JP2002364425A - Air-fuel ratio controller for internal combustion engine - Google Patents

Air-fuel ratio controller for internal combustion engine

Info

Publication number
JP2002364425A
JP2002364425A JP2001170119A JP2001170119A JP2002364425A JP 2002364425 A JP2002364425 A JP 2002364425A JP 2001170119 A JP2001170119 A JP 2001170119A JP 2001170119 A JP2001170119 A JP 2001170119A JP 2002364425 A JP2002364425 A JP 2002364425A
Authority
JP
Japan
Prior art keywords
oxygen
amount
catalyst
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001170119A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshizawa
秀和 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP2001170119A priority Critical patent/JP2002364425A/en
Publication of JP2002364425A publication Critical patent/JP2002364425A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount

Abstract

PROBLEM TO BE SOLVED: To maintain high exhaust emission control efficiency by calculating an oxygen adsorption amount of an exhaust emission control catalyst and controlling the oxygen adsorption amount to an optimum amount. SOLUTION: In this controller, an oxygen amount calculation means calculates an oxygen amount unused in the exhaust emission control catalyst on the basis of an intake air flow rate and an output value of a first oxygen concentration detection means provided on the upstream side of the catalyst. A catalyst model identification means sequentially identifies a catalyst model set such that the subsequently adsorbed oxygen amount is reduced when the oxygen amount already adsorbed in the catalyst is increased. An oxygen adsorption amount calculation means calculates the oxygen adsorption amount of the catalyst by use of a parameter of the identified catalyst model, and a target air-fuel ratio setting means compares the calculated oxygen adsorption amount with an optimum oxygen adsorption amount, and sets and outputs a target air-fuel ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、特に、排気浄化触媒の酸素吸着量を最
適量に制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and more particularly to a technique for controlling an amount of oxygen adsorbed on an exhaust purification catalyst to an optimum amount.

【0002】[0002]

【従来の技術】従来から、内燃機関の排気通路に排気浄
化触媒を配設し、該排気浄化触媒における酸化と還元と
のバランスをとって、高い排気浄化率を実現するために
排気空燃比を目標空燃比とするようにフィードバック制
御を行う内燃機関の排気浄化システムが知られている。
2. Description of the Related Art Conventionally, an exhaust purification catalyst has been disposed in an exhaust passage of an internal combustion engine, and the oxidation and reduction of the exhaust purification catalyst has been balanced to achieve a high exhaust purification rate. 2. Description of the Related Art An exhaust gas purification system for an internal combustion engine that performs feedback control so as to achieve a target air-fuel ratio is known.

【0003】この種の排気浄化システムにおいては、触
媒内の酸素吸着量が排気浄化率に大きく影響する。例え
ば、触媒内の酸素吸着量が最適値よりも多くなると、C
O、HCの酸化反応が促進される一方、NOxの還元反
応が鈍り、逆に酸素吸着量が最適値よりも少なくなる
と、NOxの還元反応が促進される一方、CO、HCの
酸化反応が鈍ることになる。
In this type of exhaust gas purification system, the amount of oxygen adsorbed in the catalyst greatly affects the exhaust gas purification rate. For example, if the amount of oxygen adsorbed in the catalyst exceeds the optimum value, C
When the oxidation reaction of O and HC is promoted, the reduction reaction of NOx is slowed down. Conversely, when the oxygen adsorption amount is smaller than the optimum value, the reduction reaction of NOx is promoted, while the oxidation reaction of CO and HC is slowed down. Will be.

【0004】そのため、触媒内の酸素吸着量が最適範囲
内にあるように該酸素吸着量によって直接排気空燃比を
制御するのが望ましい。ところで、触媒内の吸着物質量
によって排気空燃比を制御するものとしては、特開平9
−72235号公報に開示されたものがある。このもの
は、触媒に流入するガス成分の吸着反応、流入ガス成分
と触媒内吸着物質との酸化還元反応、触媒内吸着物質の
脱離反応等を考慮した触媒モデルを用いて吸着物質量を
推定し、該推定した吸着物質量が所定範囲内に収まるよ
うに排気空燃比を制御しており、これにより触媒内の酸
素吸着量を最適範囲内に制御することも可能である。
Therefore, it is desirable to directly control the exhaust air-fuel ratio by the amount of oxygen adsorbed so that the amount of adsorbed oxygen in the catalyst is within the optimum range. Japanese Patent Application Laid-open No. Hei 9 (1997) discloses a method for controlling the exhaust air-fuel ratio by the amount of adsorbed substances in the catalyst.
Japanese Unexamined Patent Application Publication No. -72235 discloses an example. This method estimates the amount of adsorbed material using a catalyst model that takes into account the adsorption reaction of the gas component flowing into the catalyst, the oxidation-reduction reaction between the flowing gas component and the adsorbed material in the catalyst, and the desorption reaction of the adsorbed material in the catalyst. However, the exhaust air-fuel ratio is controlled so that the estimated amount of adsorbed substance falls within a predetermined range, whereby it is possible to control the amount of adsorbed oxygen in the catalyst within an optimum range.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のもので
は、触媒内での化学反応をもとに吸着物質量を算出する
方式であるため、計算が非常に複雑化するといった問題
がある。また、すでに多くの量を吸着している触媒と全
く吸着していない触媒とでは、吸着状態(すなわち、触
媒への吸着しやすさ)が異なるにもかかわらず、これが
考慮されておらず高精度に吸着量を推定できないといっ
た問題がある。
However, in the above method, the amount of the adsorbed substance is calculated based on the chemical reaction in the catalyst, so that there is a problem that the calculation becomes very complicated. In addition, a catalyst that has already adsorbed a large amount and a catalyst that has not adsorbed it at all have different adsorption states (that is, ease of adsorption to the catalyst), but this is not taken into account, and high accuracy is not considered. However, there is a problem that the amount of adsorption cannot be estimated.

【0006】本発明は、上記問題に鑑みなされたもので
あって、簡単な触媒モデルを設定することで、触媒の酸
素吸着量を精度よく推定しつつ、該推定した酸素吸着量
が最適範囲内となるように排気空燃比を制御する内燃機
関の空燃比制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problem, and by setting a simple catalyst model, the oxygen adsorption amount of the catalyst can be accurately estimated while keeping the estimated oxygen adsorption amount within an optimum range. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that controls an exhaust air-fuel ratio such that

【0007】[0007]

【課題を解決するための手段】そのため、請求項1に係
る発明は、図1に示すように、内燃機関の排気通路に介
装された排気浄化触媒の上流側で、排気中の酸素濃度を
検出するための第1の酸素濃度検出手段と、前記排気浄
化触媒の下流側で、該排気浄化触媒を通過した排気中の
酸素濃度を検出するための第2の酸素濃度検出手段と、
前記第1の酸素濃度検出手段の出力値と機関への吸入空
気量とに基づいて前記排気浄化触媒で酸化・還元に利用
されない酸素量を算出する酸素量算出手段と、酸素量算
出手段が算出した酸素量を入力、前記第2の酸素濃度検
出手段の検出値を出力として、前記排気浄化触媒にすで
に吸着している酸素量が多いほどその後排気浄化触媒に
吸着される酸素量が減少するように触媒モデルを設定
し、該触媒モデルを逐次同定する触媒モデル同定手段
と、触媒モデル同定手段が同定した触媒モデルのパラメ
ータを用いて前記排気浄化触媒の酸素吸着量を算出する
酸素吸着量算出手段と、酸素吸着量算出手段が算出した
酸素吸着量に基づいて前記排気浄化触媒上流側の目標排
気空燃比を設定する目標空燃比設定手段と、を含んで構
成されたことを特徴とする。
Therefore, according to the first aspect of the present invention, as shown in FIG. 1, the oxygen concentration in the exhaust gas is measured on the upstream side of the exhaust purification catalyst provided in the exhaust passage of the internal combustion engine. First oxygen concentration detecting means for detecting, and second oxygen concentration detecting means for detecting the oxygen concentration in the exhaust gas passing through the exhaust purification catalyst downstream of the exhaust purification catalyst;
Oxygen amount calculating means for calculating the amount of oxygen not used for oxidation / reduction by the exhaust gas purification catalyst based on the output value of the first oxygen concentration detecting means and the amount of intake air to the engine, and the oxygen amount calculating means Using the detected oxygen amount as input and the detection value of the second oxygen concentration detecting means as output, the larger the amount of oxygen already adsorbed to the exhaust gas purification catalyst, the smaller the amount of oxygen subsequently adsorbed to the exhaust gas purification catalyst. Catalyst model identification means for sequentially identifying the catalyst model, and oxygen adsorption amount calculation means for calculating the oxygen adsorption amount of the exhaust purification catalyst using the parameters of the catalyst model identified by the catalyst model identification means. And target air-fuel ratio setting means for setting a target exhaust air-fuel ratio on the upstream side of the exhaust purification catalyst based on the oxygen adsorption amount calculated by the oxygen adsorption amount calculating means. That.

【0008】請求項2に係る発明は、前記触媒モデル
は、前記排気浄化触媒の貴金属への付着と金属酸化の2
つの酸素吸着要素に分けて、それぞれの要素について算
出した伝達関数を合成したものであることを特徴とす
る。請求項3に係る発明は、前記第1伝達関数及び第2
伝達関数は、それぞれ1次遅れの型で表されることを特
徴とする。
According to a second aspect of the present invention, the catalyst model is characterized in that the exhaust gas purifying catalyst has two characteristics of adhesion to a noble metal and metal oxidation.
It is characterized in that the transfer function calculated for each of the two oxygen adsorption elements is synthesized. The invention according to claim 3 is characterized in that the first transfer function and the second transfer function
The transfer function is characterized by being represented by a first-order lag type.

【0009】請求項4に係る発明は、前記第1の酸素濃
度検出手段は、排気空燃比の変化に対して出力値がリニ
アに変化する特性を有する広域型酸素濃度センサである
ことを特徴とする。請求項5に係る発明は、前記第2の
酸素濃度検出手段は、排気空燃比の理論空燃比近傍で出
力値が急変する特性を有するストイキ型酸素濃度センサ
であることを特徴とする。
According to a fourth aspect of the present invention, the first oxygen concentration detecting means is a wide-range oxygen concentration sensor having a characteristic that an output value changes linearly with a change in an exhaust air-fuel ratio. I do. The invention according to claim 5 is characterized in that the second oxygen concentration detecting means is a stoichiometric oxygen concentration sensor having a characteristic that an output value changes rapidly near a stoichiometric air-fuel ratio of the exhaust air-fuel ratio.

【0010】請求項6に係る発明は、前記目標空燃比設
定手段は、前記酸素吸着量算出手段が算出した酸素吸着
量と機関の運転状態に応じて設定される前記排気浄化触
媒の最適酸素吸着量との差が小さくなるように、前記排
気浄化触媒上流側の目標排気空燃比を設定することを特
徴とする。
According to a sixth aspect of the present invention, the target air-fuel ratio setting means sets the optimum oxygen adsorption of the exhaust purification catalyst set according to the oxygen adsorption amount calculated by the oxygen adsorption amount calculating means and the operating state of the engine. The target exhaust air-fuel ratio on the upstream side of the exhaust purification catalyst is set so that the difference from the amount becomes small.

【0011】請求項7に係る発明は、前記触媒モデル同
定手段は、逐次最小二乗法を用いて触媒モデルを同定す
ることを特徴とする。
The invention according to claim 7 is characterized in that the catalyst model identification means identifies a catalyst model using a sequential least squares method.

【0012】[0012]

【発明の効果】請求項1に係る発明によれば、第1の酸
素濃度検出手段で検出した実際の空燃比の理論空燃比か
らのずれと吸入空気量とにより、触媒に導入されるが酸
化や還元に利用されない酸素量を算出し、該酸素量を入
力とし、第2の酸素濃度検出手段の検出値(すなわち、
触媒から排出される酸素量)を出力とした触媒モデルを
設定する。
According to the first aspect of the present invention, although the actual air-fuel ratio detected by the first oxygen concentration detecting means deviates from the stoichiometric air-fuel ratio and the amount of intake air, the air-fuel ratio is introduced into the catalyst. And the amount of oxygen that is not used for reduction is calculated, the amount of oxygen is used as an input, and the detection value of the second oxygen concentration detecting means (ie,
A catalyst model is set with the output (the amount of oxygen discharged from the catalyst) as an output.

【0013】ここで、該触媒モデルは、すでに吸着して
いる酸素量が多いほどその後に吸着する酸素量が減少す
るように、すなわち、触媒の酸素吸着状態によって変化
する「吸着のしやすさ」を考慮して設定されており、こ
れを逐次同定することにより運転状態や触媒の劣化等の
変化に対応するだけでなく、触媒の酸素吸着のしやすさ
にも対応したものとすることができる。
Here, the catalyst model is designed so that the larger the amount of oxygen already adsorbed, the smaller the amount of oxygen adsorbed thereafter, that is, the “easiness of adsorption” changes depending on the oxygen adsorption state of the catalyst. It is set in consideration of, and by sequentially identifying this, it is possible not only to cope with changes in the operating state and deterioration of the catalyst, etc., but also to cope with the ease of oxygen adsorption of the catalyst. .

【0014】そして、同定した触媒モデルの各パラメー
タを用いて触媒の酸素吸着量の変化量、更には、該変化
量を積分処理して酸素吸着量を算出するので、酸素吸着
量についても、酸素吸着のしやすさをも含めた触媒の特
性の変化に対応して精度よく算出できることになり、該
算出した酸素吸着量に基づいて目標排気空燃比を設定す
ることにより、排気浄化効率を高く維持することができ
る。
Then, using the parameters of the identified catalyst model, the amount of change in the amount of oxygen adsorbed on the catalyst and the amount of oxygen adsorption calculated by integrating the amount of change are calculated. Accurate calculation can be performed in response to changes in the characteristics of the catalyst including ease of adsorption. By setting the target exhaust air-fuel ratio based on the calculated amount of oxygen adsorption, the exhaust gas purification efficiency can be maintained at a high level. can do.

【0015】請求項2に係る発明によれば、排気浄化触
媒の酸素吸着には貴金属への付着によるものと金属を酸
化するものとの2つの酸素吸着要素があるので、これら
2つの要素のそれぞれについて伝達関数化し合成して算
出した排気浄化触媒の最終的な伝達関数に基づいて触媒
モデルを設定することにより、排気浄化触媒の酸素吸着
状態をよりよく表現した触媒モデルを設定できる。
According to the second aspect of the invention, the oxygen purification of the exhaust purification catalyst includes two oxygen adsorption elements, one due to the adhesion to the noble metal and the other to oxidize the metal. By setting the catalyst model based on the final transfer function of the exhaust purification catalyst calculated by transfer function synthesis of the exhaust purification catalyst, a catalyst model that better expresses the oxygen adsorption state of the exhaust purification catalyst can be set.

【0016】請求項3に係る発明によれば、複雑な反応
式を使用することなく、比較的簡単な2次(=1次+1
次)の触媒モデルを用いて酸素吸着量を精度よく算出で
きる。請求項4に係る発明によれば、前記第1の酸素濃
度検出手段を、排気空燃比の変化に対して出力値がリニ
アに変化する特性を有する広域型酸素濃度センサとする
ことにより、排気浄化触媒で酸化・還元に利用されない
酸素量を精度よく算出できる。
According to the third aspect of the invention, a relatively simple second order (= first order + 1) is used without using a complicated reaction equation.
The oxygen adsorption amount can be accurately calculated using the catalyst model of the following (2). According to the fourth aspect of the present invention, the first oxygen concentration detecting means is a wide-range oxygen concentration sensor having a characteristic that an output value changes linearly with a change in exhaust air-fuel ratio, so that exhaust gas purification is performed. The amount of oxygen not used for oxidation / reduction by the catalyst can be accurately calculated.

【0017】請求項5に係る発明によれば、前記第2の
酸素濃度検出手段を、排気空燃比の理論空燃比近傍で出
力値が急変する特性を有するストイキ型酸素濃度センサ
とすることにより、コストの増加を抑制しつつ、排気中
の酸素濃度を検出できる。請求項6に係る発明によれ
ば、排気浄化触媒の酸素吸着量が最適量となるように目
標空燃比を設定するので、排気浄化効率を高く維持する
ことができる。
According to the fifth aspect of the present invention, the second oxygen concentration detecting means is a stoichiometric oxygen concentration sensor having a characteristic that the output value changes rapidly near the stoichiometric air-fuel ratio of the exhaust air-fuel ratio. The oxygen concentration in the exhaust gas can be detected while suppressing an increase in cost. According to the sixth aspect of the invention, the target air-fuel ratio is set so that the amount of oxygen adsorbed by the exhaust gas purification catalyst becomes an optimum amount, so that the exhaust gas purification efficiency can be kept high.

【0018】請求項7に係る発明によれば、逐次最小二
乗法(RLS法)を用いることにより、触媒モデルを容
易かつ良好に同定できる。
According to the invention of claim 7, the catalyst model can be easily and well identified by using the sequential least squares method (RLS method).

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図2は、本発明の一実施形態を示す内
燃機関のシステム図である。図2において、機関(エン
ジン)1の吸気通路2には、吸入空気流量Qaを検出す
るエアフローメータ3が設けられ、スロットル弁4によ
り吸入空気量Qaを制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a system diagram of an internal combustion engine showing one embodiment of the present invention. In FIG. 2, an air flow meter 3 for detecting an intake air flow rate Qa is provided in an intake passage 2 of an engine 1, and an intake air amount Qa is controlled by a throttle valve 4.

【0020】エンジン1の各気筒には、燃焼室5内に燃
料を噴射する燃料噴射弁(インジェクタ)6、燃焼室5
内で火花点火を行う点火プラグ7が設けられており、吸
気弁8を介して吸入された空気に対して前記燃料噴射弁
6から燃料を噴射して混合気を形成し、該混合気を前記
燃焼室5内で圧縮し、点火プラグ7による火花点火によ
って着火する。
Each cylinder of the engine 1 has a fuel injection valve (injector) 6 for injecting fuel into the combustion chamber 5, a combustion chamber 5
A spark plug 7 for performing spark ignition is provided therein, and a fuel mixture is formed by injecting fuel from the fuel injection valve 6 with respect to air sucked in through an intake valve 8, and the air-fuel mixture is formed. The fuel is compressed in the combustion chamber 5 and ignited by spark ignition by the spark plug 7.

【0021】排気通路10には排気浄化触媒(以下、単
に触媒という)12が介装され、該触媒12の上流側に
は、排気中における酸素濃度に応じて空燃比をリニアに
検出する広域型酸素濃度センサ(A/Fセンサ)11
が、触媒12の下流側には、排気空燃比の理論空燃比近
傍で出力値が急変するストイキ型の酸素濃度センサ(O
2センサ)13が配設されている。
The exhaust passage 10 is provided with an exhaust purification catalyst (hereinafter, simply referred to as an exhaust purification catalyst).
The catalyst 12 is interposed, and is provided upstream of the catalyst 12.
Makes the air-fuel ratio linear according to the oxygen concentration in the exhaust.
Wide-range oxygen concentration sensor (A / F sensor) 11 to detect
However, downstream of the catalyst 12, near the stoichiometric air-fuel ratio of the exhaust air-fuel ratio
A stoichiometric oxygen concentration sensor (O
TwoSensor 13 is provided.

【0022】エンジン1の排気は、排気弁9を介して燃
焼室5から排気通路10に排出され、排気浄化触媒12
及びマフラーを介して大気中に放出される。C/U20
には、A/Fセンサ11、O2センサ13、クランク角
センサ(図示せず)、水温センサ(図示せず)エアフロ
ーメータ3等からの信号が入力される。
The exhaust gas of the engine 1 is discharged from the combustion chamber 5 to an exhaust passage 10 through an exhaust valve 9,
And released into the atmosphere via mufflers. C / U20
The, A / F sensor 11, O 2 sensor 13, (not shown) the crank angle sensor, a water temperature sensor (not shown) signals from the air flow meter 3 and the like are input.

【0023】C/U20は、入力された各種信号を図中
に示された制御ブロック図に従って処理することによ
り、(触媒12入口側の)目標排気空燃比を設定し、該
目標排気空燃比となるよう噴射燃料量等を制御する。次
に、本実施形態に係る触媒12入口側の目標空燃比の設
定について図2中に示されたブロック図に従って説明す
る。
The C / U 20 sets the target exhaust air-fuel ratio (at the inlet side of the catalyst 12) by processing the various input signals in accordance with the control block diagram shown in FIG. The injection fuel amount and the like are controlled so as to be as follows. Next, the setting of the target air-fuel ratio on the catalyst 12 inlet side according to the present embodiment will be described with reference to the block diagram shown in FIG.

【0024】酸素量算出部21は、触媒12に吸入され
る酸化・還元に利用されない酸素量(すなわち、酸素吸
着量に影響を与える酸素量)を算出する。具体的には、
A/Fセンサ11によって検出された空燃比(実λ)と
理論空燃比(λ=1)との差に吸入空気量Qaを乗算す
ることにより(式(1))、触媒12の酸素量吸着量に
影響を与える酸素吸入量を算出する。
The oxygen amount calculator 21 calculates the amount of oxygen sucked into the catalyst 12 and not used for oxidation and reduction (ie, the amount of oxygen that affects the amount of adsorbed oxygen). In particular,
By multiplying the difference between the air-fuel ratio (actual λ) detected by the A / F sensor 11 and the stoichiometric air-fuel ratio (λ = 1) by the intake air amount Qa (Equation (1)), the oxygen amount of the catalyst 12 is adsorbed. Calculate the amount of oxygen inhaled that affects the amount.

【0025】 u(t)=(実λ―1)×Qa … (1) 触媒モデル同定部22は、前記酸素量算出部21で算出
された酸素吸入量u(t)を入力、触媒12の下流側のO2
センサ検出値(排出酸素量)y(t)を出力とする触媒モ
デル(同定モデル)を逐次最小二乗法(RLS法)を用
いて同定する。ここで、触媒モデルの設定について説明
する。
U (t) = (actual λ−1) × Qa (1) The catalyst model identification unit 22 inputs the oxygen intake amount u (t) calculated by the oxygen amount calculation unit 21, O 2 downstream
A catalyst model (identification model) having a sensor detection value (discharged oxygen amount) y (t) as an output is identified using a sequential least squares method (RLS method). Here, the setting of the catalyst model will be described.

【0026】本実施形態では、以下の点を考慮して触媒
12を伝達関数化して触媒モデルを設定する。触媒12
が吸着できる酸素量には限界があり、すでに吸着されて
いる酸素量により酸素の吸着しやすさが変化するので
(すなわち、一次遅れで表現できる)、これを考慮して
触媒12を伝達関数化する。
In the present embodiment, a catalyst model is set by converting the catalyst 12 into a transfer function in consideration of the following points. Catalyst 12
There is a limit to the amount of oxygen that can be adsorbed, and the ease with which oxygen is adsorbed changes depending on the amount of oxygen already adsorbed (ie, can be expressed by a first-order lag). I do.

【0027】さらに、触媒12に酸素を吸着させる要素
は、貴金属への酸素付着と金属の酸化(例えば、セリウ
ムが酸化して酸化セリウムとなる)の2つがあるので、
それぞれについて伝達関数化し、これらを合成したもの
を最終的な触媒の伝達関数とする。触媒12の酸素吸着
量が増加するほど吸着変化量(吸着する酸素量)が減少
するものと考えると、Vを吸着量、kを吸着係数として
式(2)のように表現することができる。
Further, there are two factors that cause the catalyst 12 to adsorb oxygen, namely, adhesion of oxygen to the noble metal and oxidation of the metal (for example, cerium is oxidized to cerium oxide).
A transfer function is formed for each of them, and a composite of these is defined as a final catalyst transfer function. Assuming that the amount of change in adsorption (the amount of adsorbed oxygen) decreases as the amount of oxygen adsorbed by the catalyst 12 increases, it can be expressed as in equation (2), where V is the amount of adsorption and k is the adsorption coefficient.

【0028】d(V)/dt=−kV …(2) これを解くと、 V=e-kT…(3) となり、これをラプラス変換すると V(s)=1/(k+s) …(4) となる。D (V) / dt = −kV (2) When this is solved, V = e− kT (3). When this is Laplace transformed, V (s) = 1 / (k + s) (4) ).

【0029】また、触媒12の酸素吸着量νと酸素排出
量qとが等しい平衡状態からの酸素流入変化量Δpをラ
プラス変換すると式(5)のようになる。 Δp(s)=sP …(5) ここで、触媒12の酸素吸着量νを、前記酸素流入変化
量Δpと吸着している量Vとの関数と仮定して、式
(4)、(5)を用いて式(6)で与える。
The Laplace transform of the oxygen inflow variation Δp from the equilibrium state where the oxygen adsorption amount ν of the catalyst 12 is equal to the oxygen emission amount q gives the following equation (5). Δp (s) = sP (5) Here, assuming that the oxygen adsorption amount ν of the catalyst 12 is a function of the oxygen inflow change amount Δp and the adsorbed amount V, the equations (4), (5) ) Is given by equation (6).

【0030】ν(s)=sP・1/(k+s) …(6) また、触媒12への流入酸素量pは、酸素吸着量νと酸
素排出量qとの和と考えることができるので、式(7)
で表すことができる。 P(s)=ν(s)+Q(s)=sP・1/(k+s)+Q(s) …(7) 従って、伝達関数Q(s)/P(s)は式(8)のように
なる。
Ν (s) = sP · 1 / (k + s) (6) Further, the amount of oxygen p flowing into the catalyst 12 can be considered as the sum of the amount of oxygen adsorbed ν and the amount of oxygen exhausted q. Equation (7)
Can be represented by P (s) = ν (s) + Q (s) = sP · 1 / (k + s) + Q (s) (7) Accordingly, the transfer function Q (s) / P (s) is expressed by the following equation (8). Become.

【0031】 Q(s)/P(s)=k/(k+s) …(8) ここで、上述したように、触媒12の酸素を吸着させる
要素は、貴金属への付着と金属の酸化があるので、それ
ぞれについて伝達関数で表し、これらを合成してものを
最終的な触媒の伝達関数とする。まず、貴金属への付着
についての伝達関数をG1として式(9)で表す。
Q (s) / P (s) = k / (k + s) (8) As described above, the elements of the catalyst 12 for adsorbing oxygen include adhesion to a noble metal and oxidation of the metal. Therefore, each of them is represented by a transfer function, and a composite of these is defined as a final transfer function of the catalyst. First, a transfer function for adhesion to a noble metal is represented by equation (9) as G1.

【0032】G1=k1/(k1+s) …(9) 同様に、金属の酸化についての伝達関数G2を式(1
0)で表す。 G2=k2/(k2+s) …(10) 式(9)、(10)より、触媒12の伝達関数Gs
(z)は、 Gs = G1×G2 = k1・k2/〔s2+(k1+k2)s+k1・k2〕 …(11) で与えられるので、以下のように表す。
G1 = k1 / (k1 + s) (9) Similarly, the transfer function G2 for the oxidation of metal is expressed by the following equation (1).
0). G2 = k2 / (k2 + s) (10) From equations (9) and (10), the transfer function Gs of the catalyst 12 is obtained.
(Z), since given by Gs = G1 × G2 = k1 · k2 / [s 2 + (k1 + k2) s + k1 · k2 ] ... (11), represented as follows.

【0033】 Gs(z) = b1/〔z2+a1z+a2〕 …(12) 但し、a1、a2、b1はパラメータとする。そして、ARX
モデルを用いて触媒モデルを式(13)のように表し、 y(k)+a1y(k-1)+a2y(k-2)=b1u(k-1)+e(k) …(13) パラメータベクトルθ及びデータベクトルψを式(1
4)、(15)のように定義するとy(k)は式(16)
のように表現できる。
Gs (z) = b1 / [z 2 + a1z + a2] (12) where a1, a2, and b1 are parameters. And ARX
The catalyst model is represented using the model as shown in Expression (13), and y (k) + a1y (k-1) + a2y (k-2) = b1u (k-1) + e (k) (13) The parameter vector θ and the data vector ψ are expressed by the formula (1)
If defined as 4) and (15), y (k) is given by equation (16)
Can be expressed as

【0034】θ=〔a1,a2,b1〕T …(14) ψ=〔-y(k-1),-y(k-2),u(k-1)〕T …(15) y(k)=θTψ(k)+e(k) …(16) 次に触媒モデルの逐次同定(パラメータ推定)について
説明する。触媒12の特性は、運転状態、触媒12自身
の劣化の度合いにより変化するので、式(13)に示す
触媒モデルのパラメータ(a1、a2、b1)を逐次推定す
る。推定には最小二乗法を用いており、実値と推定値の
誤差の二乗が最も小さくなるパラメータを算出してい
る。
Θ = [a1, a2, b1] T (14) ψ = [-y (k-1),-y (k-2), u (k-1)] T (15) y ( k) = θ T ψ (k) + e (k) (16) Next, the sequential identification (parameter estimation) of the catalyst model will be described. Since the characteristics of the catalyst 12 change depending on the operating state and the degree of deterioration of the catalyst 12, the parameters (a1, a2, b1) of the catalyst model shown in Expression (13) are sequentially estimated. The least squares method is used for the estimation, and the parameter that minimizes the square of the error between the actual value and the estimated value is calculated.

【0035】演算式は一般の重みつき逐次最小二乗法と
同一のものであり、式(17)〜(18)のパラメータ
推定式で構成される。
The arithmetic expression is the same as that of the general weighted successive least squares method, and is composed of the parameter estimation expressions of Expressions (17) to (18).

【0036】[0036]

【数1】 ここで、上記パラメータ推定式の導出について説明す
る。 (A)最小二乗法の適用 パラメータの推定のための評価規範として以下の式を設
定する。
(Equation 1) Here, the derivation of the parameter estimation formula will be described. (A) Application of least squares method The following equation is set as an evaluation criterion for estimating parameters.

【0037】[0037]

【数2】 なお、l(k,θ,ε(k,θ))は予測誤差の大きさを測る任
意に正のスカラ値関数である。最小二乗法では、l(k,
θ,ε(k,θ))=ε2(k,θ)として評価規範JN(θ)を最小
にするようにパラメータを推定する。
(Equation 2) Note that l (k, θ, ε (k, θ)) is an arbitrarily positive scalar function that measures the magnitude of the prediction error. In the least squares method, l (k,
The parameters are estimated such that θ, ε (k, θ)) = ε 2 (k, θ) to minimize the evaluation criterion J N (θ).

【0038】ここで、ARXモデルでは出力の1段先予
測値がθに関して線形、すなわち、θTψ(k)であるの
で、予測誤差ε(k,θ)は以下のように与えられる。 ε(k,θ)=y(k)-θTψ(k) …(19) すると、最小二乗法を適用したときの評価規範JN(θ)
は、式(20)のようになる。
Here, in the ARX model, since the one-step ahead predicted value of the output is linear with respect to θ, that is, θ T ψ (k), the prediction error ε (k, θ) is given as follows. ε (k, θ) = y (k) −θ T ψ (k) (19) Then, the evaluation criterion J N (θ) when the least squares method is applied
Is as shown in Expression (20).

【0039】[0039]

【数3】 これを更に計算すると、(Equation 3) Calculating this further,

【0040】[0040]

【数4】 となる。但し、(Equation 4) Becomes However,

【0041】[0041]

【数5】 であり、mはθの次元である。JN(θ)の最小値を求め
るため、式(21)をθに関して微分して0とおくと、
(Equation 5) And m is the dimension of θ. To find the minimum value of J N (θ), differentiating equation (21) with respect to θ and setting it to 0,

【0042】[0042]

【数6】 が得られる。次に、式(22)〜(26)を用いて上記
構成式(17)、(19)の導出を行う。 (B)構成式(19)の導出 式(26)は、式(22)、(23)より
(Equation 6) Is obtained. Next, the above formulas (17) and (19) are derived using formulas (22) to (26). (B) Derivation of Constitutive Equation (19) Equation (26) is derived from Equations (22) and (23).

【0043】[0043]

【数7】 となる。式(27)の右辺第1項を以下のように定義
し、
(Equation 7) Becomes The first term on the right side of Expression (27) is defined as follows,

【0044】[0044]

【数8】 式(28)の両辺の逆行列をとって積和の要素を一つ分
解すると、
(Equation 8) Taking the inverse matrix of both sides of equation (28) and decomposing one element of the product sum,

【0045】[0045]

【数9】 となり、式(29)の逆行列をとると、(Equation 9) Taking the inverse matrix of equation (29),

【0046】[0046]

【数10】 となる。ここで、逆行列補題を式(30)に適用して、(Equation 10) Becomes Here, applying the inverse matrix lemma to equation (30),

【0047】[0047]

【数11】 となる。なお、逆行列補題とは、ある正則行列Aに対し
て次式が成立することをいう。 (A+BC)-1=A-1-A-1B(I+CA-1B)-1CA-1 (3)構成式(17)の導出式(23)は、m次元ベク
トルなので以下のように置き換えられる。
[Equation 11] Becomes Note that the inverse matrix lemma means that the following equation holds for a certain regular matrix A. (A + BC) -1 = A -1 -A -1 B (I + CA -1 B) -1 CA -1 (3) Since the derived equation (23) of the constitutive equation (17) is an m-dimensional vector, Is replaced by

【0048】[0048]

【数12】 ここで、式(27)、(28)より(Equation 12) Here, from equations (27) and (28)

【0049】[0049]

【数13】 となるが、右辺第2項は、(Equation 13) Where the second term on the right side is

【0050】[0050]

【数14】 と分解できるので、これを代入すると、[Equation 14] Substituting this gives

【0051】[0051]

【数15】 となる。ここで、式(27)は、(Equation 15) Becomes Here, equation (27) is

【0052】[0052]

【数16】 のように変形できるので、これを式(32)に代入し
て、
(Equation 16) Can be transformed into

【0053】[0053]

【数17】 を得る。ここで、式(33)に式(29)を代入する
と、
[Equation 17] Get. Here, by substituting equation (29) into equation (33),

【0054】[0054]

【数18】 となり、これを展開すると、(Equation 18) And expand this,

【0055】[0055]

【数19】 となる。式(31)にψ(N)をかけると、[Equation 19] Becomes By multiplying equation (31) by ψ (N),

【0056】[0056]

【数20】 となり、式(34)に式(35)を代入すると、(Equation 20) And substituting equation (35) into equation (34),

【0057】[0057]

【数21】 となる。右辺の大括弧内は、予測誤差に相当するので、(Equation 21) Becomes Since the brackets on the right side correspond to the prediction error,

【0058】[0058]

【数22】 とおける。従って、式(36)は、(Equation 22) I can go. Therefore, equation (36) becomes

【0059】[0059]

【数23】 となる。以上の式(31)、(37)、(38)が通常
の(重みなしの)逐次最小二乗法を構成するパラメータ
推定式であるが、時変システムでのパラメータ推定で
は、過去の値を指数的に忘却すると収束のよい推定値が
得られるので、評価規範J N(θ)を以下のようにおく。
(Equation 23)Becomes Equations (31), (37), and (38) above are usually
Of the (unweighted) recursive least squares method
This is an estimation formula.
Exponentially forgetting past values gives a good estimate of convergence
The evaluation standard J N(θ) is set as follows.

【0060】[0060]

【数24】 ここで、λは忘却係数であり、1以下の正数である(例
えば、0.98)。すると、上記パラメータ推定式(3
1)、(37)、(38)は、重みつきに変形され、式
(17)〜(19)のパラメータ推定式が得られる。
(Equation 24) Here, λ is a forgetting factor and is a positive number equal to or less than 1 (for example, 0.98). Then, the above parameter estimation formula (3
1), (37), and (38) are transformed with weights, and the parameter estimation expressions of Expressions (17) to (19) are obtained.

【0061】そして、上記パラメータ推定式(17)〜
(19)で構成される逐次最小二乗法を用いてパラメー
タa1、a2、b1を逐次推定する。ここで、通常のシステム
同定のようにパラメータ初期値を0としてシステム同定
を開始してもよいが、収束するまでにある程度の時間を
要するためオフラインであらかじめ求めておいた値(オ
フライン推定パラメータ値)を初期値として用いるよう
にしてもよい。例えば、特性がほぼ中央値となるような
触媒を用いたときのアイドル運転時の酸素吸入量(入力
u(t))及びO2センサ検出値(出力y(t))のデータを
サンプリングし、一般的な予測誤差法(例えば、最尤推
定法、最小二乗法)を用いて(オフライン)パラメータ
推定値を算出する。
The above parameter estimation equations (17) to (17)
The parameters a1, a2, and b1 are sequentially estimated using the sequential least squares method constituted by (19). Here, the system identification may be started with the parameter initial value set to 0 as in the case of normal system identification, but a certain amount of time is required until convergence, so a value determined in advance offline (offline estimation parameter value) May be used as an initial value. For example, data of an oxygen intake amount (input u (t)) and an O 2 sensor detection value (output y (t)) at the time of idling operation when a catalyst whose characteristics have a substantially central value are sampled, The (off-line) parameter estimation value is calculated using a general prediction error method (for example, the maximum likelihood estimation method or the least squares method).

【0062】ここで、前述した式(11)、(12)よ
り、 a1=k1+k2 …(39) a2=b1=k1・k2 …(40) とおけるので、k1及びk2は逐次推定されたパラメータ
(a1、a2、b1)を用いて以下のように算出できる。
Here, from the above equations (11) and (12), a1 = k1 + k2 (39) a2 = b1 = k1 · k2 (40) Therefore, k1 and k2 are successively estimated. It can be calculated as follows using the parameters (a1, a2, b1).

【0063】k1=a2/k2 …(41) k2=〔(a12/4)-a2〕1/2+ a1/2 …(41) 酸素吸着量算出部23は、酸素吸着量を算出する。上述
したように、触媒12の酸素吸着量νは、前記酸素流入
変化量Δpと吸着している量Vとの関数で与えたので、
触媒12の貴金属に付着する分はΔp×e- k1t、金属が
酸化する分はΔp×e-k2tとして酸素吸着量の変化量を
算出する(但し、k1=a2/k2、k2 =〔(a12/4)-a2〕1/2+
a1/2である)。そして、更に積分処理して酸素吸着量
を算出する。
K1 = a2 / k2 (41) k2 = [(a1Two/ 4) -a2]1/2+ a1 / 2 (41) The oxygen adsorption amount calculation unit 23 calculates the oxygen adsorption amount. Above
As described above, the oxygen adsorption amount ν of the catalyst 12 depends on the oxygen inflow
Since it was given as a function of the amount of change Δp and the amount of adsorption V,
The amount of the catalyst 12 adhering to the noble metal is Δp × e- k1t, Metal
The amount to be oxidized is Δp × e-k2tAnd the amount of change in oxygen adsorption
Calculate (However, k1 = a2 / k2, k2 = [(a1Two/ 4) -a2]1/2+
a1 / 2). Then, integration processing is further performed to
Is calculated.

【0064】目標空燃比設定部24は、前記酸素吸着量
算出部23で算出した触媒12の酸素吸着量と機関の運
転状態(例えば、エンジン負荷Tp、回転速度Ne等)
に基づいて設定される最適酸素吸着量とを比較してその
差を演算して、その差を目標空燃比に変換して出力す
る。なお、前記最適酸素吸着量とは、触媒12による排
気浄化効率が最大となる範囲の酸素吸着量であり、前記
目標空燃比とは、触媒12の上流側のA/Fセンサ11
で検出される排気空燃比の目標値である。
The target air-fuel ratio setting unit 24 calculates the oxygen adsorption amount of the catalyst 12 calculated by the oxygen adsorption amount calculation unit 23 and the operating state of the engine (for example, engine load Tp, rotation speed Ne, etc.).
Is compared with the optimal oxygen adsorption amount set based on the above, the difference is calculated, and the difference is converted into a target air-fuel ratio and output. Note that the optimal oxygen adsorption amount is an oxygen adsorption amount in a range where the exhaust gas purification efficiency of the catalyst 12 is maximum, and the target air-fuel ratio is an A / F sensor 11 on the upstream side of the catalyst 12.
Is the target value of the exhaust air-fuel ratio detected at.

【0065】空燃比フィードバック(F/B)制御部2
5は、前記目標空燃比設定部24により設定された目標
空燃比(目標λ)とA/Fセンサ11で検出した実空燃
比(実λ)とに基づいて噴射燃料量等を設定する。以上
のように、触媒12を酸素の吸着しやすさを考慮した伝
達関数で表した触媒モデル(同定モデル)を設定し、該
触媒12の上流側のA/Fセンサ11、下流側のO2
ンサ13の検出値により前記触媒モデルを逐次同定する
ので、比較的簡易なモデルを用いて酸素吸着挙動を精度
よく表現できる。
Air-fuel ratio feedback (F / B) controller 2
Reference numeral 5 sets the amount of fuel to be injected and the like based on the target air-fuel ratio (target λ) set by the target air-fuel ratio setting unit 24 and the actual air-fuel ratio (actual λ) detected by the A / F sensor 11. As described above, the catalyst model (identification model) is set in which the catalyst 12 is represented by a transfer function in consideration of the easiness of adsorbing oxygen, and the A / F sensor 11 on the upstream side of the catalyst 12 and the O 2 on the downstream side are set. Since the catalyst model is sequentially identified based on the detection value of the sensor 13, the oxygen adsorption behavior can be accurately expressed using a relatively simple model.

【0066】また、逐次同定された触媒モデルのパラメ
ータ(推定パラメータ)を用いて酸素吸着量を算出する
ので、触媒12の酸素吸着特性の変動に対応した触媒1
2の酸素吸着量を精度よく算出できる。そして、算出し
た酸素吸着量と最適酸素吸着量とを比較して、その差分
を変換して目標空燃比として出力することで、触媒12
の酸素吸着量を常に最適酸素吸着量とし排気浄化効率を
高く維持できる。
Since the amount of adsorbed oxygen is calculated using the parameters (estimated parameters) of the sequentially identified catalyst model, the catalyst 1 corresponding to the fluctuation of the oxygen adsorption characteristics of the catalyst 12 can be used.
2 can accurately calculate the oxygen adsorption amount. Then, the calculated oxygen adsorption amount and the optimum oxygen adsorption amount are compared, and the difference is converted and output as the target air-fuel ratio.
The amount of oxygen adsorbed is always the optimal amount of oxygen adsorbed, and the exhaust gas purification efficiency can be kept high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】本発明の一実施形態に係るエンジンのシステム
構成図。
FIG. 2 is a system configuration diagram of an engine according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 2 吸気通路 3 エアフローメータ 4 スロットル弁 6 燃料噴射弁 7 点火プラグ 8 吸気弁 9 排気弁 10 排気通路 11 A/Fセンサ 12 排気浄化触媒 13 O2センサ 20 コントロールユニット(C/U) 21 酸素量算出部 22 触媒モデル同定部 23 酸素吸着量算出部 24 目標空燃比設定部 25 空燃比F/B制御部1 engine 2 intake passage 3 air flow meter 4 throttle valve 6 fuel injection valve 7 spark plug 8 intake valves 9 an exhaust valve 10 exhaust passage 11 A / F sensor 12 exhaust purification catalyst 13 O 2 sensor 20 control unit (C / U) 21 Oxygen Amount calculation unit 22 Catalyst model identification unit 23 Oxygen adsorption amount calculation unit 24 Target air-fuel ratio setting unit 25 Air-fuel ratio F / B control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 314 F02D 45/00 314Z Fターム(参考) 3G084 AA04 BA09 BA11 DA05 DA07 DA10 EA03 EB11 FA07 FA20 FA26 FA30 FA38 3G091 AA02 AA12 AA17 AA23 AB06 BA01 BA07 BA11 BA13 BA27 BA33 CB01 DC01 DC07 EA01 EA05 EA16 EA34 EA36 FB10 FC01 HA36 HA37 HA42 3G301 HA01 HA15 JA25 JA26 JA33 LB02 LC01 MA01 MA11 NA03 ND01 PA01Z PD09Z PE03Z PE08Z PF16Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) F02D 45/00 314 F02D 45/00 314Z F term (reference) 3G084 AA04 BA09 BA11 DA05 DA07 DA10 EA03 EB11 FA07 FA20 FA26 FA30 FA38 3G091 AA02 AA12 AA17 AA23 AB06 BA01 BA07 BA11 BA13 BA27 BA33 CB01 DC01 DC07 EA01 EA05 EA16 EA34 EA36 FB10 FC01 HA36 HA37 HA42 3G301 HA01 HA15 JA25 JA26 JA33 LB02 LC01 MA01 MA11 NA03 ND01 PE03 PD03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気通路に介装された排気浄化
触媒の上流側で、排気中の酸素濃度を検出するための第
1の酸素濃度検出手段と、 前記排気浄化触媒の下流側で、該排気浄化触媒を通過し
た排気中の酸素濃度を検出するための第2の酸素濃度検
出手段と、 前記第1の酸素濃度検出手段の出力値と機関への吸入空
気量とに基づいて前記排気浄化触媒で酸化・還元に利用
されない酸素量を算出する酸素量算出手段と、 酸素量算出手段が算出した酸素量を入力、前記第2の酸
素濃度検出手段の検出値を出力として、前記排気浄化触
媒にすでに吸着している酸素量が多いほどその後排気浄
化触媒に吸着される酸素量が減少するように触媒モデル
を設定し、該触媒モデルを逐次同定する触媒モデル同定
手段と、 触媒モデル同定手段が同定した触媒モデルのパラメータ
を用いて前記排気浄化触媒の酸素吸着量を算出する酸素
吸着量算出手段と、 酸素吸着量算出手段が算出した酸素吸着量に基づいて前
記排気浄化触媒上流側の目標排気空燃比を設定する目標
空燃比設定手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
制御装置。
A first oxygen concentration detecting means for detecting an oxygen concentration in exhaust gas on an upstream side of an exhaust gas purification catalyst provided in an exhaust passage of an internal combustion engine; A second oxygen concentration detecting means for detecting an oxygen concentration in the exhaust gas having passed through the exhaust gas purification catalyst, and the second oxygen concentration detecting means based on an output value of the first oxygen concentration detecting means and an intake air amount to an engine. An oxygen amount calculation means for calculating an oxygen amount not used for oxidation / reduction by the exhaust gas purification catalyst; an oxygen amount calculated by the oxygen amount calculation means being input; and a detection value of the second oxygen concentration detection means being an output, the exhaust gas Catalyst model identification means for setting a catalyst model such that the greater the amount of oxygen already adsorbed on the purification catalyst, the smaller the amount of oxygen subsequently adsorbed on the exhaust purification catalyst, and sequentially identifying the catalyst model; Tactile means identified Oxygen adsorption amount calculating means for calculating an oxygen adsorption amount of the exhaust purification catalyst using parameters of a medium model; and a target exhaust air-fuel ratio upstream of the exhaust purification catalyst based on the oxygen adsorption amount calculated by the oxygen adsorption amount calculating means. An air-fuel ratio control device for an internal combustion engine, comprising: target air-fuel ratio setting means for setting
【請求項2】前記触媒モデルは、貴金属へ付着する分を
考慮して算出した第1伝達関数と金属が酸化する分を考
慮して算出した第2伝達関数とを合成した前記排気浄化
触媒の最終的な伝達関数に基づいて設定されることを特
徴とする請求項1記載の内燃機関の空燃比制御装置。
2. The exhaust purification catalyst according to claim 1, wherein the catalyst model is obtained by combining a first transfer function calculated in consideration of an amount attached to a noble metal and a second transfer function calculated in consideration of an amount of metal oxidized. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the air-fuel ratio control device is set based on a final transfer function.
【請求項3】前記第1伝達関数及び第2伝達関数は、そ
れぞれ1次遅れの型で表されることを特徴とする請求項
1又は請求項2記載の内燃機関の空燃比制御装置。
3. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the first transfer function and the second transfer function are each represented by a first-order lag type.
【請求項4】前記第1の酸素濃度検出手段は、排気空燃
比の変化に対して出力値がリニアに変化する特性を有す
る広域型酸素濃度センサであることを特徴とする請求項
1から請求項3のいずれか1つに記載の内燃機関の空燃
比制御装置。
4. The oxygen concentration sensor according to claim 1, wherein said first oxygen concentration detection means is a wide-range oxygen concentration sensor having a characteristic that an output value changes linearly with a change in exhaust air-fuel ratio. Item 4. An air-fuel ratio control device for an internal combustion engine according to any one of items 3.
【請求項5】前記第2の酸素濃度検出手段は、排気空燃
比の理論空燃比近傍で出力値が急変する特性を有するス
トイキ型酸素濃度センサであることを特徴とする請求項
1から請求項4のいずれか1つに記載の内燃機関の空燃
比制御装置。
5. The stoichiometric oxygen concentration sensor according to claim 1, wherein said second oxygen concentration detecting means has a characteristic that an output value changes abruptly near a stoichiometric air-fuel ratio of an exhaust air-fuel ratio. 5. The air-fuel ratio control device for an internal combustion engine according to any one of 4.
【請求項6】前記目標空燃比設定手段は、前記酸素吸着
量算出手段が算出した酸素吸着量と機関の運転状態に応
じて設定される前記排気浄化触媒の最適酸素吸着量との
差が小さくなるように、前記排気浄化触媒上流側の目標
排気空燃比を設定することを特徴とする請求項1から請
求項5のいずれか1つに記載の内燃機関の空燃比制御装
置。
6. The target air-fuel ratio setting means reduces a difference between an oxygen adsorption amount calculated by the oxygen adsorption amount calculating means and an optimum oxygen adsorption amount of the exhaust purification catalyst set according to an operating state of an engine. The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 5, wherein a target exhaust air-fuel ratio on the upstream side of the exhaust purification catalyst is set so as to be as follows.
【請求項7】前記触媒モデル同定手段は、逐次最小二乗
法を用いて触媒モデルを同定することを特徴とする請求
項1から請求項6のいずれか1つに記載の内燃機関の空
燃比制御装置。
7. The air-fuel ratio control for an internal combustion engine according to claim 1, wherein said catalyst model identification means identifies the catalyst model using a sequential least squares method. apparatus.
JP2001170119A 2001-06-05 2001-06-05 Air-fuel ratio controller for internal combustion engine Pending JP2002364425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170119A JP2002364425A (en) 2001-06-05 2001-06-05 Air-fuel ratio controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170119A JP2002364425A (en) 2001-06-05 2001-06-05 Air-fuel ratio controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002364425A true JP2002364425A (en) 2002-12-18

Family

ID=19012094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170119A Pending JP2002364425A (en) 2001-06-05 2001-06-05 Air-fuel ratio controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002364425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329005A (en) * 2005-05-24 2006-12-07 Daihatsu Motor Co Ltd Catalytic deterioration diagnostic method and catalytic deterioration diagnostic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329005A (en) * 2005-05-24 2006-12-07 Daihatsu Motor Co Ltd Catalytic deterioration diagnostic method and catalytic deterioration diagnostic system
JP4651454B2 (en) * 2005-05-24 2011-03-16 ダイハツ工業株式会社 Catalyst deterioration diagnosis method, catalyst deterioration diagnosis device

Similar Documents

Publication Publication Date Title
JP2002349325A (en) Air-fuel ratio control device for internal combustion engine
US5842340A (en) Method for controlling the level of oxygen stored by a catalyst within a catalytic converter
US6985809B2 (en) Control apparatus, control method, and engine control unit
JP3973922B2 (en) Control device
JP4184058B2 (en) Control device
EP1388659B1 (en) A vehicle controller for controlling an air-fuel ratio
JP6143910B1 (en) Control device and control method for internal combustion engine
US20040040283A1 (en) Air fuel ratio controller for internal combustion engine for stopping calculation of model parameters when engine is in lean operation
JP3926703B2 (en) Control device
JP3998136B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04292554A (en) Method for estimating conversion efficiency of catalyst for purifying exhaust of internal combustion engine
JP4395120B2 (en) Exhaust gas purification device for internal combustion engine
JP4028334B2 (en) Control device
JPH03249320A (en) Deterioration detecting device for catalyst
JP2001241319A (en) Diagnostic device for engine
JP2002364425A (en) Air-fuel ratio controller for internal combustion engine
JP4439508B2 (en) Control device
JP3239575B2 (en) Temperature prediction device and temperature control device for internal combustion engine
JP4045968B2 (en) Exhaust gas sensor deterioration diagnosis device
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
JP4277959B2 (en) Control device
JP3986434B2 (en) Air-fuel ratio control device for internal combustion engine
JP3986435B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01271642A (en) Device for controlling fuel injection quantity of internal combustion engine
JP3591671B2 (en) Air-fuel ratio control device for internal combustion engine