JP2002519295A5 - - Google Patents

Download PDF

Info

Publication number
JP2002519295A5
JP2002519295A5 JP2000558027A JP2000558027A JP2002519295A5 JP 2002519295 A5 JP2002519295 A5 JP 2002519295A5 JP 2000558027 A JP2000558027 A JP 2000558027A JP 2000558027 A JP2000558027 A JP 2000558027A JP 2002519295 A5 JP2002519295 A5 JP 2002519295A5
Authority
JP
Japan
Prior art keywords
gas
precursor material
microwave radiation
microwave
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000558027A
Other languages
Japanese (ja)
Other versions
JP2002519295A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US1999/015181 external-priority patent/WO2000001615A1/en
Publication of JP2002519295A publication Critical patent/JP2002519295A/en
Publication of JP2002519295A5 publication Critical patent/JP2002519295A5/ja
Pending legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】 マイクロ波透過性で金属を含まずかつガス不浸透性で加圧された反応帯域を前駆体材料が通過する間に、マイクロ波放射と該前駆体材料との相互作用によってホスフィンガスを製造することを含む、高純度ホスフィンガスを生成する方法。
【請求項2】 前記前駆体材料は、水溶液中のH3PO2である、請求項1に記載の方法。
【請求項3】 前記前駆体材料は、水溶液中のH3PO3である、請求項1に記載の方法。
【請求項4】 前記前駆体材料は、結晶性H3PO2または結晶性H3PO3である、請求項1に記載の方法。
【請求項5】 前記前駆体材料は、水溶液中のXH2PO2[式中、XはLi、Na、及びKからなるアルカリ金属群から選択される]の式を有する塩である、請求項1に記載の方法。
【請求項6】 前記前駆体材料は、水溶液中のZ2(H2PO22[式中、ZはCa、Mg、Sr、及びBaからなるアルカリ金属群から選択される]の式を有する塩である、請求項1に記載の方法。
【請求項7】 前記前駆体材料は、水溶液中のXH2PO3[式中、XはLi、Na、及びKからなるアルカリ金属群から選択される]の式を有する塩である、請求項1に記載の方法。
【請求項8】 前記前駆体材料は、アルカリ溶液中の赤リンのスラリーである、請求項1に記載の方法。
【請求項9】 前記アルカリ溶液は、水中に溶解したNaOH、KOH、及びLiOHからなる群から選択されるかまたはこれらの組合せである、請求項8に記載の方法。
【請求項10】 前記高純度ガスは100ppmを超えない酸素または水蒸気を含む、請求項1に記載の方法。
【請求項11】 マイクロ波放射の源と、マイクロ波透過性ガス気密バリアであって、該バリアを通して前記マイクロ波放射の源が向けられるバリアと、前記マイクロ波放射の源が向けられるマイクロ波反射性包囲体と、該包囲体から生成したガスを受け入れるのに適したガス供給用マニホルドと、前記生成したガスから溶媒蒸気を除去するのに適した溶媒蒸気除去装置と、前記生成したガス中のガス濃度を検知するためのガス濃度センサーと、前記包囲体内のガス生成速度を制御するためのフィードバック制御系と、で構成される、高純度ガス生成のための化学反応器系。
【請求項12】 前記マイクロ波放射源は、周波数0.9GHzまたは2.41〜10GHzを有する、請求項11に記載の系。
【請求項13】 前記マイクロ波透過性バリアは、ポリテトラフルオロエチレン、溶融シリカ、二酸化ケイ素、窒化ホウ素、または黒鉛の群から選択される材料から構成される、請求項11に記載の系。
【請求項14】 前記マイクロ波反射性包囲体は、少なくとも10-3ohm/cmの導電率を有する導電性材料から構成される、請求項11に記載の系。
【請求項15】 前記マイクロ波反射性包囲体は、マイクロ波放射の波長の少なくとも2倍の最小寸法を有する、請求項11に記載の系。
【請求項16】 前記ガスを生成するための前駆体材料も備え、該前駆体材料は、次亜リン酸と、ハイポホリック酸と、赤リンのアルカリ性スラリーとからなる群から選択される、請求項11に記載の系。
【請求項17】 前記蒸気除去装置はシリカゲルを含む、請求項11に記載の系。
【請求項18】 前記フィードバック制御系は、原料供給ポンプへのマイクロプロセッサ制御温度フィードバックループと、マイクロ波放射源用電源とを含む、請求項11に記載の系。
【請求項19】 前記フィードバック制御系は、前記マイクロ波放射源への電力を調節して、一定のガス供給圧力を維持する、請求項11に記載の系。
【請求項20】 前記フィードバック制御系は、前記マイクロ波放射源への電力を調節して、可変のガス流量を提供する、請求項11に記載の系。
【請求項21】 前記フィードバック制御系は、前記マイクロ波放射周波数を調節して、反応生成物の選択性を制御する、請求項11に記載の系。
【請求項22】 生成物ガス流中のホスフィン対希釈用ガスの比を測定するための濃度モニタと;
前記生成物ガス流中のホスフィンガスの現在の濃度対所望の濃度を決定するための、マイクロプロセッサを基にしたコンパレータと;
前記決定に基づいて生成した信号に応じて、前記生成物ガス流中への希釈用ガスの導入を制御するためのガスフローコントローラと;
を備える、ホスフィン生成物ガスのための濃度制御系。
【請求項23】 前記ホスフィンガスは、マイクロ波放射の影響下での前駆体材料の反応によって生成される、請求項22に記載の系。
【請求項24】 半導体加工用の高純度ガスを生成するための方法であって、マイクロ波透過性で金属を含まずかつガス不浸透性で加圧された反応帯域を前駆体材料が通過する間に、マイクロ波放射と該前駆体材料との相互作用によって前記ガスを製造することを含む、方法。
【請求項25】 ガスを使用して半導体デバイスを製造するための方法であって、マイクロ波放射の影響下での前駆体材料の反応によって前記ガスを製造した時に前記ガスを使用することを特徴とする、方法。
【請求項26】 マイクロ波放射を照射されているマイクロ波透過性反応チャンバ内への前記前駆体材料の連続的な導入及び反応によって、前記ガスを連続的に製造することと;
前記製造されたガスを、形成されたままで半導体製造プロセスに連続的に供給することと;
を含む、請求項25に記載の方法。
【請求項27】 前記ガスは、製造されたままで化学気相成長法用反応装置または酸化炉に連続的に供給される、請求項26に記載の方法。
【請求項28】 前記前駆体材料は液体であり、前記反応は前記ガスを含む2相系を生成する、請求項24〜27のいずれか1項に記載の方法。
【請求項29】 前記ガスはホスフィンである、請求項24〜28のいずれか1項に記載の方法。
【請求項30】 マイクロ波透過性反応チャンバと該反応チャンバ内に向けられるマイクロ波放射の源とを有し、ガスを生成するためのガス生成用反応器と;
該ガス生成用反応器に連結した化学気相成長法用反応装置または酸化炉と;
を備える、半導体デバイスの製造のための装置。
【請求項31】 前記ガスはホスフィンである、請求項30に記載の装置。
【請求項32】 半導体の製造のための高純度ガス生成のための化学反応器系であって:
マイクロ波放射の源と;
圧力下で前記ガスを生成するのに適し、前記ガスを生成するための前駆体材料を受け入れるための反応チャンバと;
マイクロ波透過性ガス気密バリアであって、該バリアを通して前記マイクロ波放射の源が前記反応チャンバに向けられるバリアと;
前記マイクロ波放射の源が向けられるマイクロ波反射性包囲体と;
生成したガスを受け入れるのに適したガス供給用マニホルドと;
前記生成したガスから溶媒蒸気を除去するのに適した溶媒蒸気除去デバイスと;
で構成される、化学反応器系。
【請求項33】 前記反応チャンバに連結した前駆体材料の供給源も備える、請求項32に記載の系。
【請求項34】 前記生成したガス中のガス濃度を検知するためのガス濃度センサーと;
前記反応チャンバ内のガス生成速度を制御するためのフィードバック制御系と;
も備える、請求項33に記載の系。
[Claims]
1. Interaction of microwave radiation with a precursor material during passage of the precursor material through a microwave permeable, metal free and gas impermeable, pressurized reaction zone. A method for producing high purity phosphine gas, comprising producing a gas.
2. The method of claim 1, wherein said precursor material is H 3 PO 2 in an aqueous solution.
3. The method of claim 1, wherein said precursor material is H 3 PO 3 in an aqueous solution.
4. The method of claim 1, wherein said precursor material is crystalline H 3 PO 2 or crystalline H 3 PO 3 .
5. The precursor material is a salt having the formula XH 2 PO 2 in an aqueous solution, wherein X is selected from the group of alkali metals consisting of Li, Na, and K. 2. The method according to 1.
6. The precursor material has a formula of Z 2 (H 2 PO 2 ) 2 in an aqueous solution, wherein Z is selected from an alkali metal group consisting of Ca, Mg, Sr, and Ba. The method according to claim 1, which is a salt having the compound.
7. The precursor material is a salt having the formula XH 2 PO 3 in an aqueous solution, wherein X is selected from the group of alkali metals consisting of Li, Na, and K. 2. The method according to 1.
8. The method of claim 1, wherein said precursor material is a slurry of red phosphorus in an alkaline solution.
9. The method of claim 8, wherein the alkaline solution is selected from the group consisting of NaOH, KOH, and LiOH dissolved in water, or a combination thereof.
10. The method of claim 1, wherein said high purity gas comprises no more than 100 ppm of oxygen or water vapor.
11. A microwave radiation source, a microwave transparent gas-tight barrier, a barrier that is directed source of the microwave radiation through the barrier, the microwave reflective said source of microwave radiation is directed An enclosure, a gas supply manifold suitable for receiving gas generated from the enclosure, a solvent vapor removal device suitable for removing solvent vapor from the generated gas, A chemical reactor system for producing high-purity gas, comprising: a gas concentration sensor for detecting gas concentration; and a feedback control system for controlling a gas production rate in the enclosure.
12. The system according to claim 11, wherein the microwave radiation source has a frequency of 0.9 GHz or 2.41 to 10 GHz.
13. The system of claim 11, wherein said microwave transparent barrier is comprised of a material selected from the group of polytetrafluoroethylene, fused silica, silicon dioxide, boron nitride, or graphite.
14. The system of claim 11, wherein said microwave reflective enclosure is comprised of a conductive material having a conductivity of at least 10-3 ohm / cm.
15. The system of claim 11, wherein said microwave reflective enclosure has a minimum dimension of at least twice the wavelength of microwave radiation.
16. The method according to claim 16, further comprising a precursor material for producing the gas, wherein the precursor material is selected from the group consisting of hypophosphorous acid, hypophoric acid, and an alkaline slurry of red phosphorus. Item 12. The system according to Item 11.
17. The system of claim 11, wherein said vapor removal device comprises silica gel.
18. The system of claim 11, wherein the feedback control system includes a microprocessor controlled temperature feedback loop to a feed pump and a power source for a microwave radiation source.
19. The system of claim 11, wherein the feedback control system regulates power to the microwave radiation source to maintain a constant gas supply pressure.
20. The system of claim 11, wherein the feedback control system adjusts power to the microwave radiation source to provide a variable gas flow.
21. The system of claim 11, wherein said feedback control system adjusts said microwave radiation frequency to control the selectivity of a reaction product.
22. A concentration monitor for measuring the ratio of phosphine to diluent gas in the product gas stream;
A microprocessor-based comparator for determining a current concentration of the phosphine gas in the product gas stream versus a desired concentration;
A gas flow controller for controlling introduction of a diluting gas into the product gas stream in response to a signal generated based on the determination;
A concentration control system for a phosphine product gas, comprising:
23. The system of claim 22, wherein said phosphine gas is generated by reaction of a precursor material under the influence of microwave radiation.
24. A method for producing a high-purity gas for semiconductor processing, wherein a precursor material passes through a microwave-permeable, metal-free, gas-impermeable, pressurized reaction zone. In the meantime, a method comprising producing the gas by interaction of microwave radiation with the precursor material.
25. A method for manufacturing a semiconductor device using a gas, the method comprising using the gas when the gas is manufactured by reacting a precursor material under the influence of microwave radiation. And the way.
26. continuously producing said gas by continuous introduction and reaction of said precursor material into a microwave permeable reaction chamber being irradiated with microwave radiation;
Continuously supplying the produced gas to a semiconductor production process as formed;
26. The method of claim 25, comprising:
27. The method of claim 26, wherein the gas is continuously supplied as produced to a chemical vapor deposition reactor or an oxidation furnace.
28. The method according to claim 24, wherein the precursor material is a liquid and the reaction produces a two-phase system comprising the gas.
29. The method according to claim 24, wherein the gas is phosphine.
30. A gas producing reactor having a microwave permeable reaction chamber and a source of microwave radiation directed into the reaction chamber for producing a gas;
A reactor for chemical vapor deposition or an oxidation furnace connected to the reactor for gas generation;
An apparatus for manufacturing a semiconductor device, comprising:
31. The apparatus of claim 30, wherein said gas is phosphine.
32. A chemical reactor system for producing high-purity gas for semiconductor production, comprising:
A source of microwave radiation;
A reaction chamber suitable for producing the gas under pressure and for receiving a precursor material for producing the gas;
A microwave permeable gas tight barrier through which the source of microwave radiation is directed to the reaction chamber;
A microwave reflective enclosure to which the source of microwave radiation is directed ;
A gas supply manifold suitable for receiving the generated gas;
A solvent vapor removal device suitable for removing solvent vapor from the produced gas;
A chemical reactor system composed of
33. The system of claim 32, further comprising a source of precursor material coupled to said reaction chamber.
34. A gas concentration sensor for detecting a gas concentration in the generated gas;
A feedback control system for controlling a gas generation rate in the reaction chamber;
34. The system of claim 33, further comprising:

JP2000558027A 1998-07-06 1999-07-06 Method and apparatus for producing high purity phosphine or other gas Pending JP2002519295A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9173798P 1998-07-06 1998-07-06
US60/091,737 1998-07-06
PCT/US1999/015181 WO2000001615A1 (en) 1998-07-06 1999-07-06 Method and apparatus for the preparation of high purity phosphine or other gas

Publications (2)

Publication Number Publication Date
JP2002519295A JP2002519295A (en) 2002-07-02
JP2002519295A5 true JP2002519295A5 (en) 2006-11-02

Family

ID=22229425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000558027A Pending JP2002519295A (en) 1998-07-06 1999-07-06 Method and apparatus for producing high purity phosphine or other gas

Country Status (3)

Country Link
JP (1) JP2002519295A (en)
CN (1) CN100374365C (en)
WO (1) WO2000001615A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129577B2 (en) 2008-09-16 2012-03-06 Air Products And Chemicals, Inc. Process and system for providing acetylene
CN103288276A (en) * 2013-06-08 2013-09-11 李榕生 Waste water light degradation reactor expansion method for preventing ozone from flowing into magnetron
CN103304082A (en) * 2013-06-08 2013-09-18 李榕生 High-capacity photocatalytic wastewater degradation reactor with magnetron screening mechanism
CN103304085A (en) * 2013-06-08 2013-09-18 李榕生 Method for expanding photocatalytic wastewater degradation device for protecting magnetron
CN103319030A (en) * 2013-06-08 2013-09-25 李榕生 Photocatalysis wastewater degradation reactor capacity expansion method capable of protecting magnetron from being corroded
CN103288279A (en) * 2013-06-08 2013-09-11 李榕生 Photocatalysis wastewater degrading reactor capable of preventing ozone from corroding microwave generating mechanism
CN103288278A (en) * 2013-06-08 2013-09-11 李榕生 Photocatalytic waste water degradation reactor expansion method for resisting reverse crossflow of ozone
CN103304081A (en) * 2013-06-08 2013-09-18 李榕生 Photocatalytic wastewater degradation reactor with anticorrosion maintenance of microwave generation mechanism
CN103288277A (en) * 2013-06-08 2013-09-11 李榕生 Magnetron maintained/enhanced large-capacity reactor for photocatalytic wastewater degradation
CN103304086A (en) * 2013-06-08 2013-09-18 李榕生 Photocatalysis wastewater degradation reactor expansion method for enhancing magnetron maintenance
CN103288275A (en) * 2013-06-08 2013-09-11 李榕生 High-capacity microwave photocatalytic waste water degradation device for restraining reverse crossflow of ozone
CN103304083A (en) * 2013-06-08 2013-09-18 李榕生 Photocatalysis wastewater degradation device capable of preventing ozone from entering microwave generation mechanism
CN103304084A (en) * 2013-06-08 2013-09-18 李榕生 Method for expanding photocatalytic wastewater degradation reactor to avoid corrosion of ozone on magnetron
CN103342428A (en) * 2013-06-17 2013-10-09 李榕生 Large-capacity microwave photocatalytic wastewater degradation device capable of preventing water inrush in quartz cavity
CN103332819A (en) * 2013-06-17 2013-10-02 李榕生 Photocatalysis wastewater degradation reactor for avoiding water inrush of quartz cavity
CN103387304A (en) * 2013-06-17 2013-11-13 李榕生 Capacity expanding method of photocatalysis waste water degrading reactor with lamp zone anti-water bursting maintenance
CN103319035B (en) * 2013-06-17 2016-11-23 李榕生 The high throughput photocatalytic waste water degradation reactor of prevention light source placing chamber gushing water
CN103332818A (en) * 2013-06-17 2013-10-02 李榕生 Photocatalysis waste water degradation reactor capacity enlarging method for preventing water burst of electrodeless lamp area
CN103332815A (en) * 2013-06-17 2013-10-02 李榕生 Expansion method of wastewater photodegradation reactor for resisting water burst of electrodeless lamp placement cavity
CN103332816A (en) * 2013-06-17 2013-10-02 李榕生 Photocatalysis wastewater degradation device for avoiding water inrush of electrodeless ultraviolet lamp placing cavity
CN103318860B (en) * 2013-07-10 2015-07-29 常州宏福高端膦技术研发中心有限公司 Phosphorous acid pyrolysis is utilized to produce the method for phosphuret-(t)ed hydrogen
CN103382064A (en) * 2013-07-18 2013-11-06 李榕生 Ultraviolet light catalyzed waste water degradation reactor dilatation method for self inspection of lamp source states
CN103466862A (en) * 2013-08-11 2013-12-25 李榕生 Reactor capacity expanding method for waste water photocatalysis degradation and catalyst interception mechanism upgrade
CN103449645A (en) * 2013-08-13 2013-12-18 李榕生 Ultraviolet lamp source functional state self-inspection wastewater photodegradation reactor expansion method
CN103449647A (en) * 2013-08-13 2013-12-18 李榕生 Monitoring lamp source state photocatalytic wastewater degradation reactor expansion method
CN103449649A (en) * 2013-08-13 2013-12-18 李榕生 High-capacity photocatalysis waste water degradation reactor capable of initiatively monitoring state of lamp source
CN103466864A (en) * 2013-08-13 2013-12-25 李榕生 High-capacity microwave photocatalysis wastewater degrading device capable of self-detecting states of electrodeless ultraviolet lamp
CN103466863A (en) * 2013-08-13 2013-12-25 李榕生 Photocatalytic wastewater degradation reactor with self-detection function for state of electrodeless UV lamp
CN103449642A (en) * 2013-08-13 2013-12-18 李榕生 Lamp source state self-inspection ultraviolet catalytic wastewater degradation reactor expansion method
CN103449646A (en) * 2013-08-13 2013-12-18 李榕生 Microwave exciter lamp source state self-checking capacity expansion method for photocatalytic wastewater degradation reactor
CN103449643A (en) * 2013-08-13 2013-12-18 李榕生 UV (ultraviolet) radiator state self-inspection photocatalytic wastewater degradation reactor expansion method
CN103449640A (en) * 2013-08-13 2013-12-18 李榕生 Radiation source state self-inspection photocatalytic wastewater degrader expansion method
CN103449641A (en) * 2013-08-13 2013-12-18 李榕生 Photocatalytic wastewater degradation reactor capable of actively monitoring electrodeless ultraviolet lamp state
CN103449644A (en) * 2013-08-13 2013-12-18 李榕生 Photocatalytic wastewater degradation device with active monitoring function of electrodeless ultraviolet lamp state
CN103449648A (en) * 2013-08-13 2013-12-18 李榕生 High-capacity reactor capable of monitoring the degradation of photocatalysis waste water under lamp source state in real time
CN108773838A (en) * 2018-08-15 2018-11-09 马杰 A kind of preparation method and its preparation facilities of phosphine
CN113161535B (en) * 2021-03-30 2022-10-25 华南理工大学 Method and material for improving discharge specific capacity and cycling stability of lithium-rich cathode material through gas-phase surface phosphating treatment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474659A (en) * 1989-04-18 1995-12-12 At&T Corp. Process and apparatus for generating precursor gases used in the manufacture of semiconductor devices
JPH0659293B2 (en) * 1990-04-27 1994-08-10 川崎重工業株式会社 Medical waste treatment method and device
US5158656A (en) * 1991-03-22 1992-10-27 Electron Transfer Technologies, Inc. Method and apparatus for the electrolytic preparation of group IV and V hydrides
CA2137074A1 (en) * 1992-06-05 1993-12-23 Colin J. Waterford Formulations, method and apparatus for the controlled generation of phosphine
US5480947A (en) * 1993-02-24 1996-01-02 Mitsui Toatsu Chemicals, Inc. Diguanamines and preparation process, derivatives and use thereof
US5451302A (en) * 1994-05-03 1995-09-19 Cha; Chang Y. Process for microwave catalysis of chemical reactions using waveguide liquid films
JP3889813B2 (en) * 1995-12-06 2007-03-07 エレクトロン・トランスファー・テクノロジーズ・インコーポレーテッド Method and apparatus for supplying hydride gas for semiconductor processing with a constant composition
US5951831A (en) * 1997-07-11 1999-09-14 Albright & Wilson Americas Limited Condensation polymerization of phosphorus containing compounds

Similar Documents

Publication Publication Date Title
JP2002519295A5 (en)
CN100374365C (en) Method and apparatus for the preparation of high purity phosphine or other gas
EP0039517B1 (en) Apparatus for treating powdery materials utilizing microwave plasma
KR19990023573A (en) Manufacturing method of high pure silicon particle
EP1236682A1 (en) Silicon oxide powder and its manufacture
US20120295033A1 (en) Plasma nano-powder synthesizing and coating device and method of the same
JP2021524434A (en) Boron Nitride Purification Method and Equipment
JPH068170B2 (en) Method for producing high-purity magnesium oxide fine powder
JP2784789B2 (en) Method for producing 2-alkylanthraquinone
US3652437A (en) Process for the preparation of phosphine
JPS6054995A (en) Synthesis of diamond
JPH03128366A (en) Preparation of trichloroisocyanuric acid
JP3974051B2 (en) Particle manufacturing method and particle manufacturing apparatus
JPS63147812A (en) Production of silicon carbide powder
US3679560A (en) Process for the preparation of an anhydride or trivalent phosphorus using excited helium
JP2812473B2 (en) Method for producing aluminum nitride powder
CN211522370U (en) Single crystal growing furnace
RU125991U1 (en) PLASMA CHEMICAL PRODUCTION OF SILICON FROM QUARTZ
JPS59102806A (en) Production of aqueous solution of sodium hypochlorite having high concentration
JPH0226811A (en) Production of aluminium nitride powder having high purity
JP5372729B2 (en) Method and apparatus for preventing clogging of discharge pipe of reactor for producing polycrystalline silicon
JPH0226812A (en) Production of aluminum nitride powder having high purity
JPS62292607A (en) Method and apparatus for producing fine powder by cvd
JP5586005B2 (en) Method for producing silicon
JPS6152304A (en) Apparatus for producing pulverous metallic powder