US20120219596A1 - Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event - Google Patents
Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event Download PDFInfo
- Publication number
- US20120219596A1 US20120219596A1 US13/387,838 US201013387838A US2012219596A1 US 20120219596 A1 US20120219596 A1 US 20120219596A1 US 201013387838 A US201013387838 A US 201013387838A US 2012219596 A1 US2012219596 A1 US 2012219596A1
- Authority
- US
- United States
- Prior art keywords
- substituted
- group
- compounds
- compound
- branched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004054 inflammatory process Effects 0.000 title claims description 15
- 206010061218 Inflammation Diseases 0.000 title claims description 13
- 238000011282 treatment Methods 0.000 title abstract description 14
- 208000028867 ischemia Diseases 0.000 title description 6
- 239000007972 injectable composition Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 33
- 210000000056 organ Anatomy 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 claims description 12
- 125000001424 substituent group Chemical group 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 9
- 206010063837 Reperfusion injury Diseases 0.000 claims description 8
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 208000012947 ischemia reperfusion injury Diseases 0.000 claims description 7
- PSQZJKGXDGNDFP-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)(F)F PSQZJKGXDGNDFP-UHFFFAOYSA-N 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000001356 surgical procedure Methods 0.000 claims description 6
- 206010040047 Sepsis Diseases 0.000 claims description 5
- 210000000988 bone and bone Anatomy 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 5
- 239000007943 implant Substances 0.000 claims description 5
- 230000028709 inflammatory response Effects 0.000 claims description 5
- HGASFNYMVGEKTF-UHFFFAOYSA-N octan-1-ol;hydrate Chemical compound O.CCCCCCCCO HGASFNYMVGEKTF-UHFFFAOYSA-N 0.000 claims description 5
- 208000011580 syndromic disease Diseases 0.000 claims description 5
- XFGVJLGVINCWDP-BKLSDQPFSA-N (2s)-2-amino-5,5,5-trifluoro-4-methylpentanoic acid Chemical compound FC(F)(F)C(C)C[C@H](N)C(O)=O XFGVJLGVINCWDP-BKLSDQPFSA-N 0.000 claims description 4
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 4
- 230000000747 cardiac effect Effects 0.000 claims description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 3
- BRVIZBAZAJBTFY-UHFFFAOYSA-N 4,6-dimethyl-5-nitro-2-oxo-1h-pyridine-3-carbonitrile Chemical compound CC=1NC(=O)C(C#N)=C(C)C=1[N+]([O-])=O BRVIZBAZAJBTFY-UHFFFAOYSA-N 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 238000002271 resection Methods 0.000 claims description 3
- 238000002054 transplantation Methods 0.000 claims description 3
- XZNOAVNRSFURIR-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-ol Chemical compound FC(F)(F)C(O)(C(F)(F)F)C(F)(F)F XZNOAVNRSFURIR-UHFFFAOYSA-N 0.000 claims description 2
- FQDXJYBXPOMIBX-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol Chemical compound FC(F)(F)C(O)(C)C(F)(F)F FQDXJYBXPOMIBX-UHFFFAOYSA-N 0.000 claims description 2
- ZVXAXABPTOPGDK-UHFFFAOYSA-N 1,1,1,3,3,4,4,4-octafluorobutan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)C(F)(F)F ZVXAXABPTOPGDK-UHFFFAOYSA-N 0.000 claims description 2
- WXJFKAZDSQLPBX-UHFFFAOYSA-N 2,2,3,3,4,4,4-heptafluorobutan-1-ol Chemical compound OCC(F)(F)C(F)(F)C(F)(F)F WXJFKAZDSQLPBX-UHFFFAOYSA-N 0.000 claims description 2
- LVFXLZRISXUAIL-UHFFFAOYSA-N 2,2,3,4,4,4-hexafluorobutan-1-ol Chemical compound OCC(F)(F)C(F)C(F)(F)F LVFXLZRISXUAIL-UHFFFAOYSA-N 0.000 claims description 2
- DBCKBJPBDWIANA-UHFFFAOYSA-N 2-(2,2,3,4,4,4-hexafluorobutoxy)ethanol Chemical compound OCCOCC(F)(F)C(F)C(F)(F)F DBCKBJPBDWIANA-UHFFFAOYSA-N 0.000 claims description 2
- PKKMMANRRSONBS-UHFFFAOYSA-N 3,3,3-trifluoro-2-(hydroxymethyl)propanoic acid Chemical compound OCC(C(O)=O)C(F)(F)F PKKMMANRRSONBS-UHFFFAOYSA-N 0.000 claims description 2
- KKVIDVONCZYZLR-UHFFFAOYSA-N 3,4,4,4-tetrafluoro-3-(trifluoromethyl)butan-1-ol Chemical compound OCCC(F)(C(F)(F)F)C(F)(F)F KKVIDVONCZYZLR-UHFFFAOYSA-N 0.000 claims description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 2
- 210000000845 cartilage Anatomy 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 210000000515 tooth Anatomy 0.000 claims description 2
- 206010021143 Hypoxia Diseases 0.000 abstract description 11
- 239000003814 drug Substances 0.000 abstract description 11
- 230000001146 hypoxic effect Effects 0.000 abstract description 11
- 230000002265 prevention Effects 0.000 abstract description 6
- 230000002633 protecting effect Effects 0.000 abstract description 3
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 2
- -1 and preferably O Chemical compound 0.000 description 24
- 210000001519 tissue Anatomy 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000003444 anaesthetic effect Effects 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 11
- 208000035475 disorder Diseases 0.000 description 10
- 239000002158 endotoxin Substances 0.000 description 10
- 229920006008 lipopolysaccharide Polymers 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 101001069900 Rattus norvegicus Growth-regulated alpha protein Proteins 0.000 description 9
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 125000000753 cycloalkyl group Chemical group 0.000 description 9
- 210000004072 lung Anatomy 0.000 description 9
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 9
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 8
- 102000000018 Chemokine CCL2 Human genes 0.000 description 8
- 229940124326 anaesthetic agent Drugs 0.000 description 8
- 230000006378 damage Effects 0.000 description 8
- 210000002216 heart Anatomy 0.000 description 8
- 230000002757 inflammatory effect Effects 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000002552 dosage form Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 125000001072 heteroaryl group Chemical group 0.000 description 7
- 125000005842 heteroatom Chemical group 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 6
- 125000001118 alkylidene group Chemical group 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 210000002889 endothelial cell Anatomy 0.000 description 6
- 208000014674 injury Diseases 0.000 description 6
- 239000000651 prodrug Substances 0.000 description 6
- 229940002612 prodrug Drugs 0.000 description 6
- XRXQOEWWPPJVII-UHFFFAOYSA-N 3-azaniumyl-4,4,4-trifluorobutanoate Chemical compound FC(F)(F)C(N)CC(O)=O XRXQOEWWPPJVII-UHFFFAOYSA-N 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 5
- 125000000304 alkynyl group Chemical group 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 210000003734 kidney Anatomy 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- DFEYYRMXOJXZRJ-UHFFFAOYSA-N sevoflurane Chemical compound FCOC(C(F)(F)F)C(F)(F)F DFEYYRMXOJXZRJ-UHFFFAOYSA-N 0.000 description 5
- 229960002078 sevoflurane Drugs 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 241001535291 Analges Species 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 210000002821 alveolar epithelial cell Anatomy 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 210000001508 eye Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002519 immonomodulatory effect Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 210000004924 lung microvascular endothelial cell Anatomy 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- IQNHBUQSOSYAJU-UHFFFAOYSA-N 2,2,2-trifluoro-n-methylacetamide Chemical compound CNC(=O)C(F)(F)F IQNHBUQSOSYAJU-UHFFFAOYSA-N 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 208000028399 Critical Illness Diseases 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000005864 Sulphur Substances 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000003399 chemotactic effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 229960003537 desflurane Drugs 0.000 description 3
- DPYMFVXJLLWWEU-UHFFFAOYSA-N desflurane Chemical compound FC(F)OC(F)C(F)(F)F DPYMFVXJLLWWEU-UHFFFAOYSA-N 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- JPGQOUSTVILISH-UHFFFAOYSA-N enflurane Chemical compound FC(F)OC(F)(F)C(F)Cl JPGQOUSTVILISH-UHFFFAOYSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229960002725 isoflurane Drugs 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 125000000547 substituted alkyl group Chemical group 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000000451 tissue damage Effects 0.000 description 3
- 231100000827 tissue damage Toxicity 0.000 description 3
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- JXHUXOAJAYWMHK-UHFFFAOYSA-N 5-bromo-3-fluoropyridine-2-carboxylic acid Chemical compound OC(=O)C1=NC=C(Br)C=C1F JXHUXOAJAYWMHK-UHFFFAOYSA-N 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000013382 DNA quantification Methods 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 2
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 229940035674 anesthetics Drugs 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 2
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 125000005046 dihydronaphthyl group Chemical group 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229960000305 enflurane Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- PPRRDFIXUUSXRA-UHFFFAOYSA-N flibanserin Chemical compound FC(F)(F)C1=CC=CC(N2CCN(CCN3C(NC4=CC=CC=C43)=O)CC2)=C1 PPRRDFIXUUSXRA-UHFFFAOYSA-N 0.000 description 2
- 229960002053 flibanserin Drugs 0.000 description 2
- 239000003193 general anesthetic agent Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229960003132 halothane Drugs 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 210000003622 mature neutrocyte Anatomy 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 238000010232 migration assay Methods 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- 230000002669 organ and tissue protective effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 125000004194 piperazin-1-yl group Chemical group [H]N1C([H])([H])C([H])([H])N(*)C([H])([H])C1([H])[H] 0.000 description 2
- 239000002243 precursor Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000006710 (C2-C12) alkenyl group Chemical group 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WFXXBPYHFCQFJZ-UHFFFAOYSA-N 2,2,2-trifluoro-1-(furan-3-yl)ethanol Chemical compound FC(F)(F)C(O)C=1C=COC=1 WFXXBPYHFCQFJZ-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- XDCMNDCKYSQKAX-UHFFFAOYSA-N 3,3,3-trifluoro-2-hydroxy-2-methylpropanenitrile Chemical compound N#CC(O)(C)C(F)(F)F XDCMNDCKYSQKAX-UHFFFAOYSA-N 0.000 description 1
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- XIEUITSGACTCLS-UHFFFAOYSA-N CC(C)O.F.F.F.F.F.F Chemical compound CC(C)O.F.F.F.F.F.F XIEUITSGACTCLS-UHFFFAOYSA-N 0.000 description 1
- CKLONJANQGBREW-UHFFFAOYSA-N CC(F)(F)CO Chemical compound CC(F)(F)CO CKLONJANQGBREW-UHFFFAOYSA-N 0.000 description 1
- KRUHSQQRYRDOBS-UHFFFAOYSA-N CC(F)OC(F)F Chemical compound CC(F)OC(F)F KRUHSQQRYRDOBS-UHFFFAOYSA-N 0.000 description 1
- WTGYTKDFUODXDZ-UHFFFAOYSA-N CC(OCF)C(F)(F)F Chemical compound CC(OCF)C(F)(F)F WTGYTKDFUODXDZ-UHFFFAOYSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241001193938 Cavia magna Species 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 206010022086 Injection site pain Diseases 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 231100000416 LDH assay Toxicity 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 101000777393 Rattus norvegicus C-C motif chemokine 2 Proteins 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- YPWFISCTZQNZAU-UHFFFAOYSA-N Thiane Chemical compound C1CCSCC1 YPWFISCTZQNZAU-UHFFFAOYSA-N 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 206010069351 acute lung injury Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007894 caplet Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000002586 coronary angiography Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000004856 decahydroquinolinyl group Chemical group N1(CCCC2CCCCC12)* 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000004276 dioxalanyl group Chemical group 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003983 inhalation anesthetic agent Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 238000002843 lactate dehydrogenase assay Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- LKMUBWWZTSZGGV-UHFFFAOYSA-N methyl 4,4,4-trifluoro-3-oxobutanoate Chemical compound COC(=O)CC(=O)C(F)(F)F LKMUBWWZTSZGGV-UHFFFAOYSA-N 0.000 description 1
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000001422 pyrrolinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 206010040872 skin infection Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000004426 substituted alkynyl group Chemical group 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- BUGOPWGPQGYYGR-UHFFFAOYSA-N thiane 1,1-dioxide Chemical compound O=S1(=O)CCCCC1 BUGOPWGPQGYYGR-UHFFFAOYSA-N 0.000 description 1
- NNLBRYQGMOYARS-UHFFFAOYSA-N thiane 1-oxide Chemical compound O=S1CCCCC1 NNLBRYQGMOYARS-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- WCNFFKHKJLERFM-UHFFFAOYSA-N thiomorpholinyl sulfone group Chemical group N1(CCSCC1)S(=O)(=O)N1CCSCC1 WCNFFKHKJLERFM-UHFFFAOYSA-N 0.000 description 1
- ZCAGUOCUDGWENZ-UHFFFAOYSA-N thiomorpholinyl sulfoxide group Chemical group N1(CCSCC1)S(=O)N1CCSCC1 ZCAGUOCUDGWENZ-UHFFFAOYSA-N 0.000 description 1
- 125000000464 thioxo group Chemical group S=* 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/01—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
- C07C59/115—Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups containing halogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
- A61K31/197—Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
- A61K31/198—Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/275—Nitriles; Isonitriles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
- A61K31/341—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/20—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/34—Halogenated alcohols
- C07C31/38—Halogenated alcohols containing only fluorine as halogen
Definitions
- the present invention relates to compounds according to formula (I) for medical use.
- the compounds are particularly suitable for the treatment and/or prevention of a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue.
- the invention relates to the use of said compounds for preparing a medicament and to pharmaceutical preparations comprising such compounds.
- the invention also relates to methods of treating or protecting patients having or being prone to develop a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, the methods comprising administration of a therapeutically effective amount of such compounds.
- Inflammatory reactions and ischemia-reperfusion processes belong to the most frequently occurring disease states in critically ill patients. Inflammatory syndromes such as severe inflammatory response syndrome, sepsis, acute lung injury and its progression to the acute respiratory distress syndrome (ARDS) remain leading factors of hospital morbidity and mortality. Damage to tissue as a result of an ischemia-reperfusion situation is especially frequent in myocardial, vascular and neuronal/cerebral tissue. Other tissues that are susceptible to an ischemia-reperfusion injury include tissues from liver, gut, kidney and eye.
- the tissue's response to an injury or an infection results in an inflammatory reaction regulated by the coordinated function of cytokines, chemokines, adhesion molecules and tissue damage markers.
- Monocyte chemotactic protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) play crucial roles in the inflammatory orchestration upon injury and infection.
- MCP-1 Monocyte chemotactic protein-1
- CINC-1 cytokine-induced neutrophil chemoattractant 1
- the release of proinflammatory mediators like CINC-1, MCP-1 and other immunomodulating chemokines or cytokines results in recruitment of effector cells (such as neutrophiles and monocytes). These effector cells have an important role in the further development of injury.
- WO 03/013539 A1 relates to the use of 1-[2-(4-3-trifluoromethyl-phenyl)piperazin-1-yl) ethyl]-2,3-dihydro-1H-benzimidazol-2-one (Flibanserin) for producing a drug with a neuroprotective action.
- WO 03/013539 speculates on the use of said compound for the treatment or prevention of neurodegenerative diseases.
- Volatile anaesthetics are hydrophobic and marginally soluble in water or other biological fluids such as blood. Therefore, their intravenous administration is only feasible by addition of emulsifiers and stabilization agents. These attempts fail in a clinical setting due to a lot of difficulties such as the anaesthetic side-effect of the anaesthetics, dosing problems or pain during injection caused by the emulsifier.
- tissue-protective effect is not restricted to volatile anaesthetics but is rather the result of the presence of a functional —C(R 3 ) 2 F group in a chemical compound, wherein each R 3 denotes independently of one another in each instance a substituent selected from the group consisting of H, F, Cl, Br, I and C 1 to C 6 alkyl.
- the functional —C(R 3 ) 2 F group is —CH 2 F, —CHF 2 or —CF 3 .
- the present invention overcomes the above mentioned problems by administering hydrophilic molecules comprising at least one functional —C(R 3 ) 2 F group.
- the inventors overcome dosing and solubility problems of present attempts using volatile anaesthetics because the inventive compounds easily can be mixed with water, blood or biological fluids and do not cause an injection pain. Furthermore, the formulation can be administered without continuous medical surveillance and is therefore less expensive and applicable for a wider patient population.
- the present invention provides chemical compounds with one or multiple —C(R 3 ) 2 F functional groups for the treatment and protection of patients which are suffering from an ischemia-reperfusion event or from an inflammatory reaction.
- the chemical compound is preferably low in molecular weight and includes one or several polar functional groups (R 1 ) that increase solubility in water. Accordingly, in a preferred embodiment, the C(R 3 ) 2 F-containing molecule is water-soluble and therefore easily distributed through the blood circulation.
- Another advantage of the water-solubility of the compounds of the invention is that the compounds can preferably be formulated without the addition of emulsifiers.
- compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) polar functional groups R 1 that are bound to R 2 . Further, compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) functional —(C(R 3 ) 2 F) groups that are bound to R 2 .
- R 3 in C(R 3 ) 2 F is independently of R 3 in any other C(R 3 ) 2 F group and independently of R 3 in the same C(R 3 ) 2 F group F or H, preferably in both instances F.
- preferred compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) functional groups that are independently from one another selected from —CH 2 F, —CHF 2 , or —CF 3 .
- R 2 is a linear or branched, substituted or non-substituted C 1-15 alkyl, alkenyl, or cycloalkyl, preferably a C 1-10 alkyl, alkenyl or cycloalkyl, more preferably a C 1-6 alkyl, alkenyl or cycloalkyl, most preferably a C 1-4 alkyl (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl or tert-butyl).
- a C 1-4 alkyl e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl or tert-butyl.
- R 2 selects R 2 to have less than sixteen carbon atoms, preferably less than seven, more preferably less than five results in a low molecular weight compound that exhibits an increased dose/response efficacy.
- the compounds of the invention according to formula (I) have less than 16 carbon atoms (i.e. between 1 and 15 carbon atoms), more preferably less than 11 carbon atoms (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms), even more preferably less than 7 carbon atoms (i.e. 1, 2, 3, 4, 5 or 6 carbon atoms).
- R 2 is substituted, preferably substituted with 1 to 10 (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10), more preferably 1 to 6 substituents, most preferably 1 to 3 substituents, each substituent preferably being selected independently from one another from the group consisting of —F, —Cl, —Br, —I, —OH, —NH 2 , —COOH, —COOR 4 , —CHO, —C(O)—R 4 , —CON H 2 , and —CONHR 4 ; wherein R 4 is a linear or branched, substituted or unsubstituted C 1-10 alkyl, alkenyl or cycloalkyl.
- 1 to 10 e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
- 1 to 6 substituents e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
- substituent preferably being selected independently from one another from the group consisting of —F, —Cl, —B
- each R 1 is independently selected from the group consisting of —OH, —NH 2 , —COOH, —COOR 4 , —CHO, —C(O)—R 4 , —CONH 2 and —CONHR 4 ; wherein R 4 is in each instance independently selected from linear or branched, substituted or non-substituted C 1-10 alkyl, alkenyl or cycloalkyl.
- each R 1 is independently selected from the group consisting of —OH, —NH 2 , —COON, and —COOR 4 .
- each R 1 is —OH.
- the compounds of the invention are alcohols, amines, carboxylic acids or esters.
- the compounds of the invention are selected from the group consisting of the following substances: 1,1,1,3,3,3-Hexafluoro-2-methyl-2-propanol(C4H4F6O), 2,2,3,4,4,4-Hexafluoro-1-butanol(C4H4-F6O), Perfluoro-tert-butyl alcohol(C4HF9O); 2,2,3,3,3-Pentafluoro-1-propanol(C3H3-F5O), 1,1,1,3,3,4,4,4—Octafluoro-2-butanol(C4H2F8O), 2,2,3,3,4,4,4-Heptafluoro-1-butanol(C4H3F7O), 1,1,1,3,3,3-Hexafluoropropan-2-ol(C3H2F6O), 2,2,2-Trifluoro-ethanol(C2
- the present invention also relates to compounds according to formula (I) that are volatile provided that such compounds are soluble in water.
- Such volatile, water-soluble compounds can be administered to the patient by injection (e.g. intravenously or intramuscularly) and are removed from the patient through the lungs.
- the compounds of the invention are soluble in water.
- One measure for the water solubility of a compound is its octanol-water partition coefficient.
- the octanol-water partition coefficient (K ow ) is defined as the ratio of a compound's concentration in the octanol phase to its concentration in the aqueous phase of a two-phase octanol/water system. Values of K ow are thus unitless.
- K ow is a very weak function of solute concentration.
- Values of K ow are usually measured at room temperature (20 or 25° C.). Measured values of K ow for organic chemicals have been found as low as 10 ⁇ 3 and as high as 10 7 , thus encompassing a range of ten orders of magnitude. In terms of log K ow , this range is from ⁇ 3 to 7.
- the chemical in question is added to a mixture of octanol and water whose volume ratio is adjusted according to the expected value of K ow .
- Very pure octanol and water must be used, and the concentration of the chemical in the system should be less than 0.01 mol/L.
- the system is shaken gently until equilibrium is achieved (15 min to 1 hr). Centrifugation is generally required to separate the two phases, especially if an emulsion has formed.
- An appropriate analytical technique is then used to determine the solute concentration in each phase.
- Chemicals with low K ow values may be considered relatively hydrophilic; they tend to have high water solubilities. Conversely, chemicals with high K ow values (e.g., greater than 10 4 ) are very hydrophobic.
- the compounds of the invention have an octanol-water partition coefficient of less than 20, more preferably less than 15, more preferably less than 10, more preferably less than 5, more preferably less than 1.
- the compounds of the invention are completely miscible with water.
- Preferred compounds of the invention do not have anaesthetic side-effects at suitable concentrations for the inventive indications.
- the compound is not 14244-3-trifluoromethyl-phenyl)piperazin-1-yl) ethyl]-2,3-dihydro-1H-benzimidazol-2-one (Flibanserin) nor a salt thereof.
- the above objects are solved by compounds of the invention as defined above for the treatment and/or prevention of a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue.
- the tissue is selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye.
- the compounds of the invention are suitable for administration prior to, after or concomitantly to a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, preferably ischemia reperfusion injury, inflammation or a medical intervention, preferably surgery or catheterization.
- linear or branched, substituted or non-substituted alkyl, alkenyl, alkynyl, alkylidene, carbocycle encompasses linear or branched, substituted or non-substituted alkyl; linear or branched, substituted or non-substituted alkenyl; linear or branched, substituted or non-substituted alkynyl; linear or branched, substituted or non-substituted alkylidene; and linear or branched, substituted or non-substituted carbocycle.
- C 2 -C 12 alkenyl, alkynyl or alkylidene indicates the group of compounds having 2 to 12 carbons and alkenyl, alkynyl or alkylidene functionality.
- heteroatom shall be understood to mean atoms other than carbon and hydrogen such as and preferably O, N, S and P.
- alkyl, alkenyl, alkynyl, alkylidene, etc. shall be understood as encompassing linear as well as branched forms of carbon-containing chains where structurally possible.
- one or more carbon atoms can be optionally replaced by heteroatoms, preferably by O, S or N. If N is not substituted, it is NH.
- the heteroatoms may replace either terminal or internal carbon atoms within a linear or branched carbon chain.
- Such groups can be substituted as herein described by groups such as oxo to result in definitions such as but not limited to alkoxycarbonyl, acryl, amido and thioxo.
- Carbocycle shall be understood to mean an aliphatic hydrocarbon radical containing from 3 to 20, preferably 3 to 12 carbon atoms, more preferably 5 or 6 carbon atoms. Carbocycles include hydrocarbon rings containing from 3 to 20, preferably 3 to 10 carbon atoms. These carbocycles may be either aromatic or non-aromatic systems. The non-aromatic ring systems may be mono- or polyunsaturated.
