JP2002367629A - Electrode structure for solid polymer furl cell - Google Patents

Electrode structure for solid polymer furl cell

Info

Publication number
JP2002367629A
JP2002367629A JP2001176696A JP2001176696A JP2002367629A JP 2002367629 A JP2002367629 A JP 2002367629A JP 2001176696 A JP2001176696 A JP 2001176696A JP 2001176696 A JP2001176696 A JP 2001176696A JP 2002367629 A JP2002367629 A JP 2002367629A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrode structure
electrode
polymer
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001176696A
Other languages
Japanese (ja)
Other versions
JP3607221B2 (en
Inventor
Masaaki Nanaumi
昌昭 七海
Yoichi Asano
洋一 浅野
Nobuyuki Kaneoka
長之 金岡
Hiroshi Soma
浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001176696A priority Critical patent/JP3607221B2/en
Publication of JP2002367629A publication Critical patent/JP2002367629A/en
Application granted granted Critical
Publication of JP3607221B2 publication Critical patent/JP3607221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Polyethers (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure for solid polymer furl cell having a cheap polymer electrolyte film made of ion conductive material, with excellent power generating property. SOLUTION: For the electrode structure for solid polymer furl cell, a polymer electrolyte film has repeating units expressed by the formula 1 or the formula 2, and composed of a sulfonated compound of polyether group of which, the range of molecular weight is 10,000-1,000,000. An electrode catalyst layer contains platinum within a range of 0.01-0.6 mg/cm<2> , and the range of average diameter of carbon grain is 10-100 nm. In the formulae, X represents an electron attractive radical, R1 and R2 represent H or hydrocarbon radical with one valence, R3 -R6 represent H, halogen atom, or cyanic radical, a and b represent integers of 0-4, C is 0 or 1, d is 1 or 2. As for Y, 2,5-dihydroxybiphenyl, 4,4'- dichlorobenzophenone, 4,4'-(9H-fluorene-9-ylidene)bisphenol and the like are shown as examples.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池に用いられる電極構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure used for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】石油資源が枯渇化する一方、化石燃料の
消費による地球温暖化等の環境問題が深刻化しており、
二酸化炭素の発生を伴わないクリーンな電動機用電力源
として燃料電池が注目されて広範に開発されると共に、
一部では実用化され始めている。前記燃料電池を自動車
等に搭載する場合には、高電圧と大電流とが得やすいこ
とから、高分子電解質膜を用いる固体高分子型燃料電池
が好適に用いられる。
2. Description of the Related Art While petroleum resources are being depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious.
Fuel cells have attracted attention as a clean power source for electric motors without the generation of carbon dioxide, and have been widely developed.
Some have begun to be commercialized. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current are easily obtained.

【0003】前記固体高分子型燃料電池に用いる電極構
造体として、白金等の触媒がカーボンブラック等の触媒
担体に担持されイオン導伝性高分子バインダーにより一
体化されることにより形成されている一対の電極触媒層
を備え、両電極触媒層の間にイオン導伝可能な高分子電
解質膜を挟持すると共に、各電極触媒層の上に、拡散層
を積層したものが知られている。前記電極構造体は、さ
らに各電極触媒層の上に、ガス通路を兼ねたセパレータ
を積層することにより、固体高分子型燃料電池を構成す
る。
As an electrode structure used in the polymer electrolyte fuel cell, a pair of catalysts such as platinum is formed by carrying a catalyst such as platinum on a catalyst carrier such as carbon black and integrated with an ion-conductive polymer binder. There is known an electrode catalyst layer in which an ion-conductive polymer electrolyte membrane is sandwiched between both electrode catalyst layers, and a diffusion layer is laminated on each electrode catalyst layer. The electrode structure further constitutes a polymer electrolyte fuel cell by stacking a separator also serving as a gas passage on each electrode catalyst layer.

【0004】前記固体高分子型燃料電池では、一方の電
極触媒層を燃料極として前記拡散層を介して水素、メタ
ノール等の還元性ガスを導入すると共に、他方の電極触
媒層を酸素極として前記拡散層を介して空気、酸素等の
酸化性ガスを導入する。このようにすると、燃料極側で
は、前記電極触媒層に含まれる触媒の作用により、前記
還元性ガスからプロトンが生成し、前記プロトンは前記
高分子電解質膜を介して、前記酸素極側の電極触媒層に
移動する。そして、前記プロトンは、前記酸素極側の電
極触媒層で、前記電極触媒層に含まれる触媒の作用によ
り、該酸素極に導入される前記酸化性ガスと反応して水
を生成する。従って、前記燃料極と酸素極とを導線によ
り接続することにより電流を取り出すことができる。
In the polymer electrolyte fuel cell, a reducing gas such as hydrogen or methanol is introduced through the diffusion layer using one electrode catalyst layer as a fuel electrode, and the other electrode catalyst layer is used as an oxygen electrode. An oxidizing gas such as air or oxygen is introduced through the diffusion layer. With this configuration, on the fuel electrode side, protons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the polymer electrolyte membrane to the electrode on the oxygen electrode side. Move to the catalyst layer. Then, the protons react with the oxidizing gas introduced into the oxygen electrode in the electrode catalyst layer on the oxygen electrode side by the action of a catalyst contained in the electrode catalyst layer to generate water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode with a conducting wire.

【0005】従来、前記電極構造体では、前記高分子電
解質膜としてパーフルオロアルキレンスルホン酸高分子
化合物(例えば、デュポン社製ナフィオン(商品名))
が広く利用されている。前記パーフルオロアルキレンス
ルホン酸高分子化合物は、スルホン化されていることに
より優れたプロトン導伝性を備えると共に、フッ素樹脂
としての耐薬品性とを併せ備えているが、非常に高価で
あるとの問題がある。
Conventionally, in the above electrode structure, a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) is used as the polymer electrolyte membrane.
Is widely used. The perfluoroalkylenesulfonic acid polymer compound has excellent proton conductivity due to being sulfonated, and also has chemical resistance as a fluororesin, but is very expensive. There's a problem.

【0006】そこで、パーフルオロアルキレンスルホン
酸高分子化合物に代わる廉価なイオン導伝性材料を用い
て、固体高分子型燃料電池用電極構造体を構成すること
が検討されている。
Therefore, it has been studied to construct an electrode structure for a polymer electrolyte fuel cell using an inexpensive ion conductive material instead of a perfluoroalkylenesulfonic acid polymer compound.

【0007】前記廉価なイオン導伝性材料として、例え
ば、ポリエーテルケトンやポリベンゾイミダゾールをス
ルホン化したものがある。しかしながら、前記イオン導
伝性材料はいずれもイオン導電性に劣り、該イオン導伝
性材料からなる高分子電解質膜を備える電極構造体では
十分な発電性能が得られないという不都合がある。
As the inexpensive ion conductive material, there is, for example, a material obtained by sulfonating polyether ketone or polybenzimidazole. However, the above-mentioned ion-conductive materials are all inferior in ionic conductivity, and there is a disadvantage that sufficient power generation performance cannot be obtained with an electrode structure provided with a polymer electrolyte membrane made of the ion-conductive material.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、廉価なイオン導伝性材料からなる高分子
電解質膜を備えると共に、優れた発電性能を備える固体
高分子型燃料電池用電極構造体を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned disadvantages, and provides a polymer electrolyte membrane made of an inexpensive ion-conductive material and a solid polymer fuel cell having excellent power generation performance. An object is to provide an electrode structure.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の固体高分子型燃料電池用電極構造体は、
触媒としての白金粒子を担持させた炭素粒子を含む一対
の電極触媒層と、両電極触媒層に挟持された高分子電解
質膜とを備える固体高分子型燃料電池用電極構造体にお
いて、前記高分子電解質膜は、一般式(1)または一般
式(2)で表される繰返し単位を備え、重量平均分子量
が1万〜100万の範囲にあるポリエーテル系重合体の
スルホン化物からなり、前記電極触媒層は0.01〜
0.6mg/cm2の範囲の白金を含有すると共に、前
記炭素粒子の平均径が10〜100nmの範囲にあるこ
とを特徴とする。
In order to achieve the above object, an electrode structure for a polymer electrolyte fuel cell according to the present invention is provided.
An electrode structure for a polymer electrolyte fuel cell, comprising: a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst; and a polymer electrolyte membrane sandwiched between both electrode catalyst layers. The electrolyte membrane includes a repeating unit represented by the general formula (1) or (2), and is formed of a sulfonated polyether-based polymer having a weight average molecular weight in the range of 10,000 to 1,000,000. The catalyst layer is 0.01 ~
It is characterized in that it contains platinum in the range of 0.6 mg / cm 2 and the carbon particles have an average diameter of 10 to 100 nm.

【0010】[0010]

【化5】 Embedded image

【0011】[0011]

【化6】 Embedded image

【0012】前記一般式(1)または一般式(2)で表
される繰返し単位からなるポリエーテル系重合体は、分
子構造中にフッ素を含まないので廉価であり、前記高分
子電解質膜を構成するスルホン化物は該ポリエーテル系
重合体をスルホン化することにより得られる。尚、本明
細書において、前記電子吸引性基とは、−CO−、−C
ONH−、−(CF2p−(pは1〜10の整数)、−
C(CF32−、−COO−、−SO−、−SO2−等
のハメット置換基常数がフェニル基のメタ位では0.0
6以上、フェニル基のパラ位では0.01以上の値とな
る2価の基をいう。
The polyether polymer comprising a repeating unit represented by the above general formula (1) or (2) is inexpensive because it does not contain fluorine in its molecular structure, and constitutes the polymer electrolyte membrane. Is obtained by sulfonating the polyether-based polymer. In the present specification, the electron-withdrawing group is -CO-, -C
ONH -, - (CF 2) p - (p is an integer of from 1 to 10), -
The Hammett's substituent constant such as C (CF 3 ) 2- , -COO-, -SO-, -SO 2- is 0.0 at the meta position of the phenyl group.
A divalent group having a value of 6 or more and a value of 0.01 or more in the para position of the phenyl group.

【0013】前記ポリエーテル系重合体は、スルホン化
後に成膜して前記高分子電解質膜を構成するために、重
量平均分子量が1万〜100万の範囲にあることが必要
である。前記ポリエーテル系重合体は、重量平均分子量
が1万未満では膜としての機械的強度が不十分であり、
100万を超えると溶媒に対する溶解性が不十分になり
成膜自体が困難になる。
The polyether polymer needs to have a weight average molecular weight in the range of 10,000 to 1,000,000 in order to form the polymer electrolyte membrane by forming a film after sulfonation. If the weight average molecular weight of the polyether polymer is less than 10,000, the mechanical strength as a film is insufficient,
If it exceeds 1,000,000, the solubility in a solvent becomes insufficient and the film formation itself becomes difficult.

【0014】本発明の電極構造体は、前記ポリエーテル
系重合体のスルホン化物を前記高分子電解質膜とすると
共に、該高分子電解質膜を挟持する電極触媒層が、触媒
として0.01〜0.6mg/cm2の範囲の白金を含
有すると共に、前記白金の触媒担体となる炭素粒子の平
均径が10〜100nmの範囲にあることにより、優れ
た発電性能を得ることができる。
In the electrode structure of the present invention, the polyether polymer sulfonate is used as the polymer electrolyte membrane, and the electrode catalyst layer sandwiching the polymer electrolyte membrane has a catalyst of 0.01 to 0 as a catalyst. Excellent power generation performance can be obtained by containing platinum in the range of 0.6 mg / cm 2 and the average diameter of the carbon particles serving as the platinum catalyst carrier being in the range of 10 to 100 nm.

【0015】前記白金の含有量が0.01mg/cm2
未満では十分な発電性能が得られず、0.6mg/cm
2を超えると前記白金が負触媒として作用し、前記高分
子電解質膜を構成する共重合体の劣化が促進される。
The platinum content is 0.01 mg / cm 2
If the amount is less than 0.6 mg / cm, sufficient power generation performance cannot be obtained.
If it exceeds 2 , the platinum acts as a negative catalyst, and the deterioration of the copolymer constituting the polymer electrolyte membrane is promoted.

【0016】また、前記炭素粒子の平均径が10nm未
満では前記白金の分散性が低減し、100nmを超える
と活性化過電圧が大きくなって、共に十分な発電性能が
得られない。
When the average diameter of the carbon particles is less than 10 nm, the dispersibility of the platinum is reduced. When the average diameter exceeds 100 nm, the activation overpotential becomes large, and sufficient power generation performance cannot be obtained.

【0017】また、本発明の電極構造体において、前記
高分子電解質膜を構成する前記ポリエーテル系重合体の
スルホン化物は、イオン導伝性と靱性とを好ましい範囲
とするために、スルホン酸基を1.5〜3.5ミリグラ
ム当量/gの範囲で含有することが好ましい。前記共重
合体が含有するスルホン酸基の量が0.5ミリグラム当
量/g未満では十分なイオン導伝性が得られないことが
あり、3.5ミリグラム当量/gを超えると十分な耐久
性が得られないことがある。
Further, in the electrode structure of the present invention, the sulfonated product of the polyether polymer constituting the polymer electrolyte membrane has a sulfonic acid group in order to keep ion conductivity and toughness in a preferable range. Is preferably contained in the range of 1.5 to 3.5 milligram equivalent / g. If the amount of the sulfonic acid group contained in the copolymer is less than 0.5 milligram equivalent / g, sufficient ion conductivity may not be obtained, and if it exceeds 3.5 milligram equivalent / g, sufficient durability may be obtained. May not be obtained.

【0018】前記ポリエーテル系重合体は、例えば、芳
香族活性ジハライド化合物と、2価フェノール化合物と
の重合による共重合体として得ることができる。前記芳
香族活性ジハライド化合物としては、前記一般式(1)
に対応するモノマーとして、4,4’−ジクロロベンゾ
フェノン等を挙げることができる。
The polyether polymer can be obtained, for example, as a copolymer by polymerization of an aromatic active dihalide compound and a dihydric phenol compound. As the aromatic active dihalide compound, the compound represented by the general formula (1)
And 4,4'-dichlorobenzophenone.

【0019】また、前記2価フェノール化合物として
は、前記一般式(3)に対応するモノマーとして、2,
5−ジヒドロキシビフェニル、2,5−ジヒドロキシ−
メチルビフェニル等、前記一般式(4)に対応するモノ
マーとして、5,5’−(1−メチルエチリデン)ビス
〔1,1’−(ビフェニル)−2−オール〕等、前記一
般式(4)に対応するモノマーとして、4,4’−ジク
ロロベンゾフェノンと、4,4’−(9H−フルオレン
−9−イリデン)ビスフェノール、4,4’−ジクロロ
ベンゾフェノンと、4,4’−(9H−フルオレン−9
−イリデン)ビス〔1−メチルフェノール〕等を挙げる
ことができる。
Further, as the dihydric phenol compound, monomers corresponding to the general formula (3) include 2,2.
5-dihydroxybiphenyl, 2,5-dihydroxy-
Examples of the monomer corresponding to the general formula (4) such as methylbiphenyl include the general formula (4) such as 5,5 ′-(1-methylethylidene) bis [1,1 ′-(biphenyl) -2-ol]. As monomers corresponding to 4,4'-dichlorobenzophenone, 4,4 '-(9H-fluorene-9-ylidene) bisphenol, 4,4'-dichlorobenzophenone, and 4,4'-(9H-fluorene- 9
-Ylidene) bis [1-methylphenol] and the like.

【0020】本発明の電極構造体は、一方の面に酸化性
ガスを供給すると共に、他方の面に還元性ガスを供給す
ることにより発電する固体高分子型燃料電池を構成する
ことができる。
The electrode structure of the present invention can constitute a polymer electrolyte fuel cell which generates electricity by supplying an oxidizing gas to one surface and a reducing gas to the other surface.

【0021】[0021]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は本実施形態の電極構造体の構成を示す説明的断面図
であり、図2は本実施形態の電極構造体の発電性能を示
すグラフである。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the electrode structure of the present embodiment, and FIG. 2 is a graph showing the power generation performance of the electrode structure of the present embodiment.

【0022】本実施形態の電極構造体は、図1示のよう
に、一対の電極触媒層1,1と、両電極触媒層1,1に
挟持された高分子電解質膜2と、各電極触媒層1,1の
上に積層された拡散層3,3とからなる。
As shown in FIG. 1, the electrode structure of the present embodiment comprises a pair of electrode catalyst layers 1, 1; a polymer electrolyte membrane 2 sandwiched between the two electrode catalyst layers 1, 1; And diffusion layers 3 and 3 laminated on the layers 1 and 1.

【0023】本実施形態では、前記電極構造体を次のよ
うにして製造した。
In this embodiment, the electrode structure was manufactured as follows.

【0024】まず、次式(6)で示される4,4’−ジ
クロロベンゾフェノンと、次式(7)で示される4,
4’−(9H−フルオレン−9−イリデン)ビスフェノ
ールとを、50:50の重合比で重合させて次式(8)
で示されるポリエーテル系共重合体を得た。
First, 4,4'-dichlorobenzophenone represented by the following formula (6) and 4,4'-dichlorobenzophenone represented by the following formula (7)
4 ′-(9H-fluorene-9-ylidene) bisphenol is polymerized at a polymerization ratio of 50:50 to obtain the following formula (8)
Was obtained.

【0025】[0025]

【化7】 Embedded image

【0026】次に、前記ポリエーテル系共重合体に濃硫
酸を加えてスルホン化し、イオン交換容量が2.1me
q/gのスルホン化物を得た。次に、前記ポリエーテル
系共重合体のスルホン化物を、N−メチルピロリドンに
溶解して高分子電解質溶液とし、該高分子電解質溶液か
らキャスト法により乾燥膜厚50μmの高分子電解質膜
2を作成した。
Next, concentrated sulfuric acid was added to the polyether copolymer to sulfonate it, and the ion exchange capacity was 2.1 me.
q / g of the sulfonate was obtained. Next, the sulfonated product of the polyether copolymer was dissolved in N-methylpyrrolidone to prepare a polymer electrolyte solution, and a polymer electrolyte membrane 2 having a dry film thickness of 50 μm was formed from the polymer electrolyte solution by a casting method. did.

【0027】次に、平均径50nmのカーボンブラック
(ファーネスブラック)に白金粒子を、カーボンブラッ
ク:白金=1:1の重量比で担持させ、触媒粒子を作成
した。次に、イオン導伝性バインダーとしてのパーフル
オロアルキレンスルホン酸高分子化合物(デュポン社製
ナフィオン(商品名))溶液に、前記触媒粒子を、イオ
ン導伝性バインダー:触媒粒子=8:5の重量比で均一
に分散させ、触媒ペーストを調製した。
Next, platinum particles were supported on carbon black (furnace black) having an average diameter of 50 nm at a weight ratio of carbon black: platinum = 1: 1 to prepare catalyst particles. Next, the catalyst particles were added to a solution of a perfluoroalkylenesulfonic acid polymer compound (Nafion (trade name) manufactured by DuPont) as an ion conductive binder, and the weight of the ion conductive binder: catalyst particles = 8: 5. The catalyst paste was prepared by uniformly dispersing the catalyst paste in the same ratio.

【0028】次に、カーボンブラックとポリテトラフル
オロエチレン(PTFE)粒子とを、カーボンブラッ
ク:PTFE粒子=4:6の重量比で混合し、得られた
混合物をエチレングリコールに均一に分散させたスラリ
ーをカーボンペーパーの片面に塗布、乾燥させて下地層
とし、該下地層とカーボンペーパーとからなる拡散層3
を2つ作成した。
Next, a slurry in which carbon black and polytetrafluoroethylene (PTFE) particles are mixed in a weight ratio of carbon black: PTFE particles = 4: 6, and the resulting mixture is uniformly dispersed in ethylene glycol Is applied on one side of carbon paper and dried to form an underlayer, and a diffusion layer 3 comprising the underlayer and carbon paper is formed.
Were created.

【0029】次に、各拡散層3上に、前記触媒ペースト
を、白金含有量が0.5mg/cm 2となるようにスク
リーン印刷し、乾燥させることにより電極触媒層1と
し、電極触媒層1と拡散層3とからなる一対の電極を作
成した。前記乾燥は、60℃で10分間の乾燥を行った
のち、120℃で60分間の減圧乾燥を行った。
Next, on each of the diffusion layers 3, the catalyst paste
With a platinum content of 0.5 mg / cm TwoSo that
The electrode catalyst layer 1 is formed by lean printing and drying.
Then, a pair of electrodes composed of the electrode catalyst layer 1 and the diffusion layer 3 is formed.
Done. The drying was performed at 60 ° C. for 10 minutes.
Thereafter, vacuum drying was performed at 120 ° C. for 60 minutes.

【0030】次に、高分子電解質膜2を前記電極の電極
触媒層1側で挟持し、ホットプレスを行って図1示の電
極構造体を得た。前記ホットプレスは、80℃、5MP
aで2分間の一次ホットプレスの後、160℃、4MP
aで1分間の二次ホットプレスを行った。
Next, the polymer electrolyte membrane 2 was sandwiched between the electrodes on the side of the electrode catalyst layer 1 and hot pressed to obtain the electrode structure shown in FIG. The hot press is 80 ° C, 5MP
After primary hot pressing for 2 minutes at 160 ° C, 4MP
The secondary hot pressing was performed for 1 minute at a.

【0031】本実施形態で得られた電極構造体は、拡散
層3,3の上にさらにガス通路を兼ねるセパレータを積
層することにより、固体高分子型燃料電池を構成するこ
とができる。
The electrode structure obtained in this embodiment can constitute a polymer electrolyte fuel cell by further laminating a separator also serving as a gas passage on the diffusion layers 3 and 3.

【0032】次に、本実施形態で得られた電極構造体
(実施例1)を単セルとして、発電性能を試験した。発
電性能の試験は、一方の拡散層3の側を酸素極として空
気を供給すると共に、他方の拡散層3の側を燃料極とし
て純水素を供給して発電を行い、電流密度1A/cm2
で200時間発電した後、電流密度1A/cm2でのセ
ル電位を測定することにより行った。発電条件は、温度
85℃、燃料極側の相対湿度40%、酸素極側の相対湿
度75%とした。
Next, the electrode structure obtained in this embodiment (Example 1) was used as a single cell to test the power generation performance. In the power generation performance test, power was generated by supplying air using the one diffusion layer 3 side as an oxygen electrode and supplying pure hydrogen using the other diffusion layer 3 side as a fuel electrode to generate a current density of 1 A / cm 2.
After generating power for 200 hours, the measurement was performed by measuring the cell potential at a current density of 1 A / cm 2 . The power generation conditions were a temperature of 85 ° C., a relative humidity of 40% on the fuel electrode side, and a relative humidity of 75% on the oxygen electrode side.

【0033】この結果、実施例1の電極構造体の前記セ
ル電位は0.60Vであった。結果を図2に示す。
As a result, the cell potential of the electrode structure of Example 1 was 0.60 V. The results are shown in FIG.

【0034】次に、他の実施形態として、前記式(7)
で示される4,4’−(9H−フルオレン−9−イリデ
ン)ビスフェノールに替えて、式(9)で示される4,
4’−(9H−フルオレン−9−イリデン)ビス〔2−
メチルフェノール〕を用いた以外は、前記実施形態と全
く同一にして、図1示の電極構造体を製造し、該電極構
造体(実施例2)を単セルとして、前記実施形態と全く
同一にして、発電性能を試験した。この結果、実施例2
の電極構造体の前記セル電位は0.61Vであった。結
果を図2に示す。
Next, as another embodiment, the above equation (7)
In place of the 4,4 ′-(9H-fluorene-9-ylidene) bisphenol represented by
4 '-(9H-fluoren-9-ylidene) bis [2-
1 was manufactured in exactly the same manner as in the above embodiment except that methyl phenol was used, and the electrode structure (Example 2) was made the same as the above embodiment as a single cell. Then, the power generation performance was tested. As a result, Example 2
The cell potential of the electrode structure was 0.61 V. The results are shown in FIG.

【0035】[0035]

【化8】 Embedded image

【0036】次に、比較のために、次式(10)で示さ
れるポリエーテルエーテルケトンからなる高分子電解質
膜2を用いた以外は、前記実施形態と全く同一にして、
図1示の電極構造体を製造し、該電極構造体(比較例
1)を単セルとして、前記実施形態と全く同一にして、
発電性能を試験した。この結果、比較例1の電極構造体
の前記セル電位は0.52Vであった。結果を図2に示
す。
Next, for comparison, the same as the above embodiment except that a polymer electrolyte membrane 2 made of polyetheretherketone represented by the following formula (10) was used.
The electrode structure shown in FIG. 1 was manufactured, and the electrode structure (Comparative Example 1) was used as a single cell.
The power generation performance was tested. As a result, the cell potential of the electrode structure of Comparative Example 1 was 0.52 V. The results are shown in FIG.

【0037】[0037]

【化9】 Embedded image

【0038】また、さらに比較のために、ポリベンゾイ
ミダゾールからなる高分子電解質膜2を用いた以外は、
前記実施形態と全く同一にして、図1示の電極構造体を
製造し、該電極構造体(比較例2)を単セルとして、前
記実施形態と全く同一にして、発電性能を試験した。こ
の結果、比較例2の電極構造体の前記セル電位は0.5
2Vであった。結果を図2に示す。
Further, for further comparison, except that the polymer electrolyte membrane 2 made of polybenzimidazole was used,
The electrode structure shown in FIG. 1 was manufactured exactly in the same manner as in the above embodiment, and the electrode structure (Comparative Example 2) was used as a single cell, and the power generation performance was tested in exactly the same manner as in the above embodiment. As a result, the cell potential of the electrode structure of Comparative Example 2 was 0.5
2V. The results are shown in FIG.

【0039】図2から、本実施形態の電極構造体は、ポ
リエーテルエーテルケトンからなる高分子電解質膜2を
用いた電極構造体(比較例1)またはポリベンゾイミダ
ゾールからなる高分子電解質膜2を用いた電極構造体
(比較例2)に比較して、格段に優れた発電性能を備え
ていることが明らかである。
As shown in FIG. 2, the electrode structure of the present embodiment is the same as the electrode structure using the polymer electrolyte membrane 2 made of polyetheretherketone (Comparative Example 1) or the polymer electrolyte membrane 2 made of polybenzimidazole. It is clear that the electrode structure has much better power generation performance than the electrode structure used (Comparative Example 2).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極構造体の構成を示す説明的断面
図。
FIG. 1 is an explanatory sectional view showing a configuration of an electrode structure of the present invention.

【図2】本発明の電極構造体の発電性能を示すグラフ。FIG. 2 is a graph showing the power generation performance of the electrode structure of the present invention.

【符号の説明】[Explanation of symbols]

1…電極触媒層、 2…高分子電解質膜。 1 ... electrode catalyst layer, 2 ... polymer electrolyte membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金岡 長之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 相馬 浩 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4J005 AA24 BA00 BD06 5H018 AA06 AS01 CC06 DD08 EE03 EE05 EE17 HH00 HH01 5H026 AA06 CX05 EE02 EE05 EE17 HH00 HH01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nagayuki Kanaoka 1-4-1 Chuo, Wako-shi, Saitama Pref. Honda Technology Laboratory Co., Ltd. (72) Inventor Hiroshi Soma 1-4-1 Chuo, Wako-shi, Saitama No. F-term in Honda R & D Co., Ltd. (reference) 4J005 AA24 BA00 BD06 5H018 AA06 AS01 CC06 DD08 EE03 EE05 EE17 HH00 HH01 5H026 AA06 CX05 EE02 EE05 EE17 HH00 HH01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】触媒としての白金粒子を担持させた炭素粒
子を含む一対の電極触媒層と、両電極触媒層に挟持され
た高分子電解質膜とを備える固体高分子型燃料電池用電
極構造体において、 前記高分子電解質膜は、一般式(1)または一般式
(2)で表される繰返し単位を備え、重量平均分子量が
1万〜100万の範囲にあるポリエーテル系重合体のス
ルホン化物からなり、 前記電極触媒層は0.01〜0.6mg/cm2の範囲
の白金を含有すると共に、前記炭素粒子の平均径が10
〜100nmの範囲にあることを特徴とする固体高分子
型燃料電池用電極構造体。 【化1】 【化2】
1. An electrode structure for a polymer electrolyte fuel cell, comprising: a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst; and a polymer electrolyte membrane sandwiched between both electrode catalyst layers. In the above, the polymer electrolyte membrane includes a repeating unit represented by the general formula (1) or (2), and has a weight average molecular weight in the range of 10,000 to 1,000,000, and is a sulfonated product of a polyether polymer. The electrode catalyst layer contains platinum in the range of 0.01 to 0.6 mg / cm 2 and the carbon particles have an average diameter of 10
An electrode structure for a polymer electrolyte fuel cell, wherein the electrode structure is in the range of 100 nm to 100 nm. Embedded image Embedded image
【請求項2】前記ポリエーテル系重合体のスルホン化物
は、スルホン酸基を1.5〜3.5ミリグラム当量/g
の範囲で含有することを特徴とする請求項1記載の固体
高分子型燃料電池用電極構造体。
2. The sulfonated product of the polyether polymer has a sulfonic acid group content of 1.5 to 3.5 milligram equivalent / g.
The electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the electrode structure is contained in the range of:
【請求項3】前記ポリエーテル系重合体は、芳香族活性
ジハライド化合物と、2価フェノール化合物とを重合さ
せて得られる共重合体であることを特徴とする請求項1
または請求項2記載の固体高分子型燃料電池用電極構造
体。
3. The polyether-based polymer is a copolymer obtained by polymerizing an aromatic active dihalide compound and a dihydric phenol compound.
3. An electrode structure for a polymer electrolyte fuel cell according to claim 2.
【請求項4】前記ポリエーテル系重合体は、4,4’−
ジクロロベンゾフェノンと、4,4’−(9H−フルオ
レン−9−イリデン)ビスフェノールまたはその誘導体
とを重合させて得られる共重合体であることを特徴とす
る請求項1乃至請求項3のいずれか1項記載の固体高分
子型燃料電池用電極構造体。
4. The polyether-based polymer is 4,4′-
4. A copolymer obtained by polymerizing dichlorobenzophenone and 4,4 '-(9H-fluoren-9-ylidene) bisphenol or a derivative thereof, wherein the copolymer is obtained by polymerization. Item 8. The electrode structure for a polymer electrolyte fuel cell according to Item 1.
【請求項5】触媒としての白金粒子を担持させた炭素粒
子を含む一対の電極触媒層と、両電極触媒層に挟持され
た高分子電解質膜とを備え、前記高分子電解質膜は、一
般式(1)または一般式(2)で表される繰返し単位を
備え、重量平均分子量が1万〜100万の範囲にあるポ
リエーテル系重合体のスルホン化物からなり、前記電極
触媒層は0.01〜0.6mg/cm2の範囲の白金を
含有すると共に、前記炭素粒子の平均径が10〜100
nmの範囲にある電極構造体を備え、一方の面に酸化性
ガスを供給すると共に、他方の面に還元性ガスを供給す
ることにより発電することを特徴とする固体高分子型燃
料電池。 【化3】 【化4】
5. A catalyst comprising a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst, and a polymer electrolyte membrane sandwiched between both electrode catalyst layers, wherein the polymer electrolyte membrane has a general formula It comprises a sulfonated polyether polymer having a repeating unit represented by the general formula (1) or (2) and having a weight average molecular weight in the range of 10,000 to 1,000,000.白金 0.6 mg / cm 2, and the carbon particles have an average diameter of 10-100
A polymer electrolyte fuel cell comprising an electrode structure in the range of nm and supplying an oxidizing gas to one surface and supplying a reducing gas to the other surface to generate power. Embedded image Embedded image
JP2001176696A 2001-06-12 2001-06-12 Electrode structure for polymer electrolyte fuel cell Expired - Fee Related JP3607221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176696A JP3607221B2 (en) 2001-06-12 2001-06-12 Electrode structure for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176696A JP3607221B2 (en) 2001-06-12 2001-06-12 Electrode structure for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002367629A true JP2002367629A (en) 2002-12-20
JP3607221B2 JP3607221B2 (en) 2005-01-05

Family

ID=19017645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176696A Expired - Fee Related JP3607221B2 (en) 2001-06-12 2001-06-12 Electrode structure for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3607221B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033534A1 (en) * 2002-10-08 2004-04-22 Toyo Boseki Kabushiki Kaisha Polyarylene ether compound containing sulfonic acid group, composition containing same, and method for manufacturing those
EP1465277A1 (en) * 2003-03-19 2004-10-06 HONDA MOTOR CO., Ltd. Solid polymer electrolyte and protonconducting membrane
WO2005033182A1 (en) * 2003-10-02 2005-04-14 University Of Yamanashi Sulfonated aromatic polyethers, process for production thereof, and electrolyte membranes
JP2005158724A (en) * 2003-11-05 2005-06-16 Toray Ind Inc Polymer electrolyte membrane
JP2006176666A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd New sulfonate group-containing segmented block copolymer and application of the same
JP2007002016A (en) * 2005-06-21 2007-01-11 Toyobo Co Ltd Sulfonic acid group-containing polyarylene ether compound, application thereof, and method for producing the same
CN100336843C (en) * 2005-03-23 2007-09-12 中山大学 Sulfonated high polymer containing bisphenol fluorine, synthesis and application thereof
CN100344675C (en) * 2004-10-19 2007-10-24 中山大学 Sulfonated fluorine-containing poly-arylether (arone) and its preparing method and use
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation
CN101864070A (en) * 2010-07-02 2010-10-20 中山大学 Soluble polyarylether with high glass transition temperature and synthetic method thereof
CN101885840A (en) * 2010-07-02 2010-11-17 中山大学 Proton exchange membrane material with macro phase separation structure and synthesis method and application thereof
CN102117925A (en) * 2011-01-20 2011-07-06 中科院广州化学有限公司 Structure controllable phosphorylated polymer composite film used for vanadium battery and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754844B2 (en) 2002-10-08 2010-07-13 Toyo Boseki Kabushiki Kaisha Polyarylene ether compound containing sulfonic acid group, composition containing same, and method for manufacturing those
WO2004033534A1 (en) * 2002-10-08 2004-04-22 Toyo Boseki Kabushiki Kaisha Polyarylene ether compound containing sulfonic acid group, composition containing same, and method for manufacturing those
EP1465277A1 (en) * 2003-03-19 2004-10-06 HONDA MOTOR CO., Ltd. Solid polymer electrolyte and protonconducting membrane
US7030206B2 (en) 2003-03-19 2006-04-18 Honda Motor Co., Ltd. Polymer electrolyte and proton-conducting membrane
JPWO2005033182A1 (en) * 2003-10-02 2007-11-15 国立大学法人山梨大学 Sulfonated aromatic polyether, method for producing the same, and electrolyte membrane
WO2005033182A1 (en) * 2003-10-02 2005-04-14 University Of Yamanashi Sulfonated aromatic polyethers, process for production thereof, and electrolyte membranes
EP1669392A1 (en) * 2003-10-02 2006-06-14 University of Yamanashi Sulfonated aromatic polyethers, process for production thereof, and electrolyte membranes
JP4706023B2 (en) * 2003-10-02 2011-06-22 国立大学法人山梨大学 Sulfonated aromatic polyether, method for producing the same, and electrolyte membrane
KR100748049B1 (en) * 2003-10-02 2007-08-09 고쿠리츠다이가쿠호징 야마나시다이가쿠 Sulfonated aromatic polyethers, process for production thereof, and electrolyte membranes
EP1669392A4 (en) * 2003-10-02 2009-05-27 Univ Yamanashi Sulfonated aromatic polyethers, process for production thereof, and electrolyte membranes
JP2005158724A (en) * 2003-11-05 2005-06-16 Toray Ind Inc Polymer electrolyte membrane
CN100344675C (en) * 2004-10-19 2007-10-24 中山大学 Sulfonated fluorine-containing poly-arylether (arone) and its preparing method and use
JP2006176666A (en) * 2004-12-22 2006-07-06 Toyobo Co Ltd New sulfonate group-containing segmented block copolymer and application of the same
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation
JP2016096156A (en) * 2005-02-11 2016-05-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Method for reducing deterioration of fuel cell
CN100336843C (en) * 2005-03-23 2007-09-12 中山大学 Sulfonated high polymer containing bisphenol fluorine, synthesis and application thereof
JP2007002016A (en) * 2005-06-21 2007-01-11 Toyobo Co Ltd Sulfonic acid group-containing polyarylene ether compound, application thereof, and method for producing the same
CN101864070A (en) * 2010-07-02 2010-10-20 中山大学 Soluble polyarylether with high glass transition temperature and synthetic method thereof
CN101885840A (en) * 2010-07-02 2010-11-17 中山大学 Proton exchange membrane material with macro phase separation structure and synthesis method and application thereof
CN102117925A (en) * 2011-01-20 2011-07-06 中科院广州化学有限公司 Structure controllable phosphorylated polymer composite film used for vanadium battery and preparation method thereof

Also Published As

Publication number Publication date
JP3607221B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
US7867667B2 (en) Polymer electrolyte for a fuel cell, a method of producing the same, and a fuel cell system comprising the same
JP4221164B2 (en) Polymer electrolyte fuel cell
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
CN1716669A (en) Electrode assembly for fuel cell and fuel cell comprising the same
JP3779171B2 (en) Polymer electrolyte fuel cell
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4672165B2 (en) Polymer electrolyte fuel cell
JP2002298855A (en) Solid macromolecule type fuel cell
JP3563371B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP4754083B2 (en) Polymer electrolyte fuel cell
JP4323117B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3563372B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3563378B2 (en) Electrode structure for polymer electrolyte fuel cell
EP4164008A1 (en) Method for operating fuel cell
JP2002298858A (en) Solid macromolecule type fuel cell
US7445867B2 (en) Electrode structure for solid-polymer type fuel cell
JP3878438B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2007157453A (en) Membrane catalyst layer assembly, membrane electrode assembly using same, and polymer electrolyte fuel cell
JP6747013B2 (en) Membrane electrode assembly and fuel cell
KR20160093853A (en) Compound including aromatic ring and polymer electrolyte membrane using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3607221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees