JP2002372676A - Image forming device by two-point synchronization detection - Google Patents

Image forming device by two-point synchronization detection

Info

Publication number
JP2002372676A
JP2002372676A JP2001180610A JP2001180610A JP2002372676A JP 2002372676 A JP2002372676 A JP 2002372676A JP 2001180610 A JP2001180610 A JP 2001180610A JP 2001180610 A JP2001180610 A JP 2001180610A JP 2002372676 A JP2002372676 A JP 2002372676A
Authority
JP
Japan
Prior art keywords
image
temperature
image forming
deviation
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001180610A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kobayashi
和彦 小林
Tetsuo Yamanaka
哲夫 山中
Hiroyasu Tsukasaki
浩保 司城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001180610A priority Critical patent/JP2002372676A/en
Publication of JP2002372676A publication Critical patent/JP2002372676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a clear multicolor image by performing modification in addition to the magnification error correction of an image formation optical system by taking that the positional interval of two synchronization detecting means of a two-point synchronization system causes image formation deviation due to the fluctuation of temperature at the inside of an image forming device into consideration. SOLUTION: In the image forming device to obtain a multicolor image by forming a latent image by performing image formation scanning with light beams from several image formation optical systems on a photoreceptor by using a polygon scanner, by visualizing it with the toner of different colors and performing the overlapping transfer of a visible image, an upstream side synchronization detecting means and a downstream side synchronization detecting means to detect the scanning start end and the scanning finish end of the light beams are provided, so that the deviation of the magnification error of the image formation optical system is detected by a signal from both synchronization detecting means so as to correct the deviation of the magnification error of the image formation optical system, and a temperature sensor to detect the temperature at a space between both synchronization detecting means is provided, so that the deviation of an image formation length on the photoreceptor is detected by a signal from the temperature sensor, and the deviation of the positional interval between the synchronization detecting means due to the temperature of the temperature sensor is modified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、画像形成装置の倍
率ずれ補正に関し、特に、多色画像形成装置における倍
率ずれにより生じる色ずれを補正する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to correction of a magnification shift of an image forming apparatus, and more particularly to a technique of correcting a color shift caused by a magnification shift in a multicolor image forming apparatus.

【0002】[0002]

【従来の技術】従来、多色画像形成装置は、感光体上を
レーザーダイオードを光源とする複数の光ビームで走査
する複数の結像光学系からなる光ビーム走査装置を有
し、前記光ビーム走査装置の走査により前記感光体上に
得た潜像を可視像化して、これらの可視像を転写紙上に
重ね合わせ転写して多色画像を得て定着することで多色
画像を形成している。そして、前記光ビーム走査装置で
の各々の結像光学系により形成される画像を精度よく重
ね合わせることにより色ずれをなくして、鮮明な多色画
像を得るように種々の工夫をこらしている。
2. Description of the Related Art Conventionally, a multicolor image forming apparatus has a light beam scanning device comprising a plurality of image forming optical systems for scanning a photosensitive member with a plurality of light beams using a laser diode as a light source. A latent image obtained on the photoreceptor is visualized by scanning with a scanning device, and these visible images are superimposed and transferred on a transfer paper to obtain a multicolor image, which is then fixed to form a multicolor image. are doing. Then, various devices are devised so that the images formed by the respective image forming optical systems in the light beam scanning device are accurately overlapped to eliminate color shift and obtain a clear multicolor image.

【0003】さて、コピー、レーザープリンター等の画
像形成装置の内部温度は、大量の熱を発生する定着装置
の影響で場所により、又は稼動時間等とともに変化す
る。このため、光ビーム走査装置の結像光学系として
は、温度変化による倍率誤差変動の小さい結像光学系、
例えばガラスレンズを用いるのが望ましいが、加工の容
易さ、低コスト化などの観点でプラスチックレンズを用
いた結像光学系が広く用いられるようになってきた。
[0003] The internal temperature of an image forming apparatus such as a copying machine or a laser printer varies depending on the location or with the operating time due to the influence of a fixing device that generates a large amount of heat. For this reason, as an imaging optical system of the light beam scanning device, an imaging optical system with small magnification error fluctuation due to temperature change,
For example, it is desirable to use a glass lens, but an imaging optical system using a plastic lens has been widely used from the viewpoint of easiness of processing, cost reduction, and the like.

【0004】結像光学系にプラスチックレンズを用いた
場合、温度変化による倍率誤差変動が大きくなるため、
複数の結像光学系の各々の倍率誤差にずれが発生して鮮
明な多色画像が得られない虞もある。これを改善するた
めに、特開平10ー307269号公報に記載の技術で
は、走査される光ビームの走査開始端と走査終了端にそ
れぞれ同期検知手段を設け、これら同期検知手段により
温度変動による倍率誤差のずれ量を検知することによ
り、レーザダイオード(LD)の周波数変調を操作して
ずれを補正する2点同期方式が採用されている。
When a plastic lens is used for the imaging optical system, magnification error fluctuation due to temperature change becomes large.
There is a possibility that a difference occurs in the magnification error of each of the plurality of imaging optical systems and a clear multicolor image cannot be obtained. In order to improve this, according to the technique described in Japanese Patent Application Laid-Open No. H10-307269, synchronization detection means are provided at the scanning start end and scanning end end of the light beam to be scanned, respectively. A two-point synchronization system is adopted in which the amount of error is detected and the frequency modulation of the laser diode (LD) is operated to correct the error.

【0005】[0005]

【発明が解決しようとする課題】上述したような従来技
術における2点同期方式を全ての結像光学系に具備させ
れば、各々の結像光学系の倍率誤差のずれを検知してこ
のずれを補正し鮮明な多色画像を得ることができる。
If all the imaging optical systems are provided with the two-point synchronization method in the prior art as described above, the deviation of the magnification error of each imaging optical system is detected and this deviation is detected. And a clear multicolor image can be obtained.

【0006】しかしながら、光ビームの走査開始端と走
査終了端に設けた同期検知手段の位置間隔が画像形成装
置内部温度の変動により変化するという事態が生じる。
この事態により、同期検知手段からの信号に基づく2点
同期方式による上述した倍率誤差ずれ補正だけでは、感
光体上の作像の誤差ずれが適切に補正されないという課
題が生じてきた。
However, a situation arises in which the position interval between the synchronization detecting means provided at the scanning start end and the scanning end end of the light beam changes due to a change in the temperature inside the image forming apparatus.
Due to this situation, there has arisen a problem that the error in the image formation on the photoconductor is not properly corrected only by the above-described error correction of the magnification error by the two-point synchronization method based on the signal from the synchronization detecting means.

【0007】本発明の目的は、2点同期方式における2
つの同期検知手段の位置間隔が画像形成装置内部温度の
変動により変化することに新たに着目して、装置内の温
度変動による結像光学系の各々の倍率誤差のずれ補正に
加えて、前記同期検知手段間の位置間隔の温度変動によ
る作像のずれ変化をも考慮して、鮮明な多色画像を得る
ことのできる光ビーム走査装置を提供することにある。
It is an object of the present invention to provide a two-point synchronous system.
Focusing on the fact that the position interval between the two synchronization detecting means changes due to a change in the temperature inside the image forming apparatus, the correction of the deviation of each magnification error of the imaging optical system due to the temperature change inside the apparatus and the synchronization An object of the present invention is to provide a light beam scanning apparatus capable of obtaining a clear multicolor image in consideration of a shift in image formation due to a temperature change in a position interval between detection means.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0009】複数の結像光学系からの光ビーム走査によ
り感光体上に得た潜像を可視像化し、これらの可視像を
転写紙に重ね転写して画像を得る画像形成装置におい
て、各結像光学系に設けた光ビームの2点同期検知手段
からの信号に基づいて、前記各結像光学系の倍率誤差の
ずれを補正するとともに、前記2点同期検知手段の間の
温度を検出する温度センサからの信号に基づいて、前記
感光体上の作像長さのずれを修正する画像形成装置。
An image forming apparatus for visualizing latent images obtained on a photoreceptor by scanning light beams from a plurality of image forming optical systems, and superimposing and transferring these visible images onto transfer paper to obtain an image. Based on a signal from the two-point synchronization detecting means of the light beam provided in each imaging optical system, the deviation of the magnification error of each of the imaging optical systems is corrected, and the temperature between the two-point synchronization detecting means is adjusted. An image forming apparatus that corrects a deviation of an image forming length on the photoconductor based on a signal from a temperature sensor to be detected.

【0010】また、ポリゴンスキャナを用いて複数の結
像光学系からの光ビームを感光体に結像走査して潜像を
形成し、異なる色のトナーで可視像化し、前記可視像を
転写紙に重ね転写して多色画像を得る画像形成装置にお
いて、前記光ビームの走査開始端と走査終了端を検知す
る上流側同期検知手段と下流側同期検知手段を設け、各
結像光学系の倍率誤差のずれを前記両同期検知手段から
の信号で検出し、前記各結像光学系の倍率誤差のずれを
補正するとともに、前記両同期検知手段の間の温度を検
出する温度センサを設け、前記感光体上の作像長さのず
れを前記温度センサからの信号で検出し、前記温度セン
サの温度に因る同期検知手段間の位置間隔のずれを修正
する画像形成装置。
A latent image is formed by scanning light beams from a plurality of imaging optical systems on a photosensitive member using a polygon scanner to form a latent image, and the latent image is visualized with toners of different colors. In an image forming apparatus for obtaining a multi-color image by superimposing and transferring the image on a transfer sheet, an upstream synchronization detecting unit and a downstream synchronization detecting unit for detecting a scanning start end and a scanning end end of the light beam are provided. And a temperature sensor for detecting a temperature difference between the two synchronous detection means while detecting a deviation of the magnification error by a signal from the two synchronous detection means, correcting a deviation of the magnification error of each imaging optical system. An image forming apparatus that detects a shift in the image forming length on the photoconductor by a signal from the temperature sensor and corrects a shift in a positional interval between the synchronization detecting units due to a temperature of the temperature sensor.

【0011】[0011]

【発明の実施の形態】本発明の実施形態に係る2点同期
検知による画像形成装置について、図面を用いて以下説
明する。図1は本発明の実施形態に係る第1結像光学系
と第2結像光学系からなる光ビーム走査装置を備えたカ
ラープリンタの全体構成を示す図である。図2は本実施
形態に係るポリゴンスキャナー、一対の結像光学系、同
期検知手段及び温度センサの具体的配置を示す図であ
る。図3は複数感光体、複数ポリゴンスキャナー、複数
結像光学系を備えた4連ドラム方式の光ビーム走査装置
を示す図である。図4は複数感光体、複数ポリゴンスキ
ャナー、複数結像光学系を備えた中間転写方式の光ビー
ム走査装置を示す図である。図5は本実施形態に関わる
各結像光学系の平均倍率誤差と同期検知手段間温度との
関係を示す図である。図6は本発明の実施形態に係る結
像光学系の倍率誤差のずれ補正に加えて同期検知手段間
位置間隔の変化に基づいて作像ずれを修正する動作系統
図を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An image forming apparatus based on two-point synchronization detection according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a color printer including a light beam scanning device including a first imaging optical system and a second imaging optical system according to an embodiment of the present invention. FIG. 2 is a diagram showing a specific arrangement of a polygon scanner, a pair of image forming optical systems, a synchronization detecting unit, and a temperature sensor according to the present embodiment. FIG. 3 is a diagram showing a four-drum light beam scanning device including a plurality of photoconductors, a plurality of polygon scanners, and a plurality of imaging optical systems. FIG. 4 is a diagram showing an intermediate transfer type light beam scanning device including a plurality of photoconductors, a plurality of polygon scanners, and a plurality of imaging optical systems. FIG. 5 is a diagram showing the relationship between the average magnification error of each imaging optical system and the temperature between the synchronization detecting means according to the present embodiment. FIG. 6 is a diagram showing an operation system for correcting an image forming shift based on a change in the position interval between the synchronization detecting means in addition to the shift correction of the magnification error of the imaging optical system according to the embodiment of the present invention.

【0012】図1において、符号1はポリゴンスキャナ
ー、符号2−1及び符号2−2は一対の結像光学系であ
って第1結像光学系及び第2結像光学系、符号3−1
a、3−1b,3−2a,3−2bはそれぞれ折り返し
ミラー、符号4はドラム状をした感光体、符号5−1,
5−2,6−1,6−2はfθレンズ、符号7−1,7
−2は横型のトロイダルレンズ、をそれぞれ表してい
る。
In FIG. 1, reference numeral 1 denotes a polygon scanner, reference numerals 2-1 and 2-2 denote a pair of imaging optical systems, a first imaging optical system and a second imaging optical system, and reference numeral 3-1.
Reference numerals a, 3-1b, 3-2a, and 3-2b denote folding mirrors, reference numeral 4 denotes a drum-shaped photoconductor, and reference numerals 5-1 and 5-1.
5-2, 6-1 and 6-2 are fθ lenses, reference numerals 7-1 and 7
-2 indicates a horizontal toroidal lens.

【0013】図2は図1におけるポリゴンスキャナー1
と一対の結像光学系2−1,2−2とからなる構成部分
において、折り返しミラー3−1a,3−1bを除いた
光学的に等価な位置関係を示す部分平面図である。図2
において、ポリゴンスキャナー1は矢印の向きに回転す
るものとし、第1結像光学系2−1は走査開始端と走査
終了端に2つの同期検知手段15−1,15−2を有し
ていて、2点同期方式を採用している。また、第2結像
光学系2−2も同様に走査開始端と走査終了端に同期検
知手段15−3,15−4を配置した2点同期方式を採
用している。
FIG. 2 shows the polygon scanner 1 shown in FIG.
FIG. 4 is a partial plan view showing an optically equivalent positional relationship excluding the return mirrors 3-1a and 3-1b in a component portion including a pair of imaging optical systems 2-1 and 2-2. FIG.
, The polygon scanner 1 rotates in the direction of the arrow, and the first imaging optical system 2-1 has two synchronization detecting means 15-1 and 15-2 at a scanning start end and a scanning end end. , Adopts a two-point synchronization method. Similarly, the second imaging optical system 2-2 also employs a two-point synchronization system in which synchronization detection means 15-3 and 15-4 are arranged at the scanning start end and scanning end end.

【0014】また、ポリゴンスキャナー1の片側には、
ポリゴンスキャナー1の相異なる鏡面にレーザービーム
を照射すべくLDによる第1レーザー発光装置11、第
2レーザー発光装置12が配置されている。ポリゴンス
キャナー1は第1レーザー発光装置11、第2レーザー
発光装置12などから出射されるレーザービームを感光
体4上で主走査方向に走査するような向きに、感光体4
は主走査方向に直交する副走査方向にそれぞれ回転して
いる。
On one side of the polygon scanner 1,
In order to irradiate different mirror surfaces of the polygon scanner 1 with laser beams, a first laser light emitting device 11 and a second laser light emitting device 12 using LDs are arranged. The polygon scanner 1 scans the laser beam emitted from the first laser light emitting device 11 and the second laser light emitting device 12 on the photoconductor 4 in the main scanning direction.
Rotate in the sub-scanning direction orthogonal to the main scanning direction.

【0015】更に、図2において、同期検知手段15−
1と15−2の中央部位置に温度センサ20−1を設
け、同様に、同期検知手段15−3と15−4の中間位
置にも温度センサ20−2を設ける。温度センサの配置
は、上述した中央部位置に限らず、走査端の両端に設け
られた同期検知手段間の位置間隔が装置内温度で変化す
るのを検出できる温度計測点であれば良いので、同期検
知手段間の適宜の場所で良い。
Further, in FIG. 2, the synchronization detecting means 15-
A temperature sensor 20-1 is provided at a central position between 1 and 15-2, and a temperature sensor 20-2 is similarly provided at an intermediate position between the synchronization detecting means 15-3 and 15-4. The arrangement of the temperature sensor is not limited to the above-described central position, and any temperature measurement point that can detect a change in the position interval between the synchronization detection means provided at both ends of the scanning end due to the temperature in the apparatus may be used. An appropriate place between the synchronization detecting means may be used.

【0016】第1レーザー発光装置11、第2レーザー
発光装置12は、図示を省略した画像データ入力装置に
より入力された画像データに基づいて駆動される。これ
ら第1結像光学系2−1、第2結像光学系2−2を含む
光ビーム走査装置では、図1、図2において、第1レー
ザー発光装置11から出射された第1ビームB1はシリ
ンドリカルレンズ13を通り、ポリゴンスキャナー1で
反射され、fθレンズ5−1,6−1を通り、折り返し
ミラー3−1aで折り返され、トロイダルレンズ7−1
を通り、折り返しミラー3−1bで折り返されて、感光
体4を走査する。
The first laser light emitting device 11 and the second laser light emitting device 12 are driven based on image data input by an image data input device (not shown). In the light beam scanning device including the first imaging optical system 2-1 and the second imaging optical system 2-2, the first beam B1 emitted from the first laser light emitting device 11 in FIGS. The light passes through the cylindrical lens 13, is reflected by the polygon scanner 1, passes through the fθ lenses 5-1 and 6-1, is turned back by the turn-back mirror 3-1a, and is turned off by the toroidal lens 7-1.
, Is returned by the return mirror 3-1b, and scans the photoconductor 4.

【0017】一方、第2レーザー発光装置12から出射
された第2ビームB2はシリンドリカルレンズ14を通
った後、ポリゴンスキャナー1で反射され、fθレンズ
5−2,6−2を通り、折り返しミラー3−2aで折り
返され、トロイダルレンズ7−2を通り、感光体4を走
査する。第1ビームB1と第2ビームB2とは、ポリゴ
ンスキャナー1の回転により、主走査方向に互いに逆向
きに走査される。
On the other hand, the second beam B2 emitted from the second laser light emitting device 12 passes through the cylindrical lens 14, is reflected by the polygon scanner 1, passes through the fθ lenses 5-2, 6-2, and passes through the turning mirror 3 -2a, and scans the photoconductor 4 through the toroidal lens 7-2. The first beam B1 and the second beam B2 are scanned in directions opposite to each other in the main scanning direction by the rotation of the polygon scanner 1.

【0018】以上説明したように、第1レーザー発光装
置11、第2レーザー発光装置12の2つの発光源から
出射されたビームB1,B2をポリゴンスキャナー1で
主走査方向対応方向に同時に振らせつつ、副走査方向に
回転している感光体4の表面をビーム露光することによ
り感光体4表面の異なった位置にそれぞれ静電潜像が形
成される。
As described above, the beams B1 and B2 emitted from the two light emitting sources of the first laser light emitting device 11 and the second laser light emitting device 12 are simultaneously oscillated by the polygon scanner 1 in directions corresponding to the main scanning direction. By performing beam exposure on the surface of the photoconductor 4 rotating in the sub-scanning direction, electrostatic latent images are respectively formed at different positions on the surface of the photoconductor 4.

【0019】次に、感光体4の表面上、これら異なった
位置に形成されたそれぞれの静電潜像に対し、現像装置
9,10により色違いのトナー粒子を付着させてトナー
像として可視像化し、それぞれのトナー像を転写チャー
ジャ(図示せず)の働きにより転写紙(図示せず)上に
重ね合わせ転写する。転写後の転写紙を搬送ベルト11
0により矢印で示すように排紙部側へ向けて送り出しつ
つ、定着装置16により熱および圧力を付与して、トナ
ー像を転写紙の紙面上に定着させることにより、転写紙
上に多色画像を得る。
Next, toner particles of different colors are adhered to the respective electrostatic latent images formed at these different positions on the surface of the photosensitive member 4 by developing devices 9 and 10 so as to be visible as a toner image. The toner images are superimposed and transferred onto transfer paper (not shown) by the action of a transfer charger (not shown). The transfer paper after the transfer is transferred to the conveyor belt 11.
The toner image is fixed on the transfer paper by applying heat and pressure by the fixing device 16 while the toner image is fed toward the paper discharge unit side as indicated by an arrow by 0, thereby forming a multicolor image on the transfer paper. obtain.

【0020】図1において、符号8は感光体4の表面を
ビーム露光する前に均一に帯電させるための帯電チャー
ジャ、符号120は転写後に感光体4の表面に残った残
留トナーを除去・回収するためのクリーニングユニット
をそれぞれ示す。
In FIG. 1, reference numeral 8 denotes a charging charger for uniformly charging the surface of the photoconductor 4 before beam exposure, and reference numeral 120 denotes removal and recovery of residual toner remaining on the surface of the photoconductor 4 after transfer. Cleaning units for cleaning are shown.

【0021】本発明の実施形態に係る2点同期検知によ
る光学書込み装置は、図3に示す4連ドラム方式の光ビ
ーム走査装置にも、また図4に示す中間転写方式の光ビ
ーム走査装置にも適用されるものである。
The optical writing device based on the two-point synchronization detection according to the embodiment of the present invention can be applied to the four-drum light beam scanning device shown in FIG. 3 and the intermediate transfer type light beam scanning device shown in FIG. Is also applicable.

【0022】図3において、ポリゴンスキャナー43a
を中心に光学的に対称な位置に第1結像光学系44a−
1、第2結像光学系44−bが配置され、さらに、これ
ら第1結像光学系44a−1、第2結像光学系44a−
2の組に隣接して、ポリゴンスキャナー43bを中心に
光学的に対称な位置に第1結像光学系44b−1、第2
結像光学系44b−2が配置されている。この配置によ
り、図2に示した光ビーム走査装置を2つ並列に並べた
ような構成となっている。そして、これらの第1結像光
学系44a−1、第2結像光学系44a−2、第1結像
光学系44b−1、第2結像光学系44b−2から出射
される光ビームはそれぞれ、ドラム状をした感光体42
a,42b,42c,42dに結像され、最終的にそれ
ぞれの感光体にトナー像が形成されて、矢印の向きに搬
送される転写紙に重ね転写されるようになっている。
In FIG. 3, a polygon scanner 43a is provided.
The first imaging optical system 44a-
1, a second imaging optical system 44-b is arranged, and furthermore, the first imaging optical system 44a-1 and the second imaging optical system 44a-
The first imaging optical system 44b-1 and the second imaging optical system 44b-1 are located at positions optically symmetric with respect to the polygon
An imaging optical system 44b-2 is arranged. With this arrangement, two light beam scanning devices shown in FIG. 2 are arranged in parallel. The light beams emitted from the first imaging optical system 44a-1, the second imaging optical system 44a-2, the first imaging optical system 44b-1, and the second imaging optical system 44b-2 are Each of the drum-shaped photoconductors 42
a, 42b, 42c, and 42d, and finally a toner image is formed on each of the photoconductors, and is transferred onto the transfer paper conveyed in the direction of the arrow.

【0023】また、図4において、単一のドラム状の感
光体45の周りに、ポリゴンスキャナー46aを中心に
して光学的に対称に第1結像光学系48a−1と第2結
像光学系48a−2を設け、かつ、ポリゴンスキャナー
46bを中心にして光学的に対称に第1結像光学系48
b−1と第2結像光学系48b−2を設ける配置となっ
ている。
In FIG. 4, a first image forming optical system 48a-1 and a second image forming optical system are optically symmetrically arranged around a single drum-shaped photosensitive member 45 around a polygon scanner 46a. 48a-2, and a first imaging optical system 48 that is optically symmetric about the polygon scanner 46b.
b-1 and a second imaging optical system 48b-2 are provided.

【0024】上述したような画像形成装置において、特
に、図1、図2に示す装置によれば、多量の熱を発生す
る定着装置16からの熱の影響によりfθレンズその他
の光学部材が熱変形して第1結像光学系2−1の倍率誤
差が変化してしまうために、第1結像光学系2−1によ
る書き込み画像と第2結像光学系2−2による書き込み
画像との間に色ずれを生じてしまう。そこで、温度変動
により倍率誤差が変動する第1結像光学系2−1の走査
開始端、走査終了端位置に倍率誤差補正用の同期検知手
段15−1,15−2を設けていて、これらからの検知
信号を用いた2点同期方式を構成している(2点同期方
式の詳細は後述する)。同様に、第2結像光学系2−2
においても同期検知手段15−3,15−4を設ける。
そして、同期検知手段15−1,15−3は、画像の書
き込み時点を設定するためのものでもある。そして、同
期検知手段15−1又は15−3は、同期検知手段15
−2又は15−4と協働して2点同期方式を可能にし、
倍率誤差のずれ量を検知する機能を有する。この倍率誤
差検知機能を用いて、光源としてのレーザーダイオード
に周波数変調をかけることで倍率誤差補正機能を達成し
ている。
In the above-described image forming apparatus, in particular, according to the apparatuses shown in FIGS. 1 and 2, the fθ lens and other optical members are thermally deformed by the influence of heat from the fixing device 16 which generates a large amount of heat. As a result, the magnification error of the first imaging optical system 2-1 changes, so that the image written by the first imaging optical system 2-1 and the image written by the second imaging optical system 2-2 are changed. Causes color misregistration. Therefore, synchronization detecting means 15-1 and 15-2 for correcting a magnification error are provided at the scanning start end and scanning end end positions of the first imaging optical system 2-1 in which the magnification error fluctuates due to temperature fluctuation. A two-point synchronization method using the detection signal from the STA (the details of the two-point synchronization method will be described later). Similarly, the second imaging optical system 2-2
Are provided with the synchronization detecting means 15-3 and 15-4.
Then, the synchronization detecting means 15-1 and 15-3 are also for setting the image writing time point. Then, the synchronization detecting means 15-1 or 15-3
-2 or 15-4 to enable a two-point synchronization scheme,
It has a function of detecting the deviation amount of the magnification error. Using this magnification error detection function, a laser diode as a light source is frequency-modulated to achieve a magnification error correction function.

【0025】2点同期方式では、同期検知手段15−1
によるビームの検知時点から同期検知手段15−2に至
る所定間隔の走査に要する実時間を制御手段により算出
して、この実時間を基準となる時間と比較する。これに
より、結像光学系の倍率誤差を検知することができる。
こうして検知さた倍率誤差に基づき、レーザーダイオー
ドの周波数変調による倍率誤差機能を働かせて倍率誤差
を補正する。定着装置との配置関係で温度がより高くな
った結像光学系の方が結像光学系の倍率誤差補正が大と
なるのである。
In the two-point synchronization system, the synchronization detecting means 15-1
The control unit calculates the actual time required for scanning at a predetermined interval from the time of beam detection by the control unit to the synchronization detection unit 15-2, and compares the actual time with a reference time. Thus, a magnification error of the imaging optical system can be detected.
Based on the magnification error thus detected, the magnification error is corrected by operating the magnification error function by frequency modulation of the laser diode. The correction of the magnification error of the imaging optical system is larger in the imaging optical system whose temperature is higher due to the arrangement relationship with the fixing device.

【0026】ここで、結像光学系の倍率誤差による補正
について、具体的な例で再度説明すると、図2を参照し
て、第1結像光学系2−1の環境温度が定着装置の影響
で上昇し、その倍率誤差が大となれば感光体への走査線
の長さ、即ち書き込み範囲は長くなる。そうすると、感
光体上の画素ピッチは大となり、走査線が同期検知手段
15−1から同期検知手段15−2に達するまでの間に
カウントされる画素クロック数は小となる。
Here, the correction based on the magnification error of the imaging optical system will be described again with a specific example. Referring to FIG. 2, the environmental temperature of the first imaging optical system 2-1 is influenced by the fixing device. When the magnification error becomes large, the length of the scanning line on the photoconductor, that is, the writing range becomes long. Then, the pixel pitch on the photoconductor becomes large, and the number of pixel clocks counted until the scanning line reaches the synchronization detection unit 15-2 from the synchronization detection unit 15-1 becomes small.

【0027】従って、結像光学系の温度が所定値内であ
ってその倍率誤差が生じない温度環境で、走査線が同期
検知手段15−2に達すまでの間にカウントされる画素
クロック数を基準値として、温度上昇の環境で前述した
倍率誤差大のときの少ない画素クロックカウント数を比
較対照して比率を求め、基準の画素周波数に前記比率を
乗じて補正の画素周波数とすることで、感光体上への一
走査線の長さ、即ち書き込み範囲を基準の範囲に合致さ
せるものである。このような手法を用いて、温度上昇に
よる結像光学系の倍率誤差の補正を従来実施していた。
図3に示すC,M,Y,K毎の走査ビームの結像光学系
で生じる色ずれを補正できるのである。
Accordingly, in a temperature environment where the temperature of the imaging optical system is within a predetermined value and the magnification error does not occur, the number of pixel clocks counted until the scanning line reaches the synchronization detecting means 15-2 is calculated. As a reference value, a ratio is determined by comparing and contrasting a small pixel clock count number when the magnification error is large in an environment of a temperature increase, and a reference pixel frequency is multiplied by the ratio to obtain a corrected pixel frequency. The length of one scanning line on the photoconductor, that is, the writing range is matched with the reference range. By using such a method, the correction of the magnification error of the imaging optical system due to the temperature rise has been conventionally performed.
It is possible to correct the color misregistration occurring in the optical system for forming the scanning beams of C, M, Y and K shown in FIG.

【0028】図5は、平均倍率誤差と同期検知手段間温
度との関係を示したものであって、本発明の実施形態を
採用するに至った課題解決の事象を表している。具体に
云えば、縦軸はレーザによる一走査線当たりの感光体上
の画像の長さを多数実測してその平均値を表したもので
あって、その画像長さを結像光学系の誤差倍率に変換し
て表示している。そして、図5の最上下の線(黒菱と黒
丸で示した線)は、例えば、図2の温度センサ20−1
と20−2で計測した同期検知手段間の中央部における
温度を経時的に示したものであって、KC同期検知手段
中央壁の温度上昇分とYM同期検知手段中央壁の温度上
昇分として表示している。
FIG. 5 shows the relationship between the average magnification error and the temperature between the synchronization detecting means, and shows the problem solving problem that led to the adoption of the embodiment of the present invention. More specifically, the vertical axis represents the average value of a number of image lengths on the photoreceptor per scanning line by the laser and represents the average value. The image length is represented by the error of the imaging optical system. It is converted to the magnification and displayed. The lowermost line in FIG. 5 (the line indicated by the black diamond and the black circle) is, for example, the temperature sensor 20-1 in FIG.
And the temperature at the central portion between the synchronization detection means measured with time and 20-2, which is shown as a temperature rise of the central wall of the KC synchronization detection means and a temperature rise of the central wall of the YM synchronization detection means. are doing.

【0029】ここで、縦軸に示す画像長さは、上述した
2点同期方式を作動させた状態での画像長さである。本
来ならば、従来技術の2点同期方式による画素周波数の
設定によって、温度上昇があっても結像光学系の倍率誤
差の補正がなされ同一の画像長さになる筈のものである
が、温度上昇によって両終端の同期検知手段間の長さが
長くなったことに起因して図5の縦軸に示すような倍率
誤差が生じていることを実験並びに検討の結果、見い出
し得た事象である。なお、CMYKの符号は、それぞれ
シアン、マゼンタ、イエロー、ブラックを表す。図5の
例によると、KとCにおける結像光学系は、その結像光
学系の温度上昇(KC同期検知手段間中央部温度(黒菱
で示すグラフ))に伴って一走査線画像長さ、即ち平均
倍率誤差が大きくなることを示している。一方、発熱量
の多い定着装置から隔たったMとYにおける結像光学系
の平均倍率誤差は温度上昇の影響をそれ程受けずに結像
光学系の倍率誤差が比較的小さいことを示している。
Here, the image length shown on the vertical axis is the image length when the above-mentioned two-point synchronization method is operated. Originally, by setting the pixel frequency by the conventional two-point synchronization method, even if the temperature rises, the magnification error of the imaging optical system should be corrected and the image length should be the same. As a result of experiments and studies, it has been found that a magnification error as shown on the vertical axis of FIG. 5 occurs due to an increase in the length between the synchronization detection means at both ends due to the rise. . The CMYK codes represent cyan, magenta, yellow, and black, respectively. According to the example of FIG. 5, the image forming optical system at K and C has a scanning line image length corresponding to the temperature rise of the image forming optical system (the temperature at the center between the KC synchronization detecting means (graph indicated by black diamonds)). That is, the average magnification error increases. On the other hand, the average magnification error of the imaging optical system at M and Y separated from the fixing device that generates a large amount of heat indicates that the magnification error of the imaging optical system is relatively small without being significantly affected by the temperature rise.

【0030】図6には本発明の実施形態に係る光学書き
込み装置における、2点同期方式の倍率誤差ずれ補正に
加えて同期検知手段間の位置間隔の変化に因る作像ずれ
を修正する動作系統図を示す。カウンタ回路50は、上
流側の同期検知手段からの信号でカウントを開始し且つ
下流側の同期検知手段からの信号でカウントを終了する
カウンタであり、カウンタ回路のカウント値をラッチ回
路51でラッチして、パラレルシリアル変換回路52を
経て、メインCPU53にカウント値を入力する。メイ
ンCPU53では、入力されたカウント値に基づいてレ
ーザダイオードの画周波数をどのような値に設定すれば
一走査線当たりの感光体上での画像長さが所定の基準長
さになるかが予め設計値としてメモリされているので、
前記入力されたカウント値による演算によって画周波数
設定回路56で所定の画周波数が出力されるように指示
を与えるように動作する。以上のような動作が2点同期
方式の倍率誤差のずれ補正である。
FIG. 6 shows the operation of the optical writing apparatus according to the embodiment of the present invention for correcting the image forming deviation due to the change in the position interval between the synchronization detecting means in addition to the correction of the magnification error deviation of the two-point synchronization method. The system diagram is shown. The counter circuit 50 is a counter that starts counting with a signal from the upstream synchronization detecting unit and ends counting with a signal from the downstream synchronization detecting unit. The count value of the counter circuit is latched by the latch circuit 51. Then, the count value is input to the main CPU 53 via the parallel / serial conversion circuit 52. The main CPU 53 determines in advance what value the image frequency of the laser diode should be set based on the input count value so that the image length on the photoconductor per one scanning line becomes a predetermined reference length. Since it is stored as a design value,
The image frequency setting circuit 56 operates so as to give an instruction to output a predetermined image frequency by the calculation based on the input count value. The above operation is the correction of the deviation of the magnification error in the two-point synchronization method.

【0031】本発明の実施形態では、2点同期方式の開
始端同期検知手段と終了端同期検知手段との間の位置間
隔が温度により伸縮することに着目して前記位置間隔に
よる修正をも解決課題とするものであり、図6に示すよ
うに、前記位置間隔の伸縮度合いの起因となる温度セン
サ20−1,20−2(図6に示す温度検出回路54は
図2に示す温度センサ20−1,20−2からの信号を
演算処理する回路)を例えば両同期検知手段の中央部に
設けて、前記温度検出回路54からの温度信号をメイン
CPUに入力する。更に、図5に示すような、前記温度
検出回路54による温度と一走査線の画像長さ(画像長
さは結像光学系の倍率誤差に換算することができる)と
の関係を予め画像形成装置毎に求めておき、その関係を
テーブルとしてメモリ55に保持しておく。
In the embodiment of the present invention, the correction by the position interval is also solved by focusing on the fact that the position interval between the start-end synchronization detection means and the end-end synchronization detection means of the two-point synchronization method expands and contracts depending on the temperature. As shown in FIG. 6, the temperature sensors 20-1 and 20-2 (the temperature detecting circuit 54 shown in FIG. -1 and 20-2) are provided, for example, at the center of both synchronization detecting means, and the temperature signal from the temperature detecting circuit 54 is input to the main CPU. Further, as shown in FIG. 5, the relationship between the temperature detected by the temperature detection circuit 54 and the image length of one scanning line (the image length can be converted into a magnification error of the imaging optical system) is formed in advance by image formation. The relationship is obtained for each device, and the relationship is stored in the memory 55 as a table.

【0032】メモリ55に保持された温度−倍率誤差関
係表(テーブル)は、温度検出回路54で測定された温
度上昇で結像光学系の倍率誤差の数値がどの程度生じた
かが予め求められているものであるので、メインCPU
53は、温度検出回路54からの温度信号によって前記
テーブルを参照することで、倍率誤差の修正分を求める
ことができる。このように求めた倍率誤差の修正分は、
温度検出回路54の温度が上昇してもその上昇に関わる
結像光学系において倍率誤差が生じないように結果的に
修正しようとするものである。
The temperature-magnification error relation table (table) held in the memory 55 determines in advance how much the numerical value of the magnification error of the imaging optical system has occurred due to the temperature rise measured by the temperature detection circuit 54. The main CPU
The reference number 53 can determine the correction amount of the magnification error by referring to the table based on the temperature signal from the temperature detection circuit 54. The correction of the magnification error obtained in this way is
Even if the temperature of the temperature detecting circuit 54 rises, it is intended to correct the error so that a magnification error does not occur in the imaging optical system related to the rise.

【0033】従って、図5及び図6に示す本発明の実施
形態では、各結像光学系による作像の倍率誤差のずれを
2点同期方式を用いて補正するとともに、定着装置等に
よる温度上昇の影響で同期検知手段間の位置間隔が変化
することに因る倍率誤差のずれをも修正しようとするも
のである。そのために、本実施形態によると、2点同期
方式による結像光学系の倍率誤差のずれ補正制御装置を
用いて、同期検知手段間の位置間隔の変化原因となる温
度変化を検知するために、同期検知手段間の例えば中央
部に温度センサを設置し、更に、温度−倍率誤差関係表
を備えたメモリ55を設置して、作像ずれのない所望の
画周波数を出力するように画周波数設定回路56に指示
を与えるメインCPU53が、前記温度検出回路54と
メモリ55に接続されているものである。
Therefore, in the embodiment of the present invention shown in FIGS. 5 and 6, the deviation of the magnification error of the image formation by each imaging optical system is corrected by using the two-point synchronization method, and the temperature rise by the fixing device or the like is performed. In this case, the deviation of the magnification error caused by the change of the position interval between the synchronization detecting means due to the influence of the above-mentioned is intended to be corrected. For this reason, according to the present embodiment, in order to detect a temperature change that causes a change in the position interval between the synchronization detection units, using the deviation correction control device for the magnification error of the imaging optical system using the two-point synchronization method, A temperature sensor is installed, for example, at the center between the synchronization detecting means, and a memory 55 having a temperature-magnification error relation table is installed, and the image frequency is set so as to output a desired image frequency without image shift. A main CPU 53 for giving an instruction to a circuit 56 is connected to the temperature detection circuit 54 and the memory 55.

【0034】なお、図6においてパラレルシリアル変換
回路52は本実施形態で必ずしも不可欠な構成というこ
とでない。更に、本実施形態は、レーザーを用いたカラ
ープリンタにおける色ずれについて説明したが、これに
限らず、2色の画像形成装置にも適用可能であり、単色
の多走査ビームを用いる広幅機にも適用できる、複数の
光ビーム毎に結像光学系を有する画像形成装置の技術で
ある。
In FIG. 6, the parallel-serial conversion circuit 52 is not necessarily an indispensable configuration in the present embodiment. Further, the present embodiment has described the color misregistration in a color printer using a laser. However, the present invention is not limited to this and can be applied to a two-color image forming apparatus, and can be applied to a wide-area machine using a single-color multi-scanning beam. This is an applicable technique of an image forming apparatus having an image forming optical system for each of a plurality of light beams.

【0035】[0035]

【発明の効果】本発明によれば、画像形成装置におい
て、定着装置等の影響による装置内部の温度変動、装置
の使用時間による経時的な装置内の温度変動、装置の設
置環境による装置内の温度変動等に因る各々の結像光学
系による倍率誤差のずれを補正することができる。
According to the present invention, in an image forming apparatus, a temperature fluctuation inside the apparatus due to the influence of a fixing device, etc., a temperature fluctuation inside the apparatus over time due to the use time of the apparatus, and a temperature fluctuation inside the apparatus due to an installation environment of the apparatus. It is possible to correct a deviation of a magnification error caused by each imaging optical system due to a temperature change or the like.

【0036】加えて、2点同期方式に用いる2つの同期
検知手段間の位置間隔が、前述した装置内の温度変動に
よって変化した場合においても、作像のずれを修正する
ことができる。
In addition, even when the position interval between the two synchronization detecting means used in the two-point synchronization system changes due to the above-mentioned temperature fluctuation in the apparatus, it is possible to correct the deviation of the image formation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る第1結像光学系と第2
結像光学系からなる光ビーム走査装置を備えたカラープ
リンタの全体構成を示す図である。
FIG. 1 illustrates a first imaging optical system and a second imaging optical system according to an embodiment of the present invention.
FIG. 1 is a diagram illustrating an overall configuration of a color printer including a light beam scanning device including an imaging optical system.

【図2】本実施形態に係るポリゴンスキャナ、一対の結
像光学系、同期検知手段及び温度センサの具体的配置を
示す図である。
FIG. 2 is a diagram illustrating a specific arrangement of a polygon scanner, a pair of imaging optical systems, a synchronization detecting unit, and a temperature sensor according to the embodiment.

【図3】複数感光体、複数ポリゴンスキャナ、複数結像
光学系を備えた4連ドラム方式の光ビーム走査装置を示
す図である。
FIG. 3 is a diagram illustrating a four-drum light beam scanning device including a plurality of photoconductors, a plurality of polygon scanners, and a plurality of imaging optical systems.

【図4】複数感光体、複数ポリゴンスキャナ、複数結像
光学系を備えた中間転写方式の光ビーム走査装置を示す
図である。
FIG. 4 is a diagram illustrating an intermediate transfer type light beam scanning device including a plurality of photoconductors, a plurality of polygon scanners, and a plurality of imaging optical systems.

【図5】本実施形態に関わる各結像光学系の平均倍率誤
差と同期検知手段間温度との関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between an average magnification error of each imaging optical system and a temperature between synchronization detection units according to the embodiment.

【図6】本発明の実施形態に係る結像光学系の倍率誤差
のずれ補正に加えて同期検知手段間位置間隔の変化に基
づいて作像のずれを修正する動作系統図を示す図であ
る。
FIG. 6 is a diagram showing an operation system for correcting a shift in image formation based on a change in a position interval between synchronization detecting means in addition to a shift correction of a magnification error of the imaging optical system according to the embodiment of the present invention. .

【符号の説明】[Explanation of symbols]

1 ポリゴンスキャナ 2−1 第1結像光学系 2−2 第2結像光学系 4 感光体 5,6 fθレンズ 15−1,15−3 上流側同期検知手段 15−2,15−4 下流側同期検知手段 16 定着装置 20−1,20−2 温度センサ 50 カウンタ回路 51 ラッチ回路 52 パラレルシリアル変換回路 53 メインCPU 54 温度検出回路 55 メモリ 56 画周波数設定回路 Reference Signs List 1 polygon scanner 2-1 first imaging optical system 2-2 second imaging optical system 4 photoreceptor 5, 6 fθ lens 15-1, 15-3 upstream synchronization detection means 15-2, 15-4 downstream Synchronization detecting means 16 Fixing device 20-1, 20-2 Temperature sensor 50 Counter circuit 51 Latch circuit 52 Parallel-serial conversion circuit 53 Main CPU 54 Temperature detection circuit 55 Memory 56 Image frequency setting circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G03G 15/04 G03G 15/04 120 5C072 15/043 B41J 3/00 M 5C074 H04N 1/04 H04N 1/04 104A 1/113 D 1/23 103 (72)発明者 司城 浩保 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2C362 AA46 BA51 BA52 BA69 BA70 BB30 BB32 BB37 BB38 CA22 CA39 2H027 DA11 DB01 DE02 DE07 DE09 EA02 EB04 EB06 EC02 EC06 EC07 EC19 ED04 ZA07 2H030 AA01 AB02 AD17 BB02 BB16 BB23 2H045 BA22 BA34 CA88 CA99 DA41 2H076 AB05 AB06 AB08 AB12 AB22 AB33 DA41 5C072 AA03 BA19 HA02 HA13 HB08 HB11 HB13 XA05 5C074 AA10 BB03 CC22 DD24 EE02 EE06 EE08 FF15 GG12 HH02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G03G 15/04 G03G 15/04 120 5C072 15/043 B41J 3/00 M 5C074 H04N 1/04 H04N 1/04 104A 1/113 D 1/23 103 (72) Inventor Hiroho Shijo 1-3-6 Nakamagome, Ota-ku, Tokyo F-term in Ricoh Co., Ltd. (Reference) 2C362 AA46 BA51 BA52 BA69 BA70 BB30 BB32 BB37 BB38 CA22 CA39 2H027 DA11 DB01 DE02 DE07 DE09 EA02 EB04 EB06 EC02 EC06 EC07 EC19 ED04 ZA07 2H030 AA01 AB02 AD17 BB02 BB16 BB23 2H045 BA22 BA34 CA88 CA99 DA41 2H076 AB05 AB06 AB08 AB12 AB22 AB33 DA41 5C072 AA13B13 HA13 A19B13 HA3 EE02 EE06 EE08 FF15 GG12 HH02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の結像光学系からの光ビーム走査に
より感光体上に得た潜像を可視像化し、これらの可視像
を転写紙に重ね転写して画像を得る画像形成装置におい
て、 各結像光学系に設けた光ビームの2点同期検知手段から
の信号に基づいて、前記各結像光学系の倍率誤差のずれ
を補正するとともに、 前記2点同期検知手段の間の温度を検出する温度センサ
からの信号に基づいて、前記感光体上の作像長さのずれ
を修正することを特徴とする画像形成装置。
An image forming apparatus that visualizes latent images obtained on a photosensitive member by scanning light beams from a plurality of image forming optical systems, and superimposes these visible images on a transfer paper to obtain an image. In the above, based on the signal from the two-point synchronization detecting means of the light beam provided in each imaging optical system, the deviation of the magnification error of each of the imaging optical systems is corrected, and An image forming apparatus, wherein a deviation of an image forming length on the photoconductor is corrected based on a signal from a temperature sensor for detecting a temperature.
【請求項2】 ポリゴンスキャナを用いて複数の結像光
学系からの光ビームを感光体に結像走査して潜像を形成
し、異なる色のトナーで可視像化し、前記可視像を転写
紙に重ね転写して多色画像を得る画像形成装置におい
て、 前記光ビームの走査開始端と走査終了端を検知する上流
側同期検知手段と下流側同期検知手段を設け、各結像光
学系の倍率誤差のずれを前記両同期検知手段からの信号
で検出し、前記各結像光学系の倍率誤差のずれを補正す
るとともに、 前記両同期検知手段の間の温度を検出する温度センサを
設け、前記感光体上の作像長さのずれを前記温度センサ
からの信号で検出し、前記温度センサの温度に因る同期
検知手段間の位置間隔のずれを修正することを特徴とす
る画像形成装置。
2. A latent image is formed by scanning light beams from a plurality of imaging optical systems on a photosensitive member using a polygon scanner to form a latent image, and the latent image is visualized with toners of different colors. An image forming apparatus for obtaining a multi-color image by superimposing and transferring the image on a transfer sheet, comprising: an upstream synchronization detection unit and a downstream synchronization detection unit for detecting a scanning start end and a scanning end end of the light beam; And a temperature sensor for detecting a temperature difference between the two synchronous detection means while detecting a deviation of the magnification error by a signal from the two synchronous detection means and correcting a deviation of the magnification error of each of the imaging optical systems. Image forming apparatus, wherein a deviation of an image forming length on the photoreceptor is detected by a signal from the temperature sensor, and a deviation of a position interval between the synchronization detecting means due to a temperature of the temperature sensor is corrected. apparatus.
【請求項3】 ポリゴンスキャナを用いて複数の結像光
学系からの光ビームを感光体に結像走査して潜像を形成
し、異なる色のトナーで可視像化し、前記可視像を転写
紙に重ね転写して多色画像を得る画像形成装置におい
て、 前記光ビームの走査開始端と走査終了端を検知する上流
側同期検知手段と下流側同期検知手段と、 前記両同期検知手段の間の温度を検出する温度センサか
らの信号を処理する温度検出回路と、 前記光ビーム走査による前記両同期検知手段からの検知
信号で画素クロック数をカウントするカウンタ回路と、 前記温度センサで検出される温度と前記感光体上の作像
長さの誤差との関係を表すテーブルを有したメモリと、 前記光ビーム光源の画周波数設定回路と、 前記カウンタ回路からのカウント値、前記温度検出回路
からの温度信号、前記メモリの前記テーブル、を入力と
して、前記画周波数設定回路に画周波数の指示を与える
メインCPUと、を備え、 前記メインCPUは、各結像光学系の倍率誤差のずれを
入力される前記カウント値で捉え、前記温度センサの温
度に因る同期検知手段間の位置間隔のずれを温度検出回
路と前記テーブルからの信号で捉えて、多色における色
ずれを補正・修正することを特徴とする画像形成装置。
3. A latent image is formed by forming light beams from a plurality of image forming optical systems on a photosensitive member using a polygon scanner to form a latent image, and visualizing the latent image with toners of different colors. In an image forming apparatus that obtains a multicolor image by over-transfer onto a transfer sheet, an upstream synchronization detection unit and a downstream synchronization detection unit that detect a scanning start end and a scanning end end of the light beam; A temperature detection circuit that processes a signal from a temperature sensor that detects a temperature between the counter, a counter circuit that counts the number of pixel clocks by a detection signal from the two synchronization detection units based on the light beam scanning, and that is detected by the temperature sensor. A memory having a table indicating the relationship between the temperature of the photosensitive member and the error of the image forming length on the photosensitive member; an image frequency setting circuit of the light beam light source; a count value from the counter circuit; And a main CPU that receives the temperature signal and the table of the memory as input, and provides an instruction of an image frequency to the image frequency setting circuit, wherein the main CPU detects a deviation of a magnification error of each imaging optical system. Correcting and correcting color misregistration in multiple colors by capturing the shift in the position interval between the synchronization detecting means due to the temperature of the temperature sensor by capturing the input count value and the signal from the temperature detection circuit and the table. An image forming apparatus comprising:
JP2001180610A 2001-06-14 2001-06-14 Image forming device by two-point synchronization detection Pending JP2002372676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001180610A JP2002372676A (en) 2001-06-14 2001-06-14 Image forming device by two-point synchronization detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001180610A JP2002372676A (en) 2001-06-14 2001-06-14 Image forming device by two-point synchronization detection

Publications (1)

Publication Number Publication Date
JP2002372676A true JP2002372676A (en) 2002-12-26

Family

ID=19021007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180610A Pending JP2002372676A (en) 2001-06-14 2001-06-14 Image forming device by two-point synchronization detection

Country Status (1)

Country Link
JP (1) JP2002372676A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198935A (en) * 2005-01-21 2006-08-03 Ricoh Co Ltd Image forming device
US7830407B2 (en) 2005-12-13 2010-11-09 Brother Kogyo Kabushiki Kaisha Image forming apparatus
US8107833B2 (en) 2005-11-11 2012-01-31 Ricoh Company, Ltd. Image forming apparatus and method of correcting color misregistration in image forming apparatus
JP2016153203A (en) * 2015-02-20 2016-08-25 京セラドキュメントソリューションズ株式会社 Image formation apparatus
JP2017037216A (en) * 2015-08-11 2017-02-16 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198935A (en) * 2005-01-21 2006-08-03 Ricoh Co Ltd Image forming device
JP4738002B2 (en) * 2005-01-21 2011-08-03 株式会社リコー Image forming apparatus
US8107833B2 (en) 2005-11-11 2012-01-31 Ricoh Company, Ltd. Image forming apparatus and method of correcting color misregistration in image forming apparatus
US7830407B2 (en) 2005-12-13 2010-11-09 Brother Kogyo Kabushiki Kaisha Image forming apparatus
JP2016153203A (en) * 2015-02-20 2016-08-25 京セラドキュメントソリューションズ株式会社 Image formation apparatus
JP2017037216A (en) * 2015-08-11 2017-02-16 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
JP5253049B2 (en) Color image forming apparatus and color misregistration correction method thereof
JP2013240994A (en) Image forming apparatus for correcting displacement between laser beams
US9046848B2 (en) Image forming apparatus and color registration method of the same
JP2003098797A (en) Image forming apparatus and its color slippage correcting method
KR20140103516A (en) Polygon mirror, light scanning unit employing the same, and electrophotograpohic image forming apparatus
JP2002137450A (en) Imaging apparatus
JP2003200609A (en) Image forming apparatus
JP2002372676A (en) Image forming device by two-point synchronization detection
JP2008129486A (en) Exposure apparatus, image forming apparatus and adjusting apparatus
JP4849878B2 (en) Misalignment correction method and color image forming apparatus
JP2005173253A (en) Image forming apparatus
JP4490903B2 (en) Image forming apparatus
JP6486430B2 (en) Image forming apparatus for correcting misalignment between laser beams
JP2006297767A (en) Image formation device
JP7100486B2 (en) Image forming device
JP2004174915A (en) Image formation apparatus
JPH1138719A (en) Color image forming device
JP4713310B2 (en) Control method of optical device
JP2007286357A (en) Image forming apparatus
JP2009300604A (en) Color image forming apparatus
JP2004243700A (en) Image forming apparatus
JP2002244394A (en) Image forming apparatus
JP2007296782A (en) Image forming apparatus
JP4396188B2 (en) Timing control apparatus and image forming apparatus
JP2004330585A (en) Image forming apparatus