- Preferred carbocycles include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, phenyl, indanyl, indenyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl, decahydronaphthyl, benzocycloheptanyl, and benzocycloheptenyl. Certain terms for cycloalkyl such as cyclobutanyl and cyclobutyl shall be used interchangeably.
- cycloalkyl shall be understood to mean aliphatic hydrocarbon-containing rings having from 3 to 20, preferably 3 to 12 carbon atoms. These non-aromatic ring systems may be mono- or polyunsaturated, i.e. the term encompasses cycloalkenyl and cycloalkynyl.
- the cycloalkyl may comprise heteroatoms, preferably O, S or N, and be substituted or non-substituted.
- cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, benzocyclobutanyl, benzocycloheptanyl and benzocycloheptenyl.
- heterocyclic refers to a stable non-aromatic, preferably 3 to 20-membered, more preferably 3 to 12-membered, most preferably 5 or 6-membered, monocyclic or multicyclic, preferably 8 to 12-membered bicyclic, heteroatom-containing cyclic radical, that may be either saturated or unsaturated.
- Each heterocycle consists of carbon atoms and one or more, preferably 1 to 4 heteroatoms chosen from nitrogen, oxygen and sulphur.
- the heterocyclic residue may be bound to the remaining structure of the complete molecule by any atom of the cycle, which results in a stable structure.
- heterocycles include, but are not limited to, pyrrolidinyl, pyrrolinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, dioxalanyl, piperidinyl, piperazinyl, tetrahydrofuranyl, 1-oxo- ⁇ 4-thiomorpholinyl, 13-oxa-11-aza-tricyclo[7.3.1.0-2,7]tridecy-2,4,6-triene, tetrahydropyranyl, 2-oxo-2H-pyranyl, tetrahydrofuranyl, 1,3-dioxolanone, 1,3-dioxanone, 1,4-dioxanyl, 8-oxa-3-aza-bicyclo[3.2.1]octanyl, 2-oxa-5-aza-bicyclo[2.2.1]heptanyl, 2-thia-5-aza
- aryl as used herein shall be understood to mean an aromatic carbocycle or heteroaryl as defined herein.
- Each aryl or heteroaryl unless otherwise specified includes its partially or fully hydrogenated derivative.
- quinolinyl may include decahydroquinolinyl and tetrahydroquinolinyl; naphthyl may include its hydrogenated derivatives such as tetrahydronaphthyl.
- Other partially or fully hydrogenated derivatives of the aryl and heteroaryl compounds described herein will be apparent to one of ordinary skill in the art.
- the term encompasses aralkyl and alkylaryl, both of which are preferred embodiments for practicing the compounds of the present invention.
- aryl encompasses phenyl, indanyl, indenyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl and decahydronaphthyl.
- heteroaryl shall be understood to mean an aromatic C 3 -C 20 , preferably 5 to 8-membered monoxyclic or preferably 8 to 12-membered bicyclic ring containing 1 to 4 heteroatoms such as N, O and S.
- heteroaryls comprise aziridinyl, thienyl, furanyl, isoxazolyl, oxazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyrazolyl, pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyranyl, quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzothienyl, quinolinyl, quinazolinyl, naphthyridinyl, indazolyl, triazolyl, pyrazolo[3,4-b]pyrimidinyl, purinyl, pyrrolo[2,3-b]pyridinyl, pyrazole[3,4-b]pyridinyl, tubercidinyl, oxazo[4,5-
- nitrogen and “sulphur” include any oxidized form of nitrogen and sulphur and the quaternized form of any basic nitrogen as long as the resulting compound is chemically stable.
- —S—C 1-6 alkyl radical shall be understood to include —S(O)—C 1 alkyl and —S(O) 2 —C 1 alkyl.
- the compounds of the invention are only those which are contemplated to be ‘chemically stable’ as will be appreciated by those skilled in the art.
- compounds having a ‘dangling valency’ or a ‘carbanion’ are not compounds contemplated by the inventive concept disclosed herein.
- the compounds and precursor compounds of the present invention can be prepared without any undue burden or inventive skill by any appropriate conventional synthetic strategy known to those of skill in organic chemistry. Some of the compounds of the present invention or direct precursors thereof may also be commercially available.
- the invention includes pharmaceutically acceptable derivatives of compounds of formula (I).
- a “pharmaceutically acceptable derivative” refers to any pharmaceutically acceptable salt or ester or any other compound which, upon administration to a patient, is capable of providing (directly or indirectly) a compound of the invention or a pharmacologically active metabolite or pharmacologically active residue thereof.
- a pharmacologically active metabolite shall be understood to mean any compound of the invention capable of being metabolized enzymatically or chemically. This includes, for example, hydroxylated or oxidized derivative compounds of the formula (I).
- Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
- suitable acids include hydrochloric, hydrobromic, sulphuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfuric, tartaric, acetic, citric, methanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfuric and benzenesulfonic acids.
- Other acids such as oxalic acid, while not themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds and their pharmaceutically acceptable acid addition salts.
- Salts derived from appropriate bases include alkali metal (e.g., sodium, potassium), alkaline earth metal (e.g. magnesium), ammonium and N—(C 1 -C 4 alkyl) 4 + salts.
- prodrugs of compounds of formula (I) include those compounds that, upon simple chemical transformation, are modified to produce compounds of the invention. Simple chemical transformations include hydrolysis, oxidation and reduction. Specifically, when a prodrug is administered to a patient, the prodrug may be transformed into a compound disclosed hereinabove, thereby imparting the desired pharmacological effect.
- compositions comprising at least one compound of the invention as defined above or pharmaceutically acceptable derivatives or prodrugs thereof, and optionally one or more physiologically acceptable excipients and/or carriers.
- the present invention relates to a use of a compound of the invention as defined above for the preparation of a medicament for the treatment and/or protection of patients having or being prone to produce a medical condition involving hypoxic, anoxis and/or inflamed mammalian tissue, preferably a tissue selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye, preferably a medical condition selected from ischemia reperfusion injury, severe inflammatory response syndrome, sepsis, organ transplantation, organ resection, organ or implant rejection, inflammation, e.g. due to allergy or infection, e.g. asthma, psoriasis, pneumonia, etc., or related to a medical intervention, preferably surgery or catheterization.
- the pharmaceutical composition is for administration prior to, after or concomitantly to a medical condition.
- the compounds of the present invention are particularly useful for preparing a medicament for inhalative treatment.
- the compounds of the present invention are formulated as a pharmaceutical composition for inhalative administration for the prophylaxis and/or treatment of inflammatory diseases, preferably inflammatory diseases of the respiratory system such as e.g. asthma, pneumonia, or cardiac conditions such as cardiac infarction.
- the compounds of the present invention can be formulated for topical administration, preferably as dressing, ointment, lotion, plaster, spray, etc.
- This type of administration is particularly useful for treating a skin inflammation, e.g. resulting from a skin wound, skin infection or allergy.
- a “patient” means any mammal that may benefit from a treatment with the compounds according to formula (I) described herein.
- a “patient” is selected from the group consisting of laboratory animals (e.g. mouse or rat), domestic animals (including e.g. guinea pig, rabbit, pig, sheep, goat, camel, cow, horse, donkey, cat, or dog), or primates including human beings. It is particularly preferred that the “patient” is a human being.
- treat means accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting or preventing development of symptoms characteristic of the disorder(s) being treated; (c) inhibiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting or preventing recurrence of the disorder(s) in patients that have previously had the disorder(s); and (e) limiting or preventing recurrence of symptoms in patients that were previously symptomatic for the disorder(s).
- administering includes in vivo administration, as well as administration directly to tissue ex vivo, such as vein grafts. Administration may be effected for the prevention, i.e. before clinical occurrence of a disease or disorder, or for treatment, i.e. after clinical occurrence of a disease or disorder.
- the present invention relates to a method of treating and/or protecting patients having or being prone to develop a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, preferably a tissue selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye, preferably a medical condition selected from ischemia reperfusion injury, inflammation or related to a medical intervention, preferably surgery or catheterization, the method comprising the administration of a therapeutically effective amount of a compound of the invention as defined above or a prodrug thereof or an effective amount of the pharmaceutical composition of the invention as defined above to a patient in need thereof.
- an “effective amount” is an amount of a therapeutic agent sufficient to achieve the intended purpose.
- the effective amount of a given therapeutic agent will vary with factors such as the nature of the agent, the route of administration, the size and species of the animal to receive the therapeutic agent, and the purpose of the administration.
- the effective amount in each individual case may be determined empirically by a skilled artisan according to established methods in the art.
- the compounds of the invention may be administered in any conventional dosage form in any conventional manner.
- Routes of administration include, but are not limited to, intravenously, intramuscularly, subcutaneously, intrasynovially, by infusion, sublingually, transdermally, orally, inhalative or topically.
- the preferred modes of administration are intravenous, intrathecal, intraperitoneal, perk or epidural, subcutaneous, intramuscular or topical.
- the compounds may be administered alone or in combination with adjuvants that enhance stability of the compounds, facilitate administration of pharmaceutical compositions containing them in certain embodiments, provide increased dissolution or dispersion, provide adjunct therapy, and the like, including other active ingredients.
- combination therapies utilize lower dosages of the conventional therapeutics, thus avoiding possible toxicity and adverse side-effects incurred when those agents are used as monotherapies.
- the above described compounds may be physically combined with the conventional therapeutics or other adjuvants into a single pharmaceutical composition. Reference is this regard may be made to Cappola et al.: U.S. patent application Ser. No. 09/902,822, PCT/US 01/21860 and U.S. provisional application No. 60/313,527, each incorporated by reference herein in their entirety.
- the compounds may then be administered together in a single dosage form.
- the pharmaceutical compositions comprising such combinations of compounds contain at least about 5%, but more preferably at least about 20%, of a compound of formula (I) (w/w) or a combination thereof.
- the optimum percentage (w/w) of a compound of the invention may vary and is within the purview of those skilled in the art.
- the compounds may be administered separately (either serially or in parallel). Separate dosing allows for greater flexibility in the dosing regime.
- dosage forms of the compounds described herein include pharmaceutically acceptable carriers and adjuvants known to those of ordinary skill in the art.
- carriers and adjuvants include, for example, ion exchangers, alumina, aluminium stearate, lecithin, serum proteins, buffer substances, water, salts or electrolytes and cellulose-based substances.
- Preferred dosage forms include, tablet, capsule, caplet, liquid, solution, suspension, emulsion, lozenges, syrup, reconstitutable powder, granule, suppository and transdermal patch. Controlled release dosage forms with or without immediate release portions are also envisaged. Methods for preparing such dosage forms are known (see, for example, H. C. Ansel and N. G.
- Dosage levels and requirements are well-recognized in the art and may be selected by those of ordinary skill in the art from available methods and techniques suitable for a particular patient. In some embodiments, dosage levels range from about 0.1-100 g/dose for a 70 kg patient. Although one dose per day may be sufficient, up to 5 doses per day may be given. For oral doses, up to 2000 mg/day or more may be required.
- some embodiments of the present invention refer to hydrophilic non-volatile compounds according to formula (I).
- Such non-volatile substances can be applied intravenously for organ protection. This procedure can be used in situations of any hypoxic or inflammatory organ injury and independent of the localization of the patient (intensive care unit, emergency room, perioperative care, etc).
- a patient experiences an occlusion of one of the inflow vessels to the heart (ischemia). This leads to hypoxic conditions in the heart's tissue.
- ischemia occlusion of one of the inflow vessels to the heart
- the coronary angiography where the clot in the vessel is detected and should be removed, followed by reperfusion of the heart (reperfusion damage), the patient receives a pharmaceutical compound of the invention as described above before, during and/or after the intervention.
- some embodiments of the present invention refer to hydrophilic volatile compounds according to formula (I).
- Such volatile pharmaceutical compounds can be given intravenously, but will be eliminated as volatile substances through the lungs. This implies a short time of metabolic transformation in the body of the patient and allows an on-site adjustment of intravenously applied doses e.g. by measuring the exhaled concentration of the volatile compound described above.
- a patient suffers from a sepsis (serious medical condition characterized by a whole-body inflammatory state, including several organs such as kidneys, liver, lungs or heart).
- a volatile pharmaceutical compound of the invention is given to the patient over a longer period of time to protect the organ, most common in the operating theatre or the intensive care unit.
- the present invention pertains to a medical device for temporary or permanent introduction into a mammalian body, preferably an implant or transplant organ, comprising at least one surface coated with at least one of the compounds of the invention, preferably selected from the group consisting of bone, tooth and cartilage implants, syringes, catheters, electrodes, stents and cardiac pacemakers.
- the medical device may be partially or fully introduced into the mammalian body.
- the medical devices of the present invention have the advantage that their inventive compound coating reduces or inhibits inflammatory reactions resulting from their introduction into the mammalian body.
- the coating is provided as a controlled release coating that allows for the coated compounds to diffuse into the adjacent tissues in a time-controlled manner.
- FIG. 1 shows the effects on viability and cytotoxicity in human microvascular endothelial cells (HMVEC) after administration of 2,2,2-trifluoro-ethanol (A, B), hexafluoro-2-propanol (C, D) and 3-amino-4,4,4-trifluorobutyroic acid (E, F). Viability is assessed by measuring the release of lactate de-hydrogenase and cytotoxicity is quantified by counting cells by means of fluorescence DNA quantification assays (see example 1). The administration of CF3-containing compounds does not cause significant cytotoxicity. Hence, these compounds are suitable for in vivo administration to mammals in need thereof. Concentration level differences are presented in relation to control (100%).
- FIG. 2 shows a graph representing the results of administration of 16 mmol/L hexafluoride-2-propanol to polymorphonuclear neutrophils in chemotactic migration assays that demonstrates the combined effects of hexafluoro-2-propanol on inflammatory mediator secretion and effector cell recruitment.
- LPS lipopolysaccharide
- MCP-1 Monocyte chemotactic protein-1
- CINC-1 cytokine-induced neutrophil chemoattractant 1
- CF3-group Different molecules with CF3-group were tested against their corresponding non-fluorinated molecules.
- the group of molecules with CF3-group included hexafluoroisopropanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,2-trifluorethanol, 3-amino-4,4,4-tri-fluorobutyroic acid, methyl-4,4,4-trifluoro-acetoacetate, methyl-trifluoro-acetamide, 5,5,5-trifluorleucine and Sevoflurane.
- 2-propanol, 1-propanol, ethanol, leucine, and diethyl ether were included.
- rat alveolar epithelial cells AEC
- human blood microvascular cells HMVEC
- PBS phosphate-buffered saline
- LPS 20 ⁇ g/ml
- the influence of fluorinated compounds and non-fluorinated reference compounds on the inflammatory response of the cells was tested.
- Expression of rat-MCP-1 (BD Biosciences, San Diego, Calif.) and human CINC-1 GROa (R&D Systems Europe Ltd.) protein were analyzed by ELISA. Evaluation of possible cytotoxicity was done counting cells by means of fluorescence DNA quantification assays. At the same time release of lactate dehydrogenase into the supernatants was measured (LDH Assay, Promega, Madison, Wis., USA).
- MCP-1 and CINC-1 levels of endothelial and epithelial cells stimulated with LPS were in a dose-dependent manner significantly decreased by exposure to molecules with CF3-group(s). The decrease was most pronounced using hexafluoroisopropanol having two CF3-groups (CF3-group concentration dependency). This decrease of MCP-1 and CINC-1 levels upon LPS stimulation could not be shown for their non-fluorinated counterparts (same time course, same concentrations). The decrease of inflammatory mediators leads to a significantly attenuated chemotaxis for neutrophils (see FIG. 2 ).
- CONCLUSIONS The results show that molecules containing at least one CF3-Group have immunomodulatory effects on epithelial and endothelial cells. The effect has been shown for both animal and human cell lines. The biological relevance of the shown immunomodulatory effects was confirmed by performing chemotactic migration assays, thus demonstrating that an attenuation of the expression of inflammatory mediators represents not only a quantitative phenomenon, but evokes also qualitative consquences: with less neutrophils the tissue damage will be decreased.
- a hydrophilic pharmaceutical formulation containing molecules having at least one CF3-group is therefore beneficial for treating patients suffering from an inflammatory process or an ischemia-reperfusion injury.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Emergency Medicine (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heart & Thoracic Surgery (AREA)
Abstract
Compounds according to formula (I) are particularly suitable for the treatment and/or prevention of a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue. Furthermore, the invention relates to the use of said compounds for preparing a medicament and to pharmaceutical preparations comprising such compounds. The invention also relates to methods of treating or protecting patients having or being prone to develop a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, the methods comprising administration of a therapeutically effective amount of such compounds
Description
- The present invention relates to compounds according to formula (I) for medical use. The compounds are particularly suitable for the treatment and/or prevention of a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue. Furthermore, the invention relates to the use of said compounds for preparing a medicament and to pharmaceutical preparations comprising such compounds. The invention also relates to methods of treating or protecting patients having or being prone to develop a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, the methods comprising administration of a therapeutically effective amount of such compounds.
- Inflammatory reactions and ischemia-reperfusion processes belong to the most frequently occurring disease states in critically ill patients. Inflammatory syndromes such as severe inflammatory response syndrome, sepsis, acute lung injury and its progression to the acute respiratory distress syndrome (ARDS) remain leading factors of hospital morbidity and mortality. Damage to tissue as a result of an ischemia-reperfusion situation is especially frequent in myocardial, vascular and neuronal/cerebral tissue. Other tissues that are susceptible to an ischemia-reperfusion injury include tissues from liver, gut, kidney and eye.
- The tissue's response to an injury or an infection results in an inflammatory reaction regulated by the coordinated function of cytokines, chemokines, adhesion molecules and tissue damage markers. Monocyte chemotactic protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) play crucial roles in the inflammatory orchestration upon injury and infection. The release of proinflammatory mediators like CINC-1, MCP-1 and other immunomodulating chemokines or cytokines results in recruitment of effector cells (such as neutrophiles and monocytes). These effector cells have an important role in the further development of injury.
- It has been shown that volatile anesthetics like Isoflurane, Sevoflurane, Desflurane, Halothane and Enflurane have a positive influence on organs damaged by an inflammatory process or an ischemic event (Yue et al., Eur. Respir. J. 2008; 31(1): 118-125; Suter et al., Anesth. Analg. 2007; 104(3): 638-45). Administration of said volatile anesthetics (e.g. Sevoflurane, Isoflurane or Desflurane) significantly reduces inflamematory mediators and tissue damage markers (i.e. troponin or serum transaminase levels) in patients undergoing lung (De Conno et al., Anesthesiology 2009; 110:1316-1326), heart (Landoni et al., Curr. Vasc. Pharmacol. 2008; 6:108-111) or liver surgery (Beck-Schimmer et al., Ann. Surg. 2008; 248:909-918). Several disadvantages are associated with the use of volatile anaesthetics for organ protection. Due to the anaesthetic side-effect patients have to be monitored and ventilated during administration in a controlled environment such as an operating room or an intensive care unit. Dosing especially in sub-anaesthetic concentrations is very difficult. Several attempts have been made to provide the protective effect of these drugs to a wider patient population. Believing that these effects are limited to volatile anaesthetics the current most advanced design tries to treat patients by administering formulations containing volatile anaesthetics (Lucchinetti et al., Anesth. Analg. 2008 May; 106(5):1346-9; Rao et al., Anesth. Analg. 2008 May; 106(5):1353-9; Musser et al., Anesth. Analg. 1999; 88: 671-5).
- Such methods of treatment are for example described in US patent application 2004/-0127578 A1, which is directed to the parenteral administration of a formulation containing a halogenated volatile anesthetic to a patient to improve the tissue's resistance to an ischemic event.
- WO 03/013539 A1 relates to the use of 1-[2-(4-3-trifluoromethyl-phenyl)piperazin-1-yl) ethyl]-2,3-dihydro-1H-benzimidazol-2-one (Flibanserin) for producing a drug with a neuroprotective action. WO 03/013539 speculates on the use of said compound for the treatment or prevention of neurodegenerative diseases.
- Volatile anaesthetics are hydrophobic and marginally soluble in water or other biological fluids such as blood. Therefore, their intravenous administration is only feasible by addition of emulsifiers and stabilization agents. These attempts fail in a clinical setting due to a lot of difficulties such as the anaesthetic side-effect of the anaesthetics, dosing problems or pain during injection caused by the emulsifier.
- Summarizing the above, it is the object underlying the present invention to provide compounds for the prevention and/or treatment of damages due to hypoxic or anoxic conditions or inflammation in tissue of patients that exhibit no or reduced anaesthetic side-effects and that can be administered without the addition of emulsifiers and that preferably have a significant solubility in water.
- Surprisingly, it was discovered that the tissue-protective effect is not restricted to volatile anaesthetics but is rather the result of the presence of a functional —C(R3)2F group in a chemical compound, wherein each R3 denotes independently of one another in each instance a substituent selected from the group consisting of H, F, Cl, Br, I and C1 to C6 alkyl. Preferably the functional —C(R3)2F group is —CH2F, —CHF2 or —CF3.
- This finding enables the preparation of non-anaesthetic and water-soluble compounds as organ protective formulations. As volatile anaesthetics are hydrophobic and marginally soluble in water, the present invention overcomes the above mentioned problems by administering hydrophilic molecules comprising at least one functional —C(R3)2F group.
- By doing so, the inventors overcome dosing and solubility problems of present attempts using volatile anaesthetics because the inventive compounds easily can be mixed with water, blood or biological fluids and do not cause an injection pain. Furthermore, the formulation can be administered without continuous medical surveillance and is therefore less expensive and applicable for a wider patient population.
- The present invention provides chemical compounds with one or multiple —C(R3)2F functional groups for the treatment and protection of patients which are suffering from an ischemia-reperfusion event or from an inflammatory reaction. The chemical compound is preferably low in molecular weight and includes one or several polar functional groups (R1) that increase solubility in water. Accordingly, in a preferred embodiment, the C(R3)2F-containing molecule is water-soluble and therefore easily distributed through the blood circulation. Another advantage of the water-solubility of the compounds of the invention is that the compounds can preferably be formulated without the addition of emulsifiers.
- Accordingly, in a first aspect the above objects are solved by compounds of formula (I) for medical use:
-
(R1)n—R2—(C(R3)2F)m (I), - wherein
-
- n is 1 to 5, preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and most preferably 1,
- m is 1 to 5, preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and most preferably 1,
- R1 denotes in each instance a polar functional group bound to R2,
- R2 denotes a linear or branched, substituted or non-substituted alkyl, alkenyl, alkynyl, alkylidene, aryl, heteroaryl or carbocycle,
- —(C(R3)2F) denotes a group that is in each instance bound to R2, and
- R3 denotes independently of one another in each instance a substituent selected from the group consisting of H, F, Cl, Br, I, and C1 to C6 alkyl (e.g. C1, C2, C3, C4, C5, or C6 alkyl),
as well as their diastereomers or enantiomers in the form of their acids, bases or salts of physiologically acceptable acids or bases.
- Thus, compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) polar functional groups R1 that are bound to R2. Further, compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) functional —(C(R3)2F) groups that are bound to R2.
- Preferably, R3 in C(R3)2F is independently of R3 in any other C(R3)2F group and independently of R3 in the same C(R3)2F group F or H, preferably in both instances F. Thus, preferred compounds of the invention contain 1 to 5 (e.g. 1, 2, 3, 4 or 5) functional groups that are independently from one another selected from —CH2F, —CHF2, or —CF3.
- Preferably, R2 is a linear or branched, substituted or non-substituted C1-15 alkyl, alkenyl, or cycloalkyl, preferably a C1-10 alkyl, alkenyl or cycloalkyl, more preferably a C1-6 alkyl, alkenyl or cycloalkyl, most preferably a C1-4 alkyl (e.g. methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl or tert-butyl). Without wishing to be bound by theory the inventors believe that selecting R2 to have less than sixteen carbon atoms, preferably less than seven, more preferably less than five results in a low molecular weight compound that exhibits an increased dose/response efficacy.
- In preferred embodiments, the compounds of the invention according to formula (I) have less than 16 carbon atoms (i.e. between 1 and 15 carbon atoms), more preferably less than 11 carbon atoms (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms), even more preferably less than 7 carbon atoms (i.e. 1, 2, 3, 4, 5 or 6 carbon atoms).
- In preferred embodiments, R2 is substituted, preferably substituted with 1 to 10 (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10), more preferably 1 to 6 substituents, most preferably 1 to 3 substituents, each substituent preferably being selected independently from one another from the group consisting of —F, —Cl, —Br, —I, —OH, —NH2, —COOH, —COOR4, —CHO, —C(O)—R4, —CON H2, and —CONHR4; wherein R4 is a linear or branched, substituted or unsubstituted C1-10 alkyl, alkenyl or cycloalkyl.
- In preferred embodiments, each R1 is independently selected from the group consisting of —OH, —NH2, —COOH, —COOR4, —CHO, —C(O)—R4, —CONH2 and —CONHR4; wherein R4 is in each instance independently selected from linear or branched, substituted or non-substituted C1-10 alkyl, alkenyl or cycloalkyl. In more preferred embodiments, each R1 is independently selected from the group consisting of —OH, —NH2, —COON, and —COOR4. In particularly preferred embodiments, each R1 is —OH.
- In preferred embodiments, the compounds of the invention are alcohols, amines, carboxylic acids or esters. In particularly preferred embodiments the compounds of the invention are selected from the group consisting of the following substances: 1,1,1,3,3,3-Hexafluoro-2-methyl-2-propanol(C4H4F6O), 2,2,3,4,4,4-Hexafluoro-1-butanol(C4H4-F6O), Perfluoro-tert-butyl alcohol(C4HF9O); 2,2,3,3,3-Pentafluoro-1-propanol(C3H3-F5O), 1,1,1,3,3,4,4,4—Octafluoro-2-butanol(C4H2F8O), 2,2,3,3,4,4,4-Heptafluoro-1-butanol(C4H3F7O), 1,1,1,3,3,3-Hexafluoropropan-2-ol(C3H2F6O), 2,2,2-Trifluoro-ethanol(C2H3F3O), 2-Hydroxy-2-(trifluoromethyl)propionitrile(C4H4F3NO), 3,4,4,4-Tetrafluoro-3-(trifluoromethyl)butan-1-ol(C5H5F7O), 2-(2,2,3,4,4,4-Hexafluorobutoxy)-ethanol(C6H8F6O2), 2,2,2-Trifluoro-1-(furan-3-yl)ethanol(C6H5F3O2), N-Methyl-2,2,2-trifluoroacetamide(C3H4F3NO), 2,2,2-Trifluoroacetamide(C2H2F3NO), 3-Amino-4,4,4-trifluorobutyric acid(C4H6F3NO2), 3,3,3-Trifluoro-2-(hydroxymethyl)propanoic acid(C4H5F303), 4,4,4-Trifluoroacetoacetic acid methyl ester(C5H5F3O3), 5,5,5-Trifluorleucine.
- The present invention also relates to compounds according to formula (I) that are volatile provided that such compounds are soluble in water. Such volatile, water-soluble compounds can be administered to the patient by injection (e.g. intravenously or intramuscularly) and are removed from the patient through the lungs. Preferably, the compounds of the invention are soluble in water. One measure for the water solubility of a compound is its octanol-water partition coefficient. The octanol-water partition coefficient (Kow) is defined as the ratio of a compound's concentration in the octanol phase to its concentration in the aqueous phase of a two-phase octanol/water system. Values of Kow are thus unitless. The parameter is typically measured using low solute concentrations, where Kow is a very weak function of solute concentration. Values of Kow are usually measured at room temperature (20 or 25° C.). Measured values of Kow for organic chemicals have been found as low as 10−3 and as high as 107, thus encompassing a range of ten orders of magnitude. In terms of log Kow, this range is from −3 to 7.
- The chemical in question is added to a mixture of octanol and water whose volume ratio is adjusted according to the expected value of Kow. Very pure octanol and water must be used, and the concentration of the chemical in the system should be less than 0.01 mol/L. The system is shaken gently until equilibrium is achieved (15 min to 1 hr). Centrifugation is generally required to separate the two phases, especially if an emulsion has formed. An appropriate analytical technique is then used to determine the solute concentration in each phase. A rapid laboratory estimate of I(may be obtained by measuring the retention time in a high-pressure liquid chromatography system; the logarithm of the retention time and the logarithm of K0 have been found to be linearly related.
- Chemicals with low Kow values (e.g., less than 10) may be considered relatively hydrophilic; they tend to have high water solubilities. Conversely, chemicals with high Kow values (e.g., greater than 104) are very hydrophobic.
- Preferably, the compounds of the invention have an octanol-water partition coefficient of less than 20, more preferably less than 15, more preferably less than 10, more preferably less than 5, more preferably less than 1. In particularly preferred embodiments, the compounds of the invention are completely miscible with water.
- Preferred compounds of the invention do not have anaesthetic side-effects at suitable concentrations for the inventive indications.
- In a preferred embodiment of the first aspect, the compound is not 14244-3-trifluoromethyl-phenyl)piperazin-1-yl) ethyl]-2,3-dihydro-1H-benzimidazol-2-one (Flibanserin) nor a salt thereof.
- In a further aspect, the above objects are solved by compounds of the invention as defined above for the treatment and/or prevention of a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue. Preferably, the tissue is selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye.
- The compounds of the invention are suitable for administration prior to, after or concomitantly to a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, preferably ischemia reperfusion injury, inflammation or a medical intervention, preferably surgery or catheterization.
- Definitions
- In the context of the present invention it is understood that antecedent terms such as “linear” or “branched”, “substituted” or “non-substituted” indicate that each one of the subsequent terms is to be interpreted as being modified by said antecedent term. For example, the scope of the term “linear or branched, substituted or non-substituted alkyl, alkenyl, alkynyl, alkylidene, carbocycle” encompasses linear or branched, substituted or non-substituted alkyl; linear or branched, substituted or non-substituted alkenyl; linear or branched, substituted or non-substituted alkynyl; linear or branched, substituted or non-substituted alkylidene; and linear or branched, substituted or non-substituted carbocycle. For example, the term “C2-C12 alkenyl, alkynyl or alkylidene” indicates the group of compounds having 2 to 12 carbons and alkenyl, alkynyl or alkylidene functionality. In all compounds disclosed herein, in the event that the nomenclature conflicts with the structure, it shall be understood that the compound is defined by the structure. The term “heteroatom”, as used herein, shall be understood to mean atoms other than carbon and hydrogen such as and preferably O, N, S and P.
- The terms alkyl, alkenyl, alkynyl, alkylidene, etc. shall be understood as encompassing linear as well as branched forms of carbon-containing chains where structurally possible. In these carbon chains one or more carbon atoms can be optionally replaced by heteroatoms, preferably by O, S or N. If N is not substituted, it is NH. The heteroatoms may replace either terminal or internal carbon atoms within a linear or branched carbon chain. Such groups can be substituted as herein described by groups such as oxo to result in definitions such as but not limited to alkoxycarbonyl, acryl, amido and thioxo.
- The term “carbocycle” shall be understood to mean an aliphatic hydrocarbon radical containing from 3 to 20, preferably 3 to 12 carbon atoms, more preferably 5 or 6 carbon atoms. Carbocycles include hydrocarbon rings containing from 3 to 20, preferably 3 to 10 carbon atoms. These carbocycles may be either aromatic or non-aromatic systems. The non-aromatic ring systems may be mono- or polyunsaturated. Preferred carbocycles include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, phenyl, indanyl, indenyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl, decahydronaphthyl, benzocycloheptanyl, and benzocycloheptenyl. Certain terms for cycloalkyl such as cyclobutanyl and cyclobutyl shall be used interchangeably.
- The term “cycloalkyl” shall be understood to mean aliphatic hydrocarbon-containing rings having from 3 to 20, preferably 3 to 12 carbon atoms. These non-aromatic ring systems may be mono- or polyunsaturated, i.e. the term encompasses cycloalkenyl and cycloalkynyl. The cycloalkyl may comprise heteroatoms, preferably O, S or N, and be substituted or non-substituted. Preferred and non-limiting cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptanyl, cycloheptenyl, benzocyclobutanyl, benzocycloheptanyl and benzocycloheptenyl.
- The term “heterocyclic” refers to a stable non-aromatic, preferably 3 to 20-membered, more preferably 3 to 12-membered, most preferably 5 or 6-membered, monocyclic or multicyclic, preferably 8 to 12-membered bicyclic, heteroatom-containing cyclic radical, that may be either saturated or unsaturated. Each heterocycle consists of carbon atoms and one or more, preferably 1 to 4 heteroatoms chosen from nitrogen, oxygen and sulphur. The heterocyclic residue may be bound to the remaining structure of the complete molecule by any atom of the cycle, which results in a stable structure. Exemplary heterocycles include, but are not limited to, pyrrolidinyl, pyrrolinyl, morpholinyl, thiomorpholinyl, thiomorpholinyl sulfoxide, thiomorpholinyl sulfone, dioxalanyl, piperidinyl, piperazinyl, tetrahydrofuranyl, 1-oxo-λ4-thiomorpholinyl, 13-oxa-11-aza-tricyclo[7.3.1.0-2,7]tridecy-2,4,6-triene, tetrahydropyranyl, 2-oxo-2H-pyranyl, tetrahydrofuranyl, 1,3-dioxolanone, 1,3-dioxanone, 1,4-dioxanyl, 8-oxa-3-aza-bicyclo[3.2.1]octanyl, 2-oxa-5-aza-bicyclo[2.2.1]heptanyl, 2-thia-5-aza-bicyclo[2.2.1]heptanyl, piperidinonyl, tetrahydro-pyrimidonyl, pentamethylene sulphide, pentamethylene sulfoxide, pentamethylene sulfone, tetramethylene sulphide, tetramethylene sulfoxide and tetramethylene sulfone.
- The term “aryl” as used herein shall be understood to mean an aromatic carbocycle or heteroaryl as defined herein. Each aryl or heteroaryl unless otherwise specified includes its partially or fully hydrogenated derivative. For example, quinolinyl may include decahydroquinolinyl and tetrahydroquinolinyl; naphthyl may include its hydrogenated derivatives such as tetrahydronaphthyl. Other partially or fully hydrogenated derivatives of the aryl and heteroaryl compounds described herein will be apparent to one of ordinary skill in the art. Naturally, the term encompasses aralkyl and alkylaryl, both of which are preferred embodiments for practicing the compounds of the present invention. For example, the term aryl encompasses phenyl, indanyl, indenyl, dihydronaphthyl, tetrahydronaphthyl, naphthyl and decahydronaphthyl.
- The term “heteroaryl” shall be understood to mean an aromatic C3-C20, preferably 5 to 8-membered monoxyclic or preferably 8 to 12-membered bicyclic ring containing 1 to 4 heteroatoms such as N, O and S. Exemplary heteroaryls comprise aziridinyl, thienyl, furanyl, isoxazolyl, oxazolyl, thiazolyl, thiadiazolyl, tetrazolyl, pyrazolyl, pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyranyl, quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzothienyl, quinolinyl, quinazolinyl, naphthyridinyl, indazolyl, triazolyl, pyrazolo[3,4-b]pyrimidinyl, purinyl, pyrrolo[2,3-b]pyridinyl, pyrazole[3,4-b]pyridinyl, tubercidinyl, oxazo[4,5-b]pyridinyl and imidazo[4,5-b]pyridinyl.
- Terms which are analogues of the above cyclic moieties such as aryloxy or heteroaryl amine shall be understood to mean an aryl, heteroaryl, heterocycle as defined above attached to its respective group.
- As used herein, the terms “nitrogen” and “sulphur” include any oxidized form of nitrogen and sulphur and the quaternized form of any basic nitrogen as long as the resulting compound is chemically stable. For example, for an —S—C1-6 alkyl radical shall be understood to include —S(O)—C1 alkyl and —S(O)2—C1 alkyl.
- The compounds of the invention are only those which are contemplated to be ‘chemically stable’ as will be appreciated by those skilled in the art. For example, compounds having a ‘dangling valency’ or a ‘carbanion’ are not compounds contemplated by the inventive concept disclosed herein.
- Methods of Preparation
- The compounds and precursor compounds of the present invention can be prepared without any undue burden or inventive skill by any appropriate conventional synthetic strategy known to those of skill in organic chemistry. Some of the compounds of the present invention or direct precursors thereof may also be commercially available.
- Medical Use and Pharmaceutical Compositions
- The invention includes pharmaceutically acceptable derivatives of compounds of formula (I). A “pharmaceutically acceptable derivative” refers to any pharmaceutically acceptable salt or ester or any other compound which, upon administration to a patient, is capable of providing (directly or indirectly) a compound of the invention or a pharmacologically active metabolite or pharmacologically active residue thereof. A pharmacologically active metabolite shall be understood to mean any compound of the invention capable of being metabolized enzymatically or chemically. This includes, for example, hydroxylated or oxidized derivative compounds of the formula (I).
- Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acids include hydrochloric, hydrobromic, sulphuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfuric, tartaric, acetic, citric, methanesulfonic, formic, benzoic, malonic, naphthalene-2-sulfuric and benzenesulfonic acids. Other acids, such as oxalic acid, while not themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds and their pharmaceutically acceptable acid addition salts. Salts derived from appropriate bases include alkali metal (e.g., sodium, potassium), alkaline earth metal (e.g. magnesium), ammonium and N—(C1-C4 alkyl)4 + salts.
- In addition, the scope of the invention also encompasses prodrugs of compounds of formula (I). Prodrugs include those compounds that, upon simple chemical transformation, are modified to produce compounds of the invention. Simple chemical transformations include hydrolysis, oxidation and reduction. Specifically, when a prodrug is administered to a patient, the prodrug may be transformed into a compound disclosed hereinabove, thereby imparting the desired pharmacological effect.
- In view of the above and because the compounds of the invention have demonstrated immuno-modulatory effects on epithelial and endothelial cells, another aspect of the present invention relates to pharmaceutical compositions comprising at least one compound of the invention as defined above or pharmaceutically acceptable derivatives or prodrugs thereof, and optionally one or more physiologically acceptable excipients and/or carriers.
- In a further aspect, the present invention relates to a use of a compound of the invention as defined above for the preparation of a medicament for the treatment and/or protection of patients having or being prone to produce a medical condition involving hypoxic, anoxis and/or inflamed mammalian tissue, preferably a tissue selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye, preferably a medical condition selected from ischemia reperfusion injury, severe inflammatory response syndrome, sepsis, organ transplantation, organ resection, organ or implant rejection, inflammation, e.g. due to allergy or infection, e.g. asthma, psoriasis, pneumonia, etc., or related to a medical intervention, preferably surgery or catheterization. The pharmaceutical composition is for administration prior to, after or concomitantly to a medical condition.
- The compounds of the present invention are particularly useful for preparing a medicament for inhalative treatment. In a preferred embodiment, the compounds of the present invention are formulated as a pharmaceutical composition for inhalative administration for the prophylaxis and/or treatment of inflammatory diseases, preferably inflammatory diseases of the respiratory system such as e.g. asthma, pneumonia, or cardiac conditions such as cardiac infarction.
- In a preferred alternative, the compounds of the present invention can be formulated for topical administration, preferably as dressing, ointment, lotion, plaster, spray, etc. This type of administration is particularly useful for treating a skin inflammation, e.g. resulting from a skin wound, skin infection or allergy.
- As used herein, a “patient” means any mammal that may benefit from a treatment with the compounds according to formula (I) described herein. Preferably, a “patient” is selected from the group consisting of laboratory animals (e.g. mouse or rat), domestic animals (including e.g. guinea pig, rabbit, pig, sheep, goat, camel, cow, horse, donkey, cat, or dog), or primates including human beings. It is particularly preferred that the “patient” is a human being.
- As used herein, “treat”, “treating” or “treatment” of a disease or disorder means accomplishing one or more of the following: (a) reducing the severity of the disorder; (b) limiting or preventing development of symptoms characteristic of the disorder(s) being treated; (c) inhibiting worsening of symptoms characteristic of the disorder(s) being treated; (d) limiting or preventing recurrence of the disorder(s) in patients that have previously had the disorder(s); and (e) limiting or preventing recurrence of symptoms in patients that were previously symptomatic for the disorder(s).
- As used herein, “administering” includes in vivo administration, as well as administration directly to tissue ex vivo, such as vein grafts. Administration may be effected for the prevention, i.e. before clinical occurrence of a disease or disorder, or for treatment, i.e. after clinical occurrence of a disease or disorder.
- Methods of Use
- In a further aspect, the present invention relates to a method of treating and/or protecting patients having or being prone to develop a medical condition involving hypoxic, anoxic and/or inflamed mammalian tissue, preferably a tissue selected from the group consisting of heart, lung, liver, brain, gut, kidney, muscle, bone, skin and eye, preferably a medical condition selected from ischemia reperfusion injury, inflammation or related to a medical intervention, preferably surgery or catheterization, the method comprising the administration of a therapeutically effective amount of a compound of the invention as defined above or a prodrug thereof or an effective amount of the pharmaceutical composition of the invention as defined above to a patient in need thereof.
- An “effective amount” is an amount of a therapeutic agent sufficient to achieve the intended purpose. The effective amount of a given therapeutic agent will vary with factors such as the nature of the agent, the route of administration, the size and species of the animal to receive the therapeutic agent, and the purpose of the administration. The effective amount in each individual case may be determined empirically by a skilled artisan according to established methods in the art.
- For therapeutic or prophylactic use the compounds of the invention may be administered in any conventional dosage form in any conventional manner. Routes of administration include, but are not limited to, intravenously, intramuscularly, subcutaneously, intrasynovially, by infusion, sublingually, transdermally, orally, inhalative or topically. The preferred modes of administration are intravenous, intrathecal, intraperitoneal, perk or epidural, subcutaneous, intramuscular or topical.
- The compounds may be administered alone or in combination with adjuvants that enhance stability of the compounds, facilitate administration of pharmaceutical compositions containing them in certain embodiments, provide increased dissolution or dispersion, provide adjunct therapy, and the like, including other active ingredients. Advantageously such combination therapies utilize lower dosages of the conventional therapeutics, thus avoiding possible toxicity and adverse side-effects incurred when those agents are used as monotherapies. The above described compounds may be physically combined with the conventional therapeutics or other adjuvants into a single pharmaceutical composition. Reference is this regard may be made to Cappola et al.: U.S. patent application Ser. No. 09/902,822, PCT/US 01/21860 and U.S. provisional application No. 60/313,527, each incorporated by reference herein in their entirety. Advantageously, the compounds may then be administered together in a single dosage form. In some embodiments, the pharmaceutical compositions comprising such combinations of compounds contain at least about 5%, but more preferably at least about 20%, of a compound of formula (I) (w/w) or a combination thereof. The optimum percentage (w/w) of a compound of the invention may vary and is within the purview of those skilled in the art. Alternatively, the compounds may be administered separately (either serially or in parallel). Separate dosing allows for greater flexibility in the dosing regime.
- As mentioned above, dosage forms of the compounds described herein include pharmaceutically acceptable carriers and adjuvants known to those of ordinary skill in the art. These carriers and adjuvants include, for example, ion exchangers, alumina, aluminium stearate, lecithin, serum proteins, buffer substances, water, salts or electrolytes and cellulose-based substances. Preferred dosage forms include, tablet, capsule, caplet, liquid, solution, suspension, emulsion, lozenges, syrup, reconstitutable powder, granule, suppository and transdermal patch. Controlled release dosage forms with or without immediate release portions are also envisaged. Methods for preparing such dosage forms are known (see, for example, H. C. Ansel and N. G. Popovish, Pharmaceutical Dosage Forms and Drug Delivery Systems, 5th ed., Lea and Febiger (1990)). Dosage levels and requirements are well-recognized in the art and may be selected by those of ordinary skill in the art from available methods and techniques suitable for a particular patient. In some embodiments, dosage levels range from about 0.1-100 g/dose for a 70 kg patient. Although one dose per day may be sufficient, up to 5 doses per day may be given. For oral doses, up to 2000 mg/day or more may be required.
- Reference in this regard may also be made to U.S. provisional application No. 60/339,249. As the skilled artisan will appreciate, lower or higher doses may be required depending on particular factors. For instance, specific doses and treatment regimens will depend on factors such as the patient's general health profile, the severity and course of the patient's disorder or disposition thereto, and the judgment of the treating physician.
- As noted above, some embodiments of the present invention refer to hydrophilic non-volatile compounds according to formula (I). Such non-volatile substances can be applied intravenously for organ protection. This procedure can be used in situations of any hypoxic or inflammatory organ injury and independent of the localization of the patient (intensive care unit, emergency room, perioperative care, etc). In an exemplary embodiment, a patient experiences an occlusion of one of the inflow vessels to the heart (ischemia). This leads to hypoxic conditions in the heart's tissue. In the coronary angiography, where the clot in the vessel is detected and should be removed, followed by reperfusion of the heart (reperfusion damage), the patient receives a pharmaceutical compound of the invention as described above before, during and/or after the intervention.
- As noted above, some embodiments of the present invention refer to hydrophilic volatile compounds according to formula (I). Such volatile pharmaceutical compounds can be given intravenously, but will be eliminated as volatile substances through the lungs. This implies a short time of metabolic transformation in the body of the patient and allows an on-site adjustment of intravenously applied doses e.g. by measuring the exhaled concentration of the volatile compound described above. In exemplary embodiment, a patient suffers from a sepsis (serious medical condition characterized by a whole-body inflammatory state, including several organs such as kidneys, liver, lungs or heart). A volatile pharmaceutical compound of the invention is given to the patient over a longer period of time to protect the organ, most common in the operating theatre or the intensive care unit. By measuring the concentration of the compound in the exhaled air of the patient dosing can be controlled and optimized. The elimination of the compound through the lungs is especially an advantage in patients suffering from a decreased metabolization capacity as liver or renal function is deteriorated in such states of critical illness.
- In a further aspect, the present invention pertains to a medical device for temporary or permanent introduction into a mammalian body, preferably an implant or transplant organ, comprising at least one surface coated with at least one of the compounds of the invention, preferably selected from the group consisting of bone, tooth and cartilage implants, syringes, catheters, electrodes, stents and cardiac pacemakers. The medical device may be partially or fully introduced into the mammalian body. The medical devices of the present invention have the advantage that their inventive compound coating reduces or inhibits inflammatory reactions resulting from their introduction into the mammalian body. In another embodiment the coating is provided as a controlled release coating that allows for the coated compounds to diffuse into the adjacent tissues in a time-controlled manner.
- The following tables, figures and examples are merely illustrative of the present invention and should not be construed to limit the scope of the invention as indicated by the appended claims in any way.
- Table 1 CINC-1/GROa protein levels of human blood micro vascular endothelial cells measured in supernatants in relation to an exposition to LPS without any substance (positive control=100%)
- Table 2 MCP-1 levels of rat alveolar epithelial cells measured in supernatants in relation to an exposition to LPS without any substance (positive control=100%)
- Table 3 Comparison of compound properties
-
FIG. 1 shows the effects on viability and cytotoxicity in human microvascular endothelial cells (HMVEC) after administration of 2,2,2-trifluoro-ethanol (A, B), hexafluoro-2-propanol (C, D) and 3-amino-4,4,4-trifluorobutyroic acid (E, F). Viability is assessed by measuring the release of lactate de-hydrogenase and cytotoxicity is quantified by counting cells by means of fluorescence DNA quantification assays (see example 1). The administration of CF3-containing compounds does not cause significant cytotoxicity. Hence, these compounds are suitable for in vivo administration to mammals in need thereof. Concentration level differences are presented in relation to control (100%). -
FIG. 2 shows a graph representing the results of administration of 16 mmol/L hexafluoride-2-propanol to polymorphonuclear neutrophils in chemotactic migration assays that demonstrates the combined effects of hexafluoro-2-propanol on inflammatory mediator secretion and effector cell recruitment. - INTRODUCTION: Inflammatory reactions and ischemia-reperfusion processes belong to the most frequently occurring disease states in critically ill patients (Phua et al.: Has mortality from acute respiratory distress syndrome decreased over time ?: A systematic review. Am. J. Respir. Crit. Care Med 2009; 179: 220-7). It has been shown that lipopolysaccharide (LPS)-induced injury is a very useful experimental model for the investigation and characterization of immunopathogenic changes and mechanisms of a tissue injury. The response to LPS results in an inflammatory reaction regulated by the coordinated function of cytokines, chemokines, and adhesion molecules. Monocyte chemotactic protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CINC-1) play crucial roles in the inflammatory orchestration upon injury and infection (Ulich et al., Am. J. Physiol. 1995; 268:L245-50; van Helden et al., Exp. Lung Res. 1997; 23:297-316; Beck-Schimmer et al., Respir. Res. Jun. 22, 2005; 6:61; Zagorski et al., J. Immunol. Dec. 1, 2007; 179(11):7820-6).
- METHODS: Different molecules with CF3-group were tested against their corresponding non-fluorinated molecules. The group of molecules with CF3-group included hexafluoroisopropanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2,2-trifluorethanol, 3-amino-4,4,4-tri-fluorobutyroic acid, methyl-4,4,4-trifluoro-acetoacetate, methyl-trifluoro-acetamide, 5,5,5-trifluorleucine and Sevoflurane. In the group without CFx moieties 2-propanol, 1-propanol, ethanol, leucine, and diethyl ether were included. As well established model rat alveolar epithelial cells (AEC) and human blood microvascular cells (HMVEC) were exposed to phosphate-buffered saline (PBS, negative control) or LPS (20 μg/ml) for 6 hours (positive control). The influence of fluorinated compounds and non-fluorinated reference compounds on the inflammatory response of the cells was tested. Expression of rat-MCP-1 (BD Biosciences, San Diego, Calif.) and human CINC-1 GROa (R&D Systems Europe Ltd.) protein were analyzed by ELISA. Evaluation of possible cytotoxicity was done counting cells by means of fluorescence DNA quantification assays. At the same time release of lactate dehydrogenase into the supernatants was measured (LDH Assay, Promega, Madison, Wis., USA).
- Furthermore, the effect of hexafluoro-2-propanol in a concentration of 16 mmol/L on the chemotactic migration of polymorphonuclear neutrophils towards supernatants from LPS-stimulated endothelial cells (right side, 270)° and towards supernatants from LPS-stimulated endothelial cells incubated with hexafluoro-2-propanol (left side, 90°) was assessed according to (De Conno et al., Anesthesiology 2009; 110:1316-1326)
- RESULTS: MCP-1 and CINC-1 levels of endothelial and epithelial cells stimulated with LPS were in a dose-dependent manner significantly decreased by exposure to molecules with CF3-group(s). The decrease was most pronounced using hexafluoroisopropanol having two CF3-groups (CF3-group concentration dependency). This decrease of MCP-1 and CINC-1 levels upon LPS stimulation could not be shown for their non-fluorinated counterparts (same time course, same concentrations). The decrease of inflammatory mediators leads to a significantly attenuated chemotaxis for neutrophils (see
FIG. 2 ). - CONCLUSIONS: The results show that molecules containing at least one CF3-Group have immunomodulatory effects on epithelial and endothelial cells. The effect has been shown for both animal and human cell lines. The biological relevance of the shown immunomodulatory effects was confirmed by performing chemotactic migration assays, thus demonstrating that an attenuation of the expression of inflammatory mediators represents not only a quantitative phenomenon, but evokes also qualitative consquences: with less neutrophils the tissue damage will be decreased. A hydrophilic pharmaceutical formulation containing molecules having at least one CF3-group is therefore beneficial for treating patients suffering from an inflammatory process or an ischemia-reperfusion injury.
-
TABLE 1 HMVEC results Concentration in Substance culture medium 25th percentile Median 75th percentile with CFx- group 2,2,2-Trifluorethanol C2H3F3O 64 mmol/l 69 73 76 32 mmol/l 76 78 79 16 mmol/l 93 98 100 2,2,3,3,3-Pentafluoro-1-propanol C3H3F5O 64 mmol/ l 30 31 31 32 mmol/ l 40 41 42 16 mmol/l 106 115 128 Hexafluoroisopropanol C3H2F6O 16 mmol/l 22 26 28 4 mmol/l 46 49 51 3-Amino-4,4,4-Trifluorobutyroic acid C4H6F3NO2 64 mmol/ l 0 0 0 16 mmol/ l 0 0 1 8 mmol/l 75 79 80 without CFx-group Ethanol C2H6O 64 mmol/l 85 88 95 32 mmol/ l 88 91 92 16 mmol/l 104 107 115 1-Propanol C3H8O 64 mmol/l 51 64 67 32 mmol/ l 80 81 82 16 mmol/l 81 82 86 2-Propanol C3H8O 16 mmol/l 91 97 97 4 mmol/l 107 109 110 -
TABLE 2 rat alveolar epithelial cells results Concentration in Substance culture medium 25th percentile Median 75th percentile with CFx-group 2,2,2-Trifluorethanol C2H3F3O 64 mmol/l 55 59 60 16 mmol/l 55 58 63 Hexafluoroisopropanol C3H2F6O 32 mmol/l 0 11 16 16 mmol/l 53 63 74 8 mmol/l 96 101 107 4 mmol/l 97 98 101 2,2,3,3,3-Pentafluoro-1-propanol C3H3F5O 64 mmol/l 54 70 76 16 mmol/l 83 92 101 3-Amino-4,4,4-trifluorobutyroic acid C4H6F3NO2 64 mmol/l 0 0 0 32 mmol/l 43 44 46 16 mmol/l 88 101 124 Sevoflurane C4H3F7O 64 mmol/l 60 68 72 Methyl-4,4,4-trifluoro-acetoacetate C5H5F3O3 32 mmol/l 0 0 1 16 mmol/l 6 7 8 Methyltrifluoroacetamide CF3CONHCH3 64 mmol/l 0 0 0 32 mmol/l 32 41 48 16 mmol/l 53 56 81 8 mmol/l 68 80 81 5,5,5-Trifluorleucine C6H10F3NO2 16 mmol/l 66 68 70 without CFx-group Ethanol C2H6O 64 mmol/l 86 92 94 16 mmol/l 97 103 121 2-Propanol C3H8O 64 mmol/l 78 82 87 32 mmol/l 82 86 92 16 mmol/l 98 101 110 1-Propanol C3H8O 64 mmol/l 71 74 77 16 mmol/l 96 99 104 DL-3-Amino-n-butyric acid C4H9NO2 64 mmol/l 112 117 130 32 mmol/l 127 149 171 16 mmol/l 90 91 100 8 mmol/l 93 95 97 Chloroform C1H1Cl3 64 mmol/l 170 171 177 Leucine (CH3)2CHCH2CH(NH2)CO2H 16 mmol/l 90 91 91 -
TABLE 3 Comparison of compound properties Blood:Gas Oil:Gas Par- Octanol water Boiling Melting Partition tition coeffi- Partition coef- point point coefficient cient ficient Solubility 2,2,2- Trifluoroethanol 78.0° C. 0.17 (1) miscible 1,1,1,3,3,3- Hexafluoro- propan-2-ol 59° C. 0.37 (1) 1000 g/L (25° C.) 2,2,3,3,3- Pentafluoro- 1-propanol 81° C. 21.9 g/L (25° C.) 3-Amino-4,4,4- trifluorobutyric acid 180- 190° C. Blood:Gas Oil:Gas Octanol water Boiling Melting Partition Partition partition point point Coefficient coefficient coefficient (2) solubility Desflurane 22.8° C. 0.42 19 28.5 Isoflurane 48.5° C. 1.4 98 156 Enflurane 56.5° C. 1.9 98 122 Sevoflurane 58.5° C. 0.68 47 71 Halothane 50.2° C. 2.5 224 315 (1) Qiana et al., Journal of Chromatography A 1143, 1-2, 2007, 276-283. (2) Urban et al., Anästhesiol. Intendicmed. Schmerzther. 1995; 30; 375-382.
Claims (22)
1-18. (canceled)
19. A method for treating or inhibiting a condition selected form the group consisting of ischemia reperfusion injury, severe inflammatory response syndrome, sepsis, organ transplantation, organ resection, organ rejection, inflammation, surgery and catheterization, the method comprising the administration of a pharmaceutical composition comprising a compound of formula (I):
(R1)n—R2—(C[[(R3)2]]F 3 )m (I),
(R1)n—R2—(C[[(R3)2]]F 3 )m (I),
wherein:
n is 1 to 5,
m is 1 to 5,
R1 denotes in each instance a functional group bound to R2, wherein each R1 is independently selected from the group consisting of —OH, —NH2, —COON, —COOR4, —CHO, —C(O)—R4, —CONH2, and —CONHR4;
R2 denotes a linear or branched, substituted or non-substituted C1-15 alkyl, the substituent being selected independently from the group consisting of —F, —Cl, —Br, —I, —OH, —NH2, —COON, —COOR4, —CHO, —C(O)—R4, —CONH2, and —CONHR4; and
R4 denotes a linear or branched, substituted or unsubstituted C1-10 alkyl;
as well as their diastereomers or enantiomers in the form of their acids, bases or salts of physiologically acceptable acids or bases.
20. The method according to claim 19 , wherein R2 is a linear or branched, non-substituted C1-15 alkyl .
21. The method according to of claim 19 , wherein R2 is a linear or branched C1-15 alkyl substituted with 1 to 10 substituents, each substituent being selected independently from the group consisting of —F, —Cl, —Br, —I, —OH, —NH2, —COOH, —COOR4, —CHO, —C(O)—R4, —CONH2, and —CONHR4, wherein R4 is defined as in claim 19 .
22. The method according to claim 19 , wherein R2 is a linear or branched, non-substituted C1-4 alkyl.
23. The method according to claim 19 , wherein R2 is a linear or branched C1-4 alkyl substituted with 1 to 10 substituents, each substituent being selected independently from the group consisting of —F, —Cl, —Br, —I, —OH, —NH2, —COOH, —COOR4, —CHO, —C(O)—R4, —CONH2, and —CONHR4, wherein R4 is defined as in claim 19 .
24. The method according to claim 19 , wherein R2 is substituted with 1 to 3 substituents.
25. The method according claim 19 , wherein R4 is methyl in each instance.
26. The method according to claim 19 , wherein n is 1.
27. The method according to claim 19 , wherein m is 1 or 2.
28. The method according to claim 19 , wherein said compound has fewer than 7 carbon atoms.
29. The method according to claim 19 , wherein each R1 is —OH.
30. The method according to claim 19 , wherein said compound is selected from the group consisting of
1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol,
2,2,3,4,4,4-hexafluoro-1-butanol,
perfluoro-tert-butyl alcohol,
2,2,3,3,3-pentafluoro-1-propanol,
1,1,1,3,3,4,4,4-octafluoro-2-butanol,
2,2,3,3,4,4,4-heptafluoro-1-butanol,
1,1,1,3,3,3-hexafluoropropan-2-ol,
2,2,2-trifluoroethanol,
3,4,4,4-tetrafluoro-3-(trifluoromethyl)butan-1-ol,
2-(2,2,3,4,4,4-hexafluorobutoxy)ethanol,
3-amino-4,4,4-trifluorobutyric acid,
3,3,3-trifluoro-2-(hydroxymethyl)propanoic acid and
5,5,5-trifluorleucine.
31. The method according to claim 19 , wherein said compound has an octanol-water partition coefficient of less than 20.
32. The method according to claim 19 , wherein said compound is inhalatively administered.
33. The method according to claim 19 , wherein said compound is administered prior to, after or concomitantly to said ischemia reperfusion injury, severe inflammatory response syndrome, sepsis, organ transplantation, organ resection, organ rejection, inflammation, surgery or catheterization.
34. A pharmaceutical composition, comprising at least one compound according to claim 19 .
35. The pharmaceutical composition of claim 34 , further comprising one or more physiologically acceptable excipients.
36. The pharmaceutical composition of claim 34 , wherein said composition is formulated for inhalative administration.
37. A medical device, comprising at least one surface coated with at least one of the compounds according to claim 19 .
38. The medical device of claim 37 , wherein said device is an implant or organ transplant.
39. The medical device of claim 37 , wherein said device is selected from the group consisting of bone, tooth and cartilage implants, syringes, catheters, electrodes, stents and cardiac pacemakers.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09009873.2 | 2009-07-30 | ||
EP09009873 | 2009-07-30 | ||
PCT/EP2010/004582 WO2011012283A1 (en) | 2009-07-30 | 2010-07-27 | Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/004582 A-371-Of-International WO2011012283A1 (en) | 2009-07-30 | 2010-07-27 | Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/102,533 Division US9296678B2 (en) | 2009-07-30 | 2013-12-11 | Injectable formulation for treatment and protection of patients having an Inflammatory Reaction or an Ischemia-reperfusion event |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120219596A1 true US20120219596A1 (en) | 2012-08-30 |
Family
ID=42797491
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/387,838 Abandoned US20120219596A1 (en) | 2009-07-30 | 2010-07-27 | Injectable formulation for treatment and protection of patients having an inflammatory reaction or an ischemia-reperfusion event |
US14/102,533 Active 2030-12-03 US9296678B2 (en) | 2009-07-30 | 2013-12-11 | Injectable formulation for treatment and protection of patients having an Inflammatory Reaction or an Ischemia-reperfusion event |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/102,533 Active 2030-12-03 US9296678B2 (en) | 2009-07-30 | 2013-12-11 | Injectable formulation for treatment and protection of patients having an Inflammatory Reaction or an Ischemia-reperfusion event |
Country Status (3)
Country | Link |
---|---|
US (2) | US20120219596A1 (en) |
EP (1) | EP2459182B1 (en) |
WO (1) | WO2011012283A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9381185B2 (en) | 2012-07-10 | 2016-07-05 | The Regents Of The University Of California | Methods of inducing sedation |
US20180333381A1 (en) * | 2017-04-26 | 2018-11-22 | Navitor Pharmaceuticals, Inc. | Modulators of sestrin-gator2 interaction and uses thereof |
US10531655B2 (en) | 2011-12-02 | 2020-01-14 | The Regents Of The University Of California | Reperfusion protection solution and uses thereof |
US11325924B2 (en) | 2015-10-23 | 2022-05-10 | Navitor Pharmaceuticals, Inc. | Modulators of Sestrin-GATOR2 interaction and uses thereof |
US11345654B2 (en) | 2018-10-24 | 2022-05-31 | Navitor Pharmaceuticals, Inc. | Polymorphic compounds and uses thereof |
US11696898B2 (en) | 2014-06-05 | 2023-07-11 | The Regents Of The University Of California | Halogenated ether compounds and methods of inducing anesthesia |
US11723890B2 (en) | 2019-11-01 | 2023-08-15 | Navitor Pharmaceuticals, Inc. | Methods of treatment using an mTORC1 modulator |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874469A (en) * | 1996-01-05 | 1999-02-23 | Alcon Laboratories, Inc. | Fluoroalkyl hydrocarbons for administering water insoluble or unstable drugs |
CA2323439A1 (en) * | 1998-03-16 | 1999-09-23 | Cytovia, Inc. | Dipeptide caspase inhibitors and the use thereof |
GB9808581D0 (en) * | 1998-04-22 | 1998-06-24 | Nycomed Imaging As | Improvements in or relating to contrast agents |
GB0016876D0 (en) * | 2000-07-11 | 2000-08-30 | Astrazeneca Ab | Novel formulation |
GB0103809D0 (en) * | 2001-02-16 | 2001-04-04 | Univ Dundee | Methods |
DE10138273A1 (en) | 2001-08-10 | 2003-02-27 | Boehringer Ingelheim Pharma | Medicines with neuroprotective effects |
WO2004032858A2 (en) | 2002-10-11 | 2004-04-22 | Baxter International, Inc. | Method for cardioprotection and neuroprotection by intravenous administration of halogenated volatile anesthetics |
ATE468322T1 (en) * | 2003-12-22 | 2010-06-15 | Merck Sharp & Dohme | ALPHA-HYDROXYAMIDES AS BRADYKININ ANTAGONISTS OR INVERSE AGONISTS |
ITMI20040665A1 (en) * | 2004-04-02 | 2004-07-02 | Pharmaproducts Uk Ltd | SOCCER ROOMS FOR THE TREATMENT OF PSORIASIS AND DERMATITIS |
TW200843761A (en) * | 2004-10-28 | 2008-11-16 | Shionogi & Co | 3-carbamoyl-2-pyridone derivatives |
SG151327A1 (en) | 2005-09-30 | 2009-04-30 | Vertex Pharmaceuticals Incopor | Deazapurines useful as inhibitors of janus kinases |
JP5105297B2 (en) * | 2006-05-25 | 2012-12-26 | 味の素株式会社 | PPAR activity regulator |
KR20160112018A (en) * | 2006-06-02 | 2016-09-27 | 니뽄 신야쿠 가부시키가이샤 | 9,10-secopregnane derivative and pharmaceutical |
US20100004266A1 (en) | 2006-07-21 | 2010-01-07 | Mitsubishi Tanabe Pharma Corporation | Salt or Solvate of 5-Methyl-2(Piperazin-1-Yl)Benzenesulfonic Acid |
GB0620385D0 (en) | 2006-10-13 | 2006-11-22 | Glaxo Group Ltd | Novel compounds |
AU2008333929A1 (en) | 2007-12-03 | 2009-06-11 | Signum Biosciences, Inc. | Acid mimic compounds for the inhibition of isoprenyl-S-cysteinyl methyltransferase |
US20100123883A1 (en) | 2008-11-17 | 2010-05-20 | Nikon Corporation | Projection optical system, exposure apparatus, and device manufacturing method |
-
2010
- 2010-07-27 EP EP10740538.3A patent/EP2459182B1/en active Active
- 2010-07-27 US US13/387,838 patent/US20120219596A1/en not_active Abandoned
- 2010-07-27 WO PCT/EP2010/004582 patent/WO2011012283A1/en active Application Filing
-
2013
- 2013-12-11 US US14/102,533 patent/US9296678B2/en active Active
Non-Patent Citations (1)
Title |
---|
KIM et al (2,2,2-Trifluoroethanol Toxicity in Aged Rats.Toxicol Pathol January 1988 vol. 16 no. 1 35-45) * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10531655B2 (en) | 2011-12-02 | 2020-01-14 | The Regents Of The University Of California | Reperfusion protection solution and uses thereof |
US9381185B2 (en) | 2012-07-10 | 2016-07-05 | The Regents Of The University Of California | Methods of inducing sedation |
US9757353B2 (en) | 2012-07-10 | 2017-09-12 | The Regents Of The University Of California | Methods of inducing anesthesia |
US10010525B2 (en) | 2012-07-10 | 2018-07-03 | The Regents Of The University Of California | Methods of inducing anesthesia |
US11696898B2 (en) | 2014-06-05 | 2023-07-11 | The Regents Of The University Of California | Halogenated ether compounds and methods of inducing anesthesia |
US11325924B2 (en) | 2015-10-23 | 2022-05-10 | Navitor Pharmaceuticals, Inc. | Modulators of Sestrin-GATOR2 interaction and uses thereof |
US20180333381A1 (en) * | 2017-04-26 | 2018-11-22 | Navitor Pharmaceuticals, Inc. | Modulators of sestrin-gator2 interaction and uses thereof |
US10912750B2 (en) * | 2017-04-26 | 2021-02-09 | Navitor Pharmaceuticals, Inc. | Modulators of Sestrin-GATOR2 interaction and uses thereof |
US11679090B2 (en) | 2017-04-26 | 2023-06-20 | Navitor Pharmaceuticals, Inc. | Modulators of Sestrin-GATOR2 interaction and uses thereof |
US11345654B2 (en) | 2018-10-24 | 2022-05-31 | Navitor Pharmaceuticals, Inc. | Polymorphic compounds and uses thereof |
US11697633B2 (en) | 2018-10-24 | 2023-07-11 | Navitor Pharmaceuticals, Inc. | Polymorphic compounds and uses thereof |
US11723890B2 (en) | 2019-11-01 | 2023-08-15 | Navitor Pharmaceuticals, Inc. | Methods of treatment using an mTORC1 modulator |
Also Published As
Publication number | Publication date |
---|---|
US9296678B2 (en) | 2016-03-29 |
US20140100278A1 (en) | 2014-04-10 |
WO2011012283A1 (en) | 2011-02-03 |
EP2459182A1 (en) | 2012-06-06 |
EP2459182B1 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9296678B2 (en) | Injectable formulation for treatment and protection of patients having an Inflammatory Reaction or an Ischemia-reperfusion event | |
EP3238707B1 (en) | Compositions and methods for treating intestinal hyperpermeability | |
US10517845B2 (en) | Compositions and methods for treating intestinal hyperpermeability | |
US20180162827A1 (en) | Radiomitigating pharmaceutical formulations | |
EP3851099A1 (en) | Composition for treating fibrotic diseases, comprising benzhydryl thioacetamide compound as active ingredient | |
KR102635938B1 (en) | Use of carbamate compounds for preventing, alleviating, or treating bipolar disorder | |
CA3195597A1 (en) | Metalloenzyme inhibitors for treating cancers, alzheimer's disease, hemochromatosis, and other disorders | |
WO2008131586A1 (en) | Uses of 5-methyl-1-(substituted phenyl)-2(1h)-pyridones as anti-inflammatory and tnf-alpha-blocking agents | |
US20100317671A1 (en) | Xanthine-based cyclic gmp-enhancing rho-kinase inhibitor inhibits physiological activities of lung epithelial cell line | |
US11642392B2 (en) | Therapeutic agent of uremia containing alarin as the main ingredient | |
US20220273599A1 (en) | Peripheral Nerve Agonists Suppress Inflammation | |
BRPI0718540A2 (en) | ASTHMA, ALLERGIC RHINITE, AND SKIN DISORDERS TREATMENT METHOD | |
US20210369664A1 (en) | Prophylactic or therapeutic agent for pulmonary hypertension which comprises ppar? agonist | |
JP2022065212A (en) | Medicine for preventing or treating tissue fibrotic diseases | |
EP4331589A1 (en) | Composition for ameliorating abnormality of skin tissue | |
JPWO2017170860A1 (en) | Heat shock protein 47 inhibitor | |
WO2023167066A1 (en) | Pharmaceutical composition for preventing and/or treating autoimmune diseases | |
JP2017114816A (en) | Antipruritic drugs | |
WO2017156222A1 (en) | Radiomitigating compounds, compositions and methods related thereto | |
WO2022178261A1 (en) | Methods for treating non-alcoholic steatohepatitis with a scd-1 inhibitor | |
CN115697316A (en) | Synergistic admixture of gabapentin and ketoprofen, pharmaceutical composition and medical uses thereof | |
JP2017081866A (en) | An agent for treating or preventing fibrosis | |
BR112015029251B1 (en) | FLUORINATED BENZYL ACID ESTER COMPOUNDS, PHARMACEUTICAL COMPOSITION, PROPHYLACTIC AGENT AND THEIR USES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ETH ZURICH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIMBACH, LUDWIG;HERRMANN, INGE;BECK-SCHIMMER, BEATRICE;AND OTHERS;SIGNING DATES FROM 20120301 TO 20120425;REEL/FRAME:028270/0228 Owner name: UNIVERSITY OF ZURICH, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIMBACH, LUDWIG;HERRMANN, INGE;BECK-SCHIMMER, BEATRICE;AND OTHERS;SIGNING DATES FROM 20120301 TO 20120425;REEL/FRAME:028270/0228 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |