JP2002364943A - Container for hydrogen storage material and its filling method - Google Patents

Container for hydrogen storage material and its filling method

Info

Publication number
JP2002364943A
JP2002364943A JP2001171666A JP2001171666A JP2002364943A JP 2002364943 A JP2002364943 A JP 2002364943A JP 2001171666 A JP2001171666 A JP 2001171666A JP 2001171666 A JP2001171666 A JP 2001171666A JP 2002364943 A JP2002364943 A JP 2002364943A
Authority
JP
Japan
Prior art keywords
container
storage material
hydrogen storage
hydrogen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001171666A
Other languages
Japanese (ja)
Inventor
Terumaru Harada
照丸 原田
Yoshio Morita
芳雄 盛田
Yoshiaki Yamamoto
義明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001171666A priority Critical patent/JP2002364943A/en
Publication of JP2002364943A publication Critical patent/JP2002364943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PROBLEM TO BE SOLVED: To provide a container for hydrogen storage material excellent in heat conduction capacity, low in sensible heat loss and stable in hydrogen flow rate. SOLUTION: The container for hydrogen storage material comprises a container having an opening for filling the hydrogen storage material, a hydrogen passage for making hydrogen flow into and out of the container, a filter connected to the passage and disposed in the container for making hydrogen pass through, and a heating medium passage for passing a heating medium into the container to effect heat exchange with the hydrogen storage material. In the container, the hydrogen storage material filled in the container is present in the circumference of the heating medium passage in a larger amount than in the circumference of the filter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵材を充填
する水素吸蔵材用容器に関し、さらに詳しくは水素吸蔵
材が水素を吸蔵・放出する際の発熱・吸熱作用を利用し
たヒートポンプなどに用いられる熱交換容器、および水
素吸蔵材用容器への水素吸蔵材の充填方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage material container filled with a hydrogen storage material, and more particularly, to a heat pump or the like utilizing a heat generation / absorption function when the hydrogen storage material stores and releases hydrogen. The present invention relates to a heat exchange container to be used and a method for filling a hydrogen storage material into a hydrogen storage material container.

【0002】[0002]

【従来の技術】ヒートポンプ装置は一般に、圧縮式、吸
収式などが良く知られている。その中で水素吸蔵材を充
填した熱交換容器で構成したヒートポンプ装置は、その
低振動、低騒音、省電力性、排エネルギーの有効利用、
および環境負荷への低減などの観点から注目されてい
る。また、高圧水素ガスを封入したガスボンベと比べて
単位体積あたりの水素の封入量が多く、低圧で安全性の
高い水素吸蔵材を利用した水素吸蔵材用容器が、燃料電
池などの水素ガスの供給源として開発されている。
2. Description of the Related Art Generally, a heat pump device of a compression type, an absorption type and the like are well known. Among them, the heat pump device composed of a heat exchange container filled with a hydrogen storage material has low vibration, low noise, power saving, effective use of waste energy,
In addition, attention has been paid from the viewpoint of reduction in environmental load. Also, compared to gas cylinders filled with high-pressure hydrogen gas, the amount of hydrogen sealed per unit volume is larger, and a low-pressure, highly safe hydrogen storage material container that uses a hydrogen storage material can supply hydrogen gas, such as fuel cells. Developed as a source.

【0003】以下に、従来の水素吸蔵材用容器について
説明する。従来の一般的な水素吸蔵材用容器の概略構成
は、図8および図9に表されるものがよく知られている
(特開平8−247570号公報)。図8に示す水素吸
蔵材用容器は、容器1内に水素吸蔵材2を充填し、水素
吸蔵材2のまわりに熱媒配管3を配し、フィルター4を
取り付けた水素出入り口5を備えた構造である。図9に
示す水素吸蔵材用容器は、水素吸蔵材2を充填した容器
1’の周りに熱媒流路3’を設けて水素吸蔵材2と熱の
授受を行うような構造である。
[0003] A conventional hydrogen storage material container will be described below. A schematic configuration of a conventional general hydrogen storage material container is well known as shown in FIGS. 8 and 9 (Japanese Patent Laid-Open No. 8-247570). The hydrogen storage material container shown in FIG. 8 has a structure in which a hydrogen storage material 2 is filled in a container 1, a heat medium pipe 3 is arranged around the hydrogen storage material 2, and a hydrogen inlet / outlet 5 to which a filter 4 is attached is provided. It is. The hydrogen storage material container shown in FIG. 9 has a structure in which a heat medium flow path 3 ′ is provided around a container 1 ′ filled with the hydrogen storage material 2 to exchange heat with the hydrogen storage material 2.

【0004】例えば、図8の水素吸蔵材用容器における
水素配管5から導入した水素を水素吸蔵材2に吸蔵させ
ると吸蔵熱が発生し、その温熱を熱媒配管3内の熱媒に
伝え、暖房や給湯に使用する。また、水素吸蔵材2より
水素を放出させると、熱が奪われることにより冷熱が発
生し、その冷熱を熱媒配管3内の熱媒に伝え、冷房や冷
凍に使用する。逆に、熱媒配管3内の熱媒の熱を水素吸
蔵材2に与えると、水素吸蔵材2内より水素が放出し、
水素ガスとして利用できる。また、水素を蓄える場合に
は、水素ガスを水素吸蔵材2に流しながら熱媒により冷
却すると水素を有効に吸蔵できる。
For example, when hydrogen introduced from the hydrogen pipe 5 in the hydrogen storage material container shown in FIG. Used for heating and hot water. Further, when hydrogen is released from the hydrogen storage material 2, heat is deprived to generate cold heat, and the cold heat is transmitted to the heat medium in the heat medium pipe 3 and used for cooling and freezing. Conversely, when the heat of the heat medium in the heat medium pipe 3 is given to the hydrogen storage material 2, hydrogen is released from the hydrogen storage material 2,
It can be used as hydrogen gas. In the case of storing hydrogen, hydrogen can be effectively stored by cooling with a heat medium while flowing hydrogen gas through the hydrogen storage material 2.

【0005】[0005]

【発明が解決しようとする課題】上記水素吸蔵材を用い
たヒートポンプ装置や水素吸蔵材用容器は、熱交換容器
の伝熱性能や熱容量が装置の性能に大きな影響を及ぼ
す。例えば、ヒートポンプ装置の場合、水素吸蔵材が温
度の上下動を繰り返すため、熱交換容器の顕熱損失が大
きく、ヒートポンプ装置の熱利用効率を低下させる大き
な要因となっている。なお、熱利用効率は入力熱量に対
する出力熱量の割合である。よって、装置の性能を向上
させるためには、熱交換容器の伝熱性能を高めるととも
に、熱容量をできるだけ小さくする必要がある。しか
し、容器には水素圧がかかるため、耐圧構造が必要であ
り、熱容量の低減には限界がある。
In a heat pump device and a hydrogen storage container using the above-mentioned hydrogen storage material, the heat transfer performance and heat capacity of the heat exchange container greatly affect the performance of the device. For example, in the case of a heat pump device, since the hydrogen storage material repeatedly moves up and down in temperature, the sensible heat loss of the heat exchange container is large, which is a major factor in reducing the heat utilization efficiency of the heat pump device. The heat utilization efficiency is the ratio of the output heat to the input heat. Therefore, in order to improve the performance of the apparatus, it is necessary to increase the heat transfer performance of the heat exchange container and to reduce the heat capacity as much as possible. However, since a hydrogen pressure is applied to the container, a pressure-resistant structure is required, and there is a limit in reducing the heat capacity.

【0006】また、水素が容器内から出入りする場合、
流量が制御されずに、水素が一度に移動しようとするた
め、水素が流れ始める当初は水素流量が多く、その後し
ばらくすると急激に少なくなり、水素流量が安定でない
問題もある。さらに、水素吸蔵材の活性化は、一般に、
通常の使用圧力より高い圧力で行われているため、熱交
換容器の肉厚を厚くする必要がある。このため、熱交換
容器の重量が増大し、熱容量が大きくなり、顕熱損失が
増大するという問題もある。
When hydrogen enters and exits from the container,
Since hydrogen tries to move at once without controlling the flow rate, the flow rate of hydrogen is large at the beginning of the flow of hydrogen, and then decreases rapidly after a while, and the hydrogen flow rate is not stable. In addition, activation of the hydrogen storage material generally involves:
Since the pressure is higher than the normal operating pressure, the thickness of the heat exchange container needs to be increased. For this reason, there is also a problem that the weight of the heat exchange container increases, the heat capacity increases, and the sensible heat loss increases.

【0007】本発明は、上記従来技術の問題点を解決す
ることにより、伝熱性能に優れ、顕熱損失の少ない、水
素流量の安定した水素吸蔵材用容器を提供することを目
的とする。また、本発明は顕熱損失の少ない、軽量な水
素吸蔵材用容器が得られる水素吸蔵材用容器への水素吸
蔵材の充填方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen storage material container having an excellent heat transfer performance, a small sensible heat loss, and a stable hydrogen flow rate by solving the above-mentioned problems of the prior art. Another object of the present invention is to provide a method for filling a hydrogen storage material into a hydrogen storage material container, which can provide a lightweight hydrogen storage material container having a small sensible heat loss.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
めに本発明の水素吸蔵材用容器は、水素吸蔵材を充填す
るための充填口を設けた容器、前記容器内に水素を出入
りさせるための水素通路、前記水素通路に連結されて容
器内に配設された水素を通過させるフィルター、および
前記容器内に熱媒を流して前記水素吸蔵材と熱交換する
ための熱媒通路を備え、前記容器内に充填した水素吸蔵
材が前記フィルターの周囲よりも前記熱媒通路の周囲に
おいて多く存在することを特徴とする。
In order to solve the above-mentioned problems, a hydrogen storage material container according to the present invention is provided with a container provided with a filling port for filling the hydrogen storage material, and allows hydrogen to enter and leave the container. A hydrogen passage, a filter connected to the hydrogen passage, and configured to pass hydrogen provided in the container, and a heat medium passage for flowing a heat medium into the container and exchanging heat with the hydrogen storage material. The hydrogen storage material filled in the container is present more around the heat medium passage than around the filter.

【0009】顕熱損失を低減するため、さらに前記容器
の内面に断熱材を備えることが好ましい。フィルターの
目詰まりを防止するために、さらに前記容器内の前記熱
媒通路と前記フィルターの間に、水素が通過可能な遮蔽
板を備えることが好ましい。安定した水素流量を得るた
めに、さらに前記水素通路と前記熱媒通路の一方または
両方に、流量を調節するための制御部を備えることが好
ましい。合金の無駄を省き、顕熱損失を低減するため、
さらに前記容器内において熱媒への伝熱に寄与しない部
分に充填材を備えることが好ましい。
In order to reduce sensible heat loss, it is preferable to further provide a heat insulating material on the inner surface of the container. In order to prevent clogging of the filter, it is preferable that a shielding plate through which hydrogen can pass is further provided between the heat medium passage in the container and the filter. In order to obtain a stable hydrogen flow rate, it is preferable that one or both of the hydrogen passage and the heat medium passage further include a control unit for adjusting the flow rate. To reduce waste of alloy and reduce sensible heat loss,
Further, it is preferable that a filler is provided in a portion of the container that does not contribute to heat transfer to the heat medium.

【0010】本発明の水素吸蔵材の充填方法は、水素吸
蔵材を充填するとともに、容器内に熱媒を流して水素吸
蔵材と熱交換するための熱媒通路を備えた水素吸蔵材用
容器に、予め前記容器外で活性化させた水素吸蔵材を充
填する。本発明は、また、水素吸蔵材を充填するととも
に、容器内に熱媒を流して水素吸蔵材と熱交換するため
の熱媒通路を備えた水素吸蔵材用容器に、予め前記容器
外で活性化させた水素吸蔵材と未活性の水素吸蔵材を混
合して充填する方法を提供する。
The method for filling a hydrogen storage material according to the present invention is a hydrogen storage material container having a heat medium passage for filling a hydrogen storage material and flowing a heat medium into the container to exchange heat with the hydrogen storage material. Is filled with a hydrogen storage material previously activated outside the container. The present invention also provides a hydrogen storage material container which is filled with a hydrogen storage material and has a heat medium passage for flowing a heat medium into the container to exchange heat with the hydrogen storage material. The present invention provides a method of filling and mixing a hydrogenated hydrogen storage material and an inactive hydrogen storage material.

【0011】[0011]

【発明の実施の形態】以下に、本発明に係る水素吸蔵材
用容器およびその充填方法について、図面を参照しなが
ら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a container for a hydrogen storage material and a method for filling the container according to the present invention will be described with reference to the drawings.

【0012】《実施の形態1》本実施の形態1における
水素吸蔵材用容器の構成について、図1および図2を参
照しながら説明する。容器11内には、充填口12より
水素吸蔵材13(以降、水素吸蔵合金で代表させ、合金
と記す。)が充填されている。容器11内には、熱媒を
流して合金と熱交換するための熱媒通路14が配されて
おり、熱媒通路14にはフィン18が備えられている。
そして、充填口12の近傍には、水素を出入りさせるた
めの水素通路16が配されている。また、容器内には、
水素を通過させるフィルター15が配設されており、水
素通路16と連結している。フィルターとしては、多孔
性の焼結金属などが挙げられる。そして、設置面に対し
水素吸蔵材用容器内のフィルターが上に位置するように
水素吸蔵材用器を設置する。
Embodiment 1 The structure of a hydrogen storage material container according to Embodiment 1 will be described with reference to FIG. 1 and FIG. The container 11 is filled with a hydrogen storage material 13 (hereinafter, represented by a hydrogen storage alloy and referred to as an alloy) from a filling port 12. A heat medium passage 14 for flowing a heat medium and exchanging heat with the alloy is provided in the container 11, and the heat medium passage 14 is provided with fins 18.
In the vicinity of the filling port 12, a hydrogen passage 16 for letting hydrogen in and out is arranged. Also, in the container,
A filter 15 for passing hydrogen is provided, and is connected to a hydrogen passage 16. Examples of the filter include a porous sintered metal. Then, the hydrogen storage material container is installed such that the filter in the hydrogen storage material container is positioned above the installation surface.

【0013】次に、本実施の形態1における水素吸蔵材
用容器をヒートポンプに使用した場合の動作について説
明する。水素吸蔵材用容器を少なくとも2個用意して、
一方の容器内(図示せず)の熱媒通路内に熱媒を流して
合金を加熱すると、合金内の水素が放出される。この水
素は、互いの水素通路を連結した水素配管を通り、図1
に示す水素吸蔵材用容器へ送られる。そして、水素は、
水素通路16から容器11内に入り、フィルター15を
通過して、合金13に吸蔵される。この際発生する吸蔵
熱を、熱媒通路14内を流れる熱媒で回収して、給湯や
暖房に使用する。逆に、一方の容器を冷却するとその容
器内の合金が水素を吸蔵するため、2つの容器の間に差
圧が生じ、容器11内の合金13より水素が放出され、
もう一方の容器内へ水素が移動する。この容器11内の
合金13が水素を放出する際に発生する冷熱を、熱媒通
路14内を流れる熱媒で回収して、冷房や冷凍に使用す
る。これを繰り返すことにより間欠的に冷暖房を行う
が、合金13や容器11が、温度変化を繰り返すため、
熱容量が大きいと、発生した熱が消費されて、冷暖房な
どの外部に取り出す熱量が少なくなる。
Next, the operation when the hydrogen storage material container according to the first embodiment is used for a heat pump will be described. Prepare at least two containers for hydrogen storage material,
When a heating medium is flowed into a heating medium passage in one container (not shown) to heat the alloy, hydrogen in the alloy is released. This hydrogen passes through a hydrogen pipe connecting the hydrogen paths of each other,
Is sent to the hydrogen storage material container shown in FIG. And hydrogen is
The hydrogen enters the container 11 through the hydrogen passage 16, passes through the filter 15, and is stored in the alloy 13. The occlusion heat generated at this time is recovered by the heat medium flowing in the heat medium passage 14 and used for hot water supply and heating. Conversely, when one of the containers is cooled, the alloy in that container absorbs hydrogen, so a differential pressure is generated between the two containers, and hydrogen is released from the alloy 13 in the container 11,
Hydrogen moves into the other container. Cold heat generated when the alloy 13 in the container 11 releases hydrogen is recovered by a heat medium flowing through the heat medium passage 14 and used for cooling and freezing. The heating and cooling are performed intermittently by repeating this, but since the alloy 13 and the container 11 repeat the temperature change,
When the heat capacity is large, the generated heat is consumed, and the amount of heat taken out to the outside such as cooling and heating is reduced.

【0014】そこで、実施の形態1のような構成とする
ことにより、合金13は重力の影響でフィルター15が
配されている上部よりも、熱媒通路14が配されている
下部の方へ充填されやすくなるため、フィルター15の
周囲よりも熱媒通路14やフィン部18の周囲に多く存
在する。よって、合金13と熱媒通路14内を流れる熱
媒との熱交換が効率よく行われるため、容器の伝熱性能
が向上し、顕熱損失を低減できる。なお、合金13がフ
ィルター15の周囲よりも熱媒通路14やフィン部18
の周囲に多く存在する構成であれば、設置面に対し水素
吸蔵材用容器内のフィルター15が必ずしも上に位置し
なくても構わない。特に、合金13内より水素が放出さ
れる場合では、冷熱を伴った水素が、できるだけ熱媒通
路14やフィン部18と接触した後、フィルター15に
到達し、水素通路16より容器11外へ送られるため、
冷熱を効率よく熱媒に伝えることができる。その結果、
熱利用効率が向上し、効率良い冷暖房運転を行うことが
できる。
Therefore, by adopting the structure as in the first embodiment, the alloy 13 fills the lower portion where the heat medium passage 14 is disposed, rather than the upper portion where the filter 15 is disposed, due to the influence of gravity. Therefore, the fin 18 is more present around the heat medium passage 14 and the fin portion 18 than around the filter 15. Therefore, the heat exchange between the alloy 13 and the heat medium flowing in the heat medium passage 14 is efficiently performed, so that the heat transfer performance of the container is improved and the sensible heat loss can be reduced. It is to be noted that the alloy 13 is larger than the surroundings of the filter 15 in the heat medium passage 14 and the fin 18.
, The filter 15 in the hydrogen storage material container does not necessarily have to be located above the installation surface. In particular, when hydrogen is released from the inside of the alloy 13, the hydrogen accompanied by the cold reaches the filter 15 after coming into contact with the heat medium passage 14 and the fin 18 as much as possible, and is sent out of the container 11 through the hydrogen passage 16. To be
Cold heat can be efficiently transmitted to the heat medium. as a result,
Heat utilization efficiency is improved, and efficient cooling and heating operation can be performed.

【0015】《実施の形態2》本実施の形態2における
水素吸蔵材用容器の構成について、図3および図4を参
照しながら説明する。実施の形態2は実施の形態1の容
器11の内部に、断熱層17を備えている。このような
構造とすることにより、合金の温度変化の影響が容器1
1に及び難くできるため、容器の熱容量による顕熱損失
を低減できる。さらに、外部への放熱損失も低減できる
ため、容器外部の断熱は少なくてすむ。
Embodiment 2 The structure of a hydrogen storage material container according to Embodiment 2 will be described with reference to FIGS. In the second embodiment, a heat insulating layer 17 is provided inside the container 11 of the first embodiment. With such a structure, the influence of the temperature change of the alloy is
1, the sensible heat loss due to the heat capacity of the container can be reduced. Further, since heat radiation loss to the outside can be reduced, heat insulation outside the container can be reduced.

【0016】《実施の形態3》本実施の形態3における
水素吸蔵材用容器の構成について、図5を参照しながら
説明する。実施の形態3は、実施の形態1の容器11内
の熱媒通路14とフィルター15の間に、遮蔽板19を
設けている。ここで、水素ガス分子および合金13粒子
の大きさや質量の差などにより水素ガス分子と合金13
粒子が分別され、遮蔽板を通過した大部分の水素ガスが
フィルター15に到達する構造となっている。このよう
な構成により、フィルターの目詰まりを防止でき、長期
間スムーズに水素ガスの出入りが可能となる。また、フ
ィルターも小型化が可能となる。
<< Embodiment 3 >> The configuration of a hydrogen storage material container according to Embodiment 3 will be described with reference to FIG. In the third embodiment, a shield plate 19 is provided between the heat medium passage 14 and the filter 15 in the container 11 of the first embodiment. Here, the hydrogen gas molecules and the alloy 13 may be mixed with the hydrogen gas molecules and the alloy 13 due to the difference in size and mass between the particles.
The structure is such that particles are separated and most of the hydrogen gas that has passed through the shielding plate reaches the filter 15. With such a configuration, clogging of the filter can be prevented, and smooth entry and exit of hydrogen gas can be performed for a long period of time. Also, the size of the filter can be reduced.

【0017】《実施の形態4》本実施の形態4における
水素吸蔵材用容器の構成について、図6を参照しながら
説明する。実施の形態1における水素通路16の容器1
1外部にバルブ20を備えている。水素が水素通路16
を通じて出入りする場合、バルブ20を全開にすると、
容器内に生じた水素の圧力差などの影響で、水素が一気
に流れるため、水素が流れ始める当初は水素流量が多
く、その後しばらくすると急激に少なくなり、水素流量
が不安定である。これを防ぐために、バルブ20の開度
を負荷に応じて調整する。このような構成により、水素
流量の調節が可能となり、用途に適した水素流量を安定
して得ることができる。
Embodiment 4 The structure of a hydrogen storage material container according to Embodiment 4 will be described with reference to FIG. Container 1 of hydrogen passage 16 in the first embodiment
1 is provided with a valve 20 outside. Hydrogen passes through hydrogen passage 16
When entering and exiting through the valve 20 and fully open,
Since hydrogen flows at once due to the influence of the pressure difference of hydrogen generated in the container, the flow rate of hydrogen is large at the beginning of the flow of hydrogen, and decreases rapidly after a while, and the flow rate of hydrogen is unstable. To prevent this, the opening of the valve 20 is adjusted according to the load. With such a configuration, the hydrogen flow rate can be adjusted, and a hydrogen flow rate suitable for the application can be stably obtained.

【0018】なお、本発明における水素吸蔵材用容器
は、上記実施の形態においては、バルブ20を水素通路
16に取り付けたが、熱媒通路14にバルブを取り付け
ることによっても、熱媒流量を調整することで、水素流
量を調節できる。また、バルブ20の代わりとしてオリ
フィスや細管、レギュレータを用いても良い。さらに、
バルブの開度を調整するために、水素の圧力や流量、水
素または熱媒の温度などを感知するセンサーとバルブの
開度を制御する回路を用いた組合せにしても良い。
Although the valve for hydrogen storage material in the present invention has the valve 20 mounted on the hydrogen passage 16 in the above embodiment, the flow rate of the heat medium can also be adjusted by mounting a valve on the heat medium passage 14. By doing so, the hydrogen flow rate can be adjusted. Further, an orifice, a thin tube, or a regulator may be used instead of the valve 20. further,
In order to adjust the opening degree of the valve, a combination using a sensor for sensing the pressure and flow rate of hydrogen, the temperature of hydrogen or the heat medium, and a circuit for controlling the opening degree of the valve may be used.

【0019】《実施の形態5》本実施の形態5における
水素吸蔵材用容器の構成について、図7を参照しながら
説明する。本実施の形態5は実施の形態1の容器11内
において、熱媒通路14から離れた伝熱にあまり寄与し
ない部分にグラスウールなどの充填材21を充填し、熱
媒通路14近傍に存在する合金13の割合を増やす構成
にしている。このような構成により、合金の無駄を省く
と同時に、顕熱損失も低減できる。
<< Embodiment 5 >> The configuration of a hydrogen storage material container according to Embodiment 5 will be described with reference to FIG. In the fifth embodiment, in the container 11 of the first embodiment, a portion that does not contribute much to heat transfer away from the heat medium passage 14 is filled with a filler 21 such as glass wool, and an alloy existing near the heat medium passage 14 13 is increased. With such a configuration, waste of the alloy can be reduced, and sensible heat loss can be reduced.

【0020】《実施の形態6》本実施の形態6における
水素吸蔵材用容器への合金の充填方法を説明する。本実
施の形態6では、水素吸蔵材用容器外で予め活性化させ
た合金を、水素吸蔵材用容器内に充填する。このような
充填方法とすることにより、水素吸蔵材用容器内の圧力
を合金の活性化のために高圧にする必要がないので、水
素吸蔵材用容器の肉厚を厚くする必要がなくなる。よっ
て、軽量化により熱容量を低減できるため、顕熱損失の
少ない水素吸蔵材用容器を得ることができる。
Embodiment 6 A method for filling an alloy into a hydrogen storage material container according to Embodiment 6 will be described. In the sixth embodiment, the alloy activated in advance outside the hydrogen storage material container is filled in the hydrogen storage material container. With such a filling method, it is not necessary to increase the pressure in the hydrogen storage material container to activate the alloy, so that it is not necessary to increase the thickness of the hydrogen storage material container. Therefore, since the heat capacity can be reduced by reducing the weight, it is possible to obtain a hydrogen storage material container with small sensible heat loss.

【0021】《実施の形態7》本実施の形態7における
水素吸蔵材用容器への合金の充填方法を説明する。本実
施の形態7では、水素吸蔵材用容器外で予め活性化させ
た合金と未活性の合金を混合して、水素吸蔵材用容器内
に充填する。このような充填方法により、活性化された
合金の影響で、未活性の合金の活性化も容易となり、水
素吸蔵材用容器の肉厚を必要以上に厚くすることがなく
なる。よって、軽量化により熱容量を低減できるため、
顕熱損失の少ない水素吸蔵材用容器を得ることができ
る。
Embodiment 7 A method for filling an alloy into a hydrogen storage material container according to Embodiment 7 will be described. In the seventh embodiment, an alloy activated in advance outside the hydrogen storage material container and an inactive alloy are mixed and filled in the hydrogen storage material container. By such a filling method, the activation of the inactive alloy becomes easy under the influence of the activated alloy, so that the thickness of the hydrogen storage material container is not increased more than necessary. Therefore, since the heat capacity can be reduced by reducing the weight,
It is possible to obtain a hydrogen storage material container having a small sensible heat loss.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、伝熱性
能に優れ、顕熱損失の少ない、水素流量の安定した水素
吸蔵材用容器を提供できる。また、顕熱損失の少ない、
軽量な水素吸蔵材用容器が得られる水素吸蔵材用容器へ
の水素吸蔵材の充填方法を提供できる。
As described above, according to the present invention, it is possible to provide a hydrogen storage material container having excellent heat transfer performance, low sensible heat loss, and stable hydrogen flow. In addition, low sensible heat loss,
It is possible to provide a method for filling the hydrogen storage material into the hydrogen storage material container, which provides a lightweight hydrogen storage material container.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の水素吸蔵材用容器
の縦断面図である。
FIG. 1 is a longitudinal sectional view of a container for a hydrogen storage material according to a first embodiment of the present invention.

【図2】同水素吸蔵材用容器の横断面図である。FIG. 2 is a cross-sectional view of the hydrogen storage material container.

【図3】本発明の第2の実施の形態の水素吸蔵材用容器
の縦断面図である。
FIG. 3 is a longitudinal sectional view of a container for a hydrogen storage material according to a second embodiment of the present invention.

【図4】同水素吸蔵材用容器の横断面図である。FIG. 4 is a cross-sectional view of the hydrogen storage material container.

【図5】本発明の第3の実施の形態の水素吸蔵材用容器
の横断面図である。
FIG. 5 is a cross-sectional view of a hydrogen storage material container according to a third embodiment of the present invention.

【図6】本発明の第4の実施の形態の水素吸蔵材用容器
の正面図である。
FIG. 6 is a front view of a hydrogen storage material container according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施の形態の水素吸蔵材用容器
の縦断面図である。
FIG. 7 is a longitudinal sectional view of a container for a hydrogen storage material according to a fifth embodiment of the present invention.

【図8】従来の水素吸蔵材用容器の概略縦断面図であ
る。
FIG. 8 is a schematic longitudinal sectional view of a conventional hydrogen storage material container.

【図9】従来の他の水素吸蔵材用容器の概略縦断面図で
ある。
FIG. 9 is a schematic longitudinal sectional view of another conventional hydrogen storage material container.

【符号の説明】[Explanation of symbols]

1、1’、11 容器 12 充填口 2、13 合金 3、3’、14 熱媒通路 15 フィルター 16 水素通路 17 断熱層 18 フィン 19 遮蔽板 20 バルブ 21 充填材 DESCRIPTION OF SYMBOLS 1, 1 ', 11 Container 12 Filling port 2, 13 Alloy 3, 3', 14 Heat medium passage 15 Filter 16 Hydrogen passage 17 Heat insulation layer 18 Fin 19 Shield plate 20 Valve 21 Filler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 義明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3E072 EA10 3L093 NN05 PP00 QQ07 RR01 4G040 AA11  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiaki Yamamoto 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 3E072 EA10 3L093 NN05 PP00 QQ07 RR01 4G040 AA11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵材を充填するための充填口を設
けた容器、前記容器内に水素を出入りさせるための水素
通路、前記水素通路に連結されて容器内に配設された水
素を通過させるフィルター、および前記容器内に熱媒を
流して前記水素吸蔵材と熱交換するための熱媒通路を備
え、前記容器内に充填した水素吸蔵材が前記フィルター
の周囲よりも前記熱媒通路の周囲において多く存在する
ことを特徴とする水素吸蔵材用容器。
1. A container provided with a filling port for filling a hydrogen storage material, a hydrogen passage through which hydrogen enters and leaves the container, and a hydrogen passage connected to the hydrogen passage and disposed in the container. And a heat medium passage for flowing a heat medium into the container and exchanging heat with the hydrogen storage material, wherein the hydrogen storage material filled in the container is closer to the heat medium passage than to the periphery of the filter. A container for a hydrogen storage material, which is abundant in the surroundings.
【請求項2】 前記容器の内面に断熱材を備えた請求項
1記載の水素吸蔵材用容器。
2. The hydrogen storage material container according to claim 1, wherein a heat insulating material is provided on an inner surface of the container.
【請求項3】 前記容器内の前記熱媒通路と前記フィル
ターの間に、水素が通過可能な遮蔽板を備えた請求項1
記載の水素吸蔵材用容器。
3. A shielding plate through which hydrogen can pass is provided between the heat medium passage and the filter in the container.
A container for a hydrogen storage material as described in the above.
【請求項4】 前記水素通路と前記熱媒通路の一方また
は両方に、流量を調節するための制御部を備えた請求項
1記載の水素吸蔵材用容器。
4. The hydrogen storage material container according to claim 1, further comprising a controller for adjusting a flow rate in one or both of the hydrogen passage and the heat medium passage.
【請求項5】 前記容器内において熱媒への伝熱に寄与
しない部分に充填材を備えた請求項1記載の水素吸蔵材
用容器。
5. The hydrogen storage material container according to claim 1, wherein a filler is provided in a portion of the container that does not contribute to heat transfer to the heat medium.
【請求項6】 水素吸蔵材を充填するとともに、容器内
に熱媒を流して水素吸蔵材と熱交換するための熱媒通路
を備えた水素吸蔵材用容器に、予め前記容器外で活性化
させた水素吸蔵材を充填する水素吸蔵材の充填方法。
6. A hydrogen storage material container, which is filled with a hydrogen storage material and has a heat medium passage for flowing a heat medium into the container and exchanging heat with the hydrogen storage material, is activated outside the container in advance. A method for filling the hydrogen storage material with the filled hydrogen storage material.
【請求項7】 水素吸蔵材を充填するとともに、容器内
に熱媒を流して水素吸蔵材と熱交換するための熱媒通路
を備えた水素吸蔵材用容器に、予め前記容器外で活性化
させた水素吸蔵材と未活性の水素吸蔵材を混合して充填
する水素吸蔵材の充填方法。
7. A hydrogen storage material container, which is filled with a hydrogen storage material and has a heat medium passage for flowing a heat medium into the container and exchanging heat with the hydrogen storage material, is activated outside the container in advance. And filling the mixed hydrogen storage material and the inactive hydrogen storage material.
JP2001171666A 2001-06-06 2001-06-06 Container for hydrogen storage material and its filling method Pending JP2002364943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171666A JP2002364943A (en) 2001-06-06 2001-06-06 Container for hydrogen storage material and its filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171666A JP2002364943A (en) 2001-06-06 2001-06-06 Container for hydrogen storage material and its filling method

Publications (1)

Publication Number Publication Date
JP2002364943A true JP2002364943A (en) 2002-12-18

Family

ID=19013395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171666A Pending JP2002364943A (en) 2001-06-06 2001-06-06 Container for hydrogen storage material and its filling method

Country Status (1)

Country Link
JP (1) JP2002364943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536946A (en) * 2016-09-21 2019-12-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hydrogen compressor with metal hydride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536946A (en) * 2016-09-21 2019-12-19 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hydrogen compressor with metal hydride
US11204021B2 (en) 2016-09-21 2021-12-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Hydrogen compressor with metal hydride
JP7129972B2 (en) 2016-09-21 2022-09-02 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hydrogen compressor by metal hydride

Similar Documents

Publication Publication Date Title
Tamainot-Telto et al. Novel compact sorption generators for car air conditioning
Muthukumar Experimental investigation on annular metal hydride reactor for medium to large-scale hydrogen storage applications
Wang et al. Absorption cooling: a review of lithium bromide-water chiller technologies
JP2001248795A (en) Hydrogen absorbing alloy tank
JP2004138217A (en) Hydrogen storage tank
CN113497248A (en) Heat exchange device applied to hydrogen fuel cell
JP2002364943A (en) Container for hydrogen storage material and its filling method
CN217544669U (en) Integrated hydrogen storage alloy hydrogen supply fuel cell system
US9764646B2 (en) Leak hydrogen absorbing device, hydrogen energy utilization system and leak hydrogen absorbing method
CN107763757A (en) Cooling system
WO2023087801A1 (en) Self-purification heat dissipation device, fuel cell heat dissipation system, and vehicle
CN116470090A (en) Integrated hydrogen storage alloy hydrogen supply fuel cell system
JP2001042950A (en) Hydrogen gas pressure buffer device and hydrogen gas pressure buffering method
CN210897481U (en) Device for adjusting hydrogen release rate of alloy hydrogen storage equipment
CN114484275A (en) Hydrogen storage bottle integration frame with high-efficient heat transfer function
Wang et al. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: choice of heat pipe medium and experiments under unsteady heating sources
CN207599338U (en) Hydrogen discharges system and fuel cell system and hydrogenation stations
JP4663839B2 (en) Hydrogen recovery / storage container
KR20090084524A (en) Heating and cooling device for hydrogen storage alloys
JP2002295798A (en) Hydrogen transport vessel
RU164881U1 (en) METAL HYDROGEN STORAGE AND HYDROGEN PURIFICATION REACTOR
CN217057140U (en) Portable solid hydrogen storage hydrogen charging and discharging device
CN220397263U (en) Efficient hydrogen charging and discharging device
CN217903672U (en) Cooling device for laser
WO2024052960A1 (en) Magnetocalorific material bed and magnetic refrigeration device