Z W (72)発明者 ジョーン スモリク アメリカ合衆国 テネシー州 37774 ロ ウドン タナシコート 119 (72)発明者 エリック エー ウォクター アメリカ合衆国 テネシー州 37830 オ ークリッジ ベイパスドライブ 138 (72)発明者 ウォルター フィッシャー アメリカ合衆国 テネシー州 37931 ノ ックスビレ カールヴァレンタインロード 8514 Fターム(参考) 4C026 AA01 BB08 FF17 4C060 MM24 4C066 AA01 AA07 CC04 LL30 4C084 AA01 AA17 MA65 NA13 NA15 ZB262 ZC802 4C085 AA13 AA40 4C086 AA01 EA16 MA03 MA05 MA65 NA13 NA14 NA15 ZB26 4C206 AA03 FA44 MA02 MA05 MA85 NA13 NA14 NA15 ZB26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) A61K 31/7105 A61K 31/711 4C086 31/711 39/395 4C206 38/00 45/00 39/395 A61P 35 / 00 45/00 41/00 A61P 35/00 A61B 17/36 350 41/00 A61K 37/02 (81) Designated countries EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB , GR, IE, IT, LU, MC, NL, PT, SE), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG ), AP (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, A , AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX , NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW (72) Inventor Joan Smolik United States of America 37774 Lo Udon Tanashicote 119 (72) Inventor Eric A. Wokter United States of America Tennessee 37830 Oak Ridge Bypass Drive 138 (72) Inventor Walter Fisher United States of America Sea State 37931 Knoxville Carl Valentine Road 8514 F-term (Reference) 4C026 AA01 BB08 FF17 4C060 MM24 4C066 AA01 AA07 CC04 LL30 4C084 AA01 AA17 MA65 NA13 NA15 ZB262 ZC802 4C085 AA13 AA01 4A03 MA03 NA03 MA03 NA03 MA05 MA85 NA13 NA14 NA15 ZB26

Claims (67)

【特許請求の範囲】[Claims] 【請求項1】 疾患組織の局所治療のための方法であって、 PDT薬剤を疾患組織に適用して治療ゾーンを形成するステップと、 過剰な薬剤を取り除くステップと、 前記治療ゾーンに光を適用して前記組織と関係した薬剤を活性化し、前記光が
前記治療ゾーン外の前記薬剤の活性化を最小限に抑えながら前記治療ゾーンを貫
通するステップとを含むことを特徴とする方法。
1. A method for local treatment of diseased tissue, comprising: applying a PDT drug to the diseased tissue to form a treatment zone; removing excess drug; and applying light to the treatment zone. Activating a drug associated with the tissue, and wherein the light penetrates the treatment zone with minimal activation of the drug outside the treatment zone.
【請求項2】 前記光が、周囲組織へのさらなる貫通を最小限に抑えながら
前記治療ゾーンを貫通する波長であることを特徴とする請求項1の方法。
2. The method of claim 1, wherein the light is at a wavelength that penetrates the treatment zone while minimizing further penetration into surrounding tissue.
【請求項3】 前記波長が約400〜600nmであることを特徴とする請
求項2の方法。
3. The method of claim 2, wherein said wavelength is between about 400-600 nm.
【請求項4】 前記光が単一光子励起により前記薬剤を活性化することを特
徴とする請求項1の方法。
4. The method of claim 1, wherein said light activates said drug by single photon excitation.
【請求項5】 前記光が2光子励起により前記薬剤を活性化することを特徴
とする請求項1の方法。
5. The method of claim 1, wherein said light activates said drug by two-photon excitation.
【請求項6】 前記PDT薬剤を適用するステップ、過剰な薬剤を取り除く
ステップ及び光を適用するステップが1回またはそれ以上反復されることを特徴
とする請求項1の方法。
6. The method of claim 1, wherein the steps of applying the PDT agent, removing excess agent, and applying light are repeated one or more times.
【請求項7】 前記PDT薬剤を適用する前に前記疾患組織を診断するステ
ップをさらに含むことを特徴とする請求項1の方法。
7. The method of claim 1, further comprising diagnosing said diseased tissue prior to applying said PDT agent.
【請求項8】 前記診断するステップが、前記疾患組織の自己蛍光を用いる
ことを含むことを特徴とする請求項7の方法。
8. The method of claim 7, wherein said diagnosing comprises using autofluorescence of said diseased tissue.
【請求項9】 前記診断するステップが、指標薬剤の選択的摂取を検出する
ことを含むことを特徴とする請求項7の方法。
9. The method of claim 7, wherein the step of diagnosing comprises detecting selective uptake of the indicator drug.
【請求項10】 前記指標薬剤が、蛍光染料及びPDT薬剤からなる群より
選択されることを特徴とする請求項9の方法。
10. The method of claim 9, wherein said indicator agent is selected from the group consisting of a fluorescent dye and a PDT agent.
【請求項11】 前記診断するステップのほぼ直後に前記PDT薬剤を適用
するステップ、過剰な薬剤を取り除くステップ及び光を適用するステップが行わ
れ、前期診断及び治療の方法が単一の処置で行われることを特徴とする請求項7
の方法。
11. The step of applying the PDT agent, removing excess agent and applying light substantially immediately after the step of diagnosing, wherein the method of diagnosis and treatment is performed in a single procedure. 9. The method according to claim 7, wherein
the method of.
【請求項12】 前記診断するステップとPDT薬剤を適用するステップと
の間に遅延があることを特徴とする請求項7の方法。
12. The method of claim 7, wherein there is a delay between said diagnosing and applying a PDT drug.
【請求項13】 前記PDT薬剤がローズベンガルであることを特徴とする
請求項1の方法。
13. The method of claim 1, wherein said PDT agent is Rose Bengal.
【請求項14】 前記光が約500〜600nmの波長であることを特徴と
する請求項1の方法。
14. The method of claim 1, wherein said light is at a wavelength of about 500-600 nm.
【請求項15】 1種類又はそれ以上の前記PDT薬剤が前記疾患組織に適
用されることを特徴とする請求項1の方法。
15. The method of claim 1, wherein one or more of said PDT agents is applied to said diseased tissue.
【請求項16】 前記PDTが標的成分を含むことを特徴とする請求項1の
方法。
16. The method of claim 1, wherein said PDT comprises a target component.
【請求項17】 前記標的成分が、DNА、RNА、アミノ酸、抗体、タン
パク質、リガンド、ハプテン、炭水化物受容体又は複合薬剤、脂質受容体又は複
合薬剤、タンパク質受容体又は複合受容体、キレート化剤、及び被包化賦形剤か
らなる群より選択されることを特徴とする請求項16の方法。
17. The method according to claim 17, wherein the target component is DNА, RNА, an amino acid, an antibody, a protein, a ligand, a hapten, a carbohydrate receptor or a complex drug, a lipid receptor or a complex drug, a protein receptor or a complex receptor, a chelating agent, 17. The method of claim 16, wherein the method is selected from the group consisting of: and an encapsulated excipient.
【請求項18】 前記PDT薬剤が直接前記疾患組織に適用されることを特
徴とする請求項1の方法。
18. The method of claim 1, wherein said PDT agent is applied directly to said diseased tissue.
【請求項19】 前記PDT薬剤が全身適用されることを特徴とする請求項
1の方法。
19. The method of claim 1, wherein said PDT agent is applied systemically.
【請求項20】 前記過剰な薬剤が自然な全身クリアランスにより取り除か
れることを特徴とする請求項1の方法。
20. The method of claim 1, wherein said excess drug is removed by natural systemic clearance.
【請求項21】 前記過剰な薬剤が前記組織を液体で洗い流すことにより取
り除かれることを特徴とする請求項1の方法。
21. The method of claim 1, wherein said excess drug is removed by flushing said tissue with a liquid.
【請求項22】 前記治療ゾーンに熱を加えて前記薬剤の活性化を増大させ
るステップをさらに含むことを特徴とする請求項1の方法。
22. The method of claim 1, further comprising applying heat to the treatment zone to increase activation of the drug.
【請求項23】 前記光がバルーンカテーテル装置を介して適用されること
を特徴とする請求項1の方法。
23. The method of claim 1, wherein said light is applied via a balloon catheter device.
【請求項24】 前記バルーンカテーテル装置が非協力的であることを特徴
とする請求項23の方法。
24. The method of claim 23, wherein said balloon catheter device is non-cooperative.
【請求項25】 前記非協力的なバルーンカテーテル装置が、実質的に前記
治療ゾーンを拡張するように拡大されることを特徴とする請求項24の方法。
25. The method of claim 24, wherein the non-cooperative balloon catheter device is expanded to substantially expand the treatment zone.
【請求項26】 前記バルーンカテーテルが協力的であることを特徴とする
請求項23の方法。
26. The method of claim 23, wherein said balloon catheter is cooperative.
【請求項27】 前記バルーンカテーテルが散乱媒体で充填されることを特
徴とする請求項23の方法。
27. The method of claim 23, wherein said balloon catheter is filled with a scattering medium.
【請求項28】 前記バルーンカテーテルが光を散乱させる物質を含むこと
を特徴とする請求項23の方法。
28. The method of claim 23, wherein said balloon catheter includes a material that scatters light.
【請求項29】 前記光が直接照射により適用されることを特徴とする請求
項1の方法。
29. The method of claim 1, wherein said light is applied by direct illumination.
【請求項30】 前記光が、光ファイバー束、中空コア光学導波管、液体充
填導波管、光放出ダイオード、マイクロレーザー、単色レーザー、連続レーザー
、ランプ、連続波レーザー、及びパルスレーザーからなる群より選択される光源
により適用されることを特徴とする請求項1の方法。
30. The group of light comprising a fiber optic bundle, a hollow core optical waveguide, a liquid filled waveguide, a light emitting diode, a microlaser, a monochromatic laser, a continuous laser, a lamp, a continuous wave laser, and a pulsed laser. The method of claim 1, wherein the method is applied by a more selected light source.
【請求項31】 循環系の血管における疾患の治療のための方法であって、 PDT薬剤を前記血管における疾患組織に適用して治療ゾーンを形成するステ
ップと、 前記治療ゾーンに光を適用して前記組織と関係した薬剤を活性化し、前記光が
前記治療ゾーン外の前記薬剤の活性化を最小限に抑えながら前記治療ゾーンを貫
通するステップとを含むことを特徴とする方法。
31. A method for treating a disease in a blood vessel of the circulatory system, comprising: applying a PDT agent to diseased tissue in the blood vessel to form a treatment zone; and applying light to the treatment zone. Activating a drug associated with the tissue, wherein the light penetrates the treatment zone with minimal activation of the drug outside the treatment zone.
【請求項32】 前記PDT薬剤が非経口的に適用されることを特徴とする
請求項31の方法。
32. The method of claim 31, wherein said PDT drug is applied parenterally.
【請求項33】 前記PDT薬剤が静脈内注射を介して適用されることを特
徴とする請求項31の方法。
33. The method of claim 31, wherein said PDT drug is applied via intravenous injection.
【請求項34】 前記光がファイバーカテーテルにより適用されることを特
徴とする請求項31の方法。
34. The method of claim 31, wherein said light is applied by a fiber catheter.
【請求項35】 前記光が約400〜600nmの波長であることを特徴と
する請求項31の方法。
35. The method of claim 31, wherein said light is at a wavelength of about 400-600 nm.
【請求項36】 前記PDT薬剤が疾患組織に直接適用されることを特徴と
する請求項31の方法。
36. The method of claim 31, wherein said PDT agent is applied directly to diseased tissue.
【請求項37】 前記薬剤が毛細管を通じて適用されることを特徴とする請
求項31の方法。
37. The method of claim 31, wherein said medicament is applied through a capillary.
【請求項38】 前記PDT薬剤がローズベンガルであることを特徴とする
請求項31の方法。
38. The method of claim 31, wherein said PDT agent is Rose Bengal.
【請求項39】 前記光が約500〜600nmの波長であることを特徴と
する請求項31の方法。
39. The method of claim 31, wherein said light is at a wavelength of about 500-600 nm.
【請求項40】 疾患組織の局所治療のための装置であって、 治療ゾーンを形成するために前記疾患組織に適用するためのPDT薬剤と、 過剰な薬剤を取り除くための手段と、 前記治療ゾーンにおける前記PDT薬剤を活性化する光であって、該光が前記
疾患組織外の前記薬剤の活性化を最小限に抑えながら前記疾患組織を貫通するこ
とができる光源とを含むことを特徴とする装置。
40. An apparatus for local treatment of diseased tissue, comprising: a PDT agent for applying to the diseased tissue to form a treatment zone; a means for removing excess agent; and the treatment zone. A light source that activates the PDT agent in the method, wherein the light source can penetrate the diseased tissue while minimizing activation of the drug outside the diseased tissue. apparatus.
【請求項41】 前記光が、周囲組織へのさらなる貫通を最小限に抑えなが
ら前記治療ゾーンを貫通する波長であることを特徴とする請求項40の装置。
41. The apparatus of claim 40, wherein the light is at a wavelength that penetrates the treatment zone while minimizing further penetration into surrounding tissue.
【請求項42】 前記波長が約400〜600nmであることを特徴とする
請求項41の装置。
42. The apparatus of claim 41, wherein said wavelength is between about 400-600 nm.
【請求項43】 前記光が単一光子励起により前記薬剤を活性化することを
特徴とする請求項40の装置。
43. The device of claim 40, wherein said light activates said drug by single photon excitation.
【請求項44】 前記光が2光子励起により前記薬剤を活性化することを特
徴とする請求項40の装置。
44. The device of claim 40, wherein said light activates said drug by two-photon excitation.
【請求項45】 前記疾患組織を診断する指標薬剤であって、該指標薬剤の
選択的摂取を検出することにより診断する指標薬剤をさらに含むことを特徴とす
る請求項40の装置。
45. The apparatus of claim 40, further comprising an indicator drug for diagnosing the diseased tissue, wherein the indicator drug is diagnosed by detecting selective ingestion of the indicator drug.
【請求項46】 前記指標薬剤が、蛍光染料及びPDT薬剤からなる群より
選択されることを特徴とする請求項45の装置。
46. The apparatus of claim 45, wherein said indicator agent is selected from the group consisting of a fluorescent dye and a PDT agent.
【請求項47】 前記PDT薬剤がローゼベンゲルであることを特徴とする
請求項40の装置。
47. The device of claim 40, wherein said PDT drug is Rosengel.
【請求項48】 前記光が約500〜600nmの波長であることを特徴と
する請求項47の装置。
48. The apparatus of claim 47, wherein said light is at a wavelength of about 500-600 nm.
【請求項49】 前記疾患組織に適用される1種類又はそれ以上のPDT薬
剤をさらに含むことを特徴とする請求項40の装置。
49. The device of claim 40, further comprising one or more PDT agents applied to said diseased tissue.
【請求項50】 前記PDT薬剤が標的成分を含むことを特徴とする請求項
40の装置。
50. The device of claim 40, wherein said PDT agent comprises a target component.
【請求項51】 前記標的成分が、DNА、RNА、アミノ酸、抗体、タン
パク質、リガンド、ハプテン、炭水化物受容体又は複合薬剤、脂質受容体又は複
合薬剤、タンパク質受容体又は複合受容体、キレート化剤、及び被包化賦形剤か
らなる群より選択されることを特徴とする請求項50の装置。
51. The target component is DNА, RNА, amino acid, antibody, protein, ligand, hapten, carbohydrate receptor or complex drug, lipid receptor or complex drug, protein receptor or complex receptor, chelating agent, 51. The device of claim 50, wherein the device is selected from the group consisting of: and an encapsulated excipient.
【請求項52】 前記PDT薬剤が直接前記疾患組織に適用されることを特
徴とする請求項40の装置。
52. The device of claim 40, wherein said PDT agent is applied directly to said diseased tissue.
【請求項53】 前記PDT薬剤が全身適用されることを特徴とする請求項
40の装置。
53. The device of claim 40, wherein said PDT agent is applied systemically.
【請求項54】 前記治療ゾーンに加えて前記薬剤の活性化を増大させる熱
をさらに含むことを特徴とする請求項40の装置。
54. The device of claim 40, further comprising heat in addition to the treatment zone to increase activation of the drug.
【請求項55】 前記熱がバルーンカテーテル装置における過熱液体により
加えられることを特徴とする請求項54の装置。
55. The device of claim 54, wherein said heat is applied by superheated liquid in a balloon catheter device.
【請求項56】 前記熱が透明加熱パッドにより加えられることを特徴とす
る請求項54の装置。
56. The apparatus of claim 54, wherein said heat is applied by a transparent heating pad.
【請求項57】 前記光がバルーンカテーテル装置を介して適用されること
を特徴とする請求項40の装置。
57. The device of claim 40, wherein said light is applied via a balloon catheter device.
【請求項58】 前記バルーンカテーテル装置が非協力的であることを特徴
とする請求項57の装置。
58. The device of claim 57, wherein said balloon catheter device is non-cooperative.
【請求項59】 前記非協力的バルーンカテーテル装置が実質的に前記治療
ゾーンに拡張するように拡大されることを特徴とする請求項58の装置。
59. The device of claim 58, wherein the non-cooperative balloon catheter device is expanded to extend substantially into the treatment zone.
【請求項60】 前記バルーンカテーテルが協力的であることを特徴とする
請求項57の装置。
60. The device of claim 57, wherein said balloon catheter is cooperative.
【請求項61】 前記バルーンカテーテルが散乱媒体で充填されることを特
徴とする請求項57の装置。
61. The device of claim 57, wherein said balloon catheter is filled with a scattering medium.
【請求項62】 前記バルーンカテーテルが光を散乱させる物質を含むこと
を特徴とする請求項57の装置。
62. The device of claim 57, wherein the balloon catheter includes a light scattering material.
【請求項63】 前記光が直接照射により適用されることを特徴とする請求
項40の装置。
63. The apparatus of claim 40, wherein said light is applied by direct illumination.
【請求項64】 前記光が、光ファイバー束、中空コア光学導波管、液体充
填導波管、光放出ダイオード、マイクロレーザー、単色レーザー、連続レーザー
、ランプ、連続波レーザー、及びパルスレーザーからなる群より選択される光源
により適用されることを特徴とする請求項40の装置。
64. The group of light comprising a fiber optic bundle, a hollow core optical waveguide, a liquid-filled waveguide, a light emitting diode, a microlaser, a monochromatic laser, a continuous laser, a lamp, a continuous wave laser, and a pulsed laser. 41. The device of claim 40, wherein the device is applied by a more selected light source.
【請求項65】 前記PDT薬剤が少なくとも1種類のPDT薬剤であるこ
とを特徴とする請求項1の方法。
65. The method of claim 1, wherein said PDT agent is at least one PDT agent.
【請求項66】 前記PDTが少なくとも1種類のPDT薬剤であることを
特徴とする請求項31の方法。
66. The method of claim 31, wherein said PDT is at least one PDT drug.
【請求項67】 前記PDTが少なくとも1種類のPDT薬剤であることを
特徴とする請求項40の装置。
67. The device of claim 40, wherein said PDT is at least one PDT drug.
JP2000563202A 1998-08-06 1999-08-02 Improved method of targeted local treatment of disease Pending JP2002522111A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13004198A 1998-08-06 1998-08-06
US09/130,041 1998-08-06
PCT/US1999/017515 WO2000007515A1 (en) 1998-08-06 1999-08-02 Improved method for targeted topical treatment of disease

Publications (1)

Publication Number Publication Date
JP2002522111A true JP2002522111A (en) 2002-07-23

Family

ID=22442778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000563202A Pending JP2002522111A (en) 1998-08-06 1999-08-02 Improved method of targeted local treatment of disease

Country Status (13)

Country Link
EP (1) EP1109506A4 (en)
JP (1) JP2002522111A (en)
KR (1) KR20010072307A (en)
CN (1) CN1132557C (en)
AR (1) AR021750A1 (en)
AU (1) AU750633B2 (en)
BR (1) BR9912773A (en)
CA (1) CA2339384C (en)
HK (1) HK1039555B (en)
IL (1) IL141273A0 (en)
MX (1) MXPA01001336A (en)
TW (1) TW396030B (en)
WO (1) WO2000007515A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502673A (en) * 2008-09-17 2012-02-02 ルメラ レーザー ゲーエムベーハー Laser processing apparatus and method for processing biological tissue
JP2015530202A (en) * 2012-10-08 2015-10-15 ウニヴェルジテート ライプチッヒ Device for treating the sclera

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390668B2 (en) * 1996-10-30 2008-06-24 Provectus Pharmatech, Inc. Intracorporeal medicaments for photodynamic treatment of disease
US6493570B1 (en) * 1998-11-02 2002-12-10 Photogen, Inc. Method for improved imaging and photodynamic therapy
IL148139A0 (en) 1999-08-13 2002-09-12 Photogen Inc Improved topical medicaments and methods for photodynamic treatment of disease
WO2003084601A2 (en) * 2002-04-02 2003-10-16 Lumerx, Inc. Apparatus and methods using visible light for debilitating and/or killing microorganisms within the body
US20050053895A1 (en) 2003-09-09 2005-03-10 The Procter & Gamble Company Attention: Chief Patent Counsel Illuminated electric toothbrushes emitting high luminous intensity toothbrush
EP1541091A1 (en) * 2003-12-10 2005-06-15 EL.EN. S.p.A. Device for treating tumors by laser thermotherapy
WO2008024290A2 (en) * 2006-08-19 2008-02-28 Fritsch Michael H Devices and methods for in-vivo pathology diagnosis
KR20090108069A (en) * 2007-01-09 2009-10-14 헬스 리서치 인코포레이티드 Treatment of Barrett's esophagus using photodynamic therapy
WO2011097458A2 (en) * 2010-02-04 2011-08-11 University Of Rochester Devices and methods for conforming photodynamic therapy to specific anatomic locations
US10292381B2 (en) 2012-07-20 2019-05-21 The General Hospital Corporation Vessel treatment systems, methods, and kits
WO2014015274A1 (en) 2012-07-20 2014-01-23 The General Hospital Corporation Methods for tissue passivation
US10549112B2 (en) 2012-07-20 2020-02-04 The General Hospital Corporation Apparatus for tissue irradiation and methods and kits utilizing the same
WO2014145179A1 (en) * 2013-03-15 2014-09-18 The General Hospital Corporation Apparatus for tissue irradiation and methods and kits utilizing the same
AU2014290513B2 (en) 2013-07-18 2017-07-27 The General Hospital Corporation Vessel treatment systems, methods, and kits
DE102015225400A1 (en) * 2015-12-16 2017-06-22 Vimecon Gmbh Swiveling ablation catheter
CN107376132B (en) * 2017-07-17 2020-02-04 尚华 Novel optical fiber catheter and preparation method thereof
CN107213554B (en) * 2017-07-17 2019-11-19 尚华 A kind of liquid light conduction device of intervention

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940830A (en) * 1982-08-31 1984-03-06 浜松ホトニクス株式会社 Apparatus for diagnosis of cancer using laser beam pulse
JPS63111886A (en) * 1986-10-29 1988-05-17 呉羽化学工業株式会社 Cancer remedy apparatus using optical diode
US5346670A (en) * 1986-12-24 1994-09-13 British Technology Group U.S.A. Inc. Phthalocyanine and tetrabenztriazaporphyrin reagents
US4973848A (en) * 1989-07-28 1990-11-27 J. Mccaughan Laser apparatus for concurrent analysis and treatment
US5034613A (en) * 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
US5576013A (en) * 1995-03-21 1996-11-19 Eastern Virginia Medical School Treating vascular and neoplastic tissues
IT1275571B (en) * 1995-07-19 1997-08-07 Consiglio Nazionale Ricerche FLUOROGENIC SUBSTRATES SUSCEPTIBLE FOR PHOTOACTIVATION AFTER ENZYMATIC TRANSFORMATION SUITABLE FOR DIAGNOSIS AND PHOTODYNAMIC CANCER THERAPY
US5797868A (en) * 1996-07-25 1998-08-25 Cordis Corporation Photodynamic therapy balloon catheter
US5814008A (en) * 1996-07-29 1998-09-29 Light Sciences Limited Partnership Method and device for applying hyperthermia to enhance drug perfusion and efficacy of subsequent light therapy
US5829448A (en) 1996-10-30 1998-11-03 Photogen, Inc. Method for improved selectivity in photo-activation of molecular agents
US20010003800A1 (en) * 1996-11-21 2001-06-14 Steven J. Frank Interventional photonic energy emitter system
US5827269A (en) * 1996-12-31 1998-10-27 Gynecare, Inc. Heated balloon having a reciprocating fluid agitator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502673A (en) * 2008-09-17 2012-02-02 ルメラ レーザー ゲーエムベーハー Laser processing apparatus and method for processing biological tissue
JP2015530202A (en) * 2012-10-08 2015-10-15 ウニヴェルジテート ライプチッヒ Device for treating the sclera
US9889041B2 (en) 2012-10-08 2018-02-13 Universitat Leipzig Device for a medical treatment of a sclera

Also Published As

Publication number Publication date
AU750633B2 (en) 2002-07-25
CA2339384C (en) 2008-07-08
CN1317952A (en) 2001-10-17
HK1039555B (en) 2004-05-07
MXPA01001336A (en) 2002-04-24
CA2339384A1 (en) 2000-02-17
TW396030B (en) 2000-07-01
BR9912773A (en) 2001-10-16
CN1132557C (en) 2003-12-31
AU5391799A (en) 2000-02-28
HK1039555A1 (en) 2002-05-03
KR20010072307A (en) 2001-07-31
AR021750A1 (en) 2002-08-07
EP1109506A1 (en) 2001-06-27
WO2000007515A1 (en) 2000-02-17
EP1109506A4 (en) 2009-09-09
IL141273A0 (en) 2002-03-10

Similar Documents

Publication Publication Date Title
JP2002522111A (en) Improved method of targeted local treatment of disease
Houthoofd et al. Photodynamic therapy for atherosclerosis. The potential of indocyanine green
US7767208B2 (en) Noninvasive vascular therapy
Qumseya et al. Photodynamic therapy for Barrett's esophagus and esophageal carcinoma
Kinsella et al. Photodynamic therapy in oncology
US6058937A (en) Photodynamic Therapy of highly vascularized tissue
US7018395B2 (en) Photodynamic treatment of targeted cells
US20030114434A1 (en) Extended duration light activated cancer therapy
WO2002007630A1 (en) Treatment for epithelial diseases
US20040147501A1 (en) Photodynamic therapy
EP1341464A1 (en) Treatment for epithelial diseases
Marcus et al. Photodynamic therapy systems and applications
Protti et al. Targeting photochemical scalpels or lancets in the photodynamic therapy field—the photochemist's role
Herman et al. Tumor blood-flow changes following protoporphyrin IX-based photodynamic therapy in mice and humans
Van den Boogert et al. Fractionated illumination for oesophageal ALA-PDT: effect on blood flow and PpIX formation
Solban et al. Targeted optical imaging and photodynamic therapy
Gossner et al. Photodynamic therapy of gastric cancer
Spinelli et al. Endoscopic photodynamic therapy: clinical aspects
Stepp et al. Low dose mTHPC photodynamic therapy for cholangiocarcinoma
Johansson et al. Photodynamic Therapy–the Quest for Improved Dosimetry in the Management of Solid Tumors
Gross et al. The use of photodynamic therapy for diseases of the esophagus
Solban et al. The need for optical imaging in the understanding and optimization of photodynamic therapy
Solban et al. Optical imaging in photodynamic therapy: mechanisms and applications
Matin et al. Current Status of Photodynamic Therapy for Renal Tumors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080917

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324