JP2002522000A - Backup power generator operated by pressure air - Google Patents

Backup power generator operated by pressure air

Info

Publication number
JP2002522000A
JP2002522000A JP2000562988A JP2000562988A JP2002522000A JP 2002522000 A JP2002522000 A JP 2002522000A JP 2000562988 A JP2000562988 A JP 2000562988A JP 2000562988 A JP2000562988 A JP 2000562988A JP 2002522000 A JP2002522000 A JP 2002522000A
Authority
JP
Japan
Prior art keywords
pressure air
pressure
engine
generator
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000562988A
Other languages
Japanese (ja)
Inventor
ギ ネーグル
シリル ネーグル
Original Assignee
ギ ネーグル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9529224&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002522000(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ギ ネーグル filed Critical ギ ネーグル
Publication of JP2002522000A publication Critical patent/JP2002522000A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Wind Motors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

(57)【要約】 本発明は、エンジンコンプレッサを駆動して高圧ストレージタンクにプレッシャエアを高圧で蓄え、あるいはプレッシャエアの働きでエンジンコンプレッサにより駆動されるエンジンオルタネータを装備した、プレッシャエアをエネルギーとして使用する補助パワーユニットに係る。本発明は固定式補助パワーユニット、または移動式補助パワーユニットに適用可能である。 (57) [Abstract] The present invention drives an engine compressor to store pressure air at high pressure in a high-pressure storage tank, or equips an engine alternator driven by the engine compressor by the action of pressure air, using pressure air as energy. Related to the auxiliary power unit used. The present invention is applicable to a fixed auxiliary power unit or a mobile auxiliary power unit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は、プレッシャエアで動作するバックアップ用発電装置に関する。 The present invention relates to a backup power generator that operates on pressure air.

【0002】[0002]

【従来の技術】[Prior art]

従来の発電装置は主に、ガソリン、ディーゼル、またはその他のガスで動作す
る燃焼エンジンにより駆動され、作動時には電力を生成するオルタネータから構
成されていた。
Conventional power generators have primarily been comprised of alternators that are driven by a combustion engine that operates on gasoline, diesel, or other gas, and that when activated generate electricity.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be solved by the invention]

上述のエンジンは、特に騒音、公害を発生し、高価なエネルギーを消費する。
高価なエネルギーは補充する必要がある。
The above-mentioned engines generate in particular noise, pollution and consume expensive energy.
Expensive energy needs to be replenished.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本発明者は、特に車両エンジンまたはその他の用途に、プレッシャエアをエネ
ルギーの蓄積として使用したものについて、公開番号WO96/27737、W
O97/48884、WO98/12062、WO98/15440を特許出願
している。
The inventor of the present application has published a publication number WO 96/27737, W, especially for those using pressure air as an energy storage, especially for vehicle engines or other applications.
O97 / 48884, WO98 / 12062 and WO98 / 15440 have been filed as patent applications.

【0005】 本発明に係る発電装置は、プレッシャエアを使用して発電装置を動作している
ために、発電装置に燃料を供給することに関連する問題を解決している。本発明
に係る発電装置は、プレッシャエアエンジンモードまたはコンプレッサモードの
いずれかで動作する切り替え可能なプレッシャエアエンジンと、発電器、すなわ
ちエンジン発電器として作動することができる切り替え可能な電動モータと、ス
トレージリザーバまたはリザーバと、から構成されている。本エンジン発電器は
前記プレッシャエアエンジンがプレッシャエアエンジンモードでプレッシャエア
エンジンとして動作するとき、前記電動モータは前記プレッシャエアエンジンに
より駆動されて発電器、すなわちエンジン発電器として作動し、前記プレッシャ
エアエンジンがコンプレッサモードでプレッシャエアエンジンコンプレッサとし
て動作するとき、前記電動モータは電動モータモードとなり給電網からエネルギ
ーを受け取り、前記プレッシャエアエンジンコンプレッサを駆動して一つ以上の
高圧プレッシャエアリザーバ、すなわち前記ストレージリザーバまたはリザーバ
、を充填して満杯に保つように作動する。電力の供給が遮断されたとき、前記電
動モータは自動的に発電器モードに切り替わり、前記プレッシャエアエンジンコ
ンプレッサは自動的にプレッシャエアエンジンモードに切り替わり、前記ストレ
ージリザーバまたはリザーバに蓄積されたプレッシャエアをエネルギーとして、
自動的に発電器モードに切り替わった前記電動モータを駆動して、電力を供給す
る。
[0005] The power generator according to the present invention solves the problems associated with supplying fuel to the power generator because the power generator operates using pressure air. A power generating device according to the present invention comprises a switchable pressure air engine operating in either a pressure air engine mode or a compressor mode, a switchable electric motor operable as a generator, ie, an engine generator, and a storage device. And a reservoir or a reservoir. When the pressure air engine operates as a pressure air engine in the pressure air engine mode, the electric motor is driven by the pressure air engine to operate as a generator, i.e., an engine generator, and the engine generator includes the pressure air engine. When operating as a pressure air engine compressor in compressor mode, the electric motor is in electric motor mode and receives energy from a power grid and drives the pressure air engine compressor to drive one or more high pressure pressure air reservoirs, i.e., the storage reservoir. Alternatively, the reservoir is actuated to fill and keep it full. When the power supply is cut off, the electric motor automatically switches to the generator mode, the pressure air engine compressor switches automatically to the pressure air engine mode, and stores the pressure air stored in the storage reservoir or reservoir. As energy
The electric motor which is automatically switched to the generator mode is driven to supply electric power.

【0006】 動作モードの切り替えは、電気機械的装置、電子装置、またはその他の装置に
より制御される。
The switching of the operation mode is controlled by an electromechanical device, an electronic device, or another device.

【0007】 一つの好ましい実施の形態として、本発明に係るバックアップ発電装置は、フ
ランス国特許出願97/00851において本発明者が開示した周囲から熱エネ
ルギーを回収するシステムから構成される。フランス国特許出願97/0085
1に開示された周囲から熱エネルギーを回収するシステムは、ストレージリザー
バに超高圧、例えば200バールで、常温、例えば20℃で蓄積されているプレ
ッシャエアが、機械的方法、電気的方法、油圧的方法またはその他の周知の方法
を使用して動力を回収することができる仕事を発生する、容積が変化するシステ
ム、すなわち可容システム、例えばシリンダ内を摺動するピストンにより、最終
用途に必要な圧力に近い圧力に減圧されてから、最終用途であるエンジンコンプ
レッサに例えば30バール以下の圧力で送られることを特徴としている。この仕
事を伴う減圧工程はプレッシャエアを結果的に動作圧力に近い圧力まで減圧する
とともにプレッシャエアの温度を超低温、例えばマイナス100℃にまで冷却す
る。動作圧力まで減圧されて超低温になったプレッシャエアは熱交換器に送られ
、周囲の空気と熱を交換し、周囲温度に近い温度まで再び加熱され、圧力および
/または体積を増加し、大気からから熱エネルギーを回収する。
In one preferred embodiment, the backup generator according to the present invention comprises a system for recovering thermal energy from the surroundings disclosed by the present inventor in French patent application 97/00851. French patent application 97/0085
1 discloses a system for recovering thermal energy from the surroundings, which stores pressure air stored in a storage reservoir at an ultra-high pressure, for example, 200 bar, at room temperature, for example, at 20 ° C., by a mechanical method, an electrical method, or a hydraulic method. The pressure required for end use by a system of variable volume, i.e., a tolerable system, e.g., a piston that slides in a cylinder, that produces work that can recover power using any method or other known methods. And then sent to an end-use engine compressor at a pressure of, for example, 30 bar or less. This decompression step with work reduces the pressure air to a pressure close to the operating pressure and cools the pressure air to a very low temperature, for example, minus 100 ° C. The pressure air, reduced to operating pressure and brought to ultra-low temperature, is sent to a heat exchanger, which exchanges heat with the surrounding air, is reheated to a temperature close to the ambient temperature, increases pressure and / or volume, and Recovers thermal energy from

【0008】 もう一つの好ましい実施の形態として、本発明に係る方法で動作するエンジン
は、フランス国特許出願98/00877において本発明者が開示した加熱シス
テムから構成される。フランス国特許出願98/00877に開示された加熱シ
ステムにおいて本発明者は、エンジンの燃焼および/または膨張室に送り込まれ
る前に、ストレージリザーバから直接、またはエア−エア熱交換器を介して送ら
れてきたプレッシャエアを、燃焼室に送られる前にヒータを通過させ、そこで圧
力および/または体積を増加させてから燃焼および/または膨張室に送り込むこ
とにより、出力を一層向上させ、使用可能なエネルギーの量を増加させることを
可能にする方法を提案している。
[0008] In another preferred embodiment, the engine operating with the method according to the invention comprises a heating system disclosed by the present inventor in French patent application 98/00877. In the heating system disclosed in the French patent application 98/00877, the inventor sent from a storage reservoir directly or via an air-air heat exchanger before being fed into the combustion and / or expansion chamber of the engine. By passing the pressure air through a heater before being sent to the combustion chamber, where the pressure and / or volume is increased and then sent to the combustion and / or expansion chamber, the output is further improved and the available energy is increased. Have proposed ways to make it possible to increase the amount of.

【0009】 本バックアップ発電装置を都市ガスが供給されている建物で使用する場合、ヒ
ータには前記都市ガスを供給することが好ましい。
When the backup power generation device is used in a building to which city gas is supplied, it is preferable to supply the city gas to a heater.

【0010】 本発明に係るバックアップ発電装置は、ビルまたはその他の民間住宅に設置す
ることができる。さらに、本バックアップ発電装置を電力を動力とする移動装置
に取り付けた場合は、戸外に出かける前にリザーバを充填すればよい。
[0010] The backup power generator according to the present invention can be installed in a building or other private house. Further, when the present backup power generation device is mounted on a mobile device powered by electric power, the reservoir may be filled before going outdoors.

【0011】 本発明のその他の目的、利点および特徴は、添付の図面を参照して説明されて
いる複数の実施の形態の記載を読むことにより明らかになるが、これに限定され
るものではない。
Other objects, advantages and features of the present invention will become apparent on reading the description of several embodiments, which are described with reference to the accompanying drawings, but are not limited thereto. .

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

図は、本発明に係る発電装置の動作のブロックダイアグラムを表しており、電
動モータ発電器1は電気ケーブル2により給電網から電力を受け取り、電気ケー
ブル3により給電網に電力を供給する。電動モータ発電器1はコンプレッサモー
ドではトランスミッション4を駆動してパイプ7を介してエンジンコンプレッサ
5により高圧ストレージリザーバ6を充填し、プレッシャエアエンジンモードで
はストレージリザーバ6から、エアの圧力をエンジンコンプレッサの動作圧力と
ほぼ等しい圧力まで減圧し、エアの温度を大幅に下げることができる容積が変化
する装置により、仕事を伴って減圧されたプレッシャエアを受け取ったプレッシ
ャエアエンジン5によりトランスミッション4を介して駆動される。リザーバ6
に蓄積された高圧プレッシャエアの仕事を伴う減圧は、トランスミッション21
Aによりエンジンクランクシャフト18に連結したクランクシャフト18Cに直
接連結されたコネクティングロッド53と作業ピストン54とから構成されるア
センブリにより実行される。ピストン54はブラインドシリンダ55内を摺動し
、作業室35の動作を決定する。すなわち、電動バルブ38により開閉が制御さ
れる高圧エア吸気ダクト37と、パイプ42により最終用途圧力がほぼ一定の緩
衝部43に連結したエア−エア熱交換器またはラジエタ41に連結する排気ダク
ト39のどちらを開くかが決定される。動作時に作業ピストン54が上死点に位
置すると、電動バルブ38は開いてから再び閉じ、超高圧のプレッシャエアの塊
が作業室内に吸い込まれる。吸い込まれた超高圧のプレッシャエアの塊はシリン
ダ内で膨張し、ピストン54を下死点まで押し戻して仕事を発生し、クランクシ
ャフト18Cをコネクティングロッド53を介して駆動し、エンジンコンプレッ
サのクランクシャフト18をトランスミッション21Aを介して駆動する。ピス
トン54の上り行程時、電動排気バルブ40は開き、ほぼ動作圧力にまで減圧さ
れた作業室内の超低温のプレッシャエアはエア−エア交換器またはラジエタ41
に排気される(矢印Fの方向)。排気されたエアは周囲温度に近い温度まで加熱
されて、体積が増加し、大気から膨大な量のエネルギーを回収して緩衝部43に
入る。
The figure shows a block diagram of the operation of the power generating device according to the present invention, wherein an electric motor generator 1 receives power from a power supply network via an electric cable 2 and supplies power to the power supply network via an electric cable 3. In the compressor mode, the electric motor generator 1 drives the transmission 4 and fills the high-pressure storage reservoir 6 with the engine compressor 5 through the pipe 7. In the pressure air engine mode, the air pressure is supplied from the storage reservoir 6 to the operation of the engine compressor. The pressure is reduced to almost the same pressure as the pressure, and the temperature of the air can be greatly reduced. You. Reservoir 6
The decompression accompanying the work of the high-pressure pressure air accumulated in the transmission 21
A is performed by an assembly consisting of a connecting rod 53 and a working piston 54 directly connected to a crankshaft 18C connected to the engine crankshaft 18 by A. The piston 54 slides in the blind cylinder 55 and determines the operation of the working chamber 35. That is, a high-pressure air intake duct 37 whose opening and closing are controlled by an electric valve 38, and an air-air heat exchanger or an exhaust duct 39 connected to a radiator 41 connected to a buffer 43 having a substantially constant end use pressure by a pipe 42. Which one to open is determined. When the working piston 54 is located at the top dead center during operation, the electric valve 38 opens and closes again, and a block of pressure air having a very high pressure is sucked into the working chamber. The sucked ultra-high pressure pressure air mass expands in the cylinder, pushes the piston 54 back to the bottom dead center to generate work, and drives the crankshaft 18C via the connecting rod 53 to cause the crankshaft 18 of the engine compressor to rotate. Is driven via the transmission 21A. During the upward stroke of the piston 54, the electric exhaust valve 40 is opened, and the ultra-low pressure air in the working chamber, which has been reduced to almost the operating pressure, is supplied to the air-air exchanger or the radiator 41.
(In the direction of arrow F). The exhausted air is heated to a temperature close to the ambient temperature, the volume increases, and an enormous amount of energy is recovered from the atmosphere and enters the buffer unit 43.

【0013】 エア−エア熱交換器41と緩衝部43の間のパイプ42にはバーナー57か
ら構成される熱ヒータ56が取り付けられており、エア−エア熱交換器41から
送られてくるプレッシャエア(矢印Fの方向)は熱交換器コイル58を通過する
と温度が著しく増加し、従って圧力および/または体積もまた著しく増加する。
A heat heater 56 composed of a burner 57 is attached to the pipe 42 between the air-air heat exchanger 41 and the buffer 43, and the pressure air sent from the air-air heat exchanger 41 As the temperature (in the direction of arrow F) passes through the heat exchanger coil 58, the temperature increases significantly, and thus the pressure and / or volume also increases significantly.

【0014】 モードの切り替え、エンジン発電器およびエンジンコンプレッサのタイプ、ス
トレージリザーバの設計、および容積については当然のことながら、上記の本発
明の原則を変更することなく、周知または未知の方法を採用することができる。
The mode switching, the type of engine generator and engine compressor, the design of the storage reservoir, and the volume, of course, employ known or unknown methods without altering the principles of the invention described above. be able to.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年7月13日(2000.7.13)[Submission date] July 13, 2000 (2000.7.13)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】[0003]

【発明が解決しようとする課題】 上述のエンジンは、特に騒音、公害を発生し、高価なエネルギーを消費する。
高価なエネルギーは補充する必要がある。プレッシャエアをエネルギーの蓄積と
して使用したシステムについては、米国特許5296799に記載されているが
、エアコンプレッサ、プレッシャエアエンジン、オルタネータ、電動モータなど
多くの部品が係っており複雑である。
The above-described engine generates noise, pollution, and consumes expensive energy.
Expensive energy needs to be replenished . Pressure air with energy storage
The system used as described in US Pat. No. 5,296,799 is described.
, Air compressor, pressure air engine, alternator, electric motor, etc.
Many parts are involved and complicated.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】[0012]

【発明の実施の形態】 図は、本発明に係る発電装置の動作のブロックダイアグラムを表しており、電
動モータ発電器1は電気ケーブル2により給電網から電力を受け取り、電気ケー
ブル3により給電網に電力を供給する。電動モータ発電器1はコンプレッサモー
ドではトランスミッション4を駆動してパイプ7を介してエンジンコンプレッサ
5により高圧ストレージリザーバ6を充填し、プレッシャエアエンジンモードで
はストレージリザーバ6から、エアの圧力をエンジンコンプレッサの動作圧力と
ほぼ等しい圧力まで減圧し、エアの温度を大幅に下げることができる容積が変化
する装置により、仕事を伴って減圧されたプレッシャエアを受け取ったプレッシ
ャエアエンジン5によりトランスミッション4を介して駆動される。リザーバ6
に蓄積された高圧プレッシャエアの仕事を伴う減圧は、トランスミッション21
Aによりエンジンクランクシャフト18に連結したクランクシャフト18Cに直
接連結されたコネクティングロッド53と作業ピストン54とから構成されるア
センブリにより実行される。ピストン54はブラインドシリンダ55内を摺動し
、作業室35の動作を決定する。すなわち、電動バルブ38により開閉が制御さ
れる高圧エア吸気ダクト37と、パイプ42により最終用途圧力がほぼ一定の緩
衝部43に連結したエア−エア熱交換器またはラジエタ41に連結する排気ダク
ト39のどちらを開くかが決定される。緩衝部43には断熱部43Aが取り付け
られている。動作時に作業ピストン54が上死点に位置すると、電動バルブ38
は開いてから再び閉じ、超高圧のプレッシャエアの塊が作業室内に吸い込まれる
。吸い込まれた超高圧のプレッシャエアの塊はシリンダ内で膨張し、ピストン5
4を下死点まで押し戻して仕事を発生し、クランクシャフト18Cをコネクティ
ングロッド53を介して駆動し、エンジンコンプレッサのクランクシャフト18
をトランスミッション21Aを介して駆動する。ピストン54の上り行程時、電
動排気バルブ40は開き、ほぼ動作圧力にまで減圧された作業室内の超低温のプ
レッシャエアはエア−エア交換器またはラジエタ41に排気される(矢印Fの方
向)。排気されたエアは周囲温度に近い温度まで加熱されて、体積が増加し、大
気から膨大な量のエネルギーを回収して緩衝部43に入る。
FIG. 1 shows a block diagram of the operation of a power generator according to the invention, in which an electric motor generator 1 receives power from a power supply network by means of an electric cable 2 and connects it to the power supply network by means of an electric cable 3. Supply power. In the compressor mode, the electric motor generator 1 drives the transmission 4 and fills the high-pressure storage reservoir 6 with the engine compressor 5 through the pipe 7. In the pressure air engine mode, the air pressure is supplied from the storage reservoir 6 to the operation of the engine compressor. The pressure is reduced to almost the same pressure as the pressure, and the temperature of the air can be greatly reduced. You. Reservoir 6
The decompression accompanying the work of the high-pressure pressure air accumulated in the transmission 21
A is performed by an assembly consisting of a connecting rod 53 and a working piston 54 directly connected to a crankshaft 18C connected to the engine crankshaft 18 by A. The piston 54 slides in the blind cylinder 55 and determines the operation of the working chamber 35. That is, a high-pressure air intake duct 37 whose opening and closing are controlled by an electric valve 38, and an air-air heat exchanger or an exhaust duct 39 connected to a radiator 41 connected to a buffer 43 having a substantially constant end use pressure by a pipe 42. Which one to open is determined . A heat insulating part 43A is attached to the buffer part 43.
Have been. When working piston 54 during operation is located at the top dead center, the electric valve 38
Opens and closes again, causing a block of ultra-high pressure air to be sucked into the working chamber. The sucked ultra-high pressure air mass expands in the cylinder and the piston 5
4 is pushed back to the bottom dead center to generate work, and the crankshaft 18C is driven via the connecting rod 53, and the crankshaft 18 of the engine compressor is driven.
Is driven via the transmission 21A. During the upward stroke of the piston 54, the electric exhaust valve 40 is opened, and the ultra-low pressure air in the working chamber, which has been reduced to almost the operating pressure, is exhausted to the air-air exchanger or the radiator 41 (in the direction of arrow F). The exhausted air is heated to a temperature close to the ambient temperature, increases in volume, recovers an enormous amount of energy from the atmosphere, and enters the buffer 43.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AE,AL,AM,AT,AU,AZ,BA ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GD,G E,GH,GM,HR,HU,ID,IL,IN,IS ,JP,KE,KG,KP,KR,KZ,LC,LK, LR,LS,LT,LU,LV,MD,MG,MK,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,SL,TJ,TM, TR,TT,UA,UG,US,UZ,VN,YU,Z A,ZW Fターム(参考) 5G015 GA15 GA17 JA64 KA12 5H590 AA06 AA30 CA30 CC40 CE02 EA10 FA01 FA05 HA15 ──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR , BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS , JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZWF terms (reference) 5G015 GA15 GA17 JA64 KA12 5H590 AA06 AA30 CA30 CC40 CE02 EA10 FA01 FA05 HA15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プレッシャエアエンジンモードまたはコンプレッサモードのいずれかで動作す
る切り替え可能なプレッシャエアエンジン(1)と、発電器、すなわちエンジン
発電器として作動することができる切り替え可能な電動モータ(5)と、ストレ
ージリザーバまたはリザーバ(6)と、から構成されるバックアップ発電装置に
おいて、前記プレッシャエアエンジンがプレッシャエアエンジンモードでプレッ
シャエアエンジンとして動作するとき、前記電動モータは前記プレッシャエアエ
ンジンにより駆動されて発電器、すなわちエンジン発電器として作動し、前記プ
レッシャエアエンジンがコンプレッサモードでプレッシャエアエンジンコンプレ
ッサとして動作するとき、前記電動モータは電動モータモードとなり給電網から
エネルギーを受け取り、前記プレッシャエアエンジンコンプレッサを駆動し、一
つ以上の高圧プレッシャエアリザーバ、すなわち前記ストレージリザーバまたは
リザーバ、を充填して満杯に保つように作動し、電力の供給が遮断されたとき、
前記電動モータは自動的に発電器モードに切り替わり、前記プレッシャエアエン
ジンコンプレッサは自動的にプレッシャエアエンジンモードに切り替わり、前記
ストレージリザーバまたはリザーバに蓄積されたプレッシャエアをエネルギーと
して、自動的に発電器モードに切り替わった前記電動モータを駆動して、バック
アップの電力を供給することを特徴とする蓄積したプレッシャエアにより動作す
るバックアップ発電装置。
1. A switchable pressure air engine (1) operating in either a pressure air engine mode or a compressor mode, and a switchable electric motor (5) operable as a generator, ie, an engine generator. And a storage reservoir or a reservoir (6), wherein the electric motor is driven by the pressure air engine when the pressure air engine operates as a pressure air engine in the pressure air engine mode. When the pressure air engine operates as a generator, i.e., an engine generator, and operates as a pressure air engine compressor in the compressor mode, the electric motor is in the electric motor mode, and energy is supplied from the power supply network. Operating the pressure air engine compressor to fill and maintain one or more high pressure air reservoirs, i.e., the storage reservoir or reservoir, when power is interrupted;
The electric motor is automatically switched to the generator mode, the pressure air engine compressor is automatically switched to the pressure air engine mode, and the pressure in the storage reservoir or the reservoir is automatically used as energy to automatically generate the generator mode. A backup power generator that operates with accumulated pressure air by driving the electric motor that has been switched over to supply backup power.
【請求項2】 高圧ストレージリザーバ(6)に蓄積されているプレッシャエアは、前記プレ
ッシャエアエンジンコンプレッサに送られる前に、仕事を発生して減圧され、温
度を下げてから熱交換器(41)に送られて周囲のエアにより再び加熱されて温
度および/または体積を増加し、周囲の熱エネルギーを吸収することを特徴とす
る請求項1記載のバックアップ発電装置。
2. The pressure air stored in the high-pressure storage reservoir (6) generates work before being sent to the pressure air engine compressor, is decompressed, reduces the temperature, and then reduces the temperature of the heat exchanger (41). 2. The backup power generation device according to claim 1, wherein the backup power generation device is further heated by the surrounding air and increased in temperature and / or volume to absorb surrounding heat energy.
【請求項3】 高圧ストレージリザーバに蓄積されているプレッシャエアは、前記プレッシャ
エアエンジンコンプレッサに送られる前に、直接、またはエア−エア熱交換器を
通過してから熱ヒータ(56)を介してさらに圧力および/または体積を増加す
ることを特徴とする請求項1記載のバックアップ発電装置。
3. The pressure air stored in the high pressure storage reservoir is passed directly to the pressure air engine compressor or through a heat heater (56) after passing through an air-air heat exchanger before being sent to the pressure air engine compressor. 2. The backup power generator according to claim 1, further comprising increasing pressure and / or volume.
【請求項4】 前記熱ヒータが都市ガスをエネルギーとして使用することを特徴とする請求項
3記載のバックアップ発電装置。
4. The backup power generator according to claim 3, wherein the heat heater uses city gas as energy.
【請求項5】 ストレージリザーバおよび関連部品を含む全発電装置が車両に搭載されており
、戸外で使用することが可能であることを特徴とする請求項1から請求項4のい
ずれかに記載のバックアップ発電装置。
5. The vehicle according to claim 1, wherein the entire power generation device including the storage reservoir and related components is mounted on the vehicle and can be used outdoors. Backup power generator.
JP2000562988A 1998-07-27 1999-07-27 Backup power generator operated by pressure air Pending JP2002522000A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR98/09799 1998-07-27
FR9809799A FR2781619B1 (en) 1998-07-27 1998-07-27 COMPRESSED AIR BACKUP GENERATOR
PCT/FR1999/001834 WO2000007278A1 (en) 1998-07-27 1999-07-27 Auxiliary power unit using compressed air

Publications (1)

Publication Number Publication Date
JP2002522000A true JP2002522000A (en) 2002-07-16

Family

ID=9529224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000562988A Pending JP2002522000A (en) 1998-07-27 1999-07-27 Backup power generator operated by pressure air

Country Status (21)

Country Link
US (1) US6327858B1 (en)
EP (1) EP1121742A1 (en)
JP (1) JP2002522000A (en)
KR (1) KR100868559B1 (en)
CN (1) CN1311915A (en)
AP (1) AP2001002048A0 (en)
AU (1) AU4917199A (en)
CA (1) CA2338158A1 (en)
EA (1) EA200100175A1 (en)
FR (1) FR2781619B1 (en)
HU (1) HUP0103136A3 (en)
IL (2) IL140934A0 (en)
MA (1) MA24938A1 (en)
NZ (1) NZ510220A (en)
OA (1) OA11641A (en)
PL (1) PL345707A1 (en)
SK (1) SK1282001A3 (en)
TR (1) TR200100285T2 (en)
TW (1) TW456092B (en)
WO (1) WO2000007278A1 (en)
YU (1) YU5601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501026A (en) * 2007-10-19 2011-01-06 サイペム エス.アー. Electric energy storage and recovery system using piston type gas compression and expansion unit and electric energy storage and recovery method
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
JP2013542367A (en) * 2010-10-04 2013-11-21 モーター・デベロップメント・インターナショナル・エス.エー. Single energy and / or dual energy engine with compressed air and / or additional energy having an active chamber contained in a cylinder
JP2014185640A (en) * 2009-06-29 2014-10-02 Lightsail Energy Inc Compressed-air energy conservation system using two-phase flow that facilitates heat exchange

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831598A1 (en) 2001-10-25 2003-05-02 Mdi Motor Dev Internat COMPRESSOR COMPRESSED AIR-INJECTION-MOTOR-GENERATOR MOTOR-GENERATOR GROUP OPERATING IN MONO AND PLURI ENERGIES
KR100440390B1 (en) * 2001-12-26 2004-07-14 한국전기연구원 Isolated Power Supply Using Compressed Air
FR2837530B1 (en) 2002-03-21 2004-07-16 Mdi Motor Dev Internat INDIVIDUAL COGENERATION GROUP AND PROXIMITY NETWORK
US7669419B2 (en) * 2002-12-07 2010-03-02 Energetix Group Limited Electrical power supply system
US7272932B2 (en) * 2002-12-09 2007-09-25 Dresser, Inc. System and method of use of expansion engine to increase overall fuel efficiency
US7335999B2 (en) * 2004-06-15 2008-02-26 Honeywell International, Inc. Fluid actuated rotating device including a low power generator
US7446440B2 (en) * 2005-02-03 2008-11-04 Miodrag Mihajlovic Permanent magnet flux module reciprocating engine and method
US7926610B2 (en) * 2006-03-24 2011-04-19 Manoucher Adli Hot compressed gas vehicle
KR100792790B1 (en) * 2006-08-21 2008-01-10 한국기계연구원 Compressed air energy storage generation system and power generation method using it
US7461626B2 (en) * 2006-12-21 2008-12-09 Ford Global Technologies, Llc Powertrain including a rotary IC engine and a continuously variable planetary gear unit
EP1942279A1 (en) * 2007-01-08 2008-07-09 Siemens Aktiengesellschaft Method for operating a compressor assembly and compressor assembly
EP2220343B8 (en) * 2007-10-03 2013-07-24 Isentropic Limited Energy storage apparatus and method for storing energy
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) * 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US7789181B1 (en) 2008-08-04 2010-09-07 Michael Moses Schechter Operating a plug-in air-hybrid vehicle
ES2374011B1 (en) * 2008-10-01 2012-09-18 Emilio Ramos Quirosa FEEDBACK POWER GENERATOR DEVICE.
KR101033326B1 (en) * 2008-11-18 2011-05-09 현대자동차주식회사 Cooling Device For Self Generation Of Large-sized Vehicles
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
WO2011019587A1 (en) * 2009-08-10 2011-02-17 Advanced Air Innovations Llc High-efficiency pneumatic drive motor system
US20110049899A1 (en) * 2009-08-26 2011-03-03 Colin Hoffman Air or liquid-driven alternator and electrical generator
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US9475394B2 (en) 2010-06-16 2016-10-25 Hb Spider Llc Compressed air engine
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
WO2012158781A2 (en) 2011-05-17 2012-11-22 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US20130091836A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
WO2014160270A1 (en) * 2013-03-14 2014-10-02 Leed Fabrication Services, Inc. Methods and devices for drying hydrocarbon containing gas
US9221656B2 (en) * 2013-08-07 2015-12-29 Ingersoll-Rand Company Braking systems for pneumatic hoists
CN104454228B (en) * 2013-10-30 2016-06-01 摩尔动力(北京)技术股份有限公司 External internal combustion piston oil engine
RO130266B1 (en) * 2014-05-13 2016-09-30 Gabriel Folea Compressed-air engine
US11667206B2 (en) * 2021-07-02 2023-06-06 Universal Power & Pneumatics, Llc Modular charging and power system
US20230271510A1 (en) * 2021-07-02 2023-08-31 Universal Power & Pneumatics, Llc Modular charging and power system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2363103A1 (en) * 1973-12-19 1975-06-26 Helmut Mueller Heating and emergency current generation appts. - comprises gas heater, gas engine, generator, gas compressor and heating bodies
US4347706A (en) * 1981-01-07 1982-09-07 The United States Of America As Represented By The United States Department Of Energy Electric power generating plant having direct coupled steam and compressed air cycles
JPS5815702A (en) * 1981-07-21 1983-01-29 Mitsui Eng & Shipbuild Co Ltd Hot water storage electricity generation equipment
US4942736A (en) * 1988-09-19 1990-07-24 Ormat Inc. Method of and apparatus for producing power from solar energy
US5296799A (en) * 1992-09-29 1994-03-22 Davis Emsley A Electric power system
JPH0742573A (en) * 1993-07-30 1995-02-10 Mitsubishi Heavy Ind Ltd Compressed air energy storage type power leveling system
IL108546A (en) * 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
FR2758589B1 (en) * 1997-01-22 1999-06-18 Guy Negre PROCESS AND DEVICE FOR RECOVERING AMBIENT THERMAL ENERGY FOR VEHICLE EQUIPPED WITH DEPOLLUTE ENGINE WITH ADDITIONAL COMPRESSED AIR INJECTION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501026A (en) * 2007-10-19 2011-01-06 サイペム エス.アー. Electric energy storage and recovery system using piston type gas compression and expansion unit and electric energy storage and recovery method
JP2014185640A (en) * 2009-06-29 2014-10-02 Lightsail Energy Inc Compressed-air energy conservation system using two-phase flow that facilitates heat exchange
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
JP2013542367A (en) * 2010-10-04 2013-11-21 モーター・デベロップメント・インターナショナル・エス.エー. Single energy and / or dual energy engine with compressed air and / or additional energy having an active chamber contained in a cylinder

Also Published As

Publication number Publication date
TR200100285T2 (en) 2001-07-23
EA200100175A1 (en) 2001-08-27
IL140934A (en) 2009-05-04
WO2000007278A1 (en) 2000-02-10
US6327858B1 (en) 2001-12-11
FR2781619B1 (en) 2000-10-13
CN1311915A (en) 2001-09-05
FR2781619A1 (en) 2000-01-28
KR100868559B1 (en) 2008-11-13
YU5601A (en) 2003-01-31
MA24938A1 (en) 2000-04-01
NZ510220A (en) 2003-02-28
PL345707A1 (en) 2002-01-02
KR20010072051A (en) 2001-07-31
AP2001002048A0 (en) 2001-03-31
AU4917199A (en) 2000-02-21
HUP0103136A3 (en) 2002-04-29
SK1282001A3 (en) 2001-09-11
CA2338158A1 (en) 2000-02-10
HUP0103136A2 (en) 2001-12-28
EP1121742A1 (en) 2001-08-08
IL140934A0 (en) 2002-02-10
TW456092B (en) 2001-09-21
OA11641A (en) 2004-11-22

Similar Documents

Publication Publication Date Title
JP2002522000A (en) Backup power generator operated by pressure air
JP5001421B2 (en) Engine with active mono-energy and / or bi-energy chamber with compressed air and / or additional energy and its thermodynamic cycle
KR100699602B1 (en) Method and device for additional thermal heating for motor vehicle equipped with pollution-free engine with additional compressed air injection
KR20000070403A (en) Method and Device for Recuperating Ambient Thermal Energy for Vehicle Equipped with an Pollution-Free Engine with Secondary Compressed Air
US6516615B1 (en) Hydrogen engine apparatus with energy recovery
PL179396B1 (en) Method of and system for reducing emission of toxic substances by cyclic-operation internal combustion engines with independent combustion chamber
US20040261415A1 (en) Motor-driven compressor-alternator unit with additional compressed air injection operating with mono and multiple energy
US20070068712A1 (en) Hybrid Electric Vehicle
MX2009001541A (en) Improved compressed-air or gas and/or additional-energy engine having an active expansion chamber.
JP2002517654A (en) Apparatus and method for a secondary pressure air injection engine operating on single or dual energy in two or three power modes
JPH10504866A (en) Turbocharged internal combustion engine device
KR20010022655A (en) Method for starting an internal combustion engine
US6390785B1 (en) High efficiency booster for automotive and other applications
RU2214525C2 (en) Method of operation of power plant with piston internal combustion engine (versions) and power plant for implementing the method
GB2396664A (en) Extended cycle reciprocating Ericsson cycle engine
MXPA01000901A (en) Auxiliary power unit using compressed air
CZ2001318A3 (en) Compressed air-operated generator set
JP5628672B2 (en) Energy conversion supply device
Amann Past experiences with automotive external combustion engines
FR3046629A1 (en) METHODS AND SYSTEMS FOR POWER SUPPLY IN A MOTOR VEHICLE