JP2002512208A - Improvements in or related to contrast agents - Google Patents

Improvements in or related to contrast agents

Info

Publication number
JP2002512208A
JP2002512208A JP2000544368A JP2000544368A JP2002512208A JP 2002512208 A JP2002512208 A JP 2002512208A JP 2000544368 A JP2000544368 A JP 2000544368A JP 2000544368 A JP2000544368 A JP 2000544368A JP 2002512208 A JP2002512208 A JP 2002512208A
Authority
JP
Japan
Prior art keywords
contrast agent
oil phase
agent according
gas
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000544368A
Other languages
Japanese (ja)
Inventor
バリノフ、バーリン
スクルトベイト、ロアルド
ウィッゲン、ウンニ・ノルドビー
オステンセン、ジョニー
Original Assignee
ニイコムド・イメージング・エーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニイコムド・イメージング・エーエス filed Critical ニイコムド・イメージング・エーエス
Publication of JP2002512208A publication Critical patent/JP2002512208A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

(57)【要約】 液体から気体への相転移の効率を増強させ、相転移を制御するために、分散油相の小滴に結合した(例えば、小滴内に)気体含有核形成部位を伴う水中に揮発性油を有するエマルジョンを含有する相変化コロイド型の超音波造影剤を提供する。   (57) [Summary] Volatile oils in water with gas-containing nucleation sites attached (eg, within droplets) to droplets of the dispersed oil phase to enhance the efficiency of the liquid-to-gas phase transition and control the phase transition The present invention provides a phase-change colloidal ultrasound contrast agent containing an emulsion having

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 本発明は、超音波イメージング、特に新規造影製剤及び超音波イメージング(
例えば、組織の灌流の視覚化)におけるその使用に関する。
The present invention relates to ultrasonic imaging, in particular, a novel contrast preparation and ultrasonic imaging (
For example, its use in tissue perfusion visualization).

【0002】 微小気泡の分散液を含む造影剤は、微小気泡の低密度及び圧縮しやすさの利点
により、特に効果的な超音波の後方散乱剤であることがよく知られている。その
ような微小気泡分散液は、適切に安定化されるのであれば、多くの場合、好都合
にも低用量で、非常に効果的に、例えば脈管系及び組織の微小血管の超音波視覚
化を可能にする。
It is well known that contrast agents containing microbubble dispersions are particularly effective ultrasound backscattering agents due to the low density and ease of compression of the microbubbles. Such microbubble dispersions, if properly stabilized, are often very convenient, often at low doses, and are very effective, for example, for ultrasound visualization of microvasculature in the vascular system and tissues. Enable.

【0003】 血液灌流(即ち、単位組織質量あたりの血流)を評価するための超音波検査の
使用は、例えば腫瘍検出(健康な組織とは典型的に異なる血管分布を有する腫瘍
組織)、及び心筋層の研究(例えば、心筋梗塞を検出するため)において、潜在
的価値を有する。心臓灌流の研究に対する現在の超音波造影剤の使用における問
題は、心室に存在する造影剤によって引き起こされる減衰作用により得られた画
像の情報内容が劣化することである。
[0003] The use of sonography to assess blood perfusion (ie, blood flow per unit tissue mass) includes, for example, tumor detection (tumor tissue, which typically has a different vascular distribution than healthy tissue), and It has potential value in myocardial studies (eg, to detect myocardial infarction). A problem with the current use of ultrasound contrast agents for cardiac perfusion studies is that the information content of the resulting images is degraded due to the attenuation effect caused by the contrast agents present in the ventricles.

【0004】 我々の国際特許共同出願WO-A-9817324(その内容は本明細書の一部をなす参照
として本明細書に組み込まれる)において、我々は、投与後に制御可能かつ一時
的なイン・ビトロでの気体相の成長を促進させる気体含有造影製剤により、被験
者、特に心筋層及び他の組織における灌流の超音波視覚化を達成及び/又は増強
することが可能であることを開示した。そのような造影製剤は、例えば組織の微
小血管において微小気泡の形態で、制御可能かつ一時的な気体相保持を促進する
のに用いられてもよく、それによってそのような組織における気体濃度を増加さ
せ、従ってエコー発生(例えば、血液プールに関連する)を増強させることがで
きる。
[0004] In our international patent joint application WO-A-9817324, the contents of which are incorporated herein by reference, which is incorporated herein by reference, we provide a controllable and temporary in- It has been disclosed that a gas-containing imaging formulation that promotes the growth of the gas phase in vitro can achieve and / or enhance the ultrasound visualization of perfusion in subjects, especially myocardium and other tissues. Such contrast agents may be used to promote controllable and transient gas phase retention, for example, in the form of microbubbles in tissue microvessels, thereby increasing gas concentrations in such tissues. Thus, echo generation (eg, associated with a blood pool) can be enhanced.

【0005】 そのような沈着した灌流のトレーサとしての気体の使用は、静脈内に投与可能
な微小気泡超音波造影剤に関して現在の提案とは著しく異なる。従って、これは
制御しないと、潜在的に危険な組織の塞栓形成を生じる可能性があるため、一般
に微小気泡の成長を回避する必要があると考えられる。従って投与量を制限し、
及び/又は微小気泡中への血液ガスの内部拡散を抑制することでイン・ビトロに
おける気泡成長を最小にするために、選択された組成物との気体混合物を使用す
ることが必要とされる可能性がある(例えば、WO-A-9503835及びWO-A-9516467参
照)。
[0005] The use of gas as a tracer for such deposited perfusion differs significantly from current proposals for intravenously administrable microbubble ultrasound contrast agents. Therefore, it may generally be necessary to avoid the growth of microbubbles, which, if uncontrolled, can result in potentially dangerous tissue embolization. So limit the dose,
It may be necessary to use a gas mixture with the selected composition in order to minimize bubble growth in vitro by and / or to suppress internal diffusion of blood gas into the microbubbles. (See, for example, WO-A-9503835 and WO-A-9516467).

【0006】 他方、WO-A-9817324に従えば、分散された気体相を含む組成物が、該分散され
た気体相の制御可能な成長を促進するのに十分な気体又は蒸気圧を有する物質、
又は該物質に由来する気体又は蒸気の分子の内部拡散によって前記気体又は蒸気
圧をイン・ビボで発生することができる少なくとも一つの物質(簡略化のために
、以下ではこれら物質を「拡散性成分」と称する)を含む組成物と共に投与され
るが、以下で更に詳細に述べるように本発明の作用には、それに加えて又はその
代わりに、拡散以外の輸送機構が関与することが理解されるであろう。
[0006] On the other hand, according to WO-A-9817324, a composition comprising a dispersed gas phase is a substance having a gas or vapor pressure sufficient to promote a controllable growth of the dispersed gas phase. ,
Or at least one substance capable of generating said gas or vapor pressure in vivo by internal diffusion of gas or vapor molecules derived from said substance (for the sake of simplicity, these substances are hereinafter referred to as "diffusible components" ), But it is understood that the effects of the present invention, in addition to or in place thereof, involve transport mechanisms other than diffusion, as described in more detail below. Will.

【0007】 分散された気体相含有組成物及び適度な揮発性を有する拡散性成分を含有する
組成物のこの同時投与は、揮発性物質のみの投与に関するこれまでの提案(例え
ば、WO-A-9416739に記載されるような相変化コロイド(phase shift colloids)の
形態にある)とは対照的であり得る。従って、WO-A-9817324の造影製剤は、同時
投与される組成物の適した成分の選択により、分散された気体の成長の確率及び
/又は速度のような因子の制御を可能にする一方、前述の相変化コロイドのみの
投与は、ことによっては少なくとも微小気泡量が、例えば心筋脈管構造及び脳の
潜在的に危険な塞栓形成を引き起こす程度にまで制御不可能かつ不規則に成長す
る微小気泡の発生を引き起こす可能性がある(例えば、Schwarz,エコーコントラ
ストにおける進歩(Advance in Echo-Contrast)[1994(3)]、48〜49ページ)。
[0007] This simultaneous administration of a dispersed gas phase-containing composition and a composition containing a diffusible component with moderate volatility has been suggested by previous proposals for the administration of only volatile substances (eg WO-A- (In the form of phase shift colloids as described in 9416739). Thus, the contrast formulation of WO-A-9817324 allows for control of factors such as the probability and / or rate of growth of the dispersed gas by the selection of suitable components of the co-administered composition, Administration of the aforementioned phase change colloids alone may result in microbubbles that grow uncontrollably and irregularly, at least to the extent that they cause potentially dangerous embolization of the myocardial vasculature and brain, for example. (Eg, Schwarz, Advance in Echo-Contrast [1994 (3)], pp. 48-49).

【0008】 相変化コロイドのみの投与は、気体又は蒸気の微小気泡を発生させるためのイ
ン・ビトロにおける確実な又は一貫した分散相の揮発を引き起こさない可能性が
ある。Grayburnら(J.Am.Coll.Cardiol.26(5)[1995]、1340〜1347ページ)は、
流体力学的副作用を避けるために十分低い効果的なイメージング用量で、イヌに
おいて心筋層の不透明化を達成するために、ペルフルオロペンタンエマルジョン
を予め活性化することが要求され得ると示唆している。そのようなコロイド分散
液の活性化技法は、そこへの低圧の適用を含めて、WO-A-9640282に記載されてい
る:これは典型的に、エマルジョンを注射器に部分的に充填し、次に注射器のプ
ランジャーを強制的に引き、続いて放し、エマルジョン内に微小気泡を形成させ
る一時的な圧力変化を発生させることを含んでいる。これは本来、多少面倒な技
法で、一貫した活性化レベルを提供できない可能性がある。
[0008] Administration of phase change colloids alone may not cause reliable or consistent volatilization of the dispersed phase in vitro to generate gas or vapor microbubbles. Grayburn et al. (J. Am. Coll. Cardiol. 26 (5) [1995], pp. 1340-1347)
It has been suggested that pre-activation of the perfluoropentane emulsion may be required to achieve myocardial opacification in dogs at an effective imaging dose low enough to avoid hydrodynamic side effects. Techniques for activating such colloidal dispersions, including the application of low pressure thereto, are described in WO-A-9640282: this typically involves partially filling the emulsion into a syringe, followed by Forcibly pulling the plunger of the syringe and subsequently releasing it to produce a temporary pressure change that causes microbubbles to form in the emulsion. This is inherently a rather cumbersome technique and may not provide a consistent activation level.

【0009】 また、相変化コロイドに関して、US-A-5536489には、ペルフルオロペンタンの
ような非水溶性気体形成化学物質のエマルジョンは、部位特異的なイメージング
用造影剤として用いられてもよく、該エマルジョンは、画像化したい身体の特異
的な位置に超音波エネルギーを当てると、相当量の画像を増強させる微小気泡を
発生させるにすぎないと記載されている。しかしながら、我々自身の研究におい
て、2−メチルブタン又はペルフルオロペンタンのような揮発性化合物のエマル
ジョンは、WO-A-9817324に従って、2成分の造影剤を用いて、顕著なコントラス
ト効果を与えるのに十分なエネルギーレベルで超音波を当てたとき、イン・ビト
ロ又はイン・ビボで検出可能なエコー増強を提供しないことを示してきた。
With respect to phase change colloids, US-A-5536489 also discloses that an emulsion of a water-insoluble gas-forming chemical such as perfluoropentane may be used as a site-specific imaging contrast agent. The emulsions are described as subjecting ultrasound energy to specific locations in the body to be imaged only to generate significant amounts of image enhancing microbubbles. However, in our own studies, emulsions of volatile compounds such as 2-methylbutane or perfluoropentane, according to WO-A-9817324, were sufficient to give a significant contrast effect using a binary contrast agent. Ultrasound at energy levels has been shown to provide no detectable echo enhancement in vitro or in vivo.

【0010】 WO-A-9725097は、放射線又は超音波の影響のもと、イン・ビトロで蒸発する可
能性のある水と不混和性液体の過熱した小滴の水性分散液の投与を開示し、それ
は該小滴の均一な核形成を誘発すると言われている。特に、診断用造影剤を形成
するために、又は限定した身体の領域に選択的に薬剤を輸送するために、該分散
液を用いることが可能である。
WO-A-9725097 discloses the administration of an aqueous dispersion of superheated droplets of a water-immiscible liquid that can evaporate in vitro under the influence of radiation or ultrasound. It is said to induce uniform nucleation of the droplets. In particular, the dispersion can be used to form a diagnostic contrast agent, or to selectively deliver the agent to a limited area of the body.

【0011】 本発明は、気体含有不均一核形成部位がエマルジョン小滴に結合した相変化コ
ロイド型揮発性エマルジョンが、多くの貴重な利点を有するという見解に基づい
ている。特に、WO-A-9817324の記載と同様の方法で、但し2つの別個の組成物を
投与する必要なく、灌流イメージングの実行が可能であり、そのため製品の取り
扱いが容易になる。さらに、揮発性分散相によって発生する微小気泡の最終の大
きさのような因子は、造影剤の製造中に容易に設定できるエマルジョンの小滴の
大きさ、及び核形成部位の性質及び位置のようなパラメーターによって制御可能
である。従って、核形成部位の存在から生じる高収量の液体から気体への相転移
は、形成した微小気泡の大きさを正確に予測することを可能にし、高い安全性を
伴う制御された保持を可能にする。
The present invention is based on the observation that phase-change colloidal volatile emulsions in which gas-containing heterogeneous nucleation sites are attached to emulsion droplets have many valuable advantages. In particular, perfusion imaging can be performed in a manner similar to that described in WO-A-9817324, but without the need to administer two separate compositions, thereby facilitating product handling. In addition, factors such as the final size of the microbubbles generated by the volatile disperse phase, such as the size of the emulsion droplets and the nature and location of nucleation sites, can be easily set during the production of the contrast agent. It can be controlled by various parameters. Thus, the high-yield liquid-to-gas phase transition arising from the presence of nucleation sites allows for accurate prediction of the size of the microbubbles formed and allows for controlled retention with high safety. I do.

【0012】 従って、本発明の1つの側面に従えば、注射可能な水中油型エマルジョンを含
有し、ここで分散された油相の小滴に結合した気体含有核形成部位が存在する超
音波造影剤が提供される。
[0012] Thus, according to one aspect of the present invention, ultrasound imaging comprising an injectable oil-in-water emulsion wherein there is a gas-containing nucleation site associated with dispersed oil phase droplets. An agent is provided.

【0013】 さらに本発明は、上述の造影剤を被験者の脈管系中に注射し、該被験者の少な
くとも一部の超音波画像を生じる工程を含む、ヒト又はヒト以外の動物の被験者
の増強された画像を生じる方法を提供する。
[0013] The present invention further provides an enhanced human or non-human animal subject comprising the step of injecting a contrast agent as described above into the vasculature of the subject to produce an ultrasound image of at least a portion of the subject. To provide a method for producing an image.

【0014】 該分散された油相は、1以上の適した揮発成分を含有し、少なくとも1つの成
分が、少なくとも部分的に非水溶性又は水と不混和性である。この成分又は成分
の混合物は、製造及び貯蔵温度において好都合なことに液体であり(例えば水相
が適切な抗凍結物質を含有するならば、−10℃と同じくらい低くてもよい)、
一方、体温においては気体であるか、又は十分な蒸気圧を示す(少なくとも50
mmHg、好ましくは少なくとも100mmHg)。また望ましければ、他のよ
り低い揮発性を有する実質的に非水溶性及び水と不混和性成分が、油相に存在し
てもよい。
[0014] The dispersed oil phase contains one or more suitable volatile components, at least one component being at least partially water-insoluble or water-immiscible. The component or mixture of components is advantageously liquid at the production and storage temperatures (eg, may be as low as −10 ° C. if the aqueous phase contains a suitable cryoprotectant),
On the other hand, at body temperature it is gaseous or exhibits a sufficient vapor pressure (at least 50
mmHg, preferably at least 100 mmHg). Also, if desired, other substantially water-insoluble and water-immiscible components having lower volatility may be present in the oil phase.

【0015】 適切な揮発性成分は、例えば上述のWO-A-9416739(その内容は本明細書の一部
をなす参照として本明細書に組み込まれる)に提供されている乳化可能な低沸点
液体の種々のリストから選択すればよい。乳化可能な油相成分の特定の例には、
ジエチルエーテルのような脂肪属エーテル;メントール、ショウノウ若しくはユ
ーカリプトールのような多環式油又はアルコール;フラン若しくはジオキサンの
ような複素環式化合物;n−ブタン、n−ペンタン、2−メチルプロパン、2−
メチルブタン、2,2−ジメチルプロパン、2,2−ジメチルブタン、2,3−
ジメチルブタン、1−ブテン、2−ブテン、2−メチルプロペン、1,2−ブタ
ジエン、1,3−ブタジエン、2−メチル−1−ブテン、2−メチル−2−ブテ
ン、イソプレン、1−ペンテン、1,3−ペンタジエン、1,4−ペンタジエン
、ブテニン、1−ブチン、2−ブチン若しくは1,3−ブタジインのような脂肪
属炭化水素(飽和又は不飽和、及び直鎖又は分岐);シクロブタン、シクロブテ
ン、メチルシクロプロパン又はシクロペンタンのような環式脂肪属炭化水素;及
び低分子量ハロゲン化炭化水素(例えば、炭素原子7までを含む)が含まれる。
代表的なハロゲン化炭化水素は、ジクロロメタン、臭化メチル、1,2−ジクロ
ロエチレン、1,1−ジクロロエタン、1−ブロモエチレン、1−クロロエチレ
ン、臭化エチル、塩化エチル、1−クロロプロペン、3−クロロプロペン、1−
クロロプロパン、2−クロロプロパン及び塩化t−ブチルを含む。好ましくは、
ハロゲン原子の幾つかがフッ素原子であり、例えば、ジクロロフルオロメタン、
トリクロロフルオロメタン、1,2−ジクロロ−1,2−ジフルオロエタン、1
,2−ジクロロ−1,1,2,2−テトラフルオロエタン、1,1,2−トリク
ロロ−1,2,2−トリフルオロエタン、2−ブロモ−2−クロロ−1,1,1
−トリフルオロエタン、2−クロロ−1,1,2−トリフルオロエチルジフルオ
ロメチルエーテル、1−クロロ−2,2,2−トリフルオロエチルジフルオロメ
チルエーテル、部分的にフッ素化したアルカン(例えば、1H,1H,3H−ペ
ンタフルオロプロパンのようなペンタフルオロプロパン、ヘキサフルオロブタン
、2H−ノナフルオロ−t−ブタンのようなノナフルオロブタン、及び2H,3
H−デカフルオロペンタンのようなデカフルオロペンタン)、部分的にフッ素化
したアルケン(例えば、1H,1H,2H−ヘプタフルオロペンタ−1−エンの
ようなヘプタフルオロペンテン、及び1H,1H,2H−ノナフルオロヘキサ−
1−エンのようなノナフルオロヘキセン)、フッ素化したエーテル(例えば、2
,2,3,3,3−ペンタフルオロプロピルメチルエーテル、又は2,2,3,
3,3−ペンタフルオロプロピルジフルオロメチルエーテル)であり、より好ま
しくはペルフルオロカーボンである。ペルフルオロカーボンの例には、ペルフル
オロブタン、ペルフルオロペンタン、ペルフルオロヘキサン(例えば、ペルフル
オロ−2−メチルペンタン)、ペルフルオロヘプタン、ペルフルオロオクタン、
ペルフルオロノナン及びペルフルオロデカンのようなペルフルオロアルカン;ペ
ルフルオロシクロブタン、ペルフルオロジメチル−シクロブタン、ペルフルオロ
シクロペンタン及びペルフルオロメチルシクロペンタンのようなペルフルオロシ
クロアルカン;ペルフルオロブテン(例えば、ペルフルオロブタ−2−エン若し
くはペルフルオロブタ−1,3−ジエン)、ペルフルオロペンテン(例えば、ペ
ルフルオロペンタ−1−エン)及びペルフルオロヘキセン(例えば、ペルフルオ
ロ−2−メチルペンタ−2−エン若しくはペルフルオロ−4−メチルペンタ−2
−エン)のようなペルフルオロアルケン;ペルフルオロシクロペンテン若しくは
ペルフルオロシクロペンタジエンのようなペルフルオロシクロアルケン;及びペ
ルフルオロ−t−ブタノールのようなペルフルオロ化したアルコールが含まれる
Suitable volatile components are, for example, the emulsifiable low-boiling liquids provided in WO-A-9416739 mentioned above, the contents of which are incorporated herein by reference. May be selected from various lists. Specific examples of emulsifiable oil phase components include:
Aliphatic ethers such as diethyl ether; polycyclic oils or alcohols such as menthol, camphor or eucalyptol; heterocyclic compounds such as furan or dioxane; n-butane, n-pentane, 2-methylpropane; 2-
Methylbutane, 2,2-dimethylpropane, 2,2-dimethylbutane, 2,3-
Dimethylbutane, 1-butene, 2-butene, 2-methylpropene, 1,2-butadiene, 1,3-butadiene, 2-methyl-1-butene, 2-methyl-2-butene, isoprene, 1-pentene, Aliphatic hydrocarbons (saturated or unsaturated, and linear or branched) such as 1,3-pentadiene, 1,4-pentadiene, butenin, 1-butyne, 2-butyne or 1,3-butadiyne; cyclobutane, cyclobutene And cycloaliphatic hydrocarbons such as methylcyclopropane or cyclopentane; and low molecular weight halogenated hydrocarbons (eg, containing up to 7 carbon atoms).
Representative halogenated hydrocarbons are dichloromethane, methyl bromide, 1,2-dichloroethylene, 1,1-dichloroethane, 1-bromoethylene, 1-chloroethylene, ethyl bromide, ethyl chloride, 1-chloropropene, 3 -Chloropropene, 1-
Includes chloropropane, 2-chloropropane and t-butyl chloride. Preferably,
Some of the halogen atoms are fluorine atoms, for example, dichlorofluoromethane,
Trichlorofluoromethane, 1,2-dichloro-1,2-difluoroethane, 1
, 2-Dichloro-1,1,2,2-tetrafluoroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, 2-bromo-2-chloro-1,1,1
-Trifluoroethane, 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether, 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, partially fluorinated alkanes (e.g., 1H Pentafluoropropane, such as, 1H, 3H-pentafluoropropane, hexafluorobutane, nonafluorobutane, such as 2H-nonafluoro-t-butane, and 2H, 3
Decafluoropentane, such as H-decafluoropentane), partially fluorinated alkenes (eg, heptafluoropentene, such as 1H, 1H, 2H-heptafluoropent-1-ene, and 1H, 1H, 2H-). Nonafluorohexa
Nonafluorohexenes such as 1-ene), fluorinated ethers (e.g., 2
, 2,3,3,3-pentafluoropropyl methyl ether, or 2,2,3
3,3-pentafluoropropyldifluoromethyl ether), and more preferably perfluorocarbon. Examples of perfluorocarbons include perfluorobutane, perfluoropentane, perfluorohexane (eg, perfluoro-2-methylpentane), perfluoroheptane, perfluorooctane,
Perfluoroalkanes such as perfluorononane and perfluorodecane; perfluorocycloalkanes such as perfluorocyclobutane, perfluorodimethyl-cyclobutane, perfluorocyclopentane and perfluoromethylcyclopentane; perfluorobutene (e.g. perfluorobut-2-ene or perfluorobuta-1) , 3-diene), perfluoropentene (e.g., perfluoropent-1-ene) and perfluorohexene (e.g., perfluoro-2-methylpent-2-ene or perfluoro-4-methylpenta-2)
Perfluoroalkenes such as -ene); perfluorocycloalkenes such as perfluorocyclopentene or perfluorocyclopentadiene; and perfluorinated alcohols such as perfluoro-t-butanol.

【0016】 そのような少なくとも部分的に非水溶性/水と不混和性の揮発性物質は、混合
物の蒸気圧を大きく増加させる溶解性物質を含んでもよい。そのような溶質物質
には、空気;窒素;酸素;二酸化炭素;水素;ヘリウム、アルゴン、キセノン若
しくはクリプトンのような不活性ガス;六フッ化硫黄、十フッ化二硫黄若しくは
五フッ化トリフルオロメチル硫黄のようなフッ化硫黄;六フッ化セレン;メチル
シラン若しくはジメチルシランのような任意にハロゲン化したシラン;メタン、
エタン、プロパン、ブタン若しくはペンタンのようなアルカン、シクロプロパン
、シクロブタン若しくはシクロペンタンのようなシクロアルカン、エチレン、プ
ロペン、プロパジエン若しくはブテンのようなアルケン、又はアセチレン若しく
はプロピンのようなアルキンのようなアルキンのような低分子量炭化水素(例え
ば、炭素原子7までを含む);ジメチルエーテルのようなエーテル;ケトン;エ
ステル;低分子量ハロゲン化炭化水素(例えば、炭素原子7までを含む);又は
前述の何れかの混合物のような気体が含まれる。実質的にフルオロカーボン液体
中に溶解性を有する空気、酸素及び二酸化炭素のような気体がより好ましい。
Such at least partially water-insoluble / water-immiscible volatiles may include soluble substances that greatly increase the vapor pressure of the mixture. Such solutes include air; nitrogen; oxygen; carbon dioxide; hydrogen; an inert gas such as helium, argon, xenon or krypton; sulfur hexafluoride, disulfur defluoride or trifluoromethyl pentafluoride. Sulfur fluorides such as sulfur; selenium hexafluoride; optionally halogenated silanes such as methylsilane or dimethylsilane; methane;
Alkanes such as ethane, propane, butane or pentane; cycloalkanes such as cyclopropane, cyclobutane or cyclopentane; alkenes such as ethylene, propene, propadiene or butene; or alkynes such as alkynes such as acetylene or propyne. Low molecular weight hydrocarbons (eg, containing up to 7 carbon atoms); ethers such as dimethyl ether; ketones; esters; low molecular weight halogenated hydrocarbons (eg, containing up to 7 carbon atoms); or any of the foregoing. Gases such as mixtures are included. More preferred are gases such as air, oxygen and carbon dioxide that are substantially soluble in the fluorocarbon liquid.

【0017】 該エマルジョンは、典型的に1以上の界面活性剤又は他の被包性物質によって
安定化されるであろう。そのような材料の性質が、揮発した気体の成長速度のよ
うな因子に非常に影響を及ぼす可能性があることは認識されるであろう。一般に
広範囲の界面活性剤が用いられ、例えば、EP-A-0727225(その内容は本明細書の
一部をなす参照として本明細書に組み込まれる)に提供される広範囲のリストか
ら選択される。有用な界面活性剤の代表例には、脂肪酸(例えば、10〜20の
炭素原子を含む直鎖状飽和又は不飽和脂肪酸)及びその糖エステル及びそのトリ
グリセリドエステル、リン脂質(例えば、レシチン若しくはフッ素含有リン脂質
)、タンパク質(例えば、ヒト血清アルブミンのようなアルブミン)、ブロック
共重合体界面活性剤(例えば、プルロニクス(Pluronics)のようなポリオキシエ
チレン−ポリオキシプロピレンブロック共重合体、又はアシルオキシアシルポリ
エチレングリコール(例えば、ポリエチレングリコールメチルエーテル 16−
ヘキサデカノイルオキシヘキサデカノエイト、ここで例えばポリエチレングリコ
ール部位は、分子量2300、5000又は10000を有する)のような伸長
ポリマー)、フッ素含有界面活性剤(例えば、商品名Zonyl 及びFluoradの下で
販売されるか、又はWO-A-9639197(その内容は本明細書の一部をなす参照として
本明細書に組み込まれる)に記載される)、及び1以上の4級アンモニウム基及
び長鎖アルキル(例えば、C10-30)のような1以上の脂質基又はアルカノイル
基を含むカチオン性界面活性剤が含まれる。
[0017] The emulsion will typically be stabilized by one or more surfactants or other encapsulating substances. It will be appreciated that the nature of such materials can greatly affect factors such as the rate of growth of the vaporized gas. Generally, a wide range of surfactants will be used, selected from the extensive list provided, for example, in EP-A-0727225, the contents of which are incorporated herein by reference. Representative examples of useful surfactants include fatty acids (eg, straight-chain saturated or unsaturated fatty acids containing 10-20 carbon atoms) and their sugar esters and triglyceride esters, phospholipids (eg, lecithin or fluorine-containing Phospholipids), proteins (eg, albumin such as human serum albumin), block copolymer surfactants (eg, polyoxyethylene-polyoxypropylene block copolymers such as Pluronics, or acyloxyacyl polyethylene) Glycol (for example, polyethylene glycol methyl ether 16-
Extended polymers such as hexadecanoyloxyhexadecanoate, where, for example, the polyethylene glycol moiety has a molecular weight of 2300, 5000 or 10,000), fluorine-containing surfactants (eg, sold under the trade names Zonyl and Fluorad) Or described in WO-A-9639197, the contents of which are incorporated herein by reference, and one or more quaternary ammonium groups and long-chain alkyls ( For example, cationic surfactants containing one or more lipid or alkanoyl groups such as C 10-30 ) are included.

【0018】 また該エマルジョン小滴は、該分散相が揮発性液体を含む微小カプセルの形態
であるために壁形成被包性物質によってか、又はラテックス微粒子のような多孔
性構造の中に組込むことで安定化されてもよい。代表的な壁形成物質には、ポリ
乳酸、ポリカプロラクトン、ポリシアノアクリレート及びポリエステル(例えば
、WO-A-9317718に記載される)が含まれる。
The emulsion droplets may also be incorporated by a wall-forming encapsulant because the dispersed phase is in the form of microcapsules containing a volatile liquid, or in a porous structure such as latex particulates. May be stabilized. Representative wall-forming substances include polylactic acid, polycaprolactone, polycyanoacrylate and polyester (as described, for example, in WO-A-9317718).

【0019】 核形成部位は、分散された油相小滴内か、又は該小滴を包囲する界面活性剤又
は他の被包性若しくは安定化膜内に存在してもよい;そのような膜は、それら自
身で核形成部位として機能する。あるいは、適切な核形成部位がそのような膜の
外側に接触して存在してもよい。
The nucleation site may be present in the dispersed oil phase droplets or in a surfactant or other encapsulating or stabilizing film surrounding the droplets; such a film Function as nucleation sites on their own. Alternatively, a suitable nucleation site may be in contact with the outside of such a membrane.

【0020】 該核形成部位が油小滴内に存在する場合、それらは例えば、自由な微小気泡、
界面活性剤若しくは脂質で安定化した微小気泡、ポリマー若しくはタンパク質で
被包した微小気泡、アエロゲル若しくはゼオライトのような気体含有多孔性固体
微粒子、粗表面固体微粒子の孔間隙若しくは他の不規則部分にトラップされた気
体、気体含有ポリマー微粒子、又はフラーレン、(fullerenes)、包接体(clathra
tes)若しくはナノチューブ(nanotubes)のような気体含有物のような分散された
微小気泡の形態をとってもよい。そのような造影剤は、1以上の適した分散剤を
用いて、油相に核形成部位含有物質を分散させ、続いて本来既知の方法で水中油
型エマルジョンを生じさせることで、素早く調製することが可能である。
When the nucleation sites are present in oil droplets, they are, for example, free microbubbles,
Surfactants or lipid stabilized microbubbles, polymer or protein encapsulated microbubbles, gas-containing porous solid microparticles such as aerogels or zeolites, trapped in pores or other irregularities of coarse surface solid microparticles Gas, gas-containing polymer microparticles, or fullerenes, clathra
It may take the form of dispersed microbubbles, such as gaseous inclusions such as tes) or nanotubes. Such contrast agents are quickly prepared by dispersing the nucleation site-containing material in the oil phase using one or more suitable dispersants, followed by forming an oil-in-water emulsion in a manner known per se. It is possible.

【0021】 容易に分散させるために、核形成部位の界面特性は、例えば核形成部位用の分
散剤の選択、又は核形成部位表面の化学修飾(例えば、シラン化(silanisation)
若しくはプラズマ修飾)により変化させればよい。また、表面の不規則部分、空
洞、境界、間隙、又は他の構造上の欠点の存在が存在すると、気体相が界面に広
がる手助けをするので都合がよい。
For easy dispersion, the interfacial properties of the nucleation site may be determined, for example, by selection of a dispersant for the nucleation site, or by chemical modification of the nucleation site surface (eg, silanisation).
Or by plasma modification). Also, the presence of surface irregularities, cavities, boundaries, gaps, or other structural defects is advantageous because it helps the gaseous phase spread to the interface.

【0022】 望ましければ、該核形成部位は、それらが水−揮発性油界面に位置することが
できるような界面特性を有するように選択されてもよい。これは、例えば核形成
部位の表面を揮発性油及び水相の両方によって部分的に湿潤化させることができ
るような、核形成部位用の分散剤を選択することで達成することができる。必要
であれば、核形成部位の表面は、化学修飾(例えば、プラズマ修飾)、リンス等
によって調節されてもよい。
If desired, the nucleation sites may be selected to have interfacial properties such that they can be located at the water-volatile oil interface. This can be achieved, for example, by choosing a dispersant for the nucleation site such that the surface of the nucleation site can be partially wetted by both the volatile oil and the aqueous phase. If necessary, the surface of the nucleation site may be adjusted by chemical modification (eg, plasma modification), rinsing, etc.

【0023】 本発明の態様において、微小気泡の発生がイン・ビボにおいて自然発生するこ
とが望ましい場合、エマルジョンの分散された油相の沸点が42℃を超えないこ
と、即ち油相の揮発成分由来の分圧の合計が42℃で1気圧を超えることが一般
に好ましい。
In an embodiment of the present invention, if it is desired that the generation of microbubbles occur spontaneously in vivo, the boiling point of the dispersed oil phase of the emulsion should not exceed 42 ° C., ie, from the volatile components of the oil phase. Is generally preferred to exceed 1 atmosphere at 42 ° C.

【0024】 本発明の他の態様において、微小気泡は、適した温度及び/若しくは圧力修飾
、又は音、超音波若しくは放射線のような外部からの活性化力の適用によって、
イン・ビボにて又は注射前に直ちに発生してもよい。また、外部からの活性化力
を適用する場合、油相がより高い沸点(例えば、60℃まで)を有するエマルジ
ョンは、その沸点が体温とより大きく離れているにもかかわらず外部からの活性
化によりイン・ビボで油相が大きく蒸発するため、有用であり得る。
In another embodiment of the present invention, the microbubbles are formed by suitable temperature and / or pressure modification or application of an external activating force such as sound, ultrasound or radiation.
It may occur in vivo or immediately prior to injection. Also, when an external activating force is applied, an emulsion in which the oil phase has a higher boiling point (eg, up to 60 ° C.) may have an external activation despite the boiling point being farther away from the body temperature. May be useful because the oil phase will be largely evaporated in vivo.

【0025】 本発明に従った造影剤から発生する微小気泡は、容易に制御可能な成長速度及
び最終の大きさを特徴とする;それらは、例えば組織の微小血管(例えば、心筋
層)において制御された保持を示すように、例えば10〜20μmの大きさに成
長するように設計されてもよく、又それらがフリーフローイング(free-flowing)
造影剤として作用するように、例えば、1〜7μmの大きさに成長するように設
計されてもよい。
The microbubbles generated from the contrast agents according to the present invention are characterized by an easily controllable growth rate and final size; they are controlled, for example, in tissue microvessels (eg myocardium). It may be designed to grow to a size of, for example, 10-20 μm, so as to exhibit a controlled retention, and they may be free-flowing.
It may be designed to grow to a size of, for example, 1-7 μm to act as a contrast agent.

【0026】 核形成部位の存在下において、エマルジョン小滴における液体から気体への相
変化は、非常に効果的かつ迅速な液体の変換を確実にし、従って、別個の粒子間
の揮発性物質の拡散を制限し、かくして制御されない気泡成長を制限することが
理解されるであろう。この観点において、1つのエマルジョン小滴内部の物質は
、1つの泡に変換され得る。理想気体の法則[式(1)]によって表される気体を
仮定し、 pV=nRT (1) ここで、nは1つの気泡を創出するための物質のモル数であり、式(2)によ
りエマルジョン小滴の半径、reと関連し、
In the presence of nucleation sites, the liquid-to-gas phase change in the emulsion droplets ensures a very efficient and rapid conversion of the liquid and thus the diffusion of volatiles between the individual particles It will be appreciated that this limits the air flow and thus the uncontrolled bubble growth. In this regard, the material inside one emulsion droplet can be converted into one foam. Assuming a gas represented by the ideal gas law [Equation (1)], pV = nRT (1) where n is the number of moles of a substance for creating one bubble, and the radius of the emulsion droplets, associated with r e,

【数1】 (Equation 1)

【0027】 ここで、dは液相の密度であり、Mwは揮発性物質の分子量であり、Veは液体
小滴の体積であるとすれば、理想気体の法則の式(1)に式(2)を入れ、得ら
れた気泡の体積Vを半径rbで表現すると、下記の式が得られる。
Here, if d is the density of the liquid phase, M w is the molecular weight of the volatile substance, and V e is the volume of the liquid droplet, the equation (1) of the ideal gas law can be obtained. put equation (2), when the volume V of the resulting foam is expressed by radius r b, the following equation is obtained.

【0028】[0028]

【数2】 (Equation 2)

【0029】 典型的な揮発性溶媒、例えばペルフルオロペンタンに関して、dは1.66g
/ml、Mw=288g/mol及びT=298K、p=1気圧を用いると、rb ≒5.2reである。従って、一時的な保持が可能な大きさ10μmの微小気泡
を提供するために、エマルジョン小滴はわずかに2μmを下回る大きさを有する
For a typical volatile solvent, for example perfluoropentane, d is 1.66 g
/ Ml, M w = 288g / mol and T = 298K, the use of p = 1 atm, r b ≒ 5.2r e. Thus, to provide microbubbles of size 10 μm that can be temporarily retained, the emulsion droplets have a size just below 2 μm.

【0030】 そのようなエマルジョン液滴の50%を占めるような核形成部位に関して、そ
の大きさは1.6μm未満にすべきである。より好ましくは、核形成部位は、エ
マルジョン小滴の20%未満を占めるべきであり、それゆえ、その大きさは1.
2μm未満にすべきであり;さらに好ましくは核形成部位は、液体体積の10%
未満を占めるべきであり、それゆえ、1μm未満の大きさを有するべきである。
For those nucleation sites that occupy 50% of such emulsion droplets, their size should be less than 1.6 μm. More preferably, the nucleation sites should occupy less than 20% of the emulsion droplets, and therefore have a size of 1.
Should be less than 2 μm; more preferably the nucleation site is 10% of the liquid volume
And should have a size of less than 1 μm.

【0031】 十分に多いエマルジョン小滴を確実に蒸発させるために、十分に多い核形成部
位が添加されるべきである。核形成部位は、単純なボルツマン分布によって、液
体キャリア粒子上に分布し、少なくとも1つの核形成部位を含有するために、一
定の割合の液体キャリア粒子に関して添加される核形成部位の量を見積もるため
に計算してもよい。
To ensure that a sufficient number of emulsion droplets evaporate, a sufficient number of nucleation sites should be added. The nucleation sites are distributed on the liquid carrier particles by a simple Boltzmann distribution to estimate the amount of nucleation sites added for a certain percentage of the liquid carrier particles to contain at least one nucleation site. May be calculated.

【0032】 揮発性液体の沸点を超える温度に単に加熱することによって、液体から気体へ
の相転移を活性化してもよい。体温にまで温度が上昇することを利用して、注射
したときに相転移を活性化させるためには、体温未満の沸点を有する揮発性油を
用いるべきである。しかしながら、またより高い温度でも、気泡核形成速度が低
い可能性があるので、揮発性液体は体温より十分低い沸点を有してもよい。その
ような過熱した分散液において、核形成が外部からの影響によって引き起こされ
得るように、核形成部位の存在は相変化の障壁を低くする可能性がある。
The liquid to gas phase transition may be activated by simply heating to a temperature above the boiling point of the volatile liquid. Volatile oils with boiling points below body temperature should be used to activate the phase transition upon injection, taking advantage of the fact that the temperature rises to body temperature. However, also at higher temperatures, volatile liquids may have a boiling point well below body temperature, as the rate of bubble nucleation may be low. In such superheated dispersions, the presence of nucleation sites can lower the barrier to phase change so that nucleation can be caused by external influences.

【0033】 超音波等の処理によって気体形成が活性化される製品は、それらが活性化前及
び使用前に非常に貯蔵安定な可能性がある点で特に有利である。
Products whose gas formation is activated by treatment such as ultrasound are particularly advantageous in that they can be very storage-stable before activation and before use.

【0034】 本発明に従った造影剤の分散された気体の内容物は、組織灌流の局所速度に比
例した濃度で、組織に一時的に保持される傾向にあるであろう。従って、従来の
イメージング、又は表示が直接反射信号強度から得られるハーモニックBモード
イメージングのような超音波イメージング様式を用いると、そのような組織画像
は、表示される信号強度が局所灌流の関数である灌流マップと解釈され得る。こ
れは、造影剤の局所濃度及び対応する反射信号強度が局所組織の灌流速度よりは
むしろ実際の血液量に依存するフリーフローイング造影剤を用いて得られる画像
と対照的である。
[0034] The dispersed gaseous content of the contrast agent according to the present invention will tend to be temporarily retained in the tissue at a concentration proportional to the local rate of tissue perfusion. Thus, using conventional imaging, or an ultrasound imaging modality such as harmonic B-mode imaging, where the display is derived directly from the reflected signal intensity, such tissue images are such that the displayed signal intensity is a function of local perfusion. It can be interpreted as a perfusion map. This is in contrast to images obtained with a free-flowing contrast agent where the local concentration of the contrast agent and the corresponding reflected signal intensity depend on the actual blood volume rather than the local tissue perfusion rate.

【0035】 灌流マップが本発明のこの態様に従って反射信号強度から得られる場合の心臓
の研究において、差異、従って、正常に灌流した心筋層及び狭窄した動脈によっ
て供給される何れかの心筋層領域間での画像強度における相違を増強するために
、患者に身体的又は薬理学的ストレスにさらすことが有利である可能性がある。
放射性核種心臓イメージングで知られているように、そのようなストレスは健康
な心筋組織における血管拡張及び血流の増加を引き起こすのに対し、狭窄した動
脈によって供給される低灌流組織における血流は、制限された血流を増加させよ
うとする本来の自己調節によって小動脈の血管拡張能力がすでに使い尽くされて
いるために、実質的に変化しない。
In studying the heart when a perfusion map is obtained from the reflected signal intensities according to this aspect of the invention, the differences, and therefore, between any myocardium regions supplied by the normally perfused myocardium and the stenotic artery, It may be advantageous to subject the patient to physical or pharmacological stress to enhance the difference in image intensity at the patient.
As is known in radionuclide heart imaging, such stress causes vasodilation and increased blood flow in healthy myocardial tissue, whereas blood flow in hypoperfused tissue supplied by stenotic arteries is It does not change substantially because the vasodilator capacity of the small arteries has already been exhausted by the natural self-regulation to increase the restricted blood flow.

【0036】 身体的運動のようなストレス又は薬理学的にアドレナリン作用性アゴニストの
投与によるストレスの適用は、潜在的に心臓病を患う患者群に胸部の痛みのよう
な不快感を引き起こし、従って、アデノシン、ジピリダモール、ニトログリセリ
ン、イソソルビドモノニトレート、プラゾシン、ドキサゾシン、ジヒドララジン
、ヒドララジン、ニトロプルシドナトリウム、ペントキシフィリン(pentoxyphyl
line)、アメロジピン(amelodipine)、フェロジピン、イスラジピン(isradipine)
、ニフェジピン、ニモジピン、ベラパミル、ジルチアゼム及び亜酸化窒素から選
択されるような血管拡張薬の投与によって健康な組織の灌流を増加させるのが好
ましい。アデノシンの場合、これは健康な心筋組織の冠状動脈血流に4倍を超え
る増加をもたらし、本発明に従った造影剤の摂取及び一時的な保持を大きく増加
させ、従って正常及び低灌流心筋組織間の反射信号強度における相違を非常に増
強する。本質的に身体的エントラップメント過程は複雑であるので、本発明に従
った造影剤の保持は非常に効果的である;これは、タリウム201及びテクネチウ
ム・セスタミビ(sestamibi)のような放射性核種トレーサ(これはトレーサ及び
組織間の短い接触時間によって制限され、従って、最適な効果を確実に得るため
にトレーサーの血液プールの全分布期間における血管拡張の維持を要する可能性
がある(例えばタリウムシンチグラフィーにおいて4〜6分))の摂取と比較さ
れ得る。他方で、本発明の造影剤は、そのような拡散及び輸送制限をこうむるこ
とはなく、また上述の方法により、心筋組織におけるそれらの保持を素早く終了
させることができるため、本発明に従ったこの態様に従った心臓灌流イメージン
グを達成するのに必要とされる血管拡張の期間は、非常に短い可能性がある(例
えば、1分未満)。これは、血管拡張薬投与による患者への何れかの可能性ある
不快感の持続期間を低減するであろう。
The application of stress, such as physical exercise or the administration of pharmacologically adrenergic agonists, causes discomfort, such as chest pain, in a group of patients potentially with heart disease, Adenosine, dipyridamole, nitroglycerin, isosorbide mononitrate, prazosin, doxazosin, dihydralazine, hydralazine, sodium nitroprusside, pentoxyphylline
line), amerodipine (amelodipine), felodipine, isradipine (isradipine)
Preferably, perfusion of healthy tissue is increased by administration of a vasodilator such as selected from nifedipine, nimodipine, verapamil, diltiazem and nitrous oxide. In the case of adenosine, this results in a more than 4-fold increase in the coronary blood flow of healthy myocardial tissue, greatly increasing the uptake and temporary retention of the contrast agent according to the invention, and thus of normal and hypoperfused myocardial tissue. Greatly enhance the difference in reflected signal strength between the two. Due to the complexity of the physical entrapment process, retention of the contrast agent according to the invention is very effective; this is because radionuclide tracers such as thallium-201 and technetium sestamibi. (This is limited by the short contact time between the tracer and the tissue, and may therefore require maintenance of vasodilation during the entire distribution of the tracer's blood pool (eg, thallium scintigraphy) 4-6 minutes))). On the other hand, the contrast agents of the present invention do not suffer from such diffusion and transport restrictions and, due to the above-mentioned method, can quickly terminate their retention in myocardial tissue, and therefore have the The duration of vasodilation required to achieve cardiac perfusion imaging according to aspects can be very short (eg, less than 1 minute). This will reduce the duration of any possible discomfort to the patient due to vasodilator administration.

【0037】 要求される血管拡張が単に短く続けばよいという事実の観点で、アデノシンは
特に有用な血管拡張剤であり、これは内因性物質で、また血液プールの半減期が
たったの数秒であることから明らかなように非常に短い持続作用を有する。従っ
て、該薬剤は薬理学的に有効な濃度よりも低い量で、より遠方の組織に届く傾向
があるため、血管拡張は心臓で最も強いであろう。この短い半減期のために、本
発明のこの態様に従った心臓イメージングの間に、アデノシンの繰り返しの注射
又は注入が必要となるかもしれない;例として、アデノシン150μg/kgの
最初の投与が造影剤組成物の投与と実質的に同時に行われ、続いて10秒後にさ
らにアデノシン150μg/kgのゆっくした注射(例えば、20秒間にわたっ
て)を行う。
Adenosine is a particularly useful vasodilator in view of the fact that the required vasodilation only needs to be kept short, which is an endogenous substance and the half-life of the blood pool is only a few seconds As can be seen, it has a very short lasting effect. Thus, vasodilation will be strongest in the heart because the drug tends to reach distant tissues in lower than pharmacologically effective concentrations. Due to this short half-life, repeated injections or infusions of adenosine may be required during cardiac imaging according to this aspect of the present invention; Substantially at the same time as the administration of the agent composition, followed by an additional slow injection of adenosine 150 μg / kg (eg, over 20 seconds) 10 seconds later.

【0038】 本発明の造影剤は、薬輸送剤のような治療学的用途に有用に用いられ得る。従
って、有利に高い薬剤負荷を達成するために、疎水性薬剤を揮発性油相に溶解し
てもよい。また、治療は何れかの被包性膜に組み込まれてもよく、水性キャリア
相に溶解してもよい。また治療は、付加的な核形成部位として機能するナノサイ
ズ又はミクロサイズの粒子として存在してもよい。
The contrast agent of the present invention can be usefully used for therapeutic applications such as drug delivery agents. Thus, the hydrophobic drug may be dissolved in the volatile oil phase to advantageously achieve a high drug load. Also, the treatment may be incorporated into any encapsulating membrane, or may be dissolved in the aqueous carrier phase. The treatment may also be present as nano- or micro-sized particles that serve as additional nucleation sites.

【0039】 理論的考察に拘束されるものではないが、揮発性油小滴が蒸発すると、該液体
小滴における薬剤濃度が増加し、容易に溶解度を超えるため、溶解した治療薬の
放出を速めるであろうと考えられている。また薬剤摂取は、局所的なずれ及び微
小気泡形成から誘導される「微流(microstreaming)」由来の影響により増加する
Without being bound by theoretical considerations, evaporation of the volatile oil droplets increases the drug concentration in the liquid droplets and easily exceeds solubility, thus speeding the release of the dissolved therapeutic agent. Is believed to be. Drug uptake is also increased by effects from "microstreaming" induced by local shifts and microbubble formation.

【0040】 本発明のさらに別の側面に従って、誘導される液体から気体への転移は、超音
波治療のような用途に利用され得る。従って、例えば局所的に超音波を適切に適
用した後に、液体から気体への相転移は、毛細管に塞栓を形成するのに十分な大
きさを有する微小気泡を提供し、従って問題の部位(例えば、腫瘍)への血流を
防ぐことが可能である。また微小気泡は超音波エネルギーを吸収することが可能
であり、従って問題の部位を加熱することが可能で、高熱処理に利用される。さ
らに、液体から気体への転移は非常に迅速で、周囲の細胞に損失効果を伴うずれ
応力又は微流を提供する可能性がある;これは、細胞殺傷、例えば癌治療に有用
であり得る。
According to yet another aspect of the invention, the induced liquid to gas transition may be utilized for applications such as ultrasound therapy. Thus, for example, after the appropriate application of ultrasonic waves locally, the phase transition from liquid to gas provides microbubbles that are large enough to form an embolus in the capillary, and thus the site of interest (eg, , Tumors) can be prevented. Also, the microbubbles can absorb ultrasonic energy, and thus can heat the site of interest and are used for high heat treatment. In addition, the transition from liquid to gas is very rapid and can provide shear stress or microcurrent with a loss effect on surrounding cells; this can be useful for cell killing, eg, cancer treatment.

【0041】 以下の非制限的な例は、本発明を例示するものである。The following non-limiting examples illustrate the invention.

【0042】 <例1> スパチュラエッジ量(a spatula edge)の微細化したカオリンを、Fluorad(登
録商標)FC-171界面活性剤0.2mlを含むペルフルオロペンタン(沸点28℃
)2mlに添加する。手で穏やかに攪拌した後、乳白色分散液が得られる。上述
の分散液0.1mと水1mlとを、Espe Capmix(登録商標)にて30秒間攪拌
して混合し、わずかに1μmを超える大きさの小滴を有するエマルジョンが得ら
れる。
Example 1 Kaolin having a fine spatula edge was used as perfluoropentane containing 0.2 ml of a Fluorad® FC-171 surfactant (boiling point: 28 ° C.)
) Add to 2 ml. After gentle hand stirring, a milky white dispersion is obtained. 0.1 ml of the above dispersion and 1 ml of water are mixed by stirring with Espe Capmix (registered trademark) for 30 seconds to obtain an emulsion having droplets having a size slightly exceeding 1 μm.

【0043】 該エマルジョンの小滴を冷却/加熱台に設置し、37℃に加熱しながら、顕微
鏡操作を行う。10μmの小滴が幾つか観察され、エマルジョン小滴における液
体から気体への迅速な相変化を実証している。
The microscopic operation is performed while placing the emulsion droplets on a cooling / heating table and heating to 37 ° C. Several 10 μm droplets were observed, demonstrating a rapid liquid-to-gas phase change in the emulsion droplets.

【0044】 該エマルジョンを含有する管を、37℃に維持した水浴に浸し、該エマルジョ
ンの一部のみを加熱する。非加熱のエマルジョンに比べ、加熱したエマルジョン
の部分で、直ちに濁りが非常に増し、加熱後、小さな気泡の形成が実証される。
The tube containing the emulsion is immersed in a water bath maintained at 37 ° C. and only a portion of the emulsion is heated. The turbidity of the heated emulsion is greatly increased immediately compared to the unheated emulsion, demonstrating the formation of small bubbles after heating.

【0045】 <例2> スパチュラエッジ量の微細化したゼオライトを、ペルフルオロオクタン酸0.
2mgを含むペルフルオロペンタン(沸点28℃)2mlに添加する。該サンプ
ルを氷浴中に保ちながら、ブランソン W385 音波粉砕器ホーン(Branson W385 so
nicator horn)を用いて、出力50%にて2分間、該サンプルを音波粉砕する。
上述の分散液0.1mと水1mlとを、Espe Capmix(登録商標)にて45秒間
攪拌して混合し、エマルジョンが得られる。
Example 2 A zeolite having a fine spatula edge was prepared by adding perfluorooctanoic acid to 0.1 μg perfluorooctanoic acid.
Add to 2 ml of perfluoropentane (boiling point 28 ° C.) containing 2 mg. While keeping the sample in an ice bath, a Branson W385 sonicator horn (Branson W385 so
The sample is sonicated for 2 minutes at 50% power using a nicator horn).
0.1 m of the above dispersion and 1 ml of water are mixed by stirring for 45 seconds using Espe Capmix (registered trademark) to obtain an emulsion.

【0046】 該エマルジョンのサンプル(1μl)を、室温でイソトン(Isoton)II(55m
l)に懸濁させ、パルスエコー技法にて、2つの広帯域トランスデューサを用い
、それぞれ中心周波数3.5MHz及び5.0MHzで、音波の減衰を時間の関
数として測定する。該音波の減衰は弱い。続いて該サンプルを段階的に加熱し、
各温度にて音波の減衰を測定する。該サンプル温度が30℃付近のとき、音波の
減衰における実質的な増加が観察される。この実験は、揮発性物質を有する核形
成部位含有エマルジョンが、その沸点付近でどれくらい微小気泡分散液に変換さ
れるかを説明する。また、音波特性における変化及び超音波造影剤としての製品
の有用性を示している。
A sample (1 μl) of the emulsion was taken at room temperature with Isoton II (55 ml).
1) and measure the attenuation of the sound wave as a function of time at a center frequency of 3.5 MHz and 5.0 MHz, respectively, using two broadband transducers in a pulse-echo technique. The sound wave is weakly attenuated. Subsequently, the sample is heated step by step,
Measure the sound attenuation at each temperature. When the sample temperature is around 30 ° C., a substantial increase in sound wave attenuation is observed. This experiment illustrates how a nucleation site-containing emulsion with volatiles is converted to a microbubble dispersion near its boiling point. It also demonstrates the change in acoustic properties and the usefulness of the product as an ultrasound contrast agent.

【0047】 <例3(比較例)> ペルフルオロペンタン相に微細化したゼオライトを添加しないで、例2を繰り
返す。音波の減衰測定技法を用いてエマルジョンを特徴付けると、40℃を十分
超える温度に加熱すると、音波の減衰にわずかな増加のみが生じる。このことは
、分散相に結合した核形成部位の必要性を示している。
Example 3 (Comparative Example) Example 2 is repeated without adding the finely divided zeolite to the perfluoropentane phase. Characterizing the emulsion using acoustic attenuation measurements techniques, heating to temperatures well above 40 ° C. results in only a slight increase in acoustic attenuation. This indicates the need for a nucleation site attached to the dispersed phase.

【0048】 <例4> a)(−)−カンフェンにおけるWO-A-9607434の実施例2(a)から得られる
ポリマーの5%W/V溶液5mlを60℃に保ち、水中のヒト血清アルブミンの
5%W/V溶液15mlに同じ温度で添加する。該混合物をウルトラ・トュラッ
クス T25 ミキサー(Ultra Turax T25 mixer)を用いて、20,000rpmで1
分間、激しく混合する。その後、エマルシフレックス(Emulsiflex) C5 高圧ホモ
ジェナイザーを用いて、200,000kpaの最大圧力で作動させ、該サンプ
ル5回通過させて、該エマルジョンを60℃で均質化させる。得られたエマルジ
ョンのメジアンサイズは、300nm付近である。続いて、該エマルジョンをド
ライアイス/メタノール浴で凍結させ、48時間凍結乾燥し、白色粉末が得られ
る。電子顕微鏡検査は、気体で充填されたナノカプセルの形成を示している。該
ポリマー粒子を水中に分散させ、過剰のヒト血清アルブミンを透析で除去する。
残存するポリマーのナノカプセルを減圧下にて乾燥させる。
Example 4 a) 5 ml of a 5% W / V solution of the polymer obtained from Example 2 (a) of WO-A-9607434 in (−)-camphene at 60 ° C., and human serum albumin in water At the same temperature to 15 ml of a 5% W / V solution of The mixture is mixed at 20,000 rpm with an Ultra Turax T25 mixer at 1 20,000 rpm.
Mix vigorously for minutes. The sample is then passed five times using an Emulsiflex C5 high pressure homogenizer at a maximum pressure of 200,000 kpa and the emulsion is homogenized at 60 ° C. The median size of the obtained emulsion is around 300 nm. Subsequently, the emulsion is frozen in a dry ice / methanol bath and lyophilized for 48 hours to obtain a white powder. Electron microscopy shows the formation of gas-filled nanocapsules. The polymer particles are dispersed in water and excess human serum albumin is removed by dialysis.
The remaining polymer nanocapsules are dried under reduced pressure.

【0049】 b)上記(a)から得られる洗浄したくぼみのあるポリマーで安定化したスパ
チュラエッジ量のナノカプセルを、ペルフルオロオクタン酸0.2mlを含有す
るペルフルオロジメチルシクロブタン(沸点45℃)2mlに添加する。実験室
攪拌器(laboratory shaker)で1時間、該サンプルを攪拌し、ペルフルオロジメ
チルシクロブタンに分散した気体で充填されたナノカプセルの分散液が得られる
。上記分散液0.1mlと水1mlとを、Espe Capmix(登録商標)にて45秒
間攪拌して混合し、エマルジョンが得られる。
B) Add spatula-edge nanocapsules stabilized with the washed hollow polymer obtained from (a) above to 2 ml of perfluorodimethylcyclobutane (boiling point 45 ° C.) containing 0.2 ml of perfluorooctanoic acid I do. The sample is stirred for 1 hour with a laboratory shaker, resulting in a dispersion of nanocapsules filled with gas dispersed in perfluorodimethylcyclobutane. 0.1 ml of the above dispersion and 1 ml of water are mixed by stirring for 45 seconds using Espe Capmix (registered trademark) to obtain an emulsion.

【0050】 c)上記(b)から得られる該エマルジョンの小滴を冷却/加熱台に設置し、
、50℃にまで加熱しながら、顕微鏡操作を行う。温度が45℃を過ぎると、1
0μmの小滴が幾つか観察され、該エマルジョン小滴における液体から気体への
迅速な相変化を実証している。
C) placing the droplets of the emulsion obtained from (b) above on a cooling / heating table,
The microscope is operated while heating to 50 ° C. When the temperature exceeds 45 ° C, 1
Several 0 μm droplets were observed, demonstrating a rapid liquid to gas phase change in the emulsion droplets.

【0051】 d)上記(b)から得られる希釈エマルジョンを含有する管を、50℃に維持
した水浴に浸し、該エマルジョンの一部のみを加熱する。非加熱のエマルジョン
に比べ、エマルジョンの加熱した部分で、直ちに濁りが非常に増し、加熱におけ
る小さな気泡の形成が実証される。
D) The tube containing the diluted emulsion obtained from (b) above is immersed in a water bath maintained at 50 ° C., and only a part of the emulsion is heated. In the heated part of the emulsion, the turbidity is immediately greatly increased compared to the unheated emulsion, demonstrating the formation of small bubbles on heating.

【0052】 e)上記(b)から得られるエマルジョンのサンプル(1μl)を、室温でイ
ソトン(Isoton)II(55ml)に懸濁させ、パルスエコー技法にて、2つの広帯
域トランスデューサを用いて、それぞれ中心周波数3.5MHz及び5.0MH
zで、音波の減衰を時間の関数として測定する。該音波の減衰は弱い。続いて該
サンプルを段階的に加熱し、各温度にて音波の減衰を測定する。該サンプル温度
が35〜40℃のとき、音波の減衰の実質的な増加が観察される。この実験は、
該エマルジョンが外部からの超音波にさらされるとき、揮発性物質を有する核形
成部位含有エマルジョンが、その沸点より十分低い微小気泡分散液にどれくらい
変換されるかを説明する。また音波の特性における変化及び超音波造影剤として
の製品の有用性を示している。
E) A sample (1 μl) of the emulsion obtained from (b) above was suspended in Isoton II (55 ml) at room temperature and pulsed echo technique using two broadband transducers, respectively. Center frequency 3.5MHz and 5.0MH
At z, the attenuation of the sound wave is measured as a function of time. The sound wave is weakly attenuated. Subsequently, the sample is heated stepwise, and the attenuation of the sound wave is measured at each temperature. When the sample temperature is between 35 and 40 ° C., a substantial increase in sound attenuation is observed. This experiment is
It illustrates how an emulsion containing nucleation sites with volatiles is converted to a microbubble dispersion well below its boiling point when the emulsion is exposed to external ultrasound. It also demonstrates changes in the properties of sound waves and the usefulness of the product as an ultrasound contrast agent.

【0053】 <例5> イヌに麻酔をかけ、正中胸骨切開を行い、前心膜を取り除く。P3-2トランスデ
ューサを装備したATL HDI-3000スキャナーを用いて、低減衰30mmシリコンゴ
ムスペーサーを通して、心臓の正中線短軸Bモードイメージングを行う。フレー
ムレイトは40Hzであり、メカニカルインデックスは1.1である。0.2μ
l(ペルフルオロジメチルシクロブタン)/kg(体重)に相当する量の例4(
b)のポリマーナノカプセル含有ペルフルオロジメチルシクロブタンエマルジョ
ンをイヌに静脈注射する。心筋層からのエコー強度に実質的な上昇が見られ、そ
れは注射後、約20秒で始まり、20分間続く。心室において造影剤がほとんど
空になると、心筋層の不透明化の増加が見られる。従って、観察される効果は、
心筋層において遅延した微小気泡による。
Example 5 A dog is anesthetized, a median sternotomy is performed, and the anterior pericardium is removed. Using the ATL HDI-3000 scanner equipped with a P3-2 transducer, midline short axis B mode imaging of the heart is performed through a low attenuation 30 mm silicone rubber spacer. The frame rate is 40 Hz and the mechanical index is 1.1. 0.2μ
Example 4 of an amount corresponding to 1 (perfluorodimethylcyclobutane) / kg (body weight)
The perfluorodimethylcyclobutane emulsion containing polymer nanocapsules of b) is injected intravenously into dogs. There is a substantial increase in echo intensity from the myocardium, which begins approximately 20 seconds after injection and lasts 20 minutes. When the contrast agent is almost empty in the ventricles, there is an increase in myocardial opacity. Therefore, the observed effect is
Due to microbubbles delayed in the myocardium.

【0054】 <例6(比較例)> ポリマーナノカプセルを添加しないで、ペルフルオロジメチルシクロブタンエ
マルジョン相を用いる以外は、例5を繰り返す。イン・ビトロにおける超音波イ
メージングは、エマルジョンの限られた音波効果を示す。この比較実験は、エマ
ルジョン小滴に結合した気体で充填した核形成部位が必要であることを示してい
る。
Example 6 (Comparative Example) Example 5 is repeated except that the polymer nanocapsules are not used and the perfluorodimethylcyclobutane emulsion phase is used. In vitro ultrasound imaging shows the limited sonic effect of emulsions. This comparative experiment shows that a nucleation site filled with gas bound to the emulsion droplets is required.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年8月3日(2000.8.3)[Submission date] August 3, 2000 (2008.3.3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 47/14 A61K 47/14 47/24 47/24 47/34 47/34 47/42 47/42 (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AE,AL,AM,AT,AU,AZ,BA ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GD,G E,GH,GM,HR,HU,ID,IL,IN,IS ,JP,KE,KG,KP,KR,KZ,LC,LK, LR,LS,LT,LU,LV,MD,MG,MK,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,SL,TJ,TM, TR,TT,UA,UG,US,UZ,VN,YU,Z A,ZW (72)発明者 スクルトベイト、ロアルド ノルウェー国、エヌ−0401 オスロー、ポ ストボクス 4220 ニイダレン、ニイコベ イエン 1−2、ニイコムド・イメージン グ・エーエス内 (72)発明者 ウィッゲン、ウンニ・ノルドビー ノルウェー国、エヌ−0401 オスロー、ポ ストボクス 4220 ニイダレン、ニイコベ イエン 1−2、ニイコムド・イメージン グ・エーエス内 (72)発明者 オステンセン、ジョニー ノルウェー国、エヌ−0401 オスロー、ポ ストボクス 4220 ニイダレン、ニイコベ イエン 1−2、ニイコムド・イメージン グ・エーエス内 Fターム(参考) 4C076 AA17 BB12 CC50 DD34 DD35 DD37 DD39 DD41 DD44 DD58 DD60 DD63 EE41 EE49 FF70 4C085 AA40 HH09 JJ03 KA16 KA36 KB39 KB42 KB56 KB60 KB67 KB82 LL01 LL07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) A61K 47/14 A61K 47/14 47/24 47/24 47/34 47/34 47/42 47/42 ( 81) Designated countries EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW) , EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN , CU, CZ, D E, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR , LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW (72) Inventors Skurtbait, Roald, Norway, N-0401 Oslo, Postbox 4220 Niidalen, Niikobeien 1-2, Nicomd Within Imaging AS (72) Inventors Wiggen, Unni Nordby Norway, N-4001 Oslo, Postbox 4220 Niidalen, Niikobeien 1-2, Nicomed Imaging S (72) Inventor Ostensen, Johnny Norway, N-4001 Oslo, Postbox 4220 Niidalen, Niikobeen 1-2, Niikom Imaging IFS F-term (reference) 4C076 AA17 BB12 CC50 DD34 DD35 DD37 DD39 DD41 DD44 DD58 DD60 DD63 EE41 EE49 FF70 4C085 AA40 HH09 JJ03 KA16 KA36 KB39 KB42 KB56 KB60 KB67 KB82 LL01 LL07

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 注射可能な水中油型エマルジョンを含有する超音波造影剤で
あって、分散された油相の小滴に結合した気体含有核形成部位が存在する造影剤
1. An ultrasound contrast agent comprising an injectable oil-in-water emulsion, wherein the gas-containing nucleation site is associated with dispersed oil phase droplets.
【請求項2】 前記核形成部位が分散された油相小滴内に存在する請求項1
に記載の造影剤。
2. The method according to claim 1, wherein said nucleation sites are present in dispersed oil phase droplets.
The contrast agent according to item 1.
【請求項3】 請求項2に記載の造影剤であって、前記核形成部位が自由な
微小気泡、界面活性剤若しくは脂質で安定化した微小気泡、ポリマー若しくはタ
ンパク質被包した微小気泡、気体含有多孔性固体微粒子、気体含有粗表面固体微
粒子、気体含有ポリマー微粒子、又は気体含有フラーレン、包接体若しくはナノ
チューブを含む造影剤。
3. The contrast agent according to claim 2, wherein the nucleation site is a free microbubble, a microbubble stabilized with a surfactant or a lipid, a microbubble encapsulating a polymer or a protein, and containing a gas. A contrast agent containing porous solid fine particles, gas-containing rough surface solid fine particles, gas-containing polymer fine particles, or gas-containing fullerenes, clathrates or nanotubes.
【請求項4】 核形成部位が分散された油相小滴を安定化させる膜内に存在
するか、又はそのような膜の外側に接触して存在する請求項1に記載の造影剤。
4. The contrast agent according to claim 1, wherein the nucleation site is present in a film that stabilizes the dispersed oil phase droplets or is in contact with the outside of such a film.
【請求項5】 前記油相が、脂肪属エーテル、多環式油及びアルコール、複
素環式化合物、脂肪属炭化水素、環式脂肪属炭化水素及びハロゲン化炭化水素か
ら選択される1以上の成分を含有し、該成分が60℃を超えない沸点を有する請
求項1〜4の何れか1項に記載の造影剤。
5. The oil phase according to claim 1, wherein the oil phase is at least one component selected from aliphatic ethers, polycyclic oils and alcohols, heterocyclic compounds, aliphatic hydrocarbons, cycloaliphatic hydrocarbons and halogenated hydrocarbons. 5. The contrast agent according to claim 1, wherein the component has a boiling point not exceeding 60 ° C. 6.
【請求項6】 前記油相が、1以上のペルフルオロカーボンを含有する請求
項5に記載の造影剤。
6. The contrast agent according to claim 5, wherein the oil phase contains one or more perfluorocarbons.
【請求項7】 請求項6に記載の造影剤であって、前記ペルフルオロカーボ
ンが、ペルフルオロブタン、ペルフルオロペンタン、ペルフルオロヘキサン、ペ
ルフルオロシクロブタン、ペルフルオロジメチルシクロブタン、ペルフルオロシ
クロペンタン、ペルフルオロメチルシクロペンタン、ペルフルオロブテン、ペル
フルオロブタジエン、ペルフルオロペンテン、ペルフルオロへキセン、ペルフル
オロシクロペンテン、ペルフルオロシクロペンタジエン及びペルフルオロ−t−
ブタノールから選択される造影剤。
7. The contrast agent according to claim 6, wherein the perfluorocarbon is perfluorobutane, perfluoropentane, perfluorohexane, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclopentane, perfluoromethylcyclopentane, perfluorobutene, Perfluorobutadiene, perfluoropentene, perfluorohexene, perfluorocyclopentene, perfluorocyclopentadiene and perfluoro-t-
A contrast agent selected from butanol.
【請求項8】 前記油相が気体溶質を含有する請求項1〜7の何れか1項に
記載の造影剤。
8. The contrast agent according to claim 1, wherein the oil phase contains a gas solute.
【請求項9】 前記油相が液体フルオロカーボン中に溶解した空気、酸素又
は二酸化炭素を含有する請求項8に記載の造影剤。
9. The contrast agent according to claim 8, wherein the oil phase contains air, oxygen or carbon dioxide dissolved in a liquid fluorocarbon.
【請求項10】 請求項1〜9の何れか1項に記載の造影剤であって、前記
分散された油相小滴が、脂肪酸、脂肪酸の糖エステル及びトリグリセリドエステ
ル、リン脂質、タンパク質、ブロック共重合体界面活性剤、フッ素含有界面活性
剤及びカチオン性界面活性剤から選択される界面活性剤によって安定化する造影
剤。
10. The contrast agent according to any one of claims 1 to 9, wherein the dispersed oil phase droplets are composed of a fatty acid, a sugar ester and a triglyceride ester of a fatty acid, a phospholipid, a protein, and a block. A contrast agent which is stabilized by a surfactant selected from a copolymer surfactant, a fluorine-containing surfactant and a cationic surfactant.
【請求項11】 前記分散された油相小滴がポリマー壁形成被包性材料によ
ってか、又は多孔性ラテックス微粒子中に組込むことによって安定化される請求
項1〜9の何れか1項に記載の造影剤。
11. The method of claim 1, wherein the dispersed oil phase droplets are stabilized by a polymer wall forming encapsulating material or by incorporation into porous latex microparticles. Contrast agent.
【請求項12】 前記油相が42℃を超えない沸点を有する請求項1〜11
の何れか1項に記載の造影剤。
12. The oily phase having a boiling point not exceeding 42 ° C.
The contrast agent according to any one of the above.
【請求項13】 超音波イメージングにおける造影剤としての同時使用、別
個の使用又は連続使用のための複合製剤であって、 (i)請求項1〜12の何れか1項に記載の造影剤、及び (ii)血管拡張薬 を含有する製剤。
13. A composite preparation for simultaneous use, separate use or continuous use as a contrast agent in ultrasound imaging, wherein (i) the contrast agent according to any one of claims 1 to 12, And (ii) a preparation containing a vasodilator.
【請求項14】 前記血管拡張薬がアデノシンである請求項13に記載の複
合製剤。
14. The combination preparation according to claim 13, wherein the vasodilator is adenosine.
【請求項15】 治療薬とともに請求項1〜12の何れか1項に記載の造影
剤を含有する薬輸送剤。
15. A drug delivery agent containing the contrast agent according to any one of claims 1 to 12 together with a therapeutic agent.
【請求項16】 疎水性薬剤が前記油相に溶解している請求項15に記載の
薬輸送剤。
16. The drug delivery agent according to claim 15, wherein a hydrophobic drug is dissolved in the oil phase.
【請求項17】 前記治療薬がナノサイズ又はミクロサイズの粒子として存
在する請求項15に記載の薬輸送剤。
17. The drug delivery agent according to claim 15, wherein the therapeutic agent is present as nano-sized or micro-sized particles.
【請求項18】 ヒト又はヒト以外の動物の被験者の増強された画像を生じ
る方法であって、前記被験者の脈管系に請求項1〜14の何れか1項に記載の造
影剤を注射し、前記被験者の少なくとも一部の超音波画像を生じる工程を含む方
法。
18. A method for producing an enhanced image of a human or non-human animal subject, comprising injecting the vasculature of the subject with the contrast agent of any one of claims 1-14. Producing an ultrasound image of at least a portion of said subject.
【請求項19】 外部からの活性化を適用することで、前記造影剤からの微
小気泡の成長が前記被験者内において活性化される請求項18に記載の方法。
19. The method of claim 18, wherein the growth of microbubbles from the contrast agent is activated in the subject by applying an external activation.
【請求項20】 前記外部からの活性化が超音波照射を含む請求項19に記
載の方法。
20. The method of claim 19, wherein said external activation comprises ultrasonic irradiation.
【請求項21】 超音波治療における請求項1〜12の何れか1項に記載の
造影剤の使用。
21. Use of a contrast agent according to any one of claims 1 to 12 in ultrasound therapy.
【請求項22】 前記治療が細胞殺傷又は問題の部位への血流阻止を含む請
求項21に記載の使用。
22. The use according to claim 21, wherein said treatment comprises cell killing or blocking blood flow to a site of interest.
JP2000544368A 1998-04-22 1999-04-22 Improvements in or related to contrast agents Withdrawn JP2002512208A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9808581.4A GB9808581D0 (en) 1998-04-22 1998-04-22 Improvements in or relating to contrast agents
GB9808581.4 1998-04-22
PCT/GB1999/001234 WO1999053965A1 (en) 1998-04-22 1999-04-22 Improvements in or relating to contrast agents

Publications (1)

Publication Number Publication Date
JP2002512208A true JP2002512208A (en) 2002-04-23

Family

ID=10830790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000544368A Withdrawn JP2002512208A (en) 1998-04-22 1999-04-22 Improvements in or related to contrast agents

Country Status (5)

Country Link
EP (1) EP1073474A1 (en)
JP (1) JP2002512208A (en)
AU (1) AU3617799A (en)
GB (1) GB9808581D0 (en)
WO (1) WO1999053965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068294A1 (en) * 2004-12-24 2006-06-29 Japan Science And Technology Agency Contrast medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056781A (en) * 2002-11-15 2006-03-02 Bioserentack Co Ltd Solidified preparation containing surfactant
US20120219596A1 (en) 2009-07-30 2012-08-30 Wendelin Stark Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event
EP4005604B8 (en) * 2013-09-27 2023-07-19 Exact Therapeutics As Delivery of drugs
US11406722B2 (en) 2017-03-16 2022-08-09 The Board Of Regents Of The University Of Texas System Nanodroplets with improved properties

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681119A (en) * 1980-11-17 1987-07-21 Schering Aktiengesellschaft Method of production and use of microbubble precursors
DE3141641A1 (en) * 1981-10-16 1983-04-28 Schering Ag, 1000 Berlin Und 4619 Bergkamen ULTRASONIC CONTRAST AGENTS AND THEIR PRODUCTION
GB9305349D0 (en) * 1993-03-16 1993-05-05 Nycomed Imaging As Improvements in or relating to contrast agents
US5840276A (en) * 1996-01-11 1998-11-24 Apfel Enterprises, Inc. Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis
HU224218B1 (en) * 1996-10-21 2005-06-28 Amersham Health As Improvements in or relating to contrast agents

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068294A1 (en) * 2004-12-24 2006-06-29 Japan Science And Technology Agency Contrast medium
JP2006182657A (en) * 2004-12-24 2006-07-13 Japan Science & Technology Agency Contrast agent

Also Published As

Publication number Publication date
WO1999053965A1 (en) 1999-10-28
AU3617799A (en) 1999-11-08
GB9808581D0 (en) 1998-06-24
EP1073474A1 (en) 2001-02-07

Similar Documents

Publication Publication Date Title
RU2204415C2 (en) Combined preparation for using as contrasting agent and method of image preparing
US6056943A (en) Methods of ultrasound imaging using phospholipid stabilized microbubbles
EP1073473B1 (en) Improvements in or relating to contrast agents
US5976501A (en) Use of pressure resistant protein microspheres encapsulating gases as ultrasonic imaging agents for vascular perfusion
JP2000513357A (en) Improved diagnostic imaging by adjusting the rate of contrast agent administration.
JP2002512208A (en) Improvements in or related to contrast agents
US20040131547A1 (en) Contrast agents
CZ20003896A3 (en) Compound preparation
MXPA00010301A (en) Improvements in or relating to contrast agents

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704