JP2002500157A - Non-oxide ceramics with surface coating - Google Patents

Non-oxide ceramics with surface coating

Info

Publication number
JP2002500157A
JP2002500157A JP2000527510A JP2000527510A JP2002500157A JP 2002500157 A JP2002500157 A JP 2002500157A JP 2000527510 A JP2000527510 A JP 2000527510A JP 2000527510 A JP2000527510 A JP 2000527510A JP 2002500157 A JP2002500157 A JP 2002500157A
Authority
JP
Japan
Prior art keywords
ceramic
oxide
oxide ceramic
group
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000527510A
Other languages
Japanese (ja)
Inventor
ゴンザレス−ブランコ,ユアン
Original Assignee
エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト filed Critical エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツトゲゼルシヤフト
Publication of JP2002500157A publication Critical patent/JP2002500157A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】 本発明は、平均一次粒子径が0.1から50nmであり、その表面が少なくとも一つのα−アミノ酸でコーティングされているBNから又は元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及びSnの炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミックスに関する。   (57) [Summary] The invention is based on BN having an average primary particle size of 0.1 to 50 nm, the surface of which is coated with at least one α-amino acid, or the elements Ti, Zr, Hf, Cr, Mo, W, V, Nb. The present invention relates to a non-oxide ceramic comprising a group of carbides, nitrides, borides and silicides of Ta, Si, Ge and Sn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は、非酸化物セラミックス、その表面が少なくとも一つのα−アミノ酸
でコーティングされた物、それらの製造方法及びそれらのセラミック焼結物質(
ceramic sintered materials)及び層の製造のため
のそれらの使用法に関する。
The present invention relates to a non-oxide ceramic, a material whose surface is coated with at least one α-amino acid, a method for producing the same, and a ceramic sintered material thereof (
The invention relates to ceramic sintered materials and their use for the production of layers.

【0002】[0002]

【従来の技術】[Prior art]

欧州特許出願公報(EP−A)第650、954号に従って、セラミック粉体
がセラミック焼結物質及び層の製造のために使用されることは既に記載されてい
る。しかしながらこれらは、これらの加工特性、例えば再分散性及びそれから製
造される生産物の生産物特性に関して、まだ少しの欠点が存在する。
According to EP-A-650,954, it has already been described that ceramic powders are used for the production of ceramic sintered materials and layers. However, they still have some disadvantages with regard to their processing properties, such as the redispersibility and the product properties of the products produced therefrom.

【0003】 例えば、これらのセラミックス粉体の懸濁液が使用される場合には、その後こ
れらは、型どった物品(moulded items)を十分に固める(com
pact)ために高い焼結温度が要求されることを意味する一次粒子の高程度の
集合(agglomeration)を示す。
[0003] For example, if a suspension of these ceramic powders is used, they then sufficiently solidify the molded items.
2 shows a high degree of agglomeration of the primary particles, which means that a high sintering temperature is required for the compact.

【0004】 平均一次粒子(primary particle)径が0.1から50nm
であり、その表面が少なくとも一つのα−アミノ酸でコーティングされたBNか
ら並びに元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge
及びSnの炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミ
ックス現今見いだされた。
The average primary particle diameter is 0.1 to 50 nm
From BN whose surface is coated with at least one α-amino acid and from the elements Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge
And non-oxide ceramics comprising the group of carbides, nitrides, borides and silicides of Sn.

【0005】 表面コーティングは、α−アミノ酸が化学的に又は物理的にセラミックスの表
面に結合していることを意味すると理解される。
[0005] A surface coating is understood to mean that the α-amino acids are chemically or physically attached to the surface of the ceramic.

【0006】 好適な非酸化物セラミックスはTiN,ZrN,TiC又はSiCであり、特
にTiN又はTiCである。
[0006] Suitable non-oxide ceramics are TiN, ZrN, TiC or SiC, especially TiN or TiC.

【0007】 表面コーティングされた非酸化物セラミックスは好適には粉体である。[0007] The surface-coated non-oxide ceramic is preferably a powder.

【0008】 この出願の文脈においては、α−アミノ酸は同じ炭素原子に結合したアミノ基
及びカルボン酸基を含み、式
In the context of this application, an α-amino acid comprises an amino group and a carboxylic acid group bonded to the same carbon atom and has the formula

【0009】[0009]

【化1】 Embedded image

【0010】 の構造成分を伴う化合物と理解される。[0010] Compounds with structural components of are understood.

【0011】 好適な態様では、本発明のセラミックスは脂肪族α−アミノ酸でコーティング
される。アルギニン、システイン、オルニチン、シトルリン、リシン、アスパラ
ギン酸及びアスパラギンが特に好適なものとして言及できる。
In a preferred embodiment, the ceramic of the present invention is coated with an aliphatic α-amino acid. Arginine, cysteine, ornithine, citrulline, lysine, aspartic acid and asparagine can be mentioned as particularly preferred.

【0012】 しかしながら芳香族α−アミノ酸例えばチロシン、特にL−チロシン、及び複
素環式α−アミノ酸もまた有用である。
However, aromatic α-amino acids such as tyrosine, especially L-tyrosine, and heterocyclic α-amino acids are also useful.

【0013】 これらのアミノ酸のL形が一般に使用される。The L-form of these amino acids is commonly used.

【0014】 好適な態様では、本発明のセラミックスは0.5から30nmの一次粒子径で
ある。
In a preferred embodiment, the ceramic of the present invention has a primary particle size of 0.5 to 30 nm.

【0015】 本発明はまた、平均一次粒子径が0.1から50nmであるBNから並びに元
素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及びSnの
炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミックスが、
少なくとも一つのα−アミノ酸で水中及び/又は有機溶媒中、20から150℃
の温度で処理されその後乾燥される(場合にっては濾過後に)、非酸化物セラミ
ックであることを特徴とする本発明のセラミックスの製造方法にも関する。
[0015] The present invention also provides BN having an average primary particle diameter of 0.1 to 50 nm and carbides of the elements Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn, Non-oxide ceramics consisting of a group of nitride, boride and silicide,
At least one α-amino acid in water and / or in an organic solvent at 20 to 150 ° C.
And then dried (in some cases, after filtration) at a temperature of less than 1 ° C., which is a non-oxide ceramic.

【0016】 使用された非酸化物セラミックス 本発明の方法で使用される非酸化物セラミックスの平均粒子径は電子顕微鏡写
真を用いて測定できる。それらは好適には0.1から50nm、特に0.5から
30nmである。非酸化物セラミックスの一次粒子は好適には球形構造である。
それらはまたそれらの集合体(agglomerates)又は凝集体(agg
regates)の形態で存在してもよく、ここでこれらは500nm未満の、
好適には150nm未満の平均粒子径である。
Non-Oxide Ceramics Used The average particle size of the non-oxide ceramics used in the method of the present invention can be measured using an electron micrograph. They are preferably from 0.1 to 50 nm, in particular from 0.5 to 30 nm. Primary particles of non-oxide ceramics preferably have a spherical structure.
They may also be their aggregates or aggregates (agg
regates) in which they are less than 500 nm,
Preferably the average particle size is less than 150 nm.

【0017】 使用される非酸化物セラミックスは結晶性又はアモルファスであってよく、好
適には結晶性である。これらは例えば米国特許(US−A)第5,472,47
The non-oxide ceramic used may be crystalline or amorphous, and is preferably crystalline. These are described, for example, in US Pat. No. 5,472,47.

【0018】[0018]

【外1】 [Outside 1]

【0019】 法によって得られる。CVR(化学蒸気反応(chemical vapor
reaction))方法がここで好適に使用され、それによって、顆粒より大
きいサイズを含まないものを有しそして高い純度である非常に狭い粒子分布の粒
子が製造できる。
It is obtained by the method. CVR (chemical vapor reaction)
reaction)) method is preferably used here, whereby particles of a very narrow particle distribution having a size not containing larger than granules and of high purity can be produced.

【0020】 このようにして製造された非酸化物セラミックスの特徴は、好適にはそれらの
粉体の形態であるが、実質上平均粒子径より大きい個々の粒子(一次粒子)が完
全にないこと(lack)である。従って粉体は好適には、20%を超えて平均
粒子径から異なる個々の粒子を1%未満で含有し、実質的に50%を超えて異な
る粒子は存在しない。
The characteristics of the non-oxide ceramics produced in this way are preferably in the form of their powder, but are completely free of individual particles (primary particles) substantially larger than the average particle diameter. (Lack). Thus, the powder preferably contains less than 1% of individual particles that differ from the average particle size by more than 20% and there are substantially no particles that differ by more than 50%.

【0021】 本発明の方法で使用される非酸化物セラミックスはそれらの一次粒子、一次粒
子の集合体若しくは凝集体又はそれら二つの混合物の形態で存在してもよい。集
合体又は凝集体は、いくつかの粒子がファンデルワールス力を介して互いに相互
作用し又は一次粒子で予備の工程の間に一次粒子が表面反応又は”焼結”のため
に互いに結合するものと理解される。
The non-oxide ceramics used in the method of the present invention may be present in the form of their primary particles, aggregates or aggregates of primary particles or mixtures of the two. Aggregates or agglomerates are those in which several particles interact with each other via van der Waals forces or in which primary particles bind together during a preliminary step due to surface reactions or "sintering" Is understood.

【0022】 使用される非酸化物セラミックスは固体に対して10重量%未満の、好適には
<1重量%、特には<0.1重量%の極端に低い酸素含量を有してよい。
The non-oxide ceramics used may have an extremely low oxygen content of less than 10% by weight, preferably <1% by weight, in particular <0.1% by weight, based on the solid.

【0023】 それらの高い純度及び表面純度もまた特徴的である。製造方法に依存して、使
用される非酸化物セラミックスは空気に対し敏感で又は自燃性(pyropho
ric)であってさえもよい。この性質を取除くため、非酸化物セラミックスは
本発明の方法での使用の前にガス/蒸気混合物で処理されることにより、表面改
質され、又は酸化され又は規定された方法で不動態化(passivate)さ
れる。
[0023] Their high purity and surface purity are also characteristic. Depending on the method of manufacture, the non-oxide ceramics used are sensitive to air or pyrophoric.
ric). To remove this property, the non-oxide ceramics may be surface modified or oxidized or passivated in a defined manner by treating with a gas / vapor mixture prior to use in the method of the present invention. (Passivated).

【0024】 非酸化物セラミックスの−O-NH4 +基の濃度が50から1000、好適には 50から500、特には100から500μeq/gである非酸化物セラミック
スが本発明の方法において特に好適に使用される。
Non-oxide ceramics in which the concentration of —O NH 4 + groups of the non-oxide ceramic is 50 to 1000, preferably 50 to 500, in particular 100 to 500 μeq / g, are particularly preferred in the process according to the invention. Used for

【0025】 それゆえ本発明は、平均一次粒子径が0.1から50nmであり、非酸化物セ
ラミックスの−O-NH4 +基の濃度が50から1000μeq/gであるBNか ら並びに元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge
及びSnの炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミ
ックスにも関する。
Therefore, the present invention relates to a method for producing a non-oxide ceramic from BN having an average primary particle size of 0.1 to 50 nm and a concentration of —O NH 4 + groups of 50 to 1000 μeq / g as well as the element Ti. , Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge
And a non-oxide ceramic comprising the group of carbides, nitrides, borides and silicides of Sn.

【0026】 NH4 +基は好適にはセラミックスの表面に位置する。The NH 4 + groups are preferably located on the surface of the ceramic.

【0027】 本発明のセラミックスすなわち−O-NH4 +基含有のそしてα−アミノ酸含有 のセラミックスはまた、セラミック粒子の5nmの厚さの表面層に存在する全て
の原子については、好適には1原子%未満のCl含量を有する。
The ceramics of the present invention, ie those containing —O NH 4 + groups and containing α-amino acids, also preferably have one atom for all atoms present in the 5 nm thick surface layer of the ceramic particles. It has a Cl content of less than atomic%.

【0028】 適当な厚さの外の(external)粒子層は例えばESCA(化学分析用
電子分光法)を用いて、特にはXPS(X線光電子分光法)方法で調べることが
できる。
[0028] External particle layers of suitable thickness can be investigated, for example, using ESCA (electron spectroscopy for chemical analysis), in particular by XPS (X-ray photoelectron spectroscopy).

【0029】 −O-NH4 +基は、例えば、セラミック表面上の−OH基と水性アンモニアと を反応させることにより製造することができる。それらの部分については、−O
H基は例えば、CVR方法によって製造されるセラミック粒子の酸素含有ガスで
の酸化又は不動態化で得られる。これはセラミック表面上に、水酸基を含有する
単分子酸化物層を製造する。−OH基の数は例えば伝導度滴定によって測定され
る。−OH基の数は例えばCVR方法で得られたTiN粒子については、セラミ
ックの約300μeq/gでありそしてアンモニアで処理した後の−O-NH4 + 基の量は同じ次数(order)である。
The —O NH 4 + group can be produced, for example, by reacting an —OH group on a ceramic surface with aqueous ammonia. For those parts,
H groups are obtained, for example, by oxidation or passivation of ceramic particles produced by the CVR method with an oxygen-containing gas. This produces a monomolecular oxide layer containing hydroxyl groups on the ceramic surface. The number of -OH groups is measured, for example, by conductivity titration. The number of —OH groups is, for example, for TiN particles obtained by the CVR method, about 300 μeq / g of the ceramic and the amount of —O NH 4 + groups after treatment with ammonia is of the same order. .

【0030】 それゆえ本発明はまた、平均一次粒子径が0.1から50nmでありBNから
並びに元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及
びSnの炭化物、窒化物、ホウ化物及びケイ化物の群からなる少なくとも一つの
非酸化物セラミックが20から150℃の温度で、場合によっては圧力下で水性
アンモニア溶液で処理されることを特徴とする、−O-NH4 +基を含有するセラ ミックスの製造工程にも関する。
Therefore, the present invention also relates to an average primary particle size of from 0.1 to 50 nm and from BN and of the elements Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn. Characterized in that at least one non-oxide ceramic of the group of carbides, nitrides, borides and silicides is treated with an aqueous ammonia solution at a temperature of from 20 to 150 ° C., optionally under pressure, The present invention also relates to a process for producing a ceramic containing an O - NH 4 + group.

【0031】 この処理のために使用されるセラミックスは好適にはCVR方法、例えば米国
特許(US−A)第5,472,477号に記載されたのと同一の方法を用いる
ことによって得られる。
The ceramic used for this treatment is preferably obtained by using the CVR method, for example the same method as described in US Pat. No. 5,472,477.

【0032】 CVR方法においては、ガス状の反応物例えばTiNを製造する場合のTiC
4及びNH3は反応器内で反応される。生産物は好適には器壁反応の排除(ex
clusion)により製造される。該方法は特に好適には微小管反応器(tu
bular reactor)中で、反応物及び生産物の層流で行われる。
In the CVR method, a gaseous reactant such as TiC for producing TiN is used.
l 4 and NH 3 are reacted in the reactor. The product is preferably free of vessel wall reactions (ex.
production). The method is particularly preferably performed in a microtubule reactor (tu).
in a laminar flow of reactants and products in a bulk reactor.

【0033】 反応物はその後一般的に同軸に(coaxial)配列された反応器に導入さ
れる。反応物を十分に混合するために、さもなければ厳しい層流となるものに障
害物(obstacle)が好適には組み込まれる。これは十分な混合が起こる
限定された強度(intensity)及び広がりを有するカルマン渦列(Ka
rman vortex street)を生み出す。
The reactants are then generally introduced into a coaxially arranged reactor. Obstacles are preferably incorporated into the otherwise severely laminar flow to thoroughly mix the reactants. This results in a Karman vortex street (Ka) with limited intensity and spread where sufficient mixing occurs.
rman vortex street).

【0034】 強力に非常に好ましくは、反応器の壁面での反応相手の付着を避けるために反
応媒体は好適には不活性ガスの層で覆い隠される。
Strongly very preferably, the reaction medium is suitably obscured by a layer of inert gas in order to avoid adhesion of the reaction partners on the walls of the reactor.

【0035】 NH3処理は好適には5−50重量%濃度(strength)の水性NH3
液中で行われる。特に好適には40−120℃の温度で行われる。
The NH 3 treatment is preferably performed in an aqueous NH 3 solution having a strength of 5 to 50% by weight. Particularly preferably, the reaction is performed at a temperature of 40 to 120 ° C.

【0036】 このNH3処理の他の好適な態様においては、処理されたセラミックは濾別さ れ場合によっては水で洗浄されその後乾燥される。In another preferred embodiment of this NH 3 treatment, the treated ceramic is filtered off, optionally washed with water, and then dried.

【0037】 適当な乾燥法は基本的には水を取除くことに用いることができるすべての方法
である。以下の装置例えば流動床乾燥機(fluidised bed dry
er)、パドル乾燥機(paddle dryer)、スプレー乾燥機(spr
ay dryer)、乾燥用キャビネット及び真空乾燥機を用いてもよい。
Suitable drying methods are basically all methods that can be used for removing water. The following equipment, such as a fluidized bed dry
er), paddle dryer, spray dryer (spr)
ay dryer), drying cabinets and vacuum dryers may be used.

【0038】 本発明はそれゆえこのNH3処理手順により得ることができる好適には粉体の 形状での非酸化物セラミックスにも関する。The present invention therefore also relates to non-oxide ceramics, preferably in powder form, obtainable by this NH 3 treatment procedure.

【0039】 α−アミノ酸コーティングされたセラミックスの製造のための本発明の方法が
有機溶媒又は溶媒の混合物中で行われる場合には、言及することができる適当な
有機溶媒は、脂肪族C1−C4アルコール、例えばメタノール、エタノール、イソ
プロパノール、n−プロパノール、n−ブタノール、イソブタノール又はter
t−ブタノール、脂肪族ケトン例えばアセトン、メチルエチルケトン、メチルイ
ソブチルケトン又はジアセトンアルコール、ポリオール例えばエチレングリコー
ル、プロピレングリコール、ブチレングリコール、ジエチレングリコール、トリ
エチレングリコール、トリメチロールプロパン、100−4000g/mol好
適には400−1500g/molの平均分子量を有するポリエチレングリコー
ル、又はグリセロール、モノヒドロキシエーテル、好適にはモノヒドロキシアル
キルエーテル、特にはモノC1−C4−アルキルグリコールエーテル例えばエチレ
ングリコールモノアルキルエーテル、モノエチルジエチレングリコールモノメチ
ルエーテル又はジエチレングリコールモノエチルエーテル、ジエチレングリコー
ルモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、チオジグ
リコール、トリエチレングリコールモノメチルエーテル又はモノエチルエーテル
、また2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−ピロリドン
、N−ビニル−ピロリドン、1,3−ジメチル−イミダゾーリドン、ジメチルア
セトアミド及びジメチルホルムアミドである。言及した溶媒の混合物もまた適当
である。
If the process according to the invention for the production of α-amino acid coated ceramics is carried out in an organic solvent or a mixture of solvents, suitable organic solvents which may be mentioned are aliphatic C 1-. C 4 alcohols such as methanol, ethanol, isopropanol, n- propanol, n- butanol, isobutanol or ter
t-butanol, aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or diacetone alcohol, polyols such as ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, trimethylolpropane, 100-4000 g / mol, preferably 400 Polyethylene glycol having an average molecular weight of -1500 g / mol, or glycerol, a monohydroxy ether, preferably a monohydroxyalkyl ether, in particular a mono C 1 -C 4 -alkyl glycol ether, such as ethylene glycol monoalkyl ether, monoethyl diethylene glycol monomethyl Ether or diethylene glycol monoethyl ether, diethylene glycol monobutyl ether , Dipropylene glycol monoethyl ether, thiodiglycol, triethylene glycol monomethyl ether or monoethyl ether, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-pyrrolidone, N-vinyl-pyrrolidone, 3-dimethyl-imidazolidone, dimethylacetamide and dimethylformamide. Mixtures of the solvents mentioned are also suitable.

【0040】 本発明の方法は好適には60℃から使用される特定の溶媒系の沸点までの温度
で大気圧下で行われる。該方法は特に好適には還流下で行われる。該方法は、昇
温下で、外圧特には2−10barの適用で行ってもよい。
The process of the present invention is preferably carried out at atmospheric pressure at a temperature from 60 ° C. to the boiling point of the particular solvent system used. The process is particularly preferably carried out under reflux. The method may be carried out at elevated temperature, with the application of an external pressure, in particular 2-10 bar.

【0041】 本発明の方法は特に好適には水又は溶媒の水性混合物中で行われる。The process according to the invention is particularly preferably carried out in water or an aqueous mixture of solvents.

【0042】 使用されるセラミックスの少なくともいくつかのα−アミノ酸との湿式粉砕(
wet−milling)もまた本発明の方法の前又は間に例えば、2−ローラ
ーミル装置(2−roller milling device)で起こっても
よい。粉体の形態又は水湿性(water−moist)の圧縮ケークの形態で
、いくらかのα−アミノ酸及び水、好適には脱イオン水と共に使用されるセラミ
ックは、例えば、撹拌タンク、溶解機及び類似の装置を用いて、場合によっては
前破砕(crushing)手順の後に、一般に均一に粉砕した懸濁液を得るた
めにたたかれる(beaten:すなわち導入され均一化される)。
Wet grinding of the ceramics used with at least some α-amino acids (
Wet-milling may also take place before or during the process of the invention, for example in a 2-roller milling device. Ceramics used in powder form or in the form of a water-moist compacted cake with some α-amino acids and water, preferably deionized water, may be used, for example, in stirred tanks, dissolvers and similar. With the aid of the apparatus, optionally after a pre-crushing procedure, it is generally beaten to obtain a uniformly ground suspension (ie, introduced and homogenized).

【0043】 粉砕された懸濁液は、いくらかの割合の低沸点溶媒(沸点<150℃)を含ん
でもよく、それは場合によっては続いての微粉砕手順の流れの間に蒸発によって
取除かれてもよい。しかしながらそれは、いくらかの割合の高沸点溶媒又は他の
添加剤、例えば粉砕助剤、消泡剤又は湿潤剤を含んでもよい。
The milled suspension may contain some proportion of a low boiling solvent (boiling point <150 ° C.), which may optionally be removed by evaporation during the course of the subsequent milling procedure Is also good. However, it may also contain some proportion of high-boiling solvents or other additives, such as grinding aids, defoamers or wetting agents.

【0044】 使用されるセラミックスの湿式破砕(wet−crushing)は前破砕及
び微粉砕の両方を含む。懸濁液濃度は、好適には最終製造段階のために要求され
る濃度を超えるものである。要求される固体の最終濃度は好適には湿式破砕手順
の後に調製される。前破砕の後に、所望の良好な(fine)粒子の分布を与え
る粉砕が行われる。例えば調合機(compounder)、ロールミル、調合
スクリュー(compounding screws)、ボールミル、ローター
−ステーターミル(rotor−stator mill)、ディゾルバー、コ
ランダムディスクミル(corundum disc mill)、振動ミル及
び0.1−2mmの直径の粉砕ボール(milling ball)を含む特に
高速、連続又はバッチ式操作の撹拌ボールミル等の装置がこの粉砕手順には適当
である。粉砕ボールはガラス、セラミックス、又は金属例えば鋼鉄で製造されて
よい。粉砕温度は好適には20から150℃の範囲であるが、一般には室温であ
り、そして場合によっては分散剤(粉砕助剤)としても使用される任意の(op
tional)表面活性化合物の濁度点より下であってもよい。
Wet-crushing of the ceramics used includes both pre-crushing and milling. The suspension concentration is preferably above that required for the final production stage. The required final concentration of solids is preferably prepared after the wet crushing procedure. After pre-crushing, grinding is performed to give the desired fine particle distribution. For example, compounders, roll mills, compounding screws, ball mills, rotor-stator mills, dissolvers, corundum disc mills, vibratory mills and 0.1-2 mm diameters Apparatus such as a stirred ball mill of particularly high speed, continuous or batch operation, comprising milling balls of the type described above are suitable for this milling procedure. The grinding balls may be made of glass, ceramic, or metal, such as steel. The milling temperature is preferably in the range of from 20 to 150 ° C., but is generally at room temperature and is optionally (op) optionally also used as a dispersant (grinding aid).
tional) It may be below the turbidity point of the surface active compound.

【0045】 α−アミノ酸は好適には使用されるセラミックスの量に対して0.1から20
重量%の量で使用される。1から10重量%の量が特に好適に使用される。
The α-amino acid is preferably 0.1 to 20 based on the amount of ceramic used.
Used in amounts by weight. An amount of 1 to 10% by weight is particularly preferably used.

【0046】 本発明の方法の後に、例えば表面コーティングされたセラミックスの濾過によ
り場合によっては過剰のα−アミノ酸を取除いてもよい。
After the process according to the invention, the excess α-amino acids may optionally be removed, for example by filtration of the surface-coated ceramics.

【0047】 過剰のα−アミノ酸はまた、例えば懸濁液の遠心分離及びその後の上澄み液の
デカンティングによって取除かれてもよい。膜濾過又は精密濾過(microf
iltration)方法もまた適当である。
The excess α-amino acid may also be removed, for example, by centrifuging the suspension and then decanting the supernatant. Membrane filtration or microfiltration (microf
The illumination method is also suitable.

【0048】 まだ湿ったすなわち水湿性の又は溶媒湿性の、本発明の方法により得られた表
面コーティングされたセラミックスはその後に乾燥される。20から150℃、
特には50−120℃の乾燥温度が好適には使用され、ここで減圧の使用は有用
である。
The surface-coated ceramics obtained by the process according to the invention, which are still wet, ie water-wet or solvent-wet, are subsequently dried. 20 to 150 ° C,
In particular, a drying temperature of 50-120 ° C is preferably used, where the use of reduced pressure is useful.

【0049】 乾燥は好適には従来の乾燥装置例えばパドル乾燥機、乾燥キャビネット、スプ
レー乾燥機、流動床乾燥機等を用いて行うことができる。乾燥後の残った水含量
は好適にはセラミックに対して2重量%未満である。
Drying can be suitably performed using a conventional drying apparatus such as a paddle dryer, a drying cabinet, a spray dryer, a fluidized bed dryer and the like. The residual water content after drying is preferably less than 2% by weight with respect to the ceramic.

【0050】 本発明より得られる表面コーティングされたセラミックスは、好適には粉体と
して製造される。
The surface-coated ceramics obtained according to the invention are preferably produced as powders.

【0051】 本発明のセラミックは、例えば非酸化物および/または酸化物成分からなるセ
ラミック複合体物質の製造のために、好適にはその水性又は溶媒含有の懸濁液の
形態で使用される。懸濁液は金属複合物質の製造に使用されてもよい。
The ceramics according to the invention are preferably used for the production of ceramic composite materials consisting of non-oxide and / or oxide components, preferably in the form of their aqueous or solvent-containing suspensions. The suspension may be used in the production of a metal composite.

【0052】 それゆえ本発明はまた、本発明の表面コーティングされたセラミックス並びに
水および/または有機溶媒を含む懸濁液に関する。
The invention therefore also relates to the surface-coated ceramics of the invention and to a suspension comprising water and / or an organic solvent.

【0053】 本発明の懸濁液は、好適には懸濁液に対して5から50重量%、特には10か
ら35重量%のα−アミノ酸コーティングされた本発明のセラミック、懸濁液に
対して50から95重量%、特には65から90重量%の水および/または有機
溶媒及び場合によっては他の添加剤を含む。
The suspension according to the invention preferably comprises from 5 to 50% by weight, in particular from 10 to 35% by weight, based on the suspension, of an α-amino acid-coated ceramic according to the invention, from the suspension. From 50 to 95% by weight, in particular from 65 to 90% by weight, of water and / or organic solvents and optionally other additives.

【0054】 適当な他の添加剤は、例えばカチオン性の、アニオン性の、両性の、および/
または非イオン性の分散剤、例えば刊行物「界面活性剤ヨーロッパ、ヨーロッパ
における有効な界面活性剤の指令集(Surfactants Europa,
A Directory of Surface Active Agent
s available in Europe)」(ゴードン ホリス(Gor
don Hollis)編、Royal Society of Chemis
try,Cambridge(1995))そしてまたpH調節剤例えばNaO
H、アンモニア、アミノメチルプロパノール及びN,N−ジメチルアミノエタノ
ールである。
Suitable other additives include, for example, cationic, anionic, amphoteric, and / or
Or non-ionic dispersants, such as the publication "Surfactants Europe, a collection of effective surfactants in Europe (Surfactants Europa,
A Directory of Surface Active Agent
s available in Europe "(Gordon Hollis (Gor
don Hollis), Royal Society of Chemis
try, Cambridge (1995)) and also pH regulators such as NaO
H, ammonia, aminomethylpropanol and N, N-dimethylaminoethanol.

【0055】 特に好適な本発明のセラミックスの水性懸濁液は、pHが7−10、特には8
−9のこれらの物である。これらの水性の懸濁液は特には,好適には鋳込み成形
(slip casting)方法により、緑色材料(green mater
ial)及び層の製造に適している。これらの緑色材料は機械的特性が改善され
た複合材料を得るためにその後焼結される。
Particularly preferred aqueous suspensions of the ceramics according to the invention have a pH of 7-10, in particular 8
-9 of these things. These aqueous suspensions are particularly preferably prepared by means of a slip casting method, with a green material.
ial) and layers. These green materials are then sintered to obtain a composite with improved mechanical properties.

【0056】 液浸(immersion)又は拡散(spreading)によって本発明
の水性懸濁液から層も製造できる。この方法で製造される層は例えば、金属及び
セラミックスの対摩耗性又は切削、掘削(drilling)及び粉砕(mil
ling)物質を改良する。さらにまた、改善された対腐食層がこの方法により
達成できる。
Layers can also be prepared from the aqueous suspensions of the present invention by immersion or spreading. Layers produced in this way can be used, for example, for abrasion or cutting, drilling and milling of metals and ceramics.
ling) improve the material. Furthermore, an improved anti-corrosion layer can be achieved by this method.

【0057】 溶媒含有の懸濁液が好適には顔料プラスチック物質に対して使用される。Solvent-containing suspensions are preferably used for the pigmented plastics material.

【0058】 それゆえ本発明はまたα−アミノ酸で表面コーティングされた本発明のセラミ
ックが、好適には粉体の形態で、水および/または1以上の有機溶媒中で懸濁さ
れることを特徴とする本発明の懸濁液の製造方法にも関する。
The invention therefore also features that the ceramics of the invention surface-coated with α-amino acids are suspended in water and / or one or more organic solvents, preferably in the form of a powder. The present invention also relates to a method for producing the suspension of the present invention.

【0059】 この方法の好適な態様においては、好適にはpH7−10、特にはNH3の存 在下で、水中で分散が起こる。分散は好適には従来の装置例えばローターステー
ター(rotor−stator)ミキサー、超音波装置、ジェット分散機又は
高圧ホモジナイザー等を用いて行うことができる。
In a preferred embodiment of the method, the dispersion takes place in water, preferably in the presence of pH 7-10, especially NH 3 . Dispersion can suitably be carried out using conventional equipment, such as a rotor-stator mixer, an ultrasonic device, a jet disperser or a high-pressure homogenizer.

【0060】 有機溶媒を含む懸濁液は好適には、有機溶媒を水性懸濁液に加えそして水を適
当な方法例えば蒸留で取除く方法で製造される。
The suspension containing the organic solvent is preferably prepared by adding the organic solvent to the aqueous suspension and removing the water by a suitable method, for example by distillation.

【0061】 本発明はまた、場合によっては他のセラミック粉体又はセラミック懸濁液と共
に本発明の懸濁液を、水および/または溶媒である分散剤の除去の前及び後に緑
色物質又は層を製造する処理を行い、そしてその後焼結することを特徴とする、
セラミック焼結物質の製造方法に関する。
The present invention also provides a suspension of the present invention, optionally with another ceramic powder or ceramic suspension, before and after removal of the water and / or solvent dispersant, a green material or layer. Performing a manufacturing process and then sintering,
The present invention relates to a method for producing a ceramic sintered material.

【0062】 この関係において、適当な更なるセラミックスは例えば数μmまでの粒子径の
これらの物である。Al23,TiC,SiC及びSi34はセラミックスとし
て特に言及できる。これらのセラミックの混合物は、セラミック焼結物質又は層
の製造に著しく適している。
In this connection, suitable further ceramics are, for example, those with a particle size of up to several μm. Al 2 O 3 , TiC, SiC and Si 3 N 4 can be mentioned especially as ceramics. Mixtures of these ceramics are outstandingly suitable for producing ceramic sintered materials or layers.

【0063】 本発明の方法により得られたセラミック懸濁液及び乾燥表面コーティングされ
たセラミック粉体は、緑色材料又は焼結材料又は層の製造の目的のために種々の
方法でさらに処理することができる。例えば、押出し(extrusion)材
料は、押出しのあとに焼結されることによって最終材料を与えることにより製造
できる。この場合には通常20から80、好適には30から70そして特には4
0から60重量部の本発明のセラミック粉体(それ自体又は例えば上述の懸濁液
の形態のいずれか)、10から70好適には20から60及び特には30から5
0重量部の分散剤媒体並びに、0.5から20、好適には2から15、特には5
から10重量部のバインダー、可塑剤及びそれらの混合物から選択される添加剤
が、押出し材料の100重量部当たりで使用される。
The ceramic suspension and the dried surface-coated ceramic powder obtained by the method of the present invention can be further processed in various ways for the purpose of producing green or sintered materials or layers. it can. For example, an extrusion material can be manufactured by sintering after extrusion to provide the final material. In this case, usually 20 to 80, preferably 30 to 70 and especially 4
0 to 60 parts by weight of a ceramic powder according to the invention (in itself or for example in the form of a suspension as described above), 10 to 70, preferably 20 to 60 and especially 30 to 5
0 parts by weight of dispersant medium and from 0.5 to 20, preferably 2 to 15, in particular 5
From 10 to 10 parts by weight of additives selected from binders, plasticizers and mixtures thereof are used per 100 parts by weight of the extruded material.

【0064】 言及されるバインダー及び可塑剤は好適には変性セルロース(例えばメチルセ
ルロース、エチルセルロース、プロピルセルロース及びカルボキシ変性セルロー
ス)、ポリアルキレングリコール(好適には400から50,000の平均分子
量である、特にはポリエチレングリコール及びポリプロピレングリコール)、ジ
アルキルフタレート(例えばジメチルフタレート、ジエチルフタレート、ジプロ
ピルフタレート及びジブチルフタレート)並びにこれらの物質の混合物から選択
される。明らかに他のバインダー及び可塑剤例えばポリビニルアルコール等もま
た使用できる。
The binders and plasticizers mentioned are preferably modified celluloses (eg methylcellulose, ethylcellulose, propylcellulose and carboxy-modified cellulose), polyalkylene glycols (preferably having an average molecular weight of from 400 to 50,000, in particular Polyethylene glycol and polypropylene glycol), dialkyl phthalates (eg dimethyl phthalate, diethyl phthalate, dipropyl phthalate and dibutyl phthalate) and mixtures of these substances. Obviously, other binders and plasticizers such as polyvinyl alcohol can also be used.

【0065】 上で言及したバインダー及び可塑剤は、押出し材料の製造そして成形手順の後
の適当な寸法安定性を持続するために必要とされる。
[0065] The binders and plasticizers mentioned above are required to maintain adequate dimensional stability after the manufacture and molding procedure of the extruded material.

【0066】 上述の成分の非常に徹底的な撹拌の(例えば伝統的な撹拌装置での)後で、い
くらかの分散剤は押出し材料が所望の固体含量を有するまで(好適には減圧下で
)再び取除かれてもよい。押出し材料の好適な固体含量は少なくとも30体積%
特には少なくとも40体積%である。
After very thorough stirring of the above-mentioned components (for example in a traditional stirrer), some dispersant is added until the extruded material has the desired solids content (preferably under reduced pressure). It may be removed again. The preferred solids content of the extruded material is at least 30% by volume
In particular, it is at least 40% by volume.

【0067】 他の好適な成形手順は、電気泳動法、鋳込み成形、鋳込み圧縮成形(slip compression casting)及びフィルタープレス並びに電気
泳動法と鋳込み成形の組み合わせ、鋳込み圧縮成形とフィルタープレスの組み合
わせ、また射出成型、ファイバースピニング(fibre spinning)
、ゲル鋳造及び遠心法(centrifuging)の組み合わせである。高い
基本密度(basic density)の緻密な鋳型物品(compact
moulded items)がこれらの成形方法を用いて得られる。同様に、
コーティング目的の懸濁液の使用も可能である。適当なコーティング方法は例え
ば、液浸、スピンコーティング、ドクター(doctoring)、ペイント(
painting)及び電気泳動法である。適当な物質は例えば、金属、セラミ
ックス、超硬合金、ガラス及びセメントである。
Other suitable molding procedures include electrophoresis, casting, slip compression casting and filter pressing and combinations of electrophoresis and casting, combinations of casting compression and filter pressing, and injection. Molding, fiber spinning
, A combination of gel casting and centrifuging. Dense mold articles of high basic density
Moulded items are obtained using these molding methods. Similarly,
It is also possible to use suspensions for coating purposes. Suitable coating methods include, for example, immersion, spin coating, doctoring, paint (
painting) and electrophoresis. Suitable substances are, for example, metals, ceramics, cemented carbides, glass and cement.

【0068】 製造された緑色材料又は層はその後乾燥され、焼結処理を行ってもよい。驚く
べきことに、必要とされる圧縮は相対的に低い温度で起こることが示された。さ
らに驚くべきことには、焼結助剤は必要とされなかった。焼結温度は通常は、溶
融又は分解温度の0.4から0.6の範囲である。これは、通常の温度はおよそ
溶融又は分解の温度であり、そして焼結助剤及び場合によっては圧力もまた必要
とされる従来の技術で開示された温度に比べてかなり低いものである。
The green material or layer produced may then be dried and subjected to a sintering process. Surprisingly, it has been shown that the required compression occurs at relatively low temperatures. Even more surprisingly, no sintering aid was required. Sintering temperatures typically range from 0.4 to 0.6 of the melting or decomposition temperature. This is the usual temperature is about the melting or decomposition temperature, and the sintering aids and possibly pressure are also much lower than those disclosed in the prior art where required.

【0069】 得られたセラミック焼結物質又は層は100nm未満の粒子サイズ、理論の>
95%の密度及び高程度の硬度であるナノスケールの構造として特徴づけられる
The resulting ceramic sintered material or layer has a particle size of less than 100 nm,
It is characterized as a nanoscale structure with a density of 95% and a high degree of hardness.

【0070】 本発明のセラミック焼結鋳型物品は例えば以下のものに使用できる。 −バルクセラミックス例えば研磨粉(grinding powder)。 −装飾目的、摩耗防止、摩耗学的適用(tribological appli
cation)、腐食予防、特に切削道具上の層として並びに研削剤若しくは研
削粉用の金属、セラミックス及びガラス用コーティング材料。 −セラミック/セラミック複合体の構成成分。Al23,TiC,SiC及びS
i3N4が特にマトリックス(matrix)材料として適する。 −微小(nano)複合材料の構成成分。 −粗い(coarser)セラミックス用焼結助剤。 −硬質物質形の金属/セラミック複合材料。 −サーメット。 −濾過目的用例えば、精密(micro)/限外(ultra)/微小(nan
o)−濾過及び逆浸透用細孔層。
The ceramic sintered mold article of the present invention can be used for, for example, the following. -Bulk ceramics, for example grinding powder. -Decorative purposes, wear protection, tribological application
coatings for metals, ceramics and glasses, as corrosion protection, especially as a layer on cutting tools and for abrasives or grinding powders. -Components of the ceramic / ceramic composite. Al 2 O 3 , TiC, SiC and S
i3N4 is particularly suitable as a matrix material. -Components of the nanocomposite. -Sintering aids for coarse ceramics. Metal / ceramic composites in hard substance form. -Cermet. -For filtration purposes, e.g. micro / ultra / nan
o) —Pore layer for filtration and reverse osmosis.

【0071】[0071]

【実施例】【Example】

以下の実施例は本発明をさらに説明するためのものであるが、いかなる方法に
おいてもそれを制限するものではない。
The following examples serve to further illustrate the invention but do not limit it in any way.

【0072】 実施例1 2gのL−アルギニンをエタノール/水(1:1)からなる溶媒
混合物250mlに溶解した。10gの固体TiN(米国特許(US−A)第5
,472,477号の方法に従ってCVR方法により製造された、一次粒子分布
が0.5から30nmであるもの)をこの溶液に、強力に十分に混合(磁気撹拌
機)しながら分けて(in portion)加えた。 懸濁液を還流下(加熱ブロック)で5時間、90から100℃の温度で加熱した
。その後、懸濁液を0.45μmの細孔径そしてガラスフリット(glass
frit)のセルロースアセテート/セルロースニトレートからなるラウンドフ
ィルター(round filter)を通して吸引濾過し、脱イオン水で洗浄
した。その後、フィルターケーキは乾燥キャビネットで70℃、10時間乾燥し
た。
Example 1 2 g of L-arginine was dissolved in 250 ml of a solvent mixture consisting of ethanol / water (1: 1). 10 g of solid TiN (U.S. Pat. No. 5)
, 472, 477, prepared by the CVR method according to the method of CVR, with a primary particle distribution of 0.5 to 30 nm), into this solution intensely mixed (magnetic stirrer) with inportion. )added. The suspension was heated under reflux (heating block) for 5 hours at a temperature of 90-100 ° C. Thereafter, the suspension was poured to a pore size of 0.45 μm and a glass frit.
Suction filtration through a round filter consisting of cellulose acetate / cellulose nitrate (frit) and washing with deionized water. Thereafter, the filter cake was dried in a drying cabinet at 70 ° C. for 10 hours.

【0073】 このようにして改変したTiN粉体5gを50mlの水にとりそして希釈アン
モニア溶液でpHを9に調整した。その後懸濁液は超音波装置(ultraso
nic finger)(パワー:200ワット)で5分間処理した。
5 g of the TiN powder thus modified were taken up in 50 ml of water and the pH was adjusted to 9 with a dilute ammonia solution. The suspension is then subjected to an ultrasonic device (ultraso).
nic finger (power: 200 watts) for 5 minutes.

【0074】 懸濁液中の粒子を特徴づけるために、アリコート(aliquot)を上述の
溶液で希釈しそしてTiNの平均粒径を動的光散乱方法(散乱した光の分布)を
用いて測定した。145nmの値が測定された。以下の質量分布の値が超遠心法
(質量の分布)を用いて測定された。
To characterize the particles in the suspension, an aliquot was diluted with the above solution and the average particle size of the TiN was measured using the dynamic light scattering method (scattered light distribution). . A value of 145 nm was measured. The following mass distribution values were measured using ultracentrifugation (mass distribution).

【0075】[0075]

【表1】 [Table 1]

【0076】 (注:ここで、粒子は一次粒子及び集合体(又は凝集体)として理解される)。(Note: Here, particles are understood as primary particles and aggregates (or aggregates)).

【0077】 実施例2 15gの固体TiN(CVR方法、実施例1を参照、により製造
された、一次粒子分布が0.5から30nmであるもの)を10%濃度(str
ength)のアンモニア溶液150mlに強力に十分に混合(磁気撹拌機)し
ながら分けて加えそして80℃で2時間加熱した。その後、懸濁液を1.2μm
の細孔径そしてガラスフリットのセルロースアセテート/セルロースニトレート
からなるラウンドフィルターを通して吸引濾過した。その後、フィルターケーキ
は乾燥キャビネットで70℃、10時間乾燥した。
Example 2 15 g of solid TiN (produced by the CVR method, see Example 1, having a primary particle distribution of 0.5 to 30 nm) at a concentration of 10% (str)
) was added in portions with vigorous thorough mixing (magnetic stirrer) and heated at 80 ° C for 2 hours. Thereafter, the suspension was
And filtered through a round filter consisting of cellulose acetate / cellulose nitrate with a glass frit. Thereafter, the filter cake was dried in a drying cabinet at 70 ° C. for 10 hours.

【0078】 前処理したTiNの粒子の表面のCl含量は2.9から0.8原子%まで下げ
ることができた。ESCA(化学分析用電子分光法)、XPS法(X線光電子分
光法)を用いて分析を行った。
The Cl content on the surface of the pretreated TiN particles could be reduced from 2.9 to 0.8 atomic%. Analysis was performed using ESCA (electron spectroscopy for chemical analysis) and XPS (X-ray photoelectron spectroscopy).

【0079】 2gのL−アルギニンをエタノール/水(1:1)の溶媒混合物250mlに
溶解した。
2 g of L-arginine were dissolved in 250 ml of a solvent mixture of ethanol / water (1: 1).

【0080】 上述の方法によりアンモニアで前処理した固体TiNの10gをこの溶液に、
強力に十分に混合(磁気撹拌機)しながら分けて加えた。懸濁液を還流下(加熱
ブロック)で5時間、90から100℃の温度で加熱した。その後、懸濁液を0
.45μmの細孔径そして及びガラスフリットのセルロースアセテート/セルロ
ースニトレートからなるラウンドフィルターを通して吸引濾過し、脱イオン水で
洗浄した。その後、フィルターケーキは乾燥キャビネットで70℃、10時間乾
燥した。
10 g of solid TiN pretreated with ammonia by the method described above was added to this solution.
Add in portions with strong mixing (magnetic stirrer). The suspension was heated under reflux (heating block) for 5 hours at a temperature of 90-100 ° C. Then the suspension is
. Suction-filtered through a 45 μm pore size and round filter made of glass frit cellulose acetate / cellulose nitrate and washed with deionized water. Thereafter, the filter cake was dried in a drying cabinet at 70 ° C. for 10 hours.

【0081】 このようにして改変したTiN粉体5gを50mlの水にとりそして希釈アン
モニア溶液でpHを9に調整した。その後懸濁液は超音波装置(パワー:200
ワット)で5分間処理した。
5 g of the TiN powder thus modified were taken up in 50 ml of water and the pH was adjusted to 9 with a dilute ammonia solution. Thereafter, the suspension was sonicated (power: 200).
Watts) for 5 minutes.

【0082】 懸濁液中の粒子を特徴づけるために、アリコートを上述の溶液で希釈しそして
TiNの平均粒径を動的光散乱方法(散乱した光の分布)を用いて測定した。1
38nmの値が測定された。以下の質量分布の値が超遠心法(質量の分布)を用
いて測定された。
To characterize the particles in the suspension, an aliquot was diluted with the above solution and the average particle size of the TiN was measured using the dynamic light scattering method (scattered light distribution). 1
A value of 38 nm was measured. The following mass distribution values were measured using ultracentrifugation (mass distribution).

【0083】[0083]

【表2】 [Table 2]

【0084】 (注:ここで、粒子は一次粒子及び集合体(又は凝集体)として理解される)。(Note: Here, particles are understood as primary particles and aggregates).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ゴンザレス−ブランコ,ユアン ドイツ・デー−50937ケルン・ケルペナー シユトラーセ1アー Fターム(参考) 4G001 BA33 BA38 BB33 BB38 BC02 BC13 4G030 AA50 AA52 GA07 GA16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Gonzales-Blanco, Euan German Day-50937 Cologne Kerpener Shijtraase 1a F-term (reference) 4G001 BA33 BA38 BB33 BB38 BC02 BC13 4G030 AA50 AA52 GA07 GA16

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 平均一次粒子径が0.1から50nmであり、その表面が少
なくとも一つのα−アミノ酸でコーティングされるBNから又は元素Ti,Zr
,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及びSnの炭化物、窒化
物、ホウ化物及びケイ化物の群からなる非酸化物セラミックス。
2. The method according to claim 1, wherein the average primary particle size is from 0.1 to 50 nm, and the surface is coated with at least one α-amino acid.
, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn are non-oxide ceramics comprising a group of carbides, nitrides, borides and silicides.
【請求項2】 TiN,ZrN,TiC及びSiCの群から選択される請求
項1に記載の非酸化物セラミックス。
2. The non-oxide ceramic according to claim 1, which is selected from the group consisting of TiN, ZrN, TiC and SiC.
【請求項3】 TiN及びTiCの群から選択される請求項1に記載の非酸
化物セラミックス。
3. The non-oxide ceramic according to claim 1, which is selected from the group consisting of TiN and TiC.
【請求項4】 それらの表面がアルギニンでコーティングされることを特徴
とする請求項1に記載の非酸化物セラミックス。
4. The non-oxide ceramics according to claim 1, wherein their surfaces are coated with arginine.
【請求項5】 平均一次粒子径が0.1から50nmであり、BNから又は
元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及びSn
の炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミックスが
少なくとも一つのα−アミノ酸で水中及び/又は有機溶媒中で20から150℃
の温度で処理されそして乾燥される(場合によっては濾過後に)ことを特徴とす
る請求項1に記載の非酸化物セラミックスの製造方法。
5. An average primary particle diameter of 0.1 to 50 nm, from BN or elements Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn.
A non-oxide ceramic comprising a group of carbides, nitrides, borides and silicides of at least one α-amino acid in water and / or an organic solvent at 20 to 150 ° C.
The method for producing a non-oxide ceramic according to claim 1, wherein the non-oxide ceramic is treated at a temperature of and dried (in some cases, after filtration).
【請求項6】 平均一次粒子径が0.1から50nmであり、非酸化物セラ
ミックスの−O-NH4 +基の濃度が50から1000μeq/gであるBNから 又は元素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及び
Snの炭化物、窒化物、ホウ化物及びケイ化物の群からなる非酸化物セラミック
ス。
6. A BN having an average primary particle diameter of 0.1 to 50 nm and a non-oxide ceramic having a concentration of —O NH 4 + groups of 50 to 1000 μeq / g, or an element of Ti, Zr, Hf, Non-oxide ceramics comprising a group of carbides, nitrides, borides and silicides of Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn.
【請求項7】 平均一次粒子径が0.1から50nmであるBNから又は元
素Ti,Zr,Hf,Cr,Mo,W,V,Nb,Ta,Si,Ge及びSnの
炭化物、窒化物、ホウ化物及びケイ化物の群からなる少なくとも一つの非酸化物
セラミックスが、20から150℃の温度で、水性NH3溶液で処理されること を特徴とする請求項6に記載のセラミックスの製造方法。
7. Carbides, nitrides of Ti, Zr, Hf, Cr, Mo, W, V, Nb, Ta, Si, Ge and Sn from BN having an average primary particle diameter of 0.1 to 50 nm, The method according to claim 6, wherein at least one non-oxide ceramic consisting of a group of boride and silicide is treated with an aqueous NH 3 solution at a temperature of 20 to 150 ° C.
【請求項8】 請求項1に記載の少なくとも一つの非酸化物セラミック並び
に水および/または有機溶媒を含んでなる懸濁液。
8. A suspension comprising at least one non-oxide ceramic according to claim 1 and water and / or an organic solvent.
【請求項9】 請求項1に記載の非酸化物セラミックが水および/または有
機溶媒に懸濁されることを特徴とする請求項8に記載の懸濁液の製造方法。
9. The method for producing a suspension according to claim 8, wherein the non-oxide ceramic according to claim 1 is suspended in water and / or an organic solvent.
【請求項10】 請求項8に記載の懸濁液が、場合によっては他のセラミッ
クス粉体又は懸濁液と共に、分散剤(水および/または溶媒)の除去前又は後に
緑色材料又は層を与えるために処理されそしてその後焼結されることを特徴とす
るセラミック焼結物質及び層の製造方法。
10. The suspension according to claim 8, providing a green material or layer before or after removal of the dispersant (water and / or solvent), optionally together with other ceramic powders or suspensions. For producing ceramic sintered materials and layers, characterized in that they are treated and subsequently sintered.
【請求項11】 請求項10に記載の方法で得られるセラミック焼結物質又
は層。
11. A sintered ceramic material or layer obtained by the method according to claim 10.
JP2000527510A 1998-01-07 1998-12-24 Non-oxide ceramics with surface coating Pending JP2002500157A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19800310.2 1998-01-07
DE19800310A DE19800310A1 (en) 1998-01-07 1998-01-07 Surface-coated, non-oxide ceramics
PCT/EP1998/008442 WO1999035105A1 (en) 1998-01-07 1998-12-24 Surface coated non-oxidic ceramics

Publications (1)

Publication Number Publication Date
JP2002500157A true JP2002500157A (en) 2002-01-08

Family

ID=7854095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000527510A Pending JP2002500157A (en) 1998-01-07 1998-12-24 Non-oxide ceramics with surface coating

Country Status (6)

Country Link
EP (1) EP1044178A1 (en)
JP (1) JP2002500157A (en)
KR (1) KR20010033904A (en)
DE (1) DE19800310A1 (en)
TW (1) TW562787B (en)
WO (1) WO1999035105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322975B2 (en) 2013-03-01 2019-06-18 Kyoto University Method for producing liquid dispersion of ceramic microparticles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939686A1 (en) * 1999-08-20 2001-02-22 Dechema Production of corrosion resistant coatings for metals comprises applying metallic or non-metallic inorganic nano-particulate powder in an organic matrix onto the metal surface, removing the organic matrix, and sintering
GB0112000D0 (en) * 2001-05-16 2001-07-11 Oxonica Ltd Comminution of coated metal oxides and hydroxides
GB2383534A (en) * 2001-12-28 2003-07-02 Psimei Pharmaceuticals Plc Delivery of neutron capture elements for neutron capture therapy
EP1745161A1 (en) * 2004-01-22 2007-01-24 The University of Manchester Ceramic coating
DE102004020559A1 (en) 2004-04-27 2005-12-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for dispersing and passivating finely divided powders in water and aqueous media
JP4964227B2 (en) * 2005-03-30 2012-06-27 ビーエーエスエフ ソシエタス・ヨーロピア Use of hydrophobins for surface treatment of hardened inorganic building materials, natural stones, artificial stones, and ceramics
KR101034116B1 (en) * 2008-11-24 2011-05-13 최완수 Tape Feeder for Chip Mounter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4336694A1 (en) * 1993-10-27 1995-05-04 Inst Neue Mat Gemein Gmbh Process for the production of metal and ceramic sintered bodies and layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322975B2 (en) 2013-03-01 2019-06-18 Kyoto University Method for producing liquid dispersion of ceramic microparticles

Also Published As

Publication number Publication date
WO1999035105A1 (en) 1999-07-15
EP1044178A1 (en) 2000-10-18
DE19800310A1 (en) 1999-07-08
TW562787B (en) 2003-11-21
KR20010033904A (en) 2001-04-25

Similar Documents

Publication Publication Date Title
RU2139839C1 (en) Method of preparing sintered products from surface- modified powder and sintered metallic and/or ceramic product prepared from said powder
JP3569785B2 (en) Method for producing surface-modified ceramic powder as nanometer-sized particles
CA2265354C (en) Transparent coating compositions containing nanoscale particles and having improved scratch resistance
JP4097745B2 (en) Zinc oxide dispersion
TW574330B (en) Pigment preparations in granule form
EP2831181B1 (en) Oxidized carbon blacks treated with polyetheramines and coating compositions comprising same
JP2010505736A (en) Method for producing surface-modified nanoparticulate metal oxide, metal hydroxide and / or metal oxyhydroxide
JP3571277B2 (en) Surface-modified and pyrolytically produced titanium dioxide, method for its production and its use
US5750193A (en) Process for producing tin sintered bodies and coatings
JP2002500157A (en) Non-oxide ceramics with surface coating
JPH0625267A (en) Surface-modified micaceous particle having improved dispersibility in aqueous medium
CN111662611A (en) Composite coating with anticorrosion function and preparation method thereof
JP2003221631A (en) Process for manufacturing tungsten carbide-based hard metal and slurry used for this
JP2002538279A (en) Pigments for organic after-treatment paint systems
JPH09511481A (en) Process for producing uniform multicomponent dispersions and products derived from such dispersions
JP3279128B2 (en) Silicon nitride powder
TW201036987A (en) Dispersant composition
JP2529676B2 (en) Powders with improved rheological properties-azo pigments and their preparation
JPS59100167A (en) Coated talc and production thereof
JP2018158875A (en) Silica composite particle and method for producing the same
JP4792589B2 (en) Method for dispersing and passivating fine powders in water and aqueous media
Huang et al. Colloidal processing of SiC whisker composites
JP2002537463A (en) Plastic composite containing metal oxide
DE10004461A1 (en) Plastic composite, e.g. UV-absorbent film for packaging food, contains finely dispersed metal oxide with an average particle size of less than 100 nm, e.g. titanium dioxide
DE10314520A1 (en) Granular filler preparation, used in paper, paper coating, paint, lacquer, printing ink, building material, film, fibers, textile, dental material, plastics or polymer composite, contains crosslinked polymer or block copolymer as binder