JP2002367625A - Electrode structure for solid polymer fuel cell - Google Patents

Electrode structure for solid polymer fuel cell

Info

Publication number
JP2002367625A
JP2002367625A JP2001175042A JP2001175042A JP2002367625A JP 2002367625 A JP2002367625 A JP 2002367625A JP 2001175042 A JP2001175042 A JP 2001175042A JP 2001175042 A JP2001175042 A JP 2001175042A JP 2002367625 A JP2002367625 A JP 2002367625A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
repeating unit
electrode
electrode structure
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001175042A
Other languages
Japanese (ja)
Other versions
JP3563371B2 (en
Inventor
Masaaki Nanaumi
昌昭 七海
Yoichi Asano
洋一 浅野
Nobuyuki Kaneoka
長之 金岡
Hiroshi Soma
浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001175042A priority Critical patent/JP3563371B2/en
Priority to US10/480,375 priority patent/US7494733B2/en
Priority to CA2450346A priority patent/CA2450346C/en
Priority to PCT/JP2002/005728 priority patent/WO2002101860A1/en
Priority to CA2686279A priority patent/CA2686279C/en
Priority to DE10296922T priority patent/DE10296922T5/en
Publication of JP2002367625A publication Critical patent/JP2002367625A/en
Application granted granted Critical
Publication of JP3563371B2 publication Critical patent/JP3563371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode structure for solid polymer furl cell having a polymer electrolyte film with excellent flexibility, with excellent power generation property, which can be easily manufactured. SOLUTION: The electrode structure comprises a pair of electrode catalysis layers containing carbon grains to which, platinum grains are adhered, and a polymer electrolyte film laid between both electrode catalysis layers. The polymer electrolyte film is composed of a sulfonated compound which is a co-polymer of a first repeating unit expressed by the formula 1, and a second repeating unit expressed by the formula 2. The electrode catalysis layer contains platinum by 0.01-0.8 mg/cm<2> , and the range of the average diameter of the carbon grain is 10-100 nm. The co-polymer is composed of the first repeating unit of 10-80 mol%, and the second repeating unit of 90-20 mol%. The co-polymer contains sulfonic acid group within a range of 0.5-0.3 milliequivalent/g. In the formulas, A represents an electron attractive radical, B represents an electron donating radical, n is 0 or 1, Y is -C(CF3 )2 - or -SO2 -, and the benzene ring includes its derivative.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池に用いられる電極構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure used for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】石油資源が枯渇化する一方、化石燃料の
消費による地球温暖化等の環境問題が深刻化しており、
二酸化炭素の発生を伴わないクリーンな電動機用電力源
として燃料電池が注目されて広範に開発されると共に、
一部では実用化され始めている。前記燃料電池を自動車
等に搭載する場合には、高電圧と大電流とが得やすいこ
とから、高分子電解質膜を用いる固体高分子型燃料電池
が好適に用いられる。
2. Description of the Related Art While petroleum resources are being depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious.
Fuel cells have attracted attention as a clean power source for electric motors without the generation of carbon dioxide, and have been widely developed.
Some have begun to be commercialized. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current are easily obtained.

【0003】前記固体高分子型燃料電池に用いる電極構
造体として、白金等の触媒がカーボンブラック等の触媒
担体に担持されイオン導伝性高分子バインダーにより一
体化されることにより形成されている一対の電極触媒層
を備え、両電極触媒層の間にイオン導伝可能な高分子電
解質膜を挟持すると共に、各電極触媒層の上に、拡散層
を積層したものが知られている。前記電極構造体は、さ
らに各電極触媒層の上に、ガス通路を兼ねたセパレータ
を積層することにより、固体高分子型燃料電池を構成す
る。
As an electrode structure used in the polymer electrolyte fuel cell, a pair of catalysts such as platinum is formed by carrying a catalyst such as platinum on a catalyst carrier such as carbon black and integrated with an ion-conductive polymer binder. There is known an electrode catalyst layer in which an ion-conductive polymer electrolyte membrane is sandwiched between both electrode catalyst layers, and a diffusion layer is laminated on each electrode catalyst layer. The electrode structure further constitutes a polymer electrolyte fuel cell by stacking a separator also serving as a gas passage on each electrode catalyst layer.

【0004】前記固体高分子型燃料電池では、一方の電
極触媒層を燃料極として前記拡散層を介して水素、メタ
ノール等の還元性ガスを導入すると共に、他方の電極触
媒層を酸素極として前記拡散層を介して空気、酸素等の
酸化性ガスを導入する。このようにすると、燃料極側で
は、前記電極触媒層に含まれる触媒の作用により、前記
還元性ガスからプロトンが生成し、前記プロトンは前記
高分子電解質膜を介して、前記酸素極側の電極触媒層に
移動する。そして、前記プロトンは、前記酸素極側の電
極触媒層で、前記電極触媒層に含まれる触媒の作用によ
り、該酸素極に導入される前記酸化性ガスと反応して水
を生成する。従って、前記燃料極と酸素極とを導線によ
り接続することにより電流を取り出すことができる。
In the polymer electrolyte fuel cell, a reducing gas such as hydrogen or methanol is introduced through the diffusion layer using one electrode catalyst layer as a fuel electrode, and the other electrode catalyst layer is used as an oxygen electrode. An oxidizing gas such as air or oxygen is introduced through the diffusion layer. With this configuration, on the fuel electrode side, protons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the polymer electrolyte membrane to the electrode on the oxygen electrode side. Move to the catalyst layer. Then, the protons react with the oxidizing gas introduced into the oxygen electrode in the electrode catalyst layer on the oxygen electrode side by the action of a catalyst contained in the electrode catalyst layer to generate water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode with a conducting wire.

【0005】従来、前記電極構造体では、前記高分子電
解質膜としてパーフルオロアルキレンスルホン酸高分子
化合物(例えば、デュポン社製ナフィオン(商品名))
が広く利用されている。前記パーフルオロアルキレンス
ルホン酸高分子化合物は、スルホン化されていることに
より優れたプロトン導伝性を備えると共に、フッ素樹脂
としての耐薬品性とを併せ備えているが、非常に高価で
あるとの問題がある。
Conventionally, in the above electrode structure, a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) is used as the polymer electrolyte membrane.
Is widely used. The perfluoroalkylenesulfonic acid polymer compound has excellent proton conductivity due to being sulfonated, and also has chemical resistance as a fluororesin, but is very expensive. There's a problem.

【0006】そこで、パーフルオロアルキレンスルホン
酸高分子化合物に代わる廉価なイオン導伝性材料を用い
て、固体高分子型燃料電池用電極構造体を構成すること
が検討されている。
Therefore, it has been studied to construct an electrode structure for a polymer electrolyte fuel cell using an inexpensive ion conductive material instead of a perfluoroalkylenesulfonic acid polymer compound.

【0007】前記廉価なイオン導伝性材料として、例え
ば、ポリエーテルケトンやポリベンゾイミダゾールをス
ルホン化したものがある。しかし、前記イオン導伝性材
料はいずれもイオン導電性、機械的強度に劣るという問
題がある。
As the inexpensive ion conductive material, there is, for example, a material obtained by sulfonating polyether ketone or polybenzimidazole. However, there is a problem that all of the ion conductive materials are inferior in ionic conductivity and mechanical strength.

【0008】一方、米国特許第5403675号明細書
には、前記廉価なイオン導伝性材料として、剛直ポリフ
ェニレンをスルホン化したものが提案されている。前記
明細書記載の剛直ポリフェニレンのスルホン化物は、フ
ェニレン連鎖を備える芳香族化合物を重合して得られる
ポリマーを主成分として、該ポリマーをスルホン化した
ものであり、イオン導電性に優れている。
On the other hand, US Pat. No. 5,403,675 proposes, as the inexpensive ion conductive material, a material obtained by sulfonating rigid polyphenylene. The sulfonated product of rigid polyphenylene described in the above specification is obtained by sulfonating a polymer obtained by polymerizing an aromatic compound having a phenylene chain as a main component, and has excellent ionic conductivity.

【0009】しかしながら、前記剛直ポリフェニレンの
スルホン化物は、スルホン酸基の導入量を制御すること
が難しく、スルホン酸基の含有量が過剰になると、靱性
が低減し、該剛直ポリフェニレンのスルホン化物を高分
子電解質膜として電極構造体を構成したときに該高分子
電解質膜が割れやすくなるという不都合がある。
However, it is difficult to control the amount of sulfonic acid groups introduced into the sulphonated product of the rigid polyphenylene, and when the sulfonic acid group content is excessive, the toughness is reduced, and the sulphonated product of the rigid polyphenylene is increased. When the electrode structure is configured as a molecular electrolyte membrane, there is a disadvantage that the polymer electrolyte membrane is easily broken.

【0010】[0010]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、靱性に優れた高分子電解質膜を備え製造
容易であると共に、優れた発電性能を備える固体高分子
型燃料電池用電極構造体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and provides an electrode for a polymer electrolyte fuel cell having a polymer electrolyte membrane having excellent toughness, being easy to manufacture, and having excellent power generation performance. It is intended to provide a structure.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明の固体高分子型燃料電池用電極構造体は、
触媒としての白金粒子を担持させた炭素粒子を含む一対
の電極触媒層と、両電極触媒層に挟持された高分子電解
質膜とを備える固体高分子型燃料電池用電極構造体にお
いて、前記高分子電解質膜は一般式(1)で表される第
1の繰返し単位と、一般式(2)で表される第2の繰返
し単位との共重合体のスルホン化物からなり、前記電極
触媒層は0.01〜0.8mg/cm2の範囲の白金を
含有すると共に、前記炭素粒子の平均径が10〜100
nmの範囲にあることを特徴とする。
In order to achieve the above object, an electrode structure for a polymer electrolyte fuel cell according to the present invention is provided.
An electrode structure for a polymer electrolyte fuel cell, comprising: a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst; and a polymer electrolyte membrane sandwiched between both electrode catalyst layers. The electrolyte membrane comprises a sulfonated copolymer of a first repeating unit represented by the general formula (1) and a second repeating unit represented by the general formula (2). 0.01 to 0.8 mg / cm 2, and the carbon particles have an average diameter of 10 to 100 mg / cm 2.
nm.

【0012】[0012]

【化3】 Embedded image

【0013】前記高分子電解質膜を構成するスルホン化
物は、一般式(1)で表される第1の繰返し単位と、一
般式(2)で表される第2の繰返し単位との共重合体を
スルホン化して得られる。尚、本明細書において、前記
電子吸引性基とは、−CO−、−CONH−、−(CF
2p−(pは1〜10の整数)、−C(CF32−、−
COO−、−SO−、−SO2−等のハメット置換基常
数がフェニル基のメタ位では0.06以上、フェニル基
のパラ位では0.01以上の値となる2価の基をいう。
また、本明細書において、前記電子供与性基とは、−O
−、−S−、−CH=CH−、−C≡C−等の2価の基
をいう。
The sulfonate constituting the polymer electrolyte membrane is a copolymer of a first repeating unit represented by the general formula (1) and a second repeating unit represented by the general formula (2) Is obtained by sulfonation. In the present specification, the electron-withdrawing group means -CO-, -CONH-,-(CF
2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, -
COO -, - SO -, - SO 2 - Hammett substituent constant of 0.06 or more is in the meta position of the phenyl group such as in the para position of the phenyl group means a divalent group of 0.01 or more values.
In the present specification, the electron donating group is -O
-, -S-, -CH = CH-, -C≡C- and the like divalent groups.

【0014】ここで、前記スルホン化は、電子吸引性基
が結合していないベンゼン環、換言すれば電子供与性基
のみが結合しているベンゼン環に対して起きる。従っ
て、一般式(1)で表される第1の繰返し単位と、一般
式(2)で表される第2の繰返し単位との共重合体をス
ルホン化すると、第1の繰返し単位の主鎖となるベンゼ
ン環と、第2の繰返し単位の各ベンゼン環にはスルホン
酸基が導入されず、第1の繰返し単位の側鎖のベンゼン
環にスルホン酸基が導入されることになる。そこで、前
記共重合体では、第1の繰返し単位と第2の繰返し単位
とのモル比を調整することにより、導入されるスルホン
酸基の量を制御して、イオン導伝性と靱性とに優れた高
分子電解質膜を得ることができる。
Here, the sulfonation occurs on a benzene ring to which an electron-withdrawing group is not bonded, in other words, a benzene ring to which only an electron-donating group is bonded. Therefore, when a copolymer of the first repeating unit represented by the general formula (1) and the second repeating unit represented by the general formula (2) is sulfonated, the main chain of the first repeating unit is A sulfonic acid group is not introduced into the benzene ring of the formula (1) and each benzene ring of the second repeating unit, but a sulfonic acid group is introduced into the benzene ring of the side chain of the first repeating unit. Therefore, in the copolymer, by controlling the molar ratio of the first repeating unit and the second repeating unit, the amount of the sulfonic acid group introduced is controlled, and the ion conductivity and the toughness are improved. An excellent polymer electrolyte membrane can be obtained.

【0015】前記第1の繰返し単位に用いるモノマーと
して、具体的には、次式(3)で示される2,5−ジク
ロロ−4’−(4−フェノキシフェノキシ)ベンゾフェ
ノン等を挙げることができる。
Specific examples of the monomer used for the first repeating unit include 2,5-dichloro-4 '-(4-phenoxyphenoxy) benzophenone represented by the following formula (3).

【0016】[0016]

【化4】 Embedded image

【0017】また、前記第1の繰返し単位に用いるモノ
マーとして、具体的には、次式(4)で示される2,2
−ビス〔4−{4−(4−クロロベンゾイル)フェノキ
シ}フェニル〕−1,1,1,3,3,3−ヘキサフル
オロプロパン、次式(5)で示される2,2−ビス〔4
−{4−(4−クロロベンゾイル)フェノキシ}フェニ
ル〕スルホン等を挙げることができる。
Further, as the monomer used for the first repeating unit, specifically, 2,2 represented by the following formula (4):
-Bis [4- {4- (4-chlorobenzoyl) phenoxy} phenyl] -1,1,1,3,3,3-hexafluoropropane; 2,2-bis [4 represented by the following formula (5):
-{4- (4-chlorobenzoyl) phenoxy} phenyl] sulfone;

【0018】[0018]

【化5】 Embedded image

【0019】本発明の電極構造体は、前記共重合体のス
ルホン化物を前記高分子電解質膜とすることにより、容
易に製造することができると共に、優れた発電性能を得
ることができる。そして、本発明の電極構造体は、前記
高分子電解質膜を挟持する電極触媒層が、触媒として
0.01〜0.8mg/cm2の範囲の白金を含有する
と共に、前記白金の触媒担体となる炭素粒子の平均径が
10〜100nmの範囲にあることにより、さらに優れ
た発電性能を得ることができる。
The electrode structure of the present invention can be easily manufactured by using a sulfonated product of the copolymer as the polymer electrolyte membrane, and can obtain excellent power generation performance. In the electrode structure of the present invention, the electrode catalyst layer sandwiching the polymer electrolyte membrane contains platinum in the range of 0.01 to 0.8 mg / cm 2 as a catalyst, and the platinum catalyst carrier When the average diameter of the resulting carbon particles is in the range of 10 to 100 nm, more excellent power generation performance can be obtained.

【0020】前記白金の含有量が0.01mg/cm2
未満では十分な発電性能が得られないことがあり、0.
8mg/cm2を超えると前記白金が負触媒として作用
し、前記高分子電解質膜を構成する共重合体の劣化が促
進されることがある。
The platinum content is 0.01 mg / cm 2
If it is less than 0, sufficient power generation performance may not be obtained.
If it exceeds 8 mg / cm 2 , the platinum acts as a negative catalyst, and the deterioration of the copolymer constituting the polymer electrolyte membrane may be promoted.

【0021】また、前記炭素粒子の平均径が10nm未
満では前記白金の分散性が低減し、100nmを超える
と活性化過電圧が大きくなって、共に十分な発電性能が
得られないことがある。
When the average diameter of the carbon particles is less than 10 nm, the dispersibility of the platinum is reduced. When the average diameter exceeds 100 nm, the activation overpotential becomes large, and sufficient power generation performance may not be obtained.

【0022】本発明の電極構造体において、前記高分子
電解質膜を構成する共重合体は、導入されるスルホン酸
基の量を制御して、イオン導伝性と靱性とを好ましい範
囲とするために、前記第1の繰返し単位10〜80モル
%と、前記第2の繰返し単位90〜20モル%とからな
ることが好ましい。前記第1の繰返し単位が10モル%
未満で、前記第2の繰返し単位が90モル%を超える
と、前記共重合体に導入されるスルホン酸基の量が少な
く、十分なイオン導伝性が得られないことがある。ま
た、前記第1の繰返し単位が80モル%を超え、前記第
2の繰返し単位が20モル%未満であると、前記共重合
体に導入されるスルホン酸基の量が多くなり、十分な靱
性が得られないことがある。
In the electrode structure of the present invention, the copolymer constituting the polymer electrolyte membrane is used in order to control the amount of sulfonic acid groups to be introduced so that the ion conductivity and the toughness are in the preferred ranges. It is preferable that the first repeating unit comprises 10 to 80 mol% and the second repeating unit has 90 to 20 mol%. 10 mol% of the first repeating unit
When the content of the second repeating unit is less than 90 mol%, the amount of the sulfonic acid group introduced into the copolymer may be small, and sufficient ion conductivity may not be obtained. When the amount of the first repeating unit exceeds 80 mol% and the amount of the second repeating unit is less than 20 mol%, the amount of sulfonic acid groups introduced into the copolymer increases, and sufficient toughness is obtained. May not be obtained.

【0023】また、本発明の電極構造体において、前記
高分子電解質膜を構成する共重合体のスルホン化物は、
イオン導伝性と靱性とを好ましい範囲とするために、ス
ルホン酸基を0.5〜3.0ミリグラム当量/gの範囲
で含有することが好ましい。前記共重合体が含有するス
ルホン酸基の量が0.5ミリグラム当量/g未満では十
分なイオン導伝性が得られないことがあり、3.0ミリ
グラム当量/gを超えると十分な靱性が得られないこと
がある。
In the electrode structure of the present invention, the sulfonated copolymer of the polymer electrolyte membrane may be
In order to set the ion conductivity and the toughness in a preferable range, the sulfonic acid group is preferably contained in a range of 0.5 to 3.0 milligram equivalent / g. If the amount of the sulfonic acid group contained in the copolymer is less than 0.5 milligram equivalent / g, sufficient ion conductivity may not be obtained, and if the amount exceeds 3.0 milligram equivalent / g, sufficient toughness is obtained. May not be obtained.

【0024】本発明の電極構造体は、一方の面に酸化性
ガスを供給すると共に、他方の面に還元性ガスを供給す
ることにより発電する固体高分子型燃料電池を構成する
ことができる。
The electrode structure of the present invention can constitute a polymer electrolyte fuel cell that generates power by supplying an oxidizing gas to one surface and a reducing gas to the other surface.

【0025】[0025]

【発明の実施の形態】次に、添付の図面を参照しながら
本発明の実施の形態についてさらに詳しく説明する。図
1は本実施形態の電極構造体の構成を示す説明的断面図
であり、図2は本実施形態の電極構造体の発電性能を示
すグラフである。
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing the configuration of the electrode structure of the present embodiment, and FIG. 2 is a graph showing the power generation performance of the electrode structure of the present embodiment.

【0026】本実施形態の電極構造体は、図1示のよう
に、一対の電極触媒層1,1と、両電極触媒層1,1に
挟持された高分子電解質膜2と、各電極触媒層1,1の
上に積層された拡散層3,3とからなる。
As shown in FIG. 1, the electrode structure of the present embodiment comprises a pair of electrode catalyst layers 1 and 1, a polymer electrolyte membrane 2 sandwiched between the two electrode catalyst layers 1 and 1, and each electrode catalyst layer. And diffusion layers 3 and 3 laminated on the layers 1 and 1.

【0027】本実施形態では、前記電極構造体を次のよ
うにして製造した。
In the present embodiment, the electrode structure was manufactured as follows.

【0028】まず、次式(3)で示される2,5−ジク
ロロ−4’−(4−フェノキシフェノキシ)ベンゾフェ
ノンと、次式(4)で示される2,2−ビス〔4−{4
−(4−クロロベンゾイル)フェノキシ}フェニル〕−
1,1,1,3,3,3−ヘキサフルオロプロパンと
を、50:50の重合比で重合させて次式(6)の共重
合体を得た。
First, 2,5-dichloro-4 '-(4-phenoxyphenoxy) benzophenone represented by the following formula (3) and 2,2-bis [4- {4
-(4-chlorobenzoyl) phenoxydiphenyl]-
1,1,1,3,3,3-hexafluoropropane was polymerized at a polymerization ratio of 50:50 to obtain a copolymer represented by the following formula (6).

【0029】[0029]

【化6】 Embedded image

【0030】前記共重合体は、ポリマー分子量がポリス
チレン換算重量平均分子量で、1万〜100万の範囲に
あることが好ましい。前記ポリマー分子量が1万未満で
は高分子電解質膜として好適な機械的強度が得られない
ことがあり、100万を超えると後述のように成膜のた
めに溶媒に溶解する際に溶解性が低くなったり、溶液の
粘度が高くなり、取り扱いが難しくなる。
The copolymer preferably has a polymer molecular weight in the range of 10,000 to 1,000,000 in terms of polystyrene equivalent weight average molecular weight. If the polymer molecular weight is less than 10,000, a suitable mechanical strength as a polymer electrolyte membrane may not be obtained, and if it exceeds 1,000,000, the solubility is low when dissolving in a solvent for film formation as described below. Or the viscosity of the solution increases, making handling difficult.

【0031】次に、前記共重合体に濃硫酸を加えてスル
ホン化し、イオン交換容量が2.1meq/gのスルホ
ン化物を得た。次に、前記共重合体のスルホン化物を、
N−メチルピロリドンに溶解して高分子電解質溶液と
し、該高分子電解質溶液からキャスト法により乾燥膜厚
50μmの高分子電解質膜2を作成した。
Next, concentrated sulfuric acid was added to the copolymer to sulfonate it, and a sulfonated product having an ion exchange capacity of 2.1 meq / g was obtained. Next, the sulfonated product of the copolymer is
The polymer electrolyte solution was dissolved in N-methylpyrrolidone to prepare a polymer electrolyte solution, and a polymer electrolyte membrane 2 having a dry film thickness of 50 μm was formed from the polymer electrolyte solution by a casting method.

【0032】次に、平均径50nmのカーボンブラック
(ファーネスブラック)に白金粒子を、カーボンブラッ
ク:白金=1:1の重量比で担持させ、触媒粒子を作成
した。次に、イオン導伝性バインダーとしてのパーフル
オロアルキレンスルホン酸高分子化合物(デュポン社製
ナフィオン(商品名))溶液に、前記触媒粒子を、イオ
ン導伝性バインダー:触媒粒子=8:5の重量比で均一
に分散させ、触媒ペーストを調製した。
Next, platinum particles were carried on carbon black (furnace black) having an average diameter of 50 nm at a weight ratio of carbon black: platinum = 1: 1 to prepare catalyst particles. Next, the catalyst particles were added to a solution of a perfluoroalkylenesulfonic acid polymer compound (Nafion (trade name) manufactured by DuPont) as an ion conductive binder, and the weight of the ion conductive binder: catalyst particles = 8: 5. The catalyst paste was prepared by uniformly dispersing the catalyst paste in the same ratio.

【0033】次に、カーボンブラックとポリテトラフル
オロエチレン(PTFE)粒子とを、カーボンブラッ
ク:PTFE粒子=4:6の重量比で混合し、得られた
混合物をエチレングリコールに均一に分散させたスラリ
ーをカーボンペーパーの片面に塗布、乾燥させて下地層
とし、該下地層とカーボンペーパーとからなる拡散層3
を2つ作成した。
Next, a slurry in which carbon black and polytetrafluoroethylene (PTFE) particles are mixed at a weight ratio of carbon black: PTFE particles = 4: 6, and the resulting mixture is uniformly dispersed in ethylene glycol Is applied to one side of carbon paper and dried to form an underlayer, and a diffusion layer 3 comprising the underlayer and carbon paper is formed.
Were created.

【0034】次に、各拡散層3上に、前記触媒ペースト
を、白金含有量が0.5mg/cm 2となるようにスク
リーン印刷し、乾燥させることにより電極触媒層1と
し、電極触媒層1と拡散層3とからなる一対の電極を作
成した。前記乾燥は、60℃で10分間の乾燥を行った
のち、120℃で60分間の減圧乾燥を行った。
Next, on each of the diffusion layers 3, the catalyst paste
With a platinum content of 0.5 mg / cm TwoSo that
The electrode catalyst layer 1 is formed by lean printing and drying.
Then, a pair of electrodes composed of the electrode catalyst layer 1 and the diffusion layer 3 is formed.
Done. The drying was performed at 60 ° C. for 10 minutes.
Thereafter, vacuum drying was performed at 120 ° C. for 60 minutes.

【0035】次に、高分子電解質膜2を前記電極の電極
触媒層1側で挟持し、ホットプレスを行って図1示の電
極構造体を得た。前記ホットプレスは、80℃、5MP
aで2分間の一次ホットプレスの後、160℃、4MP
aで1分間の二次ホットプレスを行った。
Next, the polymer electrolyte membrane 2 was sandwiched between the electrodes on the electrode catalyst layer 1 side, and hot pressed to obtain an electrode structure shown in FIG. The hot press is 80 ° C, 5MP
After primary hot pressing for 2 minutes at 160 ° C, 4MP
The secondary hot pressing was performed for 1 minute at a.

【0036】本実施形態で用いた高分子電解質膜2は、
優れた靱性を示し、前記一対の電極で挟持し、ホットプ
レスする作業を容易に行うことができた。
The polymer electrolyte membrane 2 used in this embodiment is
It exhibited excellent toughness, and could be easily sandwiched by the pair of electrodes and hot-pressed.

【0037】また、本実施形態で得られた電極構造体
は、拡散層3,3の上にさらにガス通路を兼ねるセパレ
ータを積層することにより、固体高分子型燃料電池を構
成することができる。
The electrode structure obtained in this embodiment can constitute a polymer electrolyte fuel cell by further laminating a separator also serving as a gas passage on the diffusion layers 3 and 3.

【0038】次に、本実施形態で得られた電極構造体
(実施例1)を単セルとして、発電性能を試験した。発
電性能の試験は、一方の拡散層3の側を酸素極として空
気を供給すると共に、他方の拡散層3の側を燃料極とし
て純水素を供給して発電を行い、電流密度1A/cm2
で200時間発電した後、電流密度1A/cm2でのセ
ル電位を測定することにより行った。発電条件は、温度
85℃、燃料極側の相対湿度40%、酸素極側の相対湿
度75%とした。
Next, the electrode structure obtained in the present embodiment (Example 1) was used as a single cell to test the power generation performance. In the power generation performance test, power was generated by supplying air using the one diffusion layer 3 side as an oxygen electrode and supplying pure hydrogen using the other diffusion layer 3 side as a fuel electrode to generate a current density of 1 A / cm 2.
After generating power for 200 hours, the measurement was performed by measuring the cell potential at a current density of 1 A / cm 2 . The power generation conditions were a temperature of 85 ° C., a relative humidity of 40% on the fuel electrode side, and a relative humidity of 75% on the oxygen electrode side.

【0039】この結果、実施例1の電極構造体の前記セ
ル電位は0.62Vであった。結果を図2に示す。
As a result, the cell potential of the electrode structure of Example 1 was 0.62 V. The results are shown in FIG.

【0040】次に、他の実施形態として、前記式(4)
で示される2,2−ビス〔4−{4−(4−クロロベン
ゾイル)フェノキシ}フェニル〕−1,1,1,3,
3,3−ヘキサフルオロプロパンを、次式(5)で示さ
れる2,2−ビス〔4−{4−(4−クロロベンゾイ
ル)フェノキシ}フェニル〕スルホンに替えた以外は、
前記実施形態と全く同一にして、図1示の電極構造体を
製造し、該電極構造体(実施例2)を単セルとして、前
記実施形態と全く同一にして、発電性能を試験した。こ
の結果、実施例2の電極構造体の前記セル電位は0.6
3Vであった。結果を図2に示す。
Next, as another embodiment, the above formula (4)
2,2-bis [4- {4- (4-chlorobenzoyl) phenoxy} phenyl] -1,1,1,3,
Except that 3,3-hexafluoropropane was changed to 2,2-bis [4- {4- (4-chlorobenzoyl) phenoxy} phenyl] sulfone represented by the following formula (5),
The electrode structure shown in FIG. 1 was manufactured in exactly the same manner as in the above embodiment, and the electrode structure (Example 2) was used as a single cell, and the power generation performance was tested in exactly the same manner as in the above embodiment. As a result, the cell potential of the electrode structure of Example 2 was 0.6.
3V. The results are shown in FIG.

【0041】[0041]

【化7】 Embedded image

【0042】次に、比較のために、次式(7)で示され
るポリエーテルエーテルケトンからなる高分子電解質膜
2を用いた以外は、前記実施形態と全く同一にして、図
1示の電極構造体を製造し、該電極構造体(比較例1)
を単セルとして、前記実施形態と全く同一にして、発電
性能を試験した。この結果、比較例1の電極構造体の前
記セル電位は0.52Vであった。結果を図2に示す。
Next, for comparison, the electrode shown in FIG. 1 was made exactly the same as the above embodiment except that a polymer electrolyte membrane 2 made of polyetheretherketone represented by the following formula (7) was used. A structure was manufactured, and the electrode structure (Comparative Example 1) was manufactured.
Was used as a single cell, and the power generation performance was tested in exactly the same manner as in the above embodiment. As a result, the cell potential of the electrode structure of Comparative Example 1 was 0.52 V. The results are shown in FIG.

【0043】[0043]

【化8】 Embedded image

【0044】また、さらに比較のために、ポリベンゾイ
ミダゾールからなる高分子電解質膜2を用いた以外は、
前記実施形態と全く同一にして、図1示の電極構造体を
製造し、該電極構造体(比較例2)を単セルとして、前
記実施形態と全く同一にして、発電性能を試験した。こ
の結果、比較例2の電極構造体の前記セル電位は0.5
2Vであった。結果を図2に示す。
Further, for further comparison, except that the polymer electrolyte membrane 2 made of polybenzimidazole was used,
The electrode structure shown in FIG. 1 was manufactured exactly in the same manner as in the above embodiment, and the electrode structure (Comparative Example 2) was used as a single cell, and the power generation performance was tested in exactly the same manner as in the above embodiment. As a result, the cell potential of the electrode structure of Comparative Example 2 was 0.5
2V. The results are shown in FIG.

【0045】図2から、本実施形態の電極構造体は、ポ
リエーテルエーテルケトンからなる高分子電解質膜2を
用いた電極構造体(比較例1)またはポリベンゾイミダ
ゾールからなる高分子電解質膜2を用いた電極構造体
(比較例2)に比較して、格段に優れた発電性能を備え
ていることが明らかである。
As shown in FIG. 2, the electrode structure of the present embodiment is the same as the electrode structure using the polymer electrolyte membrane 2 made of polyetheretherketone (Comparative Example 1) or the polymer electrolyte membrane 2 made of polybenzimidazole. It is clear that the electrode structure has much better power generation performance than the electrode structure used (Comparative Example 2).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極構造体の構成を示す説明的断面
図。
FIG. 1 is an explanatory sectional view showing a configuration of an electrode structure of the present invention.

【図2】本発明の電極構造体の発電性能を示すグラフ。FIG. 2 is a graph showing the power generation performance of the electrode structure of the present invention.

【符号の説明】[Explanation of symbols]

1…電極触媒層、 2…高分子電解質膜。 1 ... electrode catalyst layer, 2 ... polymer electrolyte membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金岡 長之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 相馬 浩 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H018 AA06 AS02 AS03 BB03 BB06 BB08 BB12 BB16 DD08 EE03 EE08 HH01 HH05 5H026 AA06 CC03 CX05 EE02 EE05 HH01 HH05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nagayuki Kanaoka 1-4-1 Chuo, Wako-shi, Saitama Pref. Honda Technology Laboratory Co., Ltd. (72) Inventor Hiroshi Soma 1-4-1 Chuo, Wako-shi, Saitama No. F-term in Honda R & D Co., Ltd. (reference) 5H018 AA06 AS02 AS03 BB03 BB06 BB08 BB12 BB16 DD08 EE03 EE08 HH01 HH05 5H026 AA06 CC03 CX05 EE02 EE05 HH01 HH05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】触媒としての白金粒子を担持させた炭素粒
子を含む一対の電極触媒層と、両電極触媒層に挟持され
た高分子電解質膜とを備える固体高分子型燃料電池用電
極構造体において、 前記高分子電解質膜は一般式(1)で表される第1の繰
返し単位と、一般式(2)で表される第2の繰返し単位
との共重合体のスルホン化物からなり、 前記電極触媒層は0.01〜0.8mg/cm2の範囲
の白金を含有すると共に、前記炭素粒子の平均径が10
〜100nmの範囲にあることを特徴とする固体高分子
型燃料電池用電極構造体。 【化1】
An electrode structure for a polymer electrolyte fuel cell, comprising: a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst; and a polymer electrolyte membrane sandwiched between both electrode catalyst layers. In the above, the polymer electrolyte membrane comprises a sulfonated copolymer of a first repeating unit represented by the general formula (1) and a second repeating unit represented by the general formula (2), The electrode catalyst layer contains platinum in the range of 0.01 to 0.8 mg / cm 2 and the carbon particles have an average diameter of 10
An electrode structure for a polymer electrolyte fuel cell, wherein the electrode structure is in the range of 100 nm to 100 nm. Embedded image
【請求項2】前記共重合体は、前記第1の繰返し単位1
0〜80モル%と、前記第2の繰返し単位90〜20モ
ル%とからなることを特徴とする請求項1記載の固体高
分子型燃料電池用電極構造体。
2. The copolymer according to claim 1, wherein the first repeating unit 1
The electrode structure for a polymer electrolyte fuel cell according to claim 1, comprising 0 to 80 mol% and 90 to 20 mol% of the second repeating unit.
【請求項3】前記共重合体のスルホン化物は、スルホン
酸基を0.5〜3.0ミリグラム当量/gの範囲で含有
することを特徴とする請求項1または請求項2記載の固
体高分子型燃料電池用電極構造体。
3. The solid polymer according to claim 1, wherein the sulfonated product of the copolymer contains a sulfonic acid group in the range of 0.5 to 3.0 milligram equivalent / g. Electrode structure for molecular fuel cells.
【請求項4】触媒としての白金粒子を担持させた炭素粒
子を含む一対の電極触媒層と、両電極触媒層に挟持され
た高分子電解質膜とを備え、前記高分子電解質膜は一般
式(1)で表される第1の繰返し単位と、一般式(2)
で表される第2の繰返し単位との共重合体のスルホン化
物からなり、前記電極触媒層は0.01〜0.8mg/
cm2の白金を含有すると共に、前記炭素粒子の平均径
が10〜100nmの範囲にある電極構造体を備え、一
方の面に酸化性ガスを供給すると共に、他方の面に還元
性ガスを供給することにより発電することを特徴とする
固体高分子型燃料電池。 【化2】
4. A catalyst comprising a pair of electrode catalyst layers containing carbon particles carrying platinum particles as a catalyst, and a polymer electrolyte membrane sandwiched between both electrode catalyst layers, wherein the polymer electrolyte membrane has a general formula ( A first repeating unit represented by 1) and a general formula (2)
Wherein the electrode catalyst layer comprises a sulfonated product of a copolymer with a second repeating unit represented by the following formula:
an electrode structure that contains platinum of 2 cm 2 and has an average diameter of the carbon particles in the range of 10 to 100 nm, and supplies an oxidizing gas to one surface and supplies a reducing gas to the other surface. A polymer electrolyte fuel cell characterized in that it generates electric power by performing the above steps. Embedded image
JP2001175042A 2001-06-11 2001-06-11 Electrode structure for polymer electrolyte fuel cell Expired - Fee Related JP3563371B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001175042A JP3563371B2 (en) 2001-06-11 2001-06-11 Electrode structure for polymer electrolyte fuel cell
US10/480,375 US7494733B2 (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
CA2450346A CA2450346C (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
PCT/JP2002/005728 WO2002101860A1 (en) 2001-06-11 2002-06-10 Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
CA2686279A CA2686279C (en) 2001-06-11 2002-06-10 Production method for an electrode structure for a solid polymer fuel cell
DE10296922T DE10296922T5 (en) 2001-06-11 2002-06-10 Electrode structure for polymer electrolyte fuel cells, method of manufacturing the same and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175042A JP3563371B2 (en) 2001-06-11 2001-06-11 Electrode structure for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002367625A true JP2002367625A (en) 2002-12-20
JP3563371B2 JP3563371B2 (en) 2004-09-08

Family

ID=19016246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175042A Expired - Fee Related JP3563371B2 (en) 2001-06-11 2001-06-11 Electrode structure for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3563371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530755A (en) * 2005-02-11 2008-08-07 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for reducing fuel cell degradation

Also Published As

Publication number Publication date
JP3563371B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US7494733B2 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
JP2006019271A (en) Binder composition for fuel cell, film-electrode assembly, and manufacturing method of the film-electrode assembly
KR20070100693A (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP4221164B2 (en) Polymer electrolyte fuel cell
JP2008140779A (en) Membrane-electrode conjugant
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4352878B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP4672165B2 (en) Polymer electrolyte fuel cell
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP3779171B2 (en) Polymer electrolyte fuel cell
KR20090092592A (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP3563371B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP3563372B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP3563378B2 (en) Electrode structure for polymer electrolyte fuel cell
KR20190036809A (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly and fuel cell
US7445867B2 (en) Electrode structure for solid-polymer type fuel cell
JP2002298858A (en) Solid macromolecule type fuel cell
JP3878438B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4323117B2 (en) Electrode structure for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees