EP1942279A1 - Method for operating a compressor assembly and compressor assembly - Google Patents

Method for operating a compressor assembly and compressor assembly Download PDF

Info

Publication number
EP1942279A1
EP1942279A1 EP07000271A EP07000271A EP1942279A1 EP 1942279 A1 EP1942279 A1 EP 1942279A1 EP 07000271 A EP07000271 A EP 07000271A EP 07000271 A EP07000271 A EP 07000271A EP 1942279 A1 EP1942279 A1 EP 1942279A1
Authority
EP
European Patent Office
Prior art keywords
compressor
turbine
power
gemo
electrodynamic machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07000271A
Other languages
German (de)
French (fr)
Inventor
Ulrich Schwulera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07000271A priority Critical patent/EP1942279A1/en
Priority to US12/522,291 priority patent/US20100215512A1/en
Priority to EP07857857A priority patent/EP2122179A1/en
Priority to CN2007800494936A priority patent/CN101663488B/en
Priority to CA002674584A priority patent/CA2674584A1/en
Priority to PCT/EP2007/064236 priority patent/WO2008083902A1/en
Publication of EP1942279A1 publication Critical patent/EP1942279A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven

Definitions

  • the invention relates to a method for operating a compressor arrangement, in particular a pipeline compressor station, which compressor arrangement has at least one turbine and at least one compressor.
  • the invention relates to a compressor arrangement for operation by the method according to the invention.
  • a related to the problem described above is the distribution of natural gas by means of a network of pipelines that is particularly difficult to operate in its meshed nature with simultaneous irregular distribution of consumers.
  • contracts determine the pressure range in which the amount of gas in standard cubic meters must be made available over a certain period of time.
  • the demand for gas here at the customer stations is so fluctuating that the promotion often reaches the technical limits and all capacities have to be prevented under all circumstances, that pressures fall below contracted limits.
  • a pipeline compressor station in this case makes fluctuating volume flows of 0-1,000,000 standard cubic meters / hour, whereby the drive of the compressor arrangement has to endure a drive power fluctuation of at least 65% -105%.
  • the compressors of the compressor assemblies are driven by gas turbines, which achieve their optimal efficiency under full load - ie at 100% rated power - and regularly have dramatic efficiency losses in the partial load range or overload.
  • the part-load range is also accompanied by additional undesirable emissions and a disproportionately high reduction in service life.
  • the object of the invention is to provide methods for operating compressor stations and a compressor station which has both good efficiency and good emission values in all load ranges, even under fluctuating load conditions.
  • an initially mentioned method is proposed according to the invention, in which an electrodynamic machine is in torque-transmitting connection with the compressor, wherein the turbine at a certain first turbine power has an efficiency maximum, wherein at a compressor power below the first turbine power the electrodynamic machine is operated as a generator and at a compressor power above the first turbine power, the electrodynamic machine is operated as a motor.
  • a compressor system is proposed with a turbine and a compressor, which are in torque-transmitting connection with each other, wherein an electrodynamic machine with the compressor in torque-transmitting connection, wherein the turbine is designed such that they at a certain first power a Efficiency reaches maximum, with a control provided and is designed such that it controls the power consumption and delivery of electrodynamic machine such that at a compressor power below the first power, the electrodynamic machine is operated as a generator and at a compressor power above the first power, the electrodynamic machine is operated as a motor.
  • variable use according to the invention of the electrodynamic machine makes it possible to operate the turbine, which is preferably designed as a gas turbine, in the partial load range or in the region of an overload always closer to the efficiency maximum, as is the case with conventional systems.
  • the entire system is always operated in close proximity to the maximum efficiency of the turbine or gas turbine, so that both the fuel consumption and the pollutant emission are minimal.
  • the electrodynamic machine is fed during operation as a motor from an electrical power supply network, in which it feeds the energy generated during operation as a generator, preferably with the interposition of a frequency converter again.
  • This way saves the operator on the one hand fuel for the operation and on the other hand emissions for emission rights.
  • this arrangement can handle higher peak loads due to the possibility to connect the electrodynamic machine as a motor.
  • a gas turbine which can be used, for example, between 4 and 8 MW, in combination with an electrodynamic machine according to the invention, which has 4 MW power, operate a compressor with a power between 0 and 12 MW drive power. If the turbine is only operated at an optimum efficiency of, for example, 7 MW, the margin is still between 3 MW and 11 MW drive power.
  • the inventive concept is suitable both for compressor systems which are operated at a constant speed and, for example, with a compactsleitapparat the compressor as well as for compressor systems with variable speed, with a frequency converter is regularly provided at the connection of the electrodynamic machine to the electrical power grid.
  • the turbine in particular in the case of a gas turbine by means of the electrodynamic machine for starting can also be brought to a corresponding speed, which makes a separate starter motor for the turbine unnecessary.
  • this is preferably designed in a pot construction and provided with non-continuous shaft, so that the electrodynamic machine are mounted only on one side of the compressor can.
  • the electrodynamic machine here is preferably equipped with a continuous shaft, so that either the turbine is directly connected to the free end or preferably a torque-transmitting operational arrangement is coupled to a free end of the independent turbine shaft.
  • This second shaft arrangement has particular advantages with regard to the use of standard modules and brings with it a suitable shaft dynamics.
  • the rotor dynamics is of particular importance, because a unified shaft train of turbine, electrodynamic machine and compressor due to the length of the arrangement would have a particularly complex rotor dynamics, in particular with respect to the bending vibrations.
  • FIG. 1 shows a gas distribution network 1, which extends over a certain territory 2 and has different interfaces 3 to neighboring areas.
  • standard volume flows U, V, W, X, Y, Z flow into the gas distribution network 1 of the territory 2 or out at respectively determined pressure levels.
  • the pressure level can for example be between 50 and 100 bar.
  • the gas distribution network 1 is a meshed network with several nodes 4. At various locations there are supplier withdrawals 5, at which gas of a certain individual pressure p1-p10 is taken from the gas distribution network 1. At the same time it is possible that storage feeds into the grid take place.
  • the pressure p1 - p10 can fluctuate within contracted limits, which are usually set between 50 and 100 bar.
  • Compressor arrangement arranged COAN with only a single example in FIG. 1 is drawn.
  • the task of the pipeline compressor station PCO which corresponds to the compressor installation COAN according to the invention, is to ensure the various standard volume flows and pressures at the supplier withdrawals 5.
  • the withdrawals can fluctuate greatly, in particular as a function of the season, as can the standard volume flows U, V, W, X, Y, Z at the interfaces 3 of the gas distribution network 1, so that operational situations which are difficult to predict for the pipeline compressor station PCO arise.
  • both the pressures p1-p10 and the standard volume flows U, V, W, X, Y, Z are subject to great fluctuations, for example fluctuations between 0 and 1,000,000 cubic meters / hour even when the conveying direction is reversed.
  • FIG. 2 shows a schematic representation of the pipeline compressor station PCO or a compressor arrangement COAN according to the invention FIG. 1 in detail, which is operated by means of the method according to the invention.
  • the compressor arrangement COAN according to the invention essentially comprises a gas turbine GT with a compressor COGT and a turbine GTGT, an electrodynamic machine according to the invention GeMo and a compressor Co.
  • the compressor Co is located with the electrodynamic machine GeMo on a first shaft line SH1.
  • the turbine compressor COGT is in common with the gas turbine turbine GTGT on a second shaft train SH2, which is connected to the first shaft train SH1 in FIG a torque-transmitting connection in the form of a transmission TR1 stands.
  • the compressor Co is designed in a pot construction, so that no continuous shaft is provided as part of the first shaft strand SH1 of the compressor Co.
  • the side of the compressor housing CoCs, from which no end of the shaft strand SH1 emerges, can be opened for maintenance, so that, for example, a not shown in detail impeller red can be changed with little time.
  • the electrodynamic machine GeMo is formed with a SHGeMo passing through a housing as part of the first shaft train SH1, so that at a first end of the shaft S1 of the electrodynamic machine GeMo the compressor Co is arranged and at a second end the transmission TR1.
  • the electro-dynamic machine GeMo is electrically connected to a frequency converter CONV, so that electrical energy generated by the electro-dynamic machine GeMo at different rotational frequencies can be fed into a connected electric power network ELN at the mains frequency of 50 Hz.
  • the frequency converter CONV is used to control the speed of the compressor drive by means of the electro-dynamic machine GeMo.
  • the compressor Co is connected to the gas distribution network 1 and allows the promotion of volume flows (standard volume flows U, V, W, X, Y, Z) as needed in one direction or in the opposite direction of a pipeline PL of the gas distribution network 1.
  • this arrangement CONV which also includes a conduit arrangement generally referred to as a "suspenders circuit", allows the gas to be conveyed by means of the unmodified compressor Co in one or the opposite other direction of the pipeline PL.
  • the inventive method for operating the pipeline compressor station PCO or the compressor assembly COAN provides that the gas turbine GT at a certain power P has a maximum efficiency ⁇ , as shown by the sketchy diagram in FIG FIG. 2 is indicated.
  • the fluctuating load requirements on the compressor Co as represented by the graph representing the flow rate V over time T in FIG. 2 is indicated, mean in conventional systems that the gas turbine GT is to be operated over long periods in areas only moderate efficiency ⁇ .
  • the electrodynamic machine compensates the load peaks and valleys of the compressor Co, so that the gas turbine is always operated closer to the optimum efficiency GT closer to the maximum efficiency GT.
  • the electrodynamic machine GeMo is operated at a load request from the compressor Co which is lower than a first power P1 at which the gas turbine has the efficiency maximum ⁇ 1 as a generator and when the compressor Co has a power demand which is higher as the first power P1, the electrodynamic machine is operated as a motor.
  • a control CR is provided, which controls the electrodynamic machine according to the operating situation.
  • the electrical power generated during the generator operation of the electrodynamic machine GeMo is brought by means of the frequency converter CONV mains frequency and fed to the electric power network ELN.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

The method involves connecting an electro-dynamic machine (GeMo) in rotary torque transmitting connection with a compressor (Co). A gas turbine (GT) has a maximum efficiency at a predetermined turbine output (P1). The electro-dynamic machine is operated as generator at a compressor output below the turbine output and electro-dynamic machine is operated as motor at a compressor output above the turbine output.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer Kompressoranordnung, insbesondere einer Pipelinekompressorstation, welche Kompressoranordnung mindestens eine Turbine und mindestens einen Kompressor aufweist. Daneben betrifft die Erfindung eine Kompressoranordnung zum Betrieb nach dem erfindungsgemäßen Verfahren.The invention relates to a method for operating a compressor arrangement, in particular a pipeline compressor station, which compressor arrangement has at least one turbine and at least one compressor. In addition, the invention relates to a compressor arrangement for operation by the method according to the invention.

Im Zuge zunehmender Rohstoffverknappung und im Schatten des bedrohlichen Klimawandels wird es zur vordringlichsten Aufgabe Energie-umsetzender Maschinen die knappen Ressourcen zu schonen und die Emissionen, insbesondere den Ausstoß klimawirksamer Gase, zu begrenzen. Damit es nicht nur bei moralischen Appellen bleibt, wurden in Reaktion auf Beschlüsse des Kyotoprotokolls in Europa so genannte CO2-Zertifikate eingeführt, welche das wirtschaftliche Interesse an einer Verringerung des Ausstoßes von so genannten Treibhausgasgasen steigert. Diese Motivation erfasst zunehmend auch kleinere und speziellere Einheiten.In the course of increasing scarcity of raw materials and in the shadow of threatening climate change, the most urgent task of energy-converting machines is to conserve scarce resources and to limit emissions, in particular the emission of climate-changing gases. To make sure that it does not stop at moral appeals, CO 2 certificates have been introduced in Europe in response to decisions in the Kyoto Protocol, increasing the economic interest in reducing greenhouse gas emissions. This motivation increasingly encompasses smaller and more specialized units.

Eine mit der vorhergehend beschriebenen Problematik verwandte Aufgabenstellung ist die Verteilung von Erdgas mittels eines Netzes aus Pipelines, dass in seiner vermaschten Beschaffenheit bei gleichzeitig unregelmäßiger Verteilung der Verbraucher besonders schwierig zu betreiben ist. An verschiedenen Stellen des vermaschten Netzes bestimmen Vertragswerke, in welchem Druckbereich welche Menge des Gases in Normkubikmetern über einen gewissen Zeitraum zur Verfügung gestellt werden muss. Der Gasbedarf ist hierbei an den Abnehmerstationen jedoch derart schwankend, dass die Förderung häufig an die technischen Grenzen stößt und unter Aufbietung alle Kapazitäten unbedingt verhindert werden muss, dass Drücke unter vertraglich zulässige Schranken sinken. Dies passiert bisweilen dennoch trotz beherzten Einsatzes so genannter Pipelinekompressorstationen und aufwendiger Versuche mittels mathematischer Simulationen das Gasnetz im richtigen Augenblick optimal "atmen" zu lassen. Hierbei kommt es häufig vor, dass die Pipelinekompressorstationen über einen gewissen Zeitraum eine Druckdifferenz unter Förderung des Gases in eine Richtung erzeugen und während eines anschließenden Zeitintervalls in die entgegengesetzte Richtung fördern. Im Rahmen des technischen machbaren leistet eine Pipelinekompressorstation hierbei in beide Richtungen schwankende Volumenströme von 0 - 1.000.000 Normkubikmeter/Stunde, wobei der Antrieb der Kompressoranordnung eine Schwankung der Antriebsleistung von wenigstens 65% - 105% zu ertragen hat. Regelmäßig sind die Kompressoren der Kompressoranordnungen mittels Gasturbinen angetrieben, die unter Volllast - also bei 100% Nennleistung - ihren optimalen Wirkungsgrad erzielen und im Teillastbereich oder bei Überlast regelmäßig dramatische Wirkungsgradeinbußen aufweisen. Darüber hinaus ist der Teillastbereich auch von zusätzlich unerwünschten Emissionen und einer unverhältnismäßig hohen Verkürzung der Standzeit begleitet.A related to the problem described above is the distribution of natural gas by means of a network of pipelines that is particularly difficult to operate in its meshed nature with simultaneous irregular distribution of consumers. At various points in the mesh network, contracts determine the pressure range in which the amount of gas in standard cubic meters must be made available over a certain period of time. However, the demand for gas here at the customer stations is so fluctuating that the promotion often reaches the technical limits and all capacities have to be prevented under all circumstances, that pressures fall below contracted limits. Despite the valiant use of so-called pipeline compressor stations and time-consuming experiments, this sometimes happens to allow the gas network to "breathe" optimally at the right moment using mathematical simulations. In this case, it often happens that the pipeline compressor stations generate a pressure difference over a certain period of time while conveying the gas in one direction and conveying it in the opposite direction during a subsequent time interval. Within the scope of the technically feasible, a pipeline compressor station in this case makes fluctuating volume flows of 0-1,000,000 standard cubic meters / hour, whereby the drive of the compressor arrangement has to endure a drive power fluctuation of at least 65% -105%. Regularly, the compressors of the compressor assemblies are driven by gas turbines, which achieve their optimal efficiency under full load - ie at 100% rated power - and regularly have dramatic efficiency losses in the partial load range or overload. In addition, the part-load range is also accompanied by additional undesirable emissions and a disproportionately high reduction in service life.

Die Erfindung hat es sich ausgehend von den vorhergehend beschriebenen Schwierigkeiten zur Aufgabe gemacht, Verfahren zum Betrieb von Verdichterstationen und eine Verdichterstation zu schaffen, die auch bei schwankender Last sowohl einen guten Wirkungsgrad als auch gute Emissionswerte in allen Lastbereichen aufweist.The object of the invention, on the basis of the above-described difficulties, is to provide methods for operating compressor stations and a compressor station which has both good efficiency and good emission values in all load ranges, even under fluctuating load conditions.

Zur Lösung des Problems wird erfindungsgemäß ein eingangs genanntes Verfahren vorgeschlagen, bei dem eine elektrodynamische Maschine in Drehmoment-übertragender Verbindung mit dem Kompressor steht, wobei die Turbine bei einer bestimmten ersten Turbinenleistung ein Wirkungsgradmaximum aufweist, wobei bei einer Kompressorleistung unterhalb der ersten Turbinenleistung die elektrodynamische Maschine als Generator betrieben wird und bei einer Kompressorleistung oberhalb der ersten Turbinenleistung die elektrodynamische Maschine als Motor betrieben wird. Daneben wird eine Kompressoranlage mit einer Turbine und einem Kompressor vorgeschlagen, welche miteinander in Drehmoment-übertragender Verbindung stehen, wobei eine elektrodynamische Maschine mit dem Kompressor in Drehmoment-übertragender Verbindung steht, wobei die Turbine derart ausgebildet ist, dass sie bei einer bestimmten ersten Leistung ein Wirkungsgradmaximum erreicht, wobei eine Regelung vorgesehen und derart ausgebildet ist, dass sie die Leistungsaufnahme und Abgabe der elektrodynamischen Maschine derart steuert, dass bei einer Kompressorleistung unterhalb der ersten Leistung die elektrodynamische Maschine als Generator betrieben wird und bei einer Kompressorleistung oberhalb der ersten Leistung die elektrodynamische Maschine als Motor betrieben wird.To solve the problem, an initially mentioned method is proposed according to the invention, in which an electrodynamic machine is in torque-transmitting connection with the compressor, wherein the turbine at a certain first turbine power has an efficiency maximum, wherein at a compressor power below the first turbine power the electrodynamic machine is operated as a generator and at a compressor power above the first turbine power, the electrodynamic machine is operated as a motor. In addition, a compressor system is proposed with a turbine and a compressor, which are in torque-transmitting connection with each other, wherein an electrodynamic machine with the compressor in torque-transmitting connection, wherein the turbine is designed such that they at a certain first power a Efficiency reaches maximum, with a control provided and is designed such that it controls the power consumption and delivery of electrodynamic machine such that at a compressor power below the first power, the electrodynamic machine is operated as a generator and at a compressor power above the first power, the electrodynamic machine is operated as a motor.

Durch den variablen erfindungsgemäßen Einsatz der elektrodynamischen Maschine gelingt es, die Turbine, welche bevorzugt als Gasturbine ausgebildet ist, im Teillastbereich oder im Bereich einer Überlast stets näher am Wirkungsgradmaximum zu betreiben, als dies bei herkömmlichen Anlagen der Fall ist. Bevorzugt wird die Gesamtanlage stets in enger Nähe zum Wirkungsgradmaximum der Turbine bzw. Gasturbine betrieben, so dass sowohl der Kraftstoffverbrauch als auch die Schadstoffemission minimal sind.The variable use according to the invention of the electrodynamic machine makes it possible to operate the turbine, which is preferably designed as a gas turbine, in the partial load range or in the region of an overload always closer to the efficiency maximum, as is the case with conventional systems. Preferably, the entire system is always operated in close proximity to the maximum efficiency of the turbine or gas turbine, so that both the fuel consumption and the pollutant emission are minimal.

Sollten das Maximum des thermischen Wirkungsgrades und das Minimum der Emission nicht im gleichen Betriebspunkt der Turbine bzw. Gasturbine liegen, kann hierbei ein beispielsweise wirtschaftlich orientierter Kompromiss den bevorzugten Betriebspunkt bestimmen.If the maximum of the thermal efficiency and the minimum of the emission are not in the same operating point of the turbine or gas turbine, in this case, for example, an economically oriented compromise can determine the preferred operating point.

Die elektrodynamische Maschine wird während des Betriebes als Motor aus einem elektrischen Energieversorgungsnetz gespeist, in welches dieser während des Betriebes als Generator die erzeugte Energie bevorzugt unter Zwischenschaltung eines Frequenzumrichters wieder einspeist. Auf diese Weise spart der Betreiber einerseits Treibstoff für den Betrieb und andererseits Ausgaben für Emissionsrechte. Darüber hinaus kann gegebenenfalls unter Anwendung der nicht optimalen Betriebsbereiche der Turbine diese Anordnung höhere Spitzenlasten bewältigen aufgrund der Zuschaltmöglichkeit der elektrodynamischen Maschine als Motor. Eine Gasturbine, welche beispielsweise zwischen 4 und 8 MW einsetzbar ist, kann in Kombination mit einem erfindungsgemäßen elektrodynamischen Maschine, der 4 MW-Leistung hat, einen Kompressor mit einer Leistung zwischen 0 und 12 MW Antriebsleistung betreiben. Wird hierbei die Turbine nur bei einem optimalen Wirkungsgrad von beispielsweise 7MW betrieben, beträgt der Spielraum immer noch zwischen 3 MW und 11 MW Antriebsleistung.The electrodynamic machine is fed during operation as a motor from an electrical power supply network, in which it feeds the energy generated during operation as a generator, preferably with the interposition of a frequency converter again. This way saves the operator on the one hand fuel for the operation and on the other hand emissions for emission rights. In addition, where appropriate, using the non-optimal operating ranges of the turbine, this arrangement can handle higher peak loads due to the possibility to connect the electrodynamic machine as a motor. A gas turbine, which can be used, for example, between 4 and 8 MW, in combination with an electrodynamic machine according to the invention, which has 4 MW power, operate a compressor with a power between 0 and 12 MW drive power. If the turbine is only operated at an optimum efficiency of, for example, 7 MW, the margin is still between 3 MW and 11 MW drive power.

Bei einer umkehrbaren Förderrichtung der Kompressoranlage werden auch bei hohen Schwankungen hinsichtlich des Förderdrucks und des Volumenstroms mit erfindungsgemäßer Anlage großartige Wirkungsgrade erzielt.In a reversible conveying direction of the compressor system great efficiencies are achieved even with high fluctuations in the delivery pressure and the flow rate with inventive system.

Das erfindungsgemäße Konzept eignet sich sowohl für Kompressoranlagen, die mit konstanter Drehzahl und beispielsweise mit einem Eintrittsleitapparat des Verdichters betrieben werden als auch für Kompressoranlagen mit variabler Drehzahl, wobei regelmäßig bei dem Anschluss der elektrodynamischen Maschine an das elektrische Energieversorgungsnetz ein Frequenzumrichter vorzusehen ist.The inventive concept is suitable both for compressor systems which are operated at a constant speed and, for example, with a Eintrittsleitapparat the compressor as well as for compressor systems with variable speed, with a frequency converter is regularly provided at the connection of the electrodynamic machine to the electrical power grid.

Vorteilhaft kann die Turbine, insbesondere im Fall einer Gasturbine mittels der elektrodynamischen Maschine zum Starten auch auf eine entsprechende Drehzahl gebracht werden, was einen gesonderten Startermotor für die Turbine entbehrlich macht.Advantageously, the turbine, in particular in the case of a gas turbine by means of the electrodynamic machine for starting can also be brought to a corresponding speed, which makes a separate starter motor for the turbine unnecessary.

Damit es im Rahmen von Wartungsarbeiten an dem Verdichter nicht zu unerwünschten Verzögerungen kommt, ist dieser bevorzugt in einer Topfbauweise ausgebildet und mit nicht durchgehender Welle versehen, so dass die elektrodynamische Maschine nur an einer Seite des Verdichters angebracht werden kann. Die elektrodynamische Maschine ist hierbei bevorzugt mit durchgehender Welle ausgestattet, so dass an das freie Ende entweder direkt die Turbine angeschlossen wird oder bevorzugt eine Drehmoment-übertragende betriebliche Anordnung an ein freies Ende der selbstständigen Turbinenwelle angekoppelt ist. Diese zweite Wellenanordnung hat besondere Vorteile hinsichtlich der Verwendung von Standardmodulen und bringt eine zweckmäßige Wellendynamik mit sich.To avoid unwanted delays during maintenance work on the compressor, this is preferably designed in a pot construction and provided with non-continuous shaft, so that the electrodynamic machine are mounted only on one side of the compressor can. The electrodynamic machine here is preferably equipped with a continuous shaft, so that either the turbine is directly connected to the free end or preferably a torque-transmitting operational arrangement is coupled to a free end of the independent turbine shaft. This second shaft arrangement has particular advantages with regard to the use of standard modules and brings with it a suitable shaft dynamics.

Im Zusammenhang mit der erfindungsgemäßen elektrodynamischen Maschine ist die Rotordynamik von besonderer Bedeutung, weil ein vereinter Wellenstrang von Turbine, elektrodynamische Maschine und Verdichter aufgrund der Länge der Anordnung eine besonders komplexe Rotordynamik insbesondere hinsichtlich der Biegeschwingungen aufweisen würde.In connection with the electrodynamic machine according to the invention, the rotor dynamics is of particular importance, because a unified shaft train of turbine, electrodynamic machine and compressor due to the length of the arrangement would have a particularly complex rotor dynamics, in particular with respect to the bending vibrations.

Im Folgenden ist ein spezielles Ausführungsbeispiel unter Bezugnahme auf Zeichnungen zur Verdeutlichung beschrieben. Diese Beschreibung hat lediglich beispielhaften Charakter, weil in dem Geist der Erfindung auch weitere Ausführungsmöglichkeiten neben der hier dηilliert beschriebenen sich für den Fachmann ergeben. Es zeigen:

Figur 1
eine schematische Darstellung eines Gasverteilungsnetzes,
Figur 2
eine schematische Darstellung einer erfindungsgemäßen Kompressoranlage, welche mittels des erfindungsgemäßen.Verfahrens betrieben wird.
Hereinafter, a specific embodiment will be described with reference to drawings for clarity. This description has only exemplary character, because in the spirit of the invention, other possible embodiments in addition to the detailliert here described for the skilled person. Show it:
FIG. 1
a schematic representation of a gas distribution network,
FIG. 2
a schematic representation of a compressor system according to the invention, which is operated by means of the erfindungsgemä.Verfahrens.

Figur 1 zeigt ein Gasverteilungsnetz 1, welches sich über ein bestimmtes Territorium 2 erstreckt und verschiedene Schnittstellen 3 zu benachbarten Gebieten aufweist. An den Schnittstellen fließen Normvolumenströme U, V, W, X, Y, Z in das Gasverteilungsnetz 1 des Territoriums 2 hinein oder heraus bei jeweils bestimmten Druckniveaus. Das Druckniveau kann beispielsweise zwischen 50 und 100 bar liegen. Bei dem Gasverteilungsnetz 1 handelt es sich um ein vermaschtes Netz mit mehreren Knotenpunkten 4. An verschiedenen Orten befinden sich Versorgerentnahmen 5, an denen Gas eines bestimmten individuellen Drucks p1 - p10 aus dem Gasverteilungsnetz 1 entnommen wird. Gleichzeitig ist es möglich, dass Speichereinspeisungen in das Netz stattfinden. Der Druck p1 - p10 kann in vertraglich festgelegten Grenzen, die meist zwischen 50 und 100 bar festgelegt sind, schwanken. An verschiedenen Stellen in dem Gasverteilungsnetz 1 ist jeweils eine Pipelinekompressorstation PCO bzw. FIG. 1 shows a gas distribution network 1, which extends over a certain territory 2 and has different interfaces 3 to neighboring areas. At the interfaces, standard volume flows U, V, W, X, Y, Z flow into the gas distribution network 1 of the territory 2 or out at respectively determined pressure levels. The pressure level can for example be between 50 and 100 bar. The gas distribution network 1 is a meshed network with several nodes 4. At various locations there are supplier withdrawals 5, at which gas of a certain individual pressure p1-p10 is taken from the gas distribution network 1. At the same time it is possible that storage feeds into the grid take place. The pressure p1 - p10 can fluctuate within contracted limits, which are usually set between 50 and 100 bar. At various points in the gas distribution network 1 is in each case a pipeline compressor station PCO or

Kompressoranordnung COAN angeordnet, wobei lediglich eine einzelne exemplarisch in Figur 1 eingezeichnet ist. Die Aufgabe der Pipelinekompressorstation PCO, die der erfindungsgemäßen Kompressoranlage COAN entspricht, ist es, die verschiedenen Normvolumenströme und Drücke an den Versorgerentnahmen 5 zu gewährleisten. Die Entnahmen können hierbei - insbesondere jahreszeitlich korreliert - stark schwanken ebenso wie die Normvolumenströme U, V, W, X, Y, Z an den Schnittstellen 3 des Gasverteilungsnetzes 1, so dass sich für die Pipelinekompressorstation PCO nur schwer vorhersagbarer Betriebssituationen ergeben. Sowohl die Drücke p1 - p10 als auch die Normvolumenströme U, V, W, X, Y, Z sind dementsprechend großen Schwankungen unterworfen, beispielsweise Schwankungen zwischen 0 und 1.000.000 Kubikmeter/Stunde auch unter Umkehr der Förderrichtung.Compressor arrangement arranged COAN, with only a single example in FIG. 1 is drawn. The task of the pipeline compressor station PCO, which corresponds to the compressor installation COAN according to the invention, is to ensure the various standard volume flows and pressures at the supplier withdrawals 5. In this case, the withdrawals can fluctuate greatly, in particular as a function of the season, as can the standard volume flows U, V, W, X, Y, Z at the interfaces 3 of the gas distribution network 1, so that operational situations which are difficult to predict for the pipeline compressor station PCO arise. Accordingly, both the pressures p1-p10 and the standard volume flows U, V, W, X, Y, Z are subject to great fluctuations, for example fluctuations between 0 and 1,000,000 cubic meters / hour even when the conveying direction is reversed.

Figur 2 zeigt eine schematische Darstellung der Pipelinekompressorstation PCO bzw. einer erfindungsgemäßen Kompressoranordnung COAN aus Figur 1 im Detail, die mittels des erfindungsgemäßen Verfahrens betrieben wird. Die erfindungsgemäße Kompressoranordnung COAN des Ausführungsbeispiels besteht im Wesentlichen aus einer Gasturbine GT mit einem Verdichter COGT und einer Turbine GTGT, einer erfindungsgemäßen elektrodynamischen Maschine GeMo und einem Kompressor Co. Der Kompressor Co befindet sich mit der elektrodynamischen Maschine GeMo auf einem ersten Wellenstrang SH1. Der Turbinenverdichter COGT ist gemeinsam mit der Gasturbinenturbine GTGT auf einem zweiten Wellenstrang SH2, der mit dem ersten Wellenstrang SH1 in einer Drehmoment-übertragenden Verbindung in Form eines Getriebes TR1 steht. Der Kompressor Co ist in Topfbauweise ausgebildet, so dass keine durchgehende Welle als Teil des ersten Wellenstrangs SH1 des Kompressors Co vorgesehen ist. Die Seite des Kompressorgehäuses CoCs, aus der kein Ende des Wellenstrangs SH1 austritt, kann für Wartungsarbeiten geöffnet werden, so dass beispielsweise ein nicht im Einzelnen dargestelltes Laufrad Rot mit nur geringem Zeitaufwand gewechselt werden kann. FIG. 2 shows a schematic representation of the pipeline compressor station PCO or a compressor arrangement COAN according to the invention FIG. 1 in detail, which is operated by means of the method according to the invention. The compressor arrangement COAN according to the invention essentially comprises a gas turbine GT with a compressor COGT and a turbine GTGT, an electrodynamic machine according to the invention GeMo and a compressor Co. The compressor Co is located with the electrodynamic machine GeMo on a first shaft line SH1. The turbine compressor COGT is in common with the gas turbine turbine GTGT on a second shaft train SH2, which is connected to the first shaft train SH1 in FIG a torque-transmitting connection in the form of a transmission TR1 stands. The compressor Co is designed in a pot construction, so that no continuous shaft is provided as part of the first shaft strand SH1 of the compressor Co. The side of the compressor housing CoCs, from which no end of the shaft strand SH1 emerges, can be opened for maintenance, so that, for example, a not shown in detail impeller red can be changed with little time.

Die elektrodynamische Maschine GeMo ist mit einer durch ein Gehäuse durchgehenden Welle SHGeMo als Bestandteil des ersten Wellenstrangs SH1 ausgebildet, so dass an einem ersten Ende der Welle S1 der elektrodynamischen Maschine GeMo der Kompressor Co angeordnet ist und an einem zweiten Ende das Getriebe TR1. Die elektrodynamische Maschine GeMo steht mit einem Frequenzumrichter CONV in elektrisch leitender Verbindung, so dass von der elektrodynamischen Maschine GeMo bei unterschiedlichen Drehfrequenzen erzeugte elektrische Energie mit der Netzfrequenz von 50 Hz in ein angeschlossenes elektrisches Stromnetz ELN eingespeist werden kann. Daneben dient der Frequenzumrichter CONV der Drehzahlregelung des Kompressorantriebes mittels der elektrodynamischen Maschine GeMo.The electrodynamic machine GeMo is formed with a SHGeMo passing through a housing as part of the first shaft train SH1, so that at a first end of the shaft S1 of the electrodynamic machine GeMo the compressor Co is arranged and at a second end the transmission TR1. The electro-dynamic machine GeMo is electrically connected to a frequency converter CONV, so that electrical energy generated by the electro-dynamic machine GeMo at different rotational frequencies can be fed into a connected electric power network ELN at the mains frequency of 50 Hz. In addition, the frequency converter CONV is used to control the speed of the compressor drive by means of the electro-dynamic machine GeMo.

Der Kompressor Co ist an das Gasverteilungsnetz 1 angeschlossen und ermöglicht die Förderung von Volumenströmen (Normvolumenströme U, V, W, X, Y, Z) nach Bedarf in eine Richtung oder in die entgegen gesetzte Richtung einer Pipeline PL des Gasverteilungsnetzes 1. Diese Möglichkeit wird eröffnet durch eine Anordnung CIR Gasleitungen PEP und Ventilen VAV. Je nach Öffnung bestimmter Ventile VAV ermöglicht diese Anordnung CONV, welche auch eine allgemein als "Hosenträgerschaltung" bezeichnete Leitungsanordnung umfasst, eine Förderung des Gases mittels des unveränderten Kompressors Co in die eine oder die entgegen gesetzte andere Richtung der Pipeline PL. Diese beiden unterschiedlichen Möglichkeiten sind in der Figur 2 strichpunktiert bzw. gestrichelt dargestellt.The compressor Co is connected to the gas distribution network 1 and allows the promotion of volume flows (standard volume flows U, V, W, X, Y, Z) as needed in one direction or in the opposite direction of a pipeline PL of the gas distribution network 1. This possibility opened by an arrangement CIR gas pipes PEP and valves VAV. Depending on the opening of certain valves VAV, this arrangement CONV, which also includes a conduit arrangement generally referred to as a "suspenders circuit", allows the gas to be conveyed by means of the unmodified compressor Co in one or the opposite other direction of the pipeline PL. These both different possibilities are in the FIG. 2 shown in phantom or dashed lines.

Das erfindungsgemäße Verfahren zum Betrieb der Pipelinekompressorstation PCO bzw. der Kompressoranordnung COAN sieht vor, dass die Gasturbine GT bei einer bestimmten Leistung P ein Maximum des Wirkungsgrades η aufweist, wie dies mittels des skizzenhaften Diagramms in Figur 2 angedeutet ist. Die schwankenden Lastanforderungen an dem Kompressor Co, wie dies durch das Diagramm darstellend den Volumenstrom V über die Zeit T in Figur 2 angedeutet ist, bedeuten bei herkömmlichen Anlagen, dass die Gasturbine GT über lange Zeiträume in Bereichen nur mäßige Wirkungsgrades η zu betreiben ist. Nach dem erfindungsgemäßen Verfahren zum Betrieb der Kompressoranordnung COAN gleicht Die elektrodynamische Maschine die Belastungsspitzen und Täler des Kompressors Co aus, so dass die Gasturbine stets näher im Bereich des maximalen Wirkungsgrades GT also näher am Wirkungsgradoptimum betrieben wird. Hier wird vorgesehen, dass Die elektrodynamische Maschine GeMo bei einer Lastanforderung aus dem Kompressor Co, welche niedriger ist als eine erste Leistung P1, bei der die Gasturbine das Wirkungsgradmaximum η1 aufweist als Generator betrieben wird und wenn der Kompressor Co eine Leistungsanforderung hat, welche höher ist als die erste Leistung P1, die elektrodynamische Maschine als Motor betrieben wird. Hierzu ist eine Regelung CR vorgesehen, welche die elektrodynamische Maschine entsprechend der Betriebssituation steuert. Die während der Generatorbetriebs der elektrodynamischen Maschine GeMo erzeugte elektrische Leistung wird mittels des Frequenzumrichters CONV Netzfrequenz gebracht und des elektrischen Stromnetzes ELN eingespeist.The inventive method for operating the pipeline compressor station PCO or the compressor assembly COAN provides that the gas turbine GT at a certain power P has a maximum efficiency η, as shown by the sketchy diagram in FIG FIG. 2 is indicated. The fluctuating load requirements on the compressor Co, as represented by the graph representing the flow rate V over time T in FIG. 2 is indicated, mean in conventional systems that the gas turbine GT is to be operated over long periods in areas only moderate efficiency η. According to the method according to the invention for operating the compressor arrangement COAN The electrodynamic machine compensates the load peaks and valleys of the compressor Co, so that the gas turbine is always operated closer to the optimum efficiency GT closer to the maximum efficiency GT. Here, it is provided that the electrodynamic machine GeMo is operated at a load request from the compressor Co which is lower than a first power P1 at which the gas turbine has the efficiency maximum η1 as a generator and when the compressor Co has a power demand which is higher as the first power P1, the electrodynamic machine is operated as a motor. For this purpose, a control CR is provided, which controls the electrodynamic machine according to the operating situation. The electrical power generated during the generator operation of the electrodynamic machine GeMo is brought by means of the frequency converter CONV mains frequency and fed to the electric power network ELN.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
GasverteilungsnetzGas distribution network
22
Territoriumterritory
33
Schnittstelleinterface
U, V, W, X, Y, ZU V W X Y Z
NormvolumenstromStandard volume flow
44
Knotenpunktjunction
55
Versorgerentnahmecatering removal
P1 - P10P1 - P10
Druckprint
PCOPCO
PipelinekompressorstationPipeline compressor station
COANCoan
Kompressoranordnungcompressor assembly
GeMoGeMo
elektrodynamische Maschineelectrodynamic machine
CoCo
Kompressorcompressor
GTGT
Gasturbinegas turbine
GTGTGTGT
Turbineturbine
COGTCOGT
Verdichtercompressor
SH1SH1
erster Wellenstrangfirst wave strand
SH2SH2
zweiter Wellenstrangsecond shaft train
TR1TR1
Getriebetransmission
COCSCOCJ
Kompressorgehäusecompressor housing
CONVCONV
Frequenzumrichterfrequency converter
ELNELN
elektrisches Stromnetzelectric power grid
PLPL
Pipelinepipeline
CONDCOND
Anordnungarrangement
PIPPIP
Gasleitunggas pipe
VAVVAV
VentilValve
ηη
Wirkungsgradefficiency

Claims (7)

Verfahren zum Betrieb einer Kompressoranordnung (COAN), insbesondere einer Pipelinekompressorstation (PCO), welche Kompressoranordnung eine Turbine (Gasturbine GT) und einen Kompressor (Co) in Drehmoment-übertragender Verbindung aufweist,
dadurch gekennzeichnet, dass
eine elektrodynamische Maschine (GeMo) in Drehmoment-übertragender Verbindung mit dem Kompressors (Co) steht, wobei die Turbine (Gasturbine GT) bei einer bestimmten ersten Turbinenleistung (P1) ein Wirkungsgradmaximum (H1) aufweist, wobei bei einer Kompressorleistung unterhalb der ersten Turbinenleistung (P1) die elektrodynamische Maschine (GeMo) als Generator betrieben wird und bei einer Kompressorleistung oberhalb der ersten Turbinenleistung (P1) die elektrodynamische Maschine (GeMo) als Motor betrieben wird.
Method for operating a compressor arrangement (COAN), in particular a pipeline compressor station (PCO), which compressor arrangement has a turbine (gas turbine GT) and a compressor (Co) in a torque-transmitting connection,
characterized in that
an electrodynamic machine (GeMo) is in torque-transmitting connection with the compressor (Co), wherein the turbine (gas turbine GT) at a certain first turbine power (P1) has an efficiency maximum (H1), wherein at a compressor power below the first turbine power ( P1) the electrodynamic machine (GeMo) is operated as a generator and at a compressor output above the first turbine power (P1) the electrodynamic machine (GeMo) is operated as a motor.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Förderrichtung der Kompressoranordnung (COAN) umkehrbar ist.
Method according to claim 1,
characterized in that
the conveying direction of the compressor assembly (COAN) is reversible.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
der Kompressor (Co) im Wesentlichen bei konstanter Drehzahl (n) betrieben wird.
Method according to claim 1,
characterized in that
the compressor (Co) is operated at substantially constant speed (s).
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
der Kompressor (Co) bei variabler Drehzahl (n) betrieben wird.
Method according to claim 1,
characterized in that
the compressor (Co) is operated at variable speed (s).
Kompressoranlage (COAN) mit einer Turbine (Gasturbine GT) und einem Kompressor (Co), welcher miteinander in Drehmoment-übertragender Verbindung stehen,
dadurch gekennzeichnet, dass
eine elektrodynamische Maschine (GeMo) mit dem Kompressor (Co) in Drehmoment-übertragender Verbindung steht, wobei die Turbine (Gasturbine GT) derart ausgebildet ist, dass sie bei einer bestimmten ersten Leistung (P1) ein Wirkungsgradmaximum (H1) erreicht, wobei eine Regelung (Cr) vorgesehen und derart ausgebildet ist, dass sie die Leistungsaufnahme und Abgabe der elektrodynamischen Maschine (GeMo) derart steuert, dass bei einer Kompressorleistung unterhalb der ersten Leistung (P1) die elektrodynamische Maschine (GeMo) als Generator betrieben wird und bei einer Kompressorleistung oberhalb der ersten Leistung (P1) die elektrodynamische Maschine (GeMo) als Motor betrieben wird.
Compressor system (COAN) with a turbine (gas turbine GT) and a compressor (Co), which together in Torque-transmitting connection,
characterized in that
an electrodynamic machine (GeMo) with the compressor (Co) is in torque-transmitting connection, wherein the turbine (gas turbine GT) is designed such that at a certain first power (P1) reaches an efficiency maximum (H1), wherein a control (Cr) and is designed such that it controls the power consumption and delivery of the electrodynamic machine (GeMo) such that at a compressor power below the first power (P1) the electrodynamic machine (GeMo) is operated as a generator and at a compressor power above the first power (P1) the electrodynamic machine (GeMo) is operated as a motor.
Kompressoranlage (COAN) nach Anspruch 5,
dadurch gekennzeichnet, dass
die Turbine (Gasturbine GT) und der Kompressor jeweils eine eigene voneinander separate Welle (Wellenstrang SH1, SH2) aufweisen.
Compressor system (COAN) according to claim 5,
characterized in that
the turbine (gas turbine GT) and the compressor each have their own separate shaft (shaft strand SH1, SH2).
Kompressoranlage (COAN) nach Anspruch 5,
dadurch gekennzeichnet, dass
der Kompressor (Co) in Topfbauweise ausgebildet ist, so dass keine durchgehende Welle (SH1) vorgesehen ist.
Compressor system (COAN) according to claim 5,
characterized in that
the compressor (Co) is designed in pot construction, so that no continuous shaft (SH1) is provided.
EP07000271A 2007-01-08 2007-01-08 Method for operating a compressor assembly and compressor assembly Withdrawn EP1942279A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07000271A EP1942279A1 (en) 2007-01-08 2007-01-08 Method for operating a compressor assembly and compressor assembly
US12/522,291 US20100215512A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement
EP07857857A EP2122179A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement
CN2007800494936A CN101663488B (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement
CA002674584A CA2674584A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and compressor arrangement
PCT/EP2007/064236 WO2008083902A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07000271A EP1942279A1 (en) 2007-01-08 2007-01-08 Method for operating a compressor assembly and compressor assembly

Publications (1)

Publication Number Publication Date
EP1942279A1 true EP1942279A1 (en) 2008-07-09

Family

ID=38121963

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07000271A Withdrawn EP1942279A1 (en) 2007-01-08 2007-01-08 Method for operating a compressor assembly and compressor assembly
EP07857857A Withdrawn EP2122179A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07857857A Withdrawn EP2122179A1 (en) 2007-01-08 2007-12-19 Method for operating a compressor arrangement, and a compressor arrangement

Country Status (5)

Country Link
US (1) US20100215512A1 (en)
EP (2) EP1942279A1 (en)
CN (1) CN101663488B (en)
CA (1) CA2674584A1 (en)
WO (1) WO2008083902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178256A1 (en) * 2012-05-30 2013-12-05 Siemens Aktiengesellschaft Compressor station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200008633A1 (en) * 2022-04-29 2023-10-29 Nuovo Pignone Tecnologie Srl Low emission compressor station without dedicated power generation island

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689141A (en) 1995-02-14 1997-11-18 Chiyoda Corporation Compressor drive system for a natural gas liquefaction plant having an electric motor generator to feed excess power to the main power source
WO2005047789A2 (en) * 2003-11-06 2005-05-26 Exxonmobil Upstream Research Company Method for efficient, nonsynchronous lng production
US20060241924A1 (en) 2005-04-22 2006-10-26 Harper Charles N Pipeline optimizer system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117343A (en) * 1973-11-08 1978-09-26 Brown Boveri-Sulzer Turbomaschinen Ag. Turbo-machine plant having optional operating modes
DE2450710A1 (en) * 1974-10-25 1976-05-13 Bbc Brown Boveri & Cie PROCEDURE FOR OPERATING A TURBO MACHINE SYSTEM AND SYSTEM FOR CARRYING OUT THE PROCEDURE
FR2781619B1 (en) * 1998-07-27 2000-10-13 Guy Negre COMPRESSED AIR BACKUP GENERATOR
US6261070B1 (en) * 1998-09-17 2001-07-17 El Paso Natural Gas Company In-line electric motor driven compressor
US6750557B2 (en) * 2001-09-06 2004-06-15 Energy Transfer Group, L.L.C. Redundant prime mover system
SE521349C2 (en) * 2001-12-14 2003-10-21 Atlas Copco Tools Ab Compressor unit with control system
IL157887A (en) * 2003-09-11 2006-08-01 Ormat Ind Ltd Method and apparatus for augmenting the pressure head of gas flowing in a pipeline
WO2006069862A2 (en) * 2004-12-23 2006-07-06 Alstom Technology Ltd Method for the operation of a pressure accumulator system, and pressure accumulator system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689141A (en) 1995-02-14 1997-11-18 Chiyoda Corporation Compressor drive system for a natural gas liquefaction plant having an electric motor generator to feed excess power to the main power source
WO2005047789A2 (en) * 2003-11-06 2005-05-26 Exxonmobil Upstream Research Company Method for efficient, nonsynchronous lng production
US20060241924A1 (en) 2005-04-22 2006-10-26 Harper Charles N Pipeline optimizer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178256A1 (en) * 2012-05-30 2013-12-05 Siemens Aktiengesellschaft Compressor station

Also Published As

Publication number Publication date
US20100215512A1 (en) 2010-08-26
EP2122179A1 (en) 2009-11-25
CN101663488B (en) 2012-07-04
CA2674584A1 (en) 2008-07-17
WO2008083902A1 (en) 2008-07-17
CN101663488A (en) 2010-03-03

Similar Documents

Publication Publication Date Title
EP3108154B1 (en) Method for operating a drive train, and drive train
EP2997284B1 (en) Method for operating a drive train, and drive train
EP2997285B1 (en) Method and device for starting a drive train
EP3298685B1 (en) Variable speed drive system and method for starting and/or operating a variable speed drive system
EP2250371B1 (en) Wind turbine for generating electric power
EP1608872A1 (en) Drive train for the transmission of a variable power
DE102015002585B4 (en) Device and method for driving variable speed work machines with speed reduction
EP3146215B1 (en) Multi-stage compressor with hydrodynamic coupling
CH698412A2 (en) Power plant turbine system.
WO2016059115A1 (en) Device and method for driving variable-rotational-speed working machines
CH698409A2 (en) Power plant turbine system.
CH698411A2 (en) Power plant turbine system.
DE102008046509A1 (en) Apparatus for energy recovery for a large diesel engine
EP1942279A1 (en) Method for operating a compressor assembly and compressor assembly
EP2232058B1 (en) Air turbine for a wave power station
DE102011084573A1 (en) Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed
DE102007020615A1 (en) Powertrain for a diving power generation plant
EP2143912A1 (en) Gas turbine with at least one multi-stage compressor unit with multiple compressor modules
DE1476914A1 (en) Speed reduction device for gas turbines
DE102014115191B4 (en) Apparatus and method for driving variable speed work machines
WO2015007527A2 (en) Expansion machine
DE2655868A1 (en) Gas turbine engine for motor vehicles - has connection between power take off and take off drive through adjustable torque converter
WO2009127402A2 (en) Generator arrangement
DE102018008183A1 (en) Apparatus and method for operating variable speed work machines
BE1030268B1 (en) Nitric acid plant for the production of nitric acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090109

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090312

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